WorldWideScience

Sample records for roller-compacted concrete rcc

  1. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  2. MacDonald Dam reconstruction : using roller-compacted concrete

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, E. [AMEC Earth and Environmental Ltd., Sydney, NS (Canada)

    2007-04-01

    Located in Nova Scotia, the MacDonald Dam was commissioned in 1928. The dam consists of a 122 metre-long, 16 metre-high concrete structure comprised of an intake structure, stoplog openings, and a 34 metre-long free-overflow spillway. A 488 metre-long power canal was added as an upgrade in the 1950s. This paper provided details of the roller-compact concrete (RCC) used in the dam's recent rehabilitation following a dam failure analysis in 2003 by Nova Scotia Power Inc. RCC was chosen to help keep the dam's construction project on schedule. The layout and cross-section of the spillway was selected with consideration given to the RCC placing operation. A lift thickness of 0.20 m was selected. A formed ogee crest consisting of conventional reinforced concrete was constructed on top of the RCC. The downstream steps of the spillway were also covered with cast-in-place concrete. A low level sluice was designed to resist the weight of the wet RCC. The design compressive strength of the RCC was 20 MPa. The forms used to support the cast-in-place facing concrete on the upstream face of the dam were constructed full height and were braced back to the downstream face of the existing concrete structure prior to the start of RCC placement. Formwork inserts were placed in the facing concrete as construction progressed. Crack inducers were pre-placed on the forms. Aggregates from a local source were transported to a pug mill as the RCC construction progressed. The RCC was spread into 0.20 m lifts using a small bull-dozer, and the facing concrete was vibrated into the lift below. RCC lifts were compacted using a 9 tonne vibratory drum roller. The RCC placing operation was completed over a period of 10 days. Following the completion of the RCC portion of the dam, the remainder of the cast-in-place concrete was completed. It was concluded that the RCC provided a durable, low-maintenance structure that was completed at a lower price and in a shorter time-frame than

  3. Lake Robertson hydroelectric project. Construction of a roller compacted concrete dam

    Energy Technology Data Exchange (ETDEWEB)

    Labelle, M.; Robitaille, F. [Hydro-Quebec, Montreal, PQ (Canada)

    1995-12-31

    Construction of the Lake Robertson hydroelectric project on Quebec`s Lower North Shore was discussed in detail. The dam and powerhouse, located on the HaHa River, consists of a 134 m long concrete gravity dam, and a 21 MW powerhouse with two 69 kV transmission lines and four substations. The climate, terrain, and geography of the region, all of them characterized as severe, and the logistics of construction of the dam and power lines, aggravated by the isolation and severe conditions at the site, were described. The roller compacted concrete design and construction were noted, and justification for a concrete dam over an earth-fill dam was provided. Economics, properties, and composition of the roller compacted concrete (RCC) were examined, and control test results for the RCC concrete were provided. The use of RCC for the Lake Robertson development was described as successful in terms of the quality, watertightness, and completion time. The experience gained by the participants will make it possible to offer RCC as an alternative on various other projects. 2 figs.

  4. A comparative study of physical and chemical properties of different pozzolanic materials used for roller compacted concrete RCC dams

    OpenAIRE

    Husein Malkawi Abdallah I.; Shatnawi Ehab; Husein Malkawi Dima A.

    2017-01-01

    This paper addresses the feasibility and the efficiency of using Natural Pozzolan and/or Rock flour in Roller Compacted Concrete (RCC) gravity dams. For this purpose, five identical mortar trial mixes were prepared using five different supplementary materials, i.e., fly ash produced in South Africa (proven to be effective in RCC construction), fly ash produced in Turkey, Jordanian natural pozzolan, Saudi natural pozzolan, and rock flour from Mujib Dam basalt quarry. The physical and chemical ...

  5. Physical and mechanical behaviour of a roller compacted concrete ...

    African Journals Online (AJOL)

    In order to study the behaviour of a roller compacted concrete (RCC) reinforced with polypropylene fiber, six types of RCC were made with different content of fibers (0, 0.5, 1, 1.5, 2 and 2.5 Kg/m3). The physical parameters are the density, the workability, the shrinkage and the water absorption. For the mechanical ...

  6. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  7. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  8. A comparative study of physical and chemical properties of different pozzolanic materials used for roller compacted concrete RCC dams

    Directory of Open Access Journals (Sweden)

    Husein Malkawi Abdallah I.

    2017-01-01

    Full Text Available This paper addresses the feasibility and the efficiency of using Natural Pozzolan and/or Rock flour in Roller Compacted Concrete (RCC gravity dams. For this purpose, five identical mortar trial mixes were prepared using five different supplementary materials, i.e., fly ash produced in South Africa (proven to be effective in RCC construction, fly ash produced in Turkey, Jordanian natural pozzolan, Saudi natural pozzolan, and rock flour from Mujib Dam basalt quarry. The physical and chemical properties of these pozzolanic materials were determined. The effectiveness of each one of these mineral admixtures used as a cement replacement material in controlling alkali silica reaction are studied and analyzed. Correlations were made between the mechanical properties for the five proposed mixes and a control mix using the Jordanian Portland Cement. The results demonstrate that the performance of Natural Pozzolana and/or rock flour as compared with that of fly ash and other pozzolanic material is very satisfactory and can be effectively used in RCC construction.

  9. The effects of adding waste plastic fibers on some properties of roller compacted concrete

    Directory of Open Access Journals (Sweden)

    Abed Adil

    2018-01-01

    Full Text Available An attempt to produce of roller compacted concrete (RCC improved by adding waste plastic fibers (WPFs resulting from cutting the PET beverage bottles was recorded in this study. The method which is used for production of RCC is an approved design method for ACI committee (5R-207,1980[1]. WPF was added by volumetric percentages ranging between (0.5 to 2 % and reference concrete mix was produced for comparison reason. Many tests were conducted on the models produced by rolling compacted concrete like compressive strength, flexural strength, modulus of elasticity, dry density, water absorption and ultrasonic pulse velocity. The analysis of the results showed that the use of plastic waste fibers (1% had led to improvement in the properties of each of the compressive strength and flexural strength compared with reference concrete. Results also showed that the addition of these, fibers increase water absorption and reduce the speed of Ultrasonic pulse velocity.

  10. Use of flyash in roller compacted concrete for Ghatghar pumped storage scheme in Maharashtra

    Energy Technology Data Exchange (ETDEWEB)

    Damani, R.L.; Kshirsagar, S.L.; Narkhede, C.L. [MERI, Nashik (India)

    2003-07-01

    The paper described the use of 'Roller Compacted Concrete' (RCE) in which about 60% of the cement will be replaced by fly ash for construction of two storage dams - Upper dam and Lower dam in the Thane district of India. These are part of the Ghatghar Pumped Storage Scheme to generate hydropower. Fly ash from Eklahare and Dahav thermal power plant and processed fly ash, Pozzocrete 63 and 83b grade, all proved suitable for the RCC mix. 1 tab.

  11. Three-dimensional earthquake analysis of roller-compacted concrete dams

    Directory of Open Access Journals (Sweden)

    M. E. Kartal

    2012-07-01

    Full Text Available Ground motion effect on a roller-compacted concrete (RCC dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam–foundation–reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.

  12. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  13. Study on the effect of Shahin-Dezh green Tuff on the mechanical characteristics of roller compact concrete

    Directory of Open Access Journals (Sweden)

    Sadegh Dardaei

    2016-12-01

    Full Text Available Due to the growing popularity of concrete structure and increasing use of them, especially Roller compacted concrete, applying Pozzolan and replacing cement with Pozzolan is very important. Nowadays, the use of the additive for cement replacement is common in RCC mix design due to its technical advantages and economic benefits as there is large quantity of Pozzolan mineral resources in Iran. In this paper the impact of produced concrete has been fully considered as well as the effect of this Pozzolan on the compressive strength, tensile strength and permeability by using green Tuff obtained from available Pozzolan in western Azarbaijan. The due results prove that Shahin-Dezh green Tuff improves concretes quality.

  14. Long-term thermal two- and three-dimensional analysis of roller compacted concrete dams supported by monitoring verification

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanovic, V.; Savic, L. [Belgrade Univ. (Serbia). Faculty of Civil Engineering; Stefanakos, J. [National Technical Univ. of Athens (Greece). Dept. of Water Resources and Environmental Engineering

    2010-04-15

    This study investigated the long-term thermal-field evolution of roller compacted concrete (RCC) dams. Thermal computational analyses of the dams are needed as a result of the layer-based construction technologies used to build the dams. Two-dimensional (2-D) and 3-D unsteady phased models of the RCC dams were used to determine the time evolution of thermal field in a dam based on the Platanovryssi dam in Greece. The finite element method (FEM) was used to account for the dam geometry, different types of concrete used; actual initial and boundary conditions; the thermal and mechanical properties of the dam as a function of aging and temperature; and the RCC construction technology. The influence of all the parameters on the thermal behaviour of the RCC gravity dam was analyzed. Results of the study showed that the 2-D model accurately described the RCC dam thermal field. The thermal behaviour of the dam was influenced primarily by the thermal properties of the mixture and the boundary conditions. Variations of layer thickness did not significantly influence the temperature field. 18 refs., 3 tabs., 10 figs.

  15. Effect of Using Porcelanite as Partial Replacement of Fine Aggregate on Roller Compacted Concrete with Different Curing Methods

    Directory of Open Access Journals (Sweden)

    Abeer Abdulqader Salih

    2016-09-01

    Full Text Available Roller-Compacted Concrete is a no-slump concrete, with no reinforcing steel, no forms, no finishing and wet enough to support compaction by vibratory rollers. Due to the effect of curing on properties and durability of concrete, the main purpose of this research is to study the effect of various curing methods (air curing, 7 days water curing, and permanent water curing and porcelanite (local material used as an Internal Curing agent with different replacement percentages of fine aggregate (volumetric replacement on some properties of Roller-Compacted Concrete and to explore the possibility of introducing practical Roller-Compacted Concrete for road pavement with minimum requirement of curing. Specimens were sawed from slabs of (380*380*100 mm for determination of Ultrasonic Pulse Velocity (UPV and Voids volume. Results show that using (5 % porcelanite improved the results of UPV and Voids volume of Roller-Compacted Concrete (with air curing as compared with reference Roller-Compacted Concrete (with permanent water curing by percentages ranging from(3.6 to 28.9% and (-8 to -15.5% respectively.

  16. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  17. Structural Design and Economic Evaluation of Roller Compacted Concrete Pavement with Recycled Aggregates

    Science.gov (United States)

    Abut, Yavuz; Taner Yildirim, Salih

    2017-10-01

    Using recycled aggregates in the concrete offers advantages in many areas such as waste management, energy save and natural resources, conservation of ecological balance, low CO2 emissions, and users are encouraged in this regard to use these materials. In this study, the profit / loss account arising in the structural design phase was investigated when Reclaimed Asphalt Pavement (RAP), which is limited to use in Roller Compacted Concrete (RCC) pavements, was used as coarse aggregate. RAP materials were used as coarse aggregates by the levels of 0%, 15% and 20% and mechanical properties such as compressive strength, flexural strength, splitting tensile strength and modulus of elasticity were investigated. In the last stage, the mechanical properties obtained from these experimental studies were entered into KENSLABS software as input, and the slab layer thicknesses were determined according to three different subgrade conditions and a certain fatigue criterion. According to the results, it has been determined that the use of RAP at a level of 20% is a serious reducing effect on mechanical properties and and the use of RAP at a level of 15% does not bring a great economic benefit but it is reasonable to use it as coarse aggregate in RCC mixes in consideration of environmental effects.

  18. Importance of using roller compacted concrete in techno-economic investigation and design of small dams

    Science.gov (United States)

    Rouissat, Bouchrit; Smail, N.; Zenagui, S.

    2017-12-01

    In recent years, and under constraints caused by persistent drought, Algeria has launched a new mobilization strategy for surface water resources from small and medium dams. However, by making a review of the studies and achievements of twenty small dams in the west of Algeria, some deficiencies appeared. In addition to reservoir siltation assessment, operation spillways have been the major constraint on the reliability of these types of dams. The objective of this paper is to use the roller compacted concrete (RCC) for small dams' design for the benefit it offers and its ability to incorporate spillways. The development of this reflection was applied to the Khneg Azir earth dam situated in southwest of Algeria. Its uncontrolled lateral spillway has registered significant damage following the flood of October 2005, amounted, at that time, to more than 100 million Algerian dinars (1 million US Dollars). The present research encompasses a technical and economical comparative analysis concerning multiple criteria dam design types coupled with the conjugation of the spillways. Thus, on the basis of financial estimates calculated for all design types, the variant RCC remains competitive with that of the earth dam's spillway isolated (Less than 40% of the cost). To assess the mechanical behavior of the foundations for both types of dams, (earth and RCC dams), numerical modeling has been undertaken, according to the comparative analysis of deformations in the foundations. Analysis of deformations showed that the average foundation deformations was between (0.052-0.85) m for earth dam and (0.023-0.373) m for RCC dam. These economical and technical considerations open up important prospects for the use of RCC in the design of small dams.

  19. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand

    Directory of Open Access Journals (Sweden)

    S. Krishna Rao

    2016-07-01

    Full Text Available This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV tests conducted on roller compacted concrete pavement (RCCP material containing Class F fly ash of as mineral admixture. River sand, M-sand and combination of M-sand and River sand are used as fine aggregate in this experimental work. Three types of fly ash roller compacted concrete mixes are prepared using above three types of fine aggregates and they are designated as Series A (River sand, Series B (manufactured sand and Series C (combination of River sand and M-sand. In each series the fly ash content in place of cement is varied from 0% to 60%. In each series and for different ages of curing (i.e 3, 7, 28 and 90 days forty two cube specimens are cast and tested for compressive strength and UPV. The UPV results of fly ash containing roller compacted concrete pavement (FRCCP show lower values at all ages from 3 days to 90 days in comparison with control mix concrete (0% fly ash in all mixes. However, it is also observed that Series B and C mixes containing fly ash show better results in UPV values, compressive strength and Dynamic Elastic Modulus in comparison to Series A mixes with fly ash. Relationships between compressive strength of FRCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes. A new empirical equation is proposed to determine the Dynamic Elastic Modulus of FRCCP. Keywords: Compressive strength, Dynamic Elastic Modulus, Fly ash, Roller compacted concrete pavement, Ultrasonic Pulse Velocity

  20. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes

    International Nuclear Information System (INIS)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-01-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [es

  1. Accelerated pavement testing of thin RCC over soil cement pavements

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2016-05-01

    Full Text Available Three full-scale roller compacted concrete (RCC pavement sections built over a soil cement base were tested under accelerated pavement testing (APT. The RCC thicknesses varied from 102 mm (4 in. to 152 mm (6 in. and to 203 mm (8 in., respectively. A bi-directional loading device with a dual-tire load assembly was used for this experiment. Each test section was instrumented with multiple pressure cells and strain gages. The objective was to evaluate the structural performance and load carrying capacity of thin RCC-surfaced pavements under accelerated loading. The APT results generally indicated that all three RCC pavement sections tested in this study possessed very high load carrying capacity; an estimated pavement life in terms of equivalent single axle load (ESAL for the thinnest RCC section (i.e., RCC thickness of 102 mm evaluated was approximately 19.2 million. It was observed that a fatigue failure would be the primary pavement distress type for a thin RCC pavement under trafficking. Specifically, the development of fatigue cracking was found to originate from a longitudinal crack at the edge or in the center of a tire print, then extended and propagated, and eventually merged with cracks of other directions. Instrumentation results were used to characterize the fatigue damage under different load magnitudes. Finally, based on the APT performance of this experiment, two fatigue models for predicting the fatigue life of thin RCC pavements were developed. Keywords: Roller compacted concrete, APT, Pavement performance, Non-destructive testing, Fatigue analysis

  2. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    Science.gov (United States)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  3. Simulation analysis of temperature control on RCC arch dam of hydropower station

    Science.gov (United States)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  4. OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Huawei Zhou

    2016-10-01

    Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

  5. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  6. Application of a polycarboxylate ether admixture in RCC dam construction[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Asmus, S.M.F.; Christensen, B.J.; Varley, N.J. [BASF Construction Chemicals Asia Pacific, Shanghai (China)

    2006-07-01

    Chemical admixtures are used in dam construction to improve plasticity of the dry materials mixture over time. Roller compacted concrete (RCC) has been used on many dam projects in China. However, the use of RCC has frequently resulted in water reduction problems. This paper provided details of an admixture based on polycarboxylate ether (PCE) which was developed to improve the quality of RCC constructions at the JinHong dam in China. Use of the polymer at the JinHong dam resulted in a vibration sensitive concrete that was sustained over time. Under identical mix-design and compaction conditions in the laboratory, specific gravity of the RCC was increased from 2417 kg/m{sup 3} to 2463 kg/m{sup 3}. The high specific gravity of the material resulted in satisfactory strength data from the dam project. The key-ratio of the splitting tensile strength versus compressive strength was higher than 8 per cent in all cases. A key advantage of the tailored PCE-RCC was the short Vebe times sustained over elapsed time in the RCC. Without additional compaction or vibration efforts, the specific density of RCC was better than conventional admixture technologies. The reduced viscosity provided cement paste films which formed on the surface of each layer of the RCC, which resulted in better bonding between the layers. It was concluded that the new PCE polymer is compatible with alternative retarder systems, which contributes to more extensive setting times under strict hydration regimes. 7 refs., 4 tabs., 4 figs.

  7. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    Science.gov (United States)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  8. High volume fly ash RCC for dams - I : mixture optimization and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, S. [PEAB Construction Co., Oslo (Norway); Lahus, O. [Norwegian Building Research Inst., Oslo (Norway)

    2001-07-01

    Roller compacted concretes (RCC) were developed for the Norwegian Skjerka hydropower project. RCCs were developed to have a high-volume fly ash content to address environmental issues, including the reduction of carbon dioxide emissions associated with dam construction. They also makes good use of waste product and conserve natural resources. This study examined a series of mixtures to determine the appropriateness of using RCC as a competing alternative to the traditional rock fill dam proposed for the Skjerka hydropower project. The main advantage of RCC is speed, allowing a relatively large dam to be constructed in just one summer season, saving financial costs and providing early return on the investment. In addition, fly ash can be used in the structure, using clean and renewable energy. Several procedures to proportion RCC mixtures were proposed, including the optimal paste volume method which is based on the assumption that an optimal RCC should have just enough paste to fill the space between particles when the granular skeleton has reached its maximum density under compaction. With this assumption, RCC tests began in 1998 in the laboratories of the Norwegian Building Research Institute. An ordinary portland cement was used and combined with ordinary low lime fly ash. Both coarse and fine aggregate were used. The tests determined the optimum paste-mortar ratio, the content of coarse aggregates and the production of specimens for test on hardened and fresh concrete. The study showed that the compressive strength of RCC increased with increasing cement/(cement + fly ash) ratio. The permeability coefficient decreased with increasing cement-content and increasing cement/(cement + fly ash) ratio due to the slow pozzolanic reaction of fly ash making a more open pore structure. It was concluded that an optimized mixture can result in a high performance RCC in terms of fresh and hardened concrete properties. 15 refs., 5 tabs., 11 figs.

  9. Modeling of Comparative Performance of Asphalt Concrete under Hammer, Gyratory, and Roller Compaction

    Directory of Open Access Journals (Sweden)

    Saad I. Sarsam

    2016-11-01

    Full Text Available The main objective of this study is to develop predictive models using SPSS software (version 18 for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351 gm/cc, at OAC of (4.7 % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods. A total of (75 specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7 % with an additional asphalt contents of more and less than (0.5 % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical models obtained indicated that variation of Marshall Stiffness is based on the variation of air voids. All of these models depend on asphalt cement content too.

  10. Radiometric and ultrasonic testing of vibrating roller compacting effects

    International Nuclear Information System (INIS)

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  11. Roller compaction of moist pharmaceutical powders.

    Science.gov (United States)

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Improving feeding powder distribution to the compaction zone in the roller compaction.

    Science.gov (United States)

    Yu, Mingzhe; Omar, Chalak; Schmidt, Alexander; Litster, James D; Salman, Agba D

    2018-07-01

    In the roller compaction process, powder flow properties have a significant influence on the uniformity of the ribbon properties. The objective of this work was to improve the powder flow in the feeding zone by developing novel feeding guiders which are located in the feeding zone close to the rollers in the roller compactor (side sealing system). Three novel feeding guiders were designed by 3D printing and used in the roller compactor, aiming to control the amount of powder passing across the roller width. The new feeding guiders were used to guide more powder to the sides between the rollers and less powder to the centre comparing to the original feeding elements. Temperature profile and porosity across the ribbon width indicated the uniformity of the ribbon properties. Using the novel feeding guiders resulted in producing ribbons with uniform temperature profile and porosity distribution across the ribbon width. The design of the feeding guiders contributed to improving the tensile strength of the ribbons produced from the compaction stage as well as reducing the fines produced from the crushing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  14. Evaluation Standard for Safety Coefficient of Roller Compacted Concrete Dam Based on Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available The lack of evaluation standard for safety coefficient based on finite element method (FEM limits the wide application of FEM in roller compacted concrete dam (RCCD. In this paper, the strength reserve factor (SRF method is adopted to simulate gradual failure and possible unstable modes of RCCD system. The entropy theory and catastrophe theory are used to obtain the ultimate bearing resistance and failure criterion of the RCCD. The most dangerous sliding plane for RCCD failure is found using the Latin hypercube sampling (LHS and auxiliary analysis of partial least squares regression (PLSR. Finally a method for determining the evaluation standard of RCCD safety coefficient based on FEM is put forward using least squares support vector machines (LSSVM and particle swarm optimization (PSO. The proposed method is applied to safety coefficient analysis of the Longtan RCCD in China. The calculation shows that RCCD failure is closely related to RCCD interface strength, and the Longtan RCCD is safe in the design condition. Considering RCCD failure characteristic and combining the advantages of several excellent algorithms, the proposed method determines the evaluation standard for safety coefficient of RCCD based on FEM for the first time and can be popularized to any RCCD.

  15. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  16. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  17. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  18. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  19. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn

    2015-01-01

    The porosity of roller compacted ribbon is recognized as an important critical quality attribute which has a huge impact on the final product quality. The purpose of this study was to investigate the use of near-infrared chemical imaging (NIR-CI) for porosity estimation of ribbons produced...... and control of continuously operating roller compaction line....

  20. A step in the right direction: new flow depth relationships for stepped spillway design

    Science.gov (United States)

    A common deficiency for embankment dams changing from a low hazard to a high hazard dam is inadequate spillway capacity. Roller compacted concrete (RCC) stepped spillways are a popular method to address this issue. Stepped spillway research has gained momentum in recent years due to the need for d...

  1. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  2. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.

    Science.gov (United States)

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-10-01

    This study evaluates the effect of variation in the ambient moisture on the compaction behavior of microcrystalline cellulose (MCC) powder. The study was conducted by comparing the physico-mechanical properties of, and the near infrared (NIR) spectra collected on, compacts prepared by roller compaction with those collected on simulated ribbons, that is, compacts prepared under uni-axial compression. Relative density, moisture content, tensile strength (TS), and Young modulus were used as key sample attributes for comparison. Samples prepared at constant roller compactor settings and feed mass showed constant density and a decrease in TS with increasing moisture content. Compacts prepared under uni-axial compression at constant pressure and compact mass showed the opposite effect, that is, density increased while TS remained almost constant with increasing moisture content. This suggests difference in the influence of moisture on the material under roller compaction, in which the roll gap (i.e., thickness and therefore density) remains almost constant, vs. under uni-axial compression, in which the thickness is free to change in response to the applied pressure. Key sample attributes were also related to the NIR spectra using multivariate data analysis by the partial least squares projection to latent structures (PLS). Good agreement was observed between the measured and the NIR-PLS predicted values for all key attributes for both, the roller compacted samples as well as the simulated ribbons. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Study on Viscoelastic Deformation Monitoring Index of an RCC Gravity Dam in an Alpine Region Using Orthogonal Test Design

    Directory of Open Access Journals (Sweden)

    Yaoying Huang

    2018-01-01

    Full Text Available The main objective of this study is to present a method of determining viscoelastic deformation monitoring index of a Roller-compacted concrete (RCC gravity dam in an alpine region. By focusing on a modified deformation monitoring model considering frost heave and back analyzed mechanical parameters of the dam, the working state of viscoelasticity for the dam is illustrated followed by an investigation and designation of adverse load cases using orthogonal test method. Water pressure component is then calculated by finite element method, while temperature, time effect, and frost heave components are obtained through deformation statistical model considering frost heave. The viscoelastic deformation monitoring index is eventually determined by small probability and maximum entropy methods. The results show that (a with the abnormal probability 1% the dam deformation monitoring index for small probability and maximum entropy methods is 23.703 mm and 22.981 mm, respectively; thus the maximum measured displacement of the dam is less than deformation monitoring index, which indicates that the dam is currently in a state of safety operation and (b the obtained deformation monitoring index using orthogonal test method is more accurate due to the full consideration of more random factors; the method gained from this study will likely be of use to diagnose the working state for those RCC dams in alpine regions.

  4. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.

    Science.gov (United States)

    Dawes, Jason; Gamble, John F; Greenwood, Richard; Robbins, Phil; Tobyn, Mike

    2012-01-01

    A systematic evaluation on the effect of magnesium stearate on the transmission of a placebo formulation from the hopper to the rolls during screw fed roller compaction has been carried out. It is demonstrated that, for a system with two 'knurled' rollers, addition of 0.5% w/w magnesium stearate can lead to a significant increase in ribbon mass throughput, with a consequential increase in roll gap, compared to an unlubricated formulation (manufactured at equivalent process conditions). However, this effect is reduced if one of the rollers is smooth. Roller compaction of a lubricated formulation using two smooth rollers was found to be ineffective due to a reduction in friction at the powder/roll interface, i.e. powder was not drawn through the rollers leading to a blockage in the feeding system. An increase in ribbon mass throughput could also be achieved if the equipment surfaces were pre-lubricated. However this increase was found to be temporary suggesting that the residual magnesium stearate layer was removed from the equipment surfaces. Powder sticking to the equipment surfaces, which is common during pharmaceutical manufacturing, was prevented if magnesium stearate was present either in the blend, or at the roll surface. It is further demonstrated that the influence of the hopper stirrer, which is primarily used to prevent bridge formation in the hopper and help draw powder more evenly into the auger chamber, can lead to further mixing of the formulation, and could therefore affect a change in the lubricity of the carefully blended input material.

  5. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  6. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  7. Field Assessment and Specification Review for Roller-Integrated Compaction Monitoring Technologies

    Directory of Open Access Journals (Sweden)

    David J. White

    2011-01-01

    Full Text Available Roller-integrated compaction monitoring (RICM technologies provide virtually 100-percent coverage of compacted areas with real-time display of the compaction measurement values. Although a few countries have developed quality control (QC and quality assurance (QA specifications, broader implementation of these technologies into earthwork construction operations still requires a thorough understanding of relationships between RICM values and traditional in situ point test measurements. The purpose of this paper is to provide: (a an overview of two technologies, namely, compaction meter value (CMV and machine drive power (MDP; (b a comprehensive review of field assessment studies, (c an overview of factors influencing statistical correlations, (d modeling for visualization and characterization of spatial nonuniformity; and (e a brief review of the current specifications.

  8. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  9. Bond behavior of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ponmalar S.

    2018-03-01

    Full Text Available The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  10. Bond behavior of self compacting concrete

    Science.gov (United States)

    Ponmalar, S.

    2018-03-01

    The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  11. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  12. Assessment of Real-Time Compaction Quality Test Indexes for Rockfill Material Based on Roller Vibratory Acceleration Analysis

    Directory of Open Access Journals (Sweden)

    Tianbo Hua

    2018-01-01

    Full Text Available Compaction quality is directly related to the structure and seepage stability of a rockfill dam. To timely and accurately test the compaction quality of the rockfill material, four real-time test indexes were chosen to characterize the soil compaction degree based on the analysis of roller vibratory acceleration, including acceleration peak value (ap, acceleration root mean square value (arms, crest factor value (CF, and compaction meter value (CMV. To determine which of these indexes is the most appropriate, a two-part field compaction experiment was conducted using a vibratory roller in different filling zones of the dam body. Data on rolling parameters, real-time test indexes, and compaction quality indexes were collected to perform statistical regression analyses. Combined with the spectrum analysis of the acceleration signal, it was found that the CF index best characterizes the compaction degree of the rockfill material among the four indexes. Furthermore, the quantitative relations between the real-time index and compaction quality index were established to determine the control criterion of CF, which can instruct the site work of compaction quality control in the rockfill rolling process.

  13. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.

    Science.gov (United States)

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-10-01

    Effect of variation in the ambient moisture levels on the compaction behavior of a 10% acetaminophen (APAP) powder blend in microcrystalline cellulose (MCC) powder was studied by comparing the physical and mechanical properties of ribbons prepared by roller compaction with those of simulated ribbons, i.e., tablets prepared under uni-axial compression. Relative density, moisture content, tensile strength, and Young's modulus were used as key compact properties for comparison. Moisture was found to facilitate the particle rearrangement of both, the APAP and the MCC particles, as well as the deformation of the MCC particles. The tensile strength of the simulated ribbons also showed an increase with increasing moisture content. An interesting observation was that the tensile strength of the roller compacted samples first increased and then decreased with increasing moisture content. Variation in the ambient moisture during roller compaction was also found to influence the characteristics of tablets produced from the granules obtained post-milling the ribbons. A method to study this influence is also reported. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  14. Self-Compacting Concrete in Precast Elements Industry

    Directory of Open Access Journals (Sweden)

    Corneliu Bob

    2005-01-01

    Full Text Available In this paper the authors present information about the Self-Compacting Concrete and experimental results regarding the use of them into precast element industry. This type of concrete does not require vibration for placing and compaction; it is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The experimental programme has take into account two prestressed beams which were prefabricated and tested on a special stands. The beams of Self-Compacting Concrete with the length of 24 m were prepared at „Beton-Star” Kft, Kecsekenet, Hungary, and used at the CASCO, Satu-Mare.

  15. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  16. Self-compacting concrete mixtures for road BUILDING

    Directory of Open Access Journals (Sweden)

    Tran Tuan My

    2012-10-01

    Therefore, effective concrete road pavements require self-compacting though non-segregating concrete mixtures to comply with the pre-set values of their properties, namely, bending and compressive strength, corrosion resistance, freeze resistance, etc. Acting in cooperation with Department of Technology of Binders and Concretes of MSUCE, NIIMosstroy developed and examined a self-compacting cast concrete mixture designated for durable monolithic road pavements. The composition in question was generated by adding a multi-component modifier into the mix. The modifier was composed of a hyperplasticiser, active (structureless fine and crystalline silica, and a concrete hardening control agent.

  17. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis.

    Science.gov (United States)

    Boersen, Nathan; Carvajal, M Teresa; Morris, Kenneth R; Peck, Garnet E; Pinal, Rodolfo

    2015-01-01

    While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.

  18. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  19. Plastometry for the Self-Compacting Concrete Mixes

    Science.gov (United States)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  20. Physical and mechanical behaviour of a roller compacted concrete ...

    African Journals Online (AJOL)

    Benouadah A

    2017-05-01

    May 1, 2017 ... Rigid pavements are made with Portland cement ... The use of concrete for the construction of coverings; is now very widespread in the ... resistance [11,12], the plastic shrinkage [13] and the propagation of the cracks [14].

  1. An integral design concept for ecological self-compacting concrete

    NARCIS (Netherlands)

    Hunger, M.

    2010-01-01

    This Thesis addresses an alternative design concept for Self-Compacting Concrete (SCC). SCC is a special type of concrete with superior workability, which flows and compacts in all corners of a formwork just by the influence of gravity. Introduced to the concrete world in the late 1980s, SCC has

  2. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin

    Science.gov (United States)

    Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.

    2017-11-01

    The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.

  3. Form Filling with Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2002-01-01

    This paper describes a newly started Ph.D. project with the aim of simulating the form filling ability of Self-Compacting Concrete (SCC) taking into account the form geometry, reinforcement configuration, casting technique, and the rheological properties of the concrete. Comparative studies...

  4. Wider application of additions in self-compacting concrete

    OpenAIRE

    Liu, M.

    2009-01-01

    Compared to normally vibrated concrete (NVC), self-compacting concrete (SCC) possesses enhanced qualities and improves productivity and working conditions due to the elimination of compaction. SCC generally has a higher powder content than NVC and thus it is necessary to replace some of the cement by additions to achieve an economical and durable concrete. The established benefits of using low volumes of fly ash in SCC, high volumes of fly ash in NVC and the search for uses ...

  5. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  6. HIGH-QUALITY SELF-COMPACTING CONCRETE WITH COAL BURNING WASTE

    Directory of Open Access Journals (Sweden)

    Voronin Viktor Valerianovich

    2018-01-01

    Full Text Available Subject: nowadays self-compacting concretes (SCC, the use of which requires no additional compaction, have become widespread for use in densely-reinforced structures and hard-to-reach places. In self-compacting concretes, finely-ground admixtures-microfillers are widely used for controlling technological properties. Their introduction into the concrete mix allows us to obtain more dense structure of concrete. The influence of micro-fillers on water consumption and plasticity of concrete mix, on kinetics of strength gain rate, heat release and corrosion resistance is also noticeable. Research objectives: the work focuses on the development of composition of self-compacting concrete with assigned properties with the use of fly ash based on coal burning waste, optimized with the help of experimental design method in order to clarify the influence of ash and cement quantity, sand size on strength properties. Materials and methods: pure Portland cement CEM I 42.5 N was used as a binder. Crushed granite of fraction 5…20 mm was used as coarse aggregate, coarse quartz sand with the fineness modulus of 2.6 and fine sand with the fineness modulus of 1.4 were used as fillers. A superplasticizer BASF-Master Glenium 115 was used as a plasticizing admixture. The fly ash from Cherepetskaya thermal power plant was used as a filler. The study of strength and technological properties of self-compacting concrete was performed by using standard methods. Results: we obtained three-factor quadratic dependence of strength properties on the content of ash, cement and fraction of fine filler in the mix of fine fillers. Conclusions: introduction of micro-filler admixture based on the fly ash allowed us to obtain a concrete mix with high mobility, fluidity and self-compaction property. The obtained concrete has high strength characteristics, delayed strength gain rate due to replacement of part of the binder with ash. Introduction of the fly ash increases degree of

  7. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  8. Research on Durability of Big Recycled Aggregate Self-Compacting Concrete Beam

    Science.gov (United States)

    Gao, Shuai; Liu, Xuliang; Li, Jing; Li, Juan; Wang, Chang; Zheng, Jinkai

    2018-03-01

    Deflection and crack width are the most important durability indexes, which play a pivotal role in the popularization and application of the Big Recycled Aggregate Self-Compacting Concrete technology. In this research, comparative study on the Big Recycled Aggregate Self-Compacting Concrete Beam and ordinary concrete beam were conducted by measuring the deflection and crack width index. The results show that both kind of concrete beams have almost equal mid-span deflection value and are slightly different in the maximum crack width. It indicates that the Big Recycled Aggregate Self-Compacting Concrete Beam will be a good substitute for ordinary concrete beam in some less critical structure projects.

  9. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes; Comportamiento a tracción posterior a la fisuración del hormigón reforzado con fibras de acero compactado con rodillo para el diseño y modelado EF.

    Energy Technology Data Exchange (ETDEWEB)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-07-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [Spanish] La rotura del hormigón reforzado con fibra de acero se produce principalmente en forma de una banda de fisuración que sufre progresiva microfracturación. Para el diseño y modelado EF, esta banda se puede caracterizar por una relación tensión-deformación (σ-ε). Para fibras de acero industriales, existen metodologías (RILEM TC 162-TDF 2003) que proponen ecuaciones empíricas para predecir una relación σ-ε trilinear a partir de resultados de pruebas de flexión. En este artículo se evalúa la precisión de estas metodologías y su aplicación para hormigón compactado con rodillo y hormigón reforzado con fibras de acero recicladas provenientes de neumáticos usados. Se demuestra que estas metodologías generalmente sobreestiman la capacidad de absorción de (hasta un 60%) tanto para el hormigón convencional como para el compactado con rodillo. En este art

  10. Transporting fibres as reinforcement in self-compacting concrete

    NARCIS (Netherlands)

    Grünewald, S.; Walraven, J.C.

    2009-01-01

    The development of self-compacting concrete (SCC) was an important step towards efficiency at building sites, rationally producing prefabricated concrete elements, better working conditions and improved quality and appearance of concrete structures. By adding fibres to SCC bar reinforcement can be

  11. RCC-CW - Rules for design and construction of PWR nuclear civil works

    International Nuclear Information System (INIS)

    2016-01-01

    RCC-CW describes the rules for designing, building and testing civil engineering works in PWR reactors. It explains the principles and requirements for the safety, serviceability and durability of concrete and metal frame structures, based on Eurocode design principles (European standards for the structural design of construction works) combined with specific measures for safety-class buildings. The code is produced as part of the RCC-CW Subcommittee, which includes all the parties involved in civil engineering works in the nuclear sector: clients, contractors, general and specialized firms, consultancies and inspection offices. The code covers the following areas relating to the design and construction of civil engineering works that play an important safety role: geotechnical aspects, reinforced concrete structures and galleries, pre-stressed containments with metal liner, metal containment and pool liners, metal frames, anchors, concrete cylinder pipes, containment leak tests. The RCC-CW code is available as an ETC-C version specific to EPR projects (European pressurized reactor). Contents of the 2016 edition of the RCC-CW Code: Part G - General: scope, standards, notations, quality management, general principles; Part D - Design: actions and combinations of actions, geotechnical aspects, pre-stressed or reinforced concrete structures, metal containment liners, metal pool liners, metal frames, anchors; Part C - Construction: geotechnical aspects, concrete, surface finish and formwork, reinforcement for reinforced concrete, pre-stressing processes, prefabricated concrete elements, metal containment liners, metal pool liners, metal frames, anchors, embedded pipelines, joint sealing, survey networks and tolerances; Part M - Maintenance and monitoring: containment integrity and rate tests

  12. APPLICATION OF FLOW SIMULATION FOR EVALUATION OF FILLING-ABILITY OF SELF-COMPACTING CONCRETE

    Science.gov (United States)

    Urano, Shinji; Nemoto, Hiroshi; Sakihara, Kohei

    In this paper, MPS method was applied to fluid an alysis of self-compacting concrete. MPS method is one of the particle method, and it is suitable for the simulation of moving boundary or free surface problems and large deformation problems. The constitutive equation of self-compacting concrete is assumed as bingham model. In order to investigate flow Stoppage and flow speed of self-compacting concrete, numerical analysis examples of slump flow and L-flow test were performed. In addition, to evaluate verification of compactability of self-compacting concrete, numerical analys is examples of compaction at the part of CFT diaphragm were performed. As a result, it was found that the MPS method was suitable for the simulation of compaction of self-compacting concrete, and a just appraisal was obtained by setting shear strain rate of flow-limit πc and limitation point of segregation.

  13. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2014-01-01

    Full Text Available This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC. Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compacting concrete. In addition using these materials leads to improving them.

  14. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  15. A Blocking Criterion for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2005-01-01

    To benefit from the full potential of Self-Compacting Concrete (SCC) prediction tools for the form filling ability of SCC are needed. This paper presents a theoretical concept for assessment of the blocking resistance of SCC. A critical concrete flow rate above which no blocking occurs...... is introduced. The critical flow rate takes into account the mix design, the rheological properties of the matrix and concrete, and the geometry of the flow domain....

  16. Self-compacting fibre reinforced concrete applied in thin plates

    NARCIS (Netherlands)

    Grunewald, S.; Shionaga, R.; Walraven, J.C.

    2013-01-01

    Floor panels produced with traditionally vibrated concrete are relatively thick due to the need to reinforce concrete and consequently, heavy. Without the need to place rebars in panels and by applying self-compacting fibre reinforced concrete (SCFRC) the production process becomes more efficient.

  17. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    Directory of Open Access Journals (Sweden)

    R. Ananda Kumar

    2015-01-01

    Full Text Available Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral load reviews are also presented. This review paper is prepared to find out the performance of basalt fibre reinforced polymer BFRP composite retrofitted reinforced cement concrete single end bearing piles.

  18. DEFORMATION PROPERTIES OF LIGHT SELF – COMPACTING CONCRETE

    Directory of Open Access Journals (Sweden)

    V. M. Bychkov

    2013-01-01

    Full Text Available Аn article deformation properties of a light self – compacting concrete (LSCC are considered. Its comparison with characteristics of light concrete on porous fillers is given. Creep and LSCC shrinkage are in detail analyzed. Conclusions on work are drawn.

  19. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  20. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...

  1. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  2. EXPERIMENTAL STUDY ON HYBRID FIBER SELF COMPACTING CONCRETE

    OpenAIRE

    S. M. Leela Bharathi

    2017-01-01

    Self-Compacting Concrete is a recently developed concept in which the ingredients of the concrete mix are proportioned in such a way that it can flow under its own weight to completely fill the formwork and passes through the congested reinforcement without segregation and self-consolidate without any mechanical vibration. Several studies in the past have revealed the usefulness of fibres to improve the structural properties of concrete like ductility, post crack resistance, energy absorption...

  3. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    OpenAIRE

    R. Ananda Kumar; Dr. C. Selvamony; A. Seeni; Dr. T. R. Sethuraman

    2015-01-01

    Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral lo...

  4. Development of Self-Compacting Eco-Concrete

    NARCIS (Netherlands)

    Hunger, Martin; Brouwers, Jos

    2006-01-01

    Ever since its introduction and increasingly widespread use since the early nineties, new mix design methods of Self-Compacting Concrete (SCC) can hardly be recognized. Despite intensive research and a substantial number of publications in this new technology the design concept still mainly follows

  5. Durability properties of high volume fly ash self compacting concretes

    Energy Technology Data Exchange (ETDEWEB)

    P. Dinakar; K.G. Babu; Manu Santhanam [Indian Institute of Technology, Chennai (India). Building Technology Division

    2008-11-15

    This paper presents an experimental study on the durability properties of self compacting concretes (SCCs) with high volume replacements of fly ash. Eight fly ash self compacting concretes of various strength grades were designed at desired fly ash percentages of 0, 10, 30, 50, 70 and 85%, in comparison with five different mixtures of normal vibrated concretes (NCs) at equivalent strength grades. The durability properties were studied through the measurement of permeable voids, water absorption, acid attack and chloride permeation. The results indicated that the SCCs showed higher permeable voids and water absorption than the vibrated normal concretes of the same strength grades. However, in acid attack and chloride diffusion studies the high volume fly ash SCCs had significantly lower weight losses and chloride ion diffusion.

  6. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    Utilisation of Danish chalk filler has been investigated as a means to produce self compacting concrete (SCC) at lower strength levels for service in non aggressive environments. Stable SCC mixtures were prepared at chalk filler contents up to 60% by volume of binder to yield compressive strengths...

  7. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  8. Self compacting concrete incorporating high-volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, N. [Natural Resources Canada, Ottawa, ON (Canada). International Centre for Sustainable Development of Cement and Concrete; Lachemi, M. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Self-compacting concrete (SCC) is now widely used in reinforced concrete structures. Fine materials such as fly ash ensure that the concrete has the necessary properties of high fluidity and cohesiveness. An experimental study was conducted in which 9 SCC mixtures and one control concrete were produced in order to evaluate SCC made with high-volumes of fly ash. The content of the cementitious materials remained constant at 400 kg/cubic metre, but the ratio of water to cementitious material ranged from 0.35 to 0.45. The viscosity and stability of the fresh concrete was determined for self-compacting mixtures of 40, 50 and 60 per cent Class F fly ash. The compressive strength and drying shrinkage were also determined for the hardened concretes. Results showed that the SCCs developed a 28-day compressive strength ranging from 26 to 48 MPa. It was concluded that high-volumes of Class F fly ash could offer the following advantages to an SCC: reduced construction time and labour cost; eliminate the need for vibration; reduce noise pollution; improve the filling capacity of highly congested structural members; and, ensure good structural performance. 19 refs., 8 tabs., 2 figs.

  9. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  10. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    OpenAIRE

    Heidari, Ali; Zabihi, Marzieh

    2014-01-01

    This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC). Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compa...

  11. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  12. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    Science.gov (United States)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  13. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  14. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  15. Self-compacting concrete and its application in contemporary architectural practice

    Directory of Open Access Journals (Sweden)

    Okrajnov-Bajić Ruža

    2009-01-01

    Full Text Available In majority of the most modern architectural designs realized in the past 10-20 years, concrete having features in fresh and hardened state as well as making, placing and curing techniques that are defined in detail was used. Quite frequently concrete which was self-compacting in fresh state was used. In order to get acquainted with this material and with possibilities of its application this paper presents various buildings in which it was used. The definition of self-compacting concrete is given and advantages of its application are underlined. Next, features of fresh SCC, test methods are described in detail and classifications especially defined for this material are proposed.

  16. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    -destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ......The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non...

  17. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Workability; viscosity; cement paste; high range water reducing admixture. Abstract. The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball ...

  19. Evaluation of the shrinkage and creep of medium strength self compacting concrete

    Science.gov (United States)

    De La Cruz, C. J.; Ramos, G.; Hurtado, W. A.

    2017-02-01

    The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

  20. Influence of Recycled Concrete Dust on the Properties of Self– Compacting Concrete (SCC)

    OpenAIRE

    Ivanauskas, Ernestas; Lazauskas, Mantas; Grigaliūnas, Paulius

    2017-01-01

    Concrete – composite material which economical effect mostly depends on the amount of binder material (usually cement), its type and fineness. Cement manufacturing generates great employment of energy resources. The demand for all kind of manufacturing natural resources are aimed to be reduced as much as possible. Alternative raw material resources are being introduced and tested together with increasing self-compacting concrete (SCC) popularity in Lithuania. Considering environmental require...

  1. Design considerations and sustainability of self-compacting concrete

    OpenAIRE

    Grünewald, Steffen; De Schutter, Geert

    2016-01-01

    Self-compacting concrete (SCC) differs from conventional vibrated concrete (CVC) in the rheological behaviour, which is achieved by adequate mix design. The application and production requirements also pose demands on the mix design and workability. Effective production requires adequate strength control. The use of Portland Cement promotes a rapid early age strength development, but it comes with a relative high impact on the environment since decarbonation and a high energ...

  2. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  3. Mini Seminar on Form Filling Ability of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2005-01-01

    The Nordic mini-seminar “Form Filling Ability of Self-Compacting Concrete” took place on 3-4 November 2003 at the Danish Technological Institute in Taastrup, Denmark. The mini-seminar gathered 12 participants from Finland, Sweden, Norway and Denmark. The objective was to present and discuss recent...... developments of Self-Compacting Concrete in the Nordic countries. In general, the seminar included results and observations on the effect of fresh concrete behaviour, casting technique, and organisation on site on the filling ability, passing ability, and surface quality. The seminar had participants from...

  4. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-04-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  5. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    International Nuclear Information System (INIS)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.

    2017-01-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  6. Numerical approach of the bond stress behavior of steel bars embedded in self-compacting concrete and in ordinary concrete using beam models

    Directory of Open Access Journals (Sweden)

    F.M. Almeida Filho

    Full Text Available The present study evaluates the bond behavior between steel bars and concrete by means of a numerical analysis based on Finite Element Method. Results of a previously conducted experimental program on reinforced concrete beams subjected to monotonic loading are also presented. Two concrete types, self-compacting concrete and ordinary concrete, were considered in the study. Non-linear constitutive relations were used to represent concrete and steel in the proposed numerical model, aiming to reproduce the bond behavior observed in the tests. Experimental analysis showed similar results for the bond resistances of self-compacting and ordinary concrete, with self-compacting concrete presenting a better performance in some cases. The results given by the numerical modeling showed a good agreement with the tests for both types of concrete, especially in the pre-peak branch of the load vs. slip and load vs. displacement curves. As a consequence, the proposed numerical model could be used to estimate a reliable development length, allowing a possible reduction of the structure costs.

  7. Lightweight self-compacting concrete with light expanded clay aggregate (LECA

    Directory of Open Access Journals (Sweden)

    Heiza Khaled

    2018-01-01

    Full Text Available Lightweight concretes have been successfully applied in building constructions for many years due to their favorable material properties, particularly their low specific weight in connection with a high strength, a high capability of thermal insulation and a high durability. The development leading to lightweight self-compacting concrete (LWSCC represents an important advanced step within the recent years. This concrete combines the favorable properties of a lightweight concrete with those of a self-compacting concrete. Research work is aimed on development of (LWSCC with the use of light aggregates “Light expanded clay aggregate (LECA”. In this research, first by specific gravity factor method, twenty different mix designs of (LWSCC were cast and tested to find out the values of slump flow, J-ring , V-funnel and 28 day compressive strength. Based on the results obtained, the best mix design was selected for further investigation. This paper also focuses on studying the effect of changing the reinforcement ratio on reinforced two way slabs when the dimensions were kept constant.

  8. Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2011-01-01

    Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison to ....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....

  9. Comparative studies of self-compacting concrete made with different generations of superplasticizers

    International Nuclear Information System (INIS)

    Harkouss, R.; Hamad, B.

    2016-01-01

    Self-compacting concrete was created as an effective solution to problems associated to low quality consolidation. Successful self-compacting concrete (SCC) mixes are designed to flow freely and cohesively without the intervention of mechanical compaction. The research presented in this paper has as objective to findthe effect of different types of superplasticizers on the performance of concrete mixes. The understanding of this technology was acquired through a comparative study of mixes made with second generation sulphonated naphthalene formaldehyde based superplasticizerand third generation polycarboxylate-based superplasticizer. To meet the pre-defined objectives, the research program was subdivided into two interdependent phases. Phase I studies the effect of second and third generation superplasticizeron the fresh and hardened properties of mortar mixes. Phase II studies the effect of second and third generation superplasticizer on the fresh and hardened properties of concrete mixes.The experimental outcomes revealed that third generation superplasticizers induce more efficient dispersion defined by superior consistency levels and increased hardened strengths. (author)

  10. Evaluation of density, moisture content and percentage compaction of concrete using direct transmission and backscatter methods

    International Nuclear Information System (INIS)

    Attobrah, A. T

    2012-01-01

    The nuclear method widely used in determining the density and moisture content of soil - aggregates, asphalt concretes, roller compacted concretes and Portland cement concretes, is the radiometry technique. Generally, all radiometry systems consist of a source of radiation, the sample being examined and a radiation detector. In operation, a radioactive source and a detector are placed on the same or opposite sides of a concrete sample. A portion of radiation from the source which passes through the concrete sample and reaches the detector produces a series of electrical pulses which when counted gives a measure of the dimensions or physical characteristics of the concrete sample. In this research work, concrete beams were fabricated using a 500 x 225 x 200mm wooden mould whiles a table vibrator was used to consolidate the concrete after placement in the mould. The mass of the beam was determined and the actual density calculated and inputted in the gauge. Measurements were performed on the unhardened and hardened concrete using the backscatter method and the direct transmission method at depths of 50mm, 100mm and 150mm. The measuring times of 15, 60 and 240 second were use to take the measurements. The study provided information on the variation of density with depth and this was observed to be within the range of 0 kg/m 3 to 1 kg/m 3 and 13 kg/m 3 to 23 kg/m 3 for the unhardened concrete samples in which density increased with depth and those in which density decreased with depth respectively. For the hardened concrete sample, the average change in density with depth was between 4 - 11 kg/m 3 for the samples in which density increased with depth and between 11 - 21 kg/m 3 for the samples in which density decreased with depth. The study also provided information about the degree of consolidation of Portland cement concrete which on the average was between 95% - 97% for the unhardened concrete samples and increased to between 97% - 99% for the hardened concrete

  11. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  12. Study on Effects of Different Replacement Rate on Bending Behavior of Big Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Li, Jing; Guo, Tiantian; Gao, Shuai; Jiang, Lin; Zhao, Zhijun; Wang, Yalin

    2018-03-01

    Big recycled aggregate self compacting concrete is a new type of recycled concrete, which has the advantages of low hydration heat and green environmental protection, but its bending behavior can be affected by different replacement rate. Therefor, in this paper, the research status of big Recycled aggregate self compacting concrete was systematically introduced, and the effect of different replacement rate of big recycled aggregate on failure mode, crack distribution and bending strength of the beam were studied through the bending behavior test of 4 big recycled aggregate self compacting concrete beams. The results show that: The crack distribution of the beam can be affected by the replacement rate; The failure modes of big recycled aggregate beams are the same as those of ordinary concrete; The plane section assumption is applicable to the big recycled aggregate self compacting concrete beam; The higher the replacement rate, the lower the bending strength of big recycled aggregate self compacting concrete beams.

  13. Self-compacting concrete: the role of the particle size distribution

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Radix, H.J.

    2005-01-01

    This paper addresses experiments and theories on Self-Compacting Concrete. The “Chinese Method”, as developed by Su et al. [1] and Su and Miao [2] and adapted to European circumstances, serves as a basis for the development of new concrete mixes. Mixes, consisting of slag blended cement, gravel

  14. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  15. Low pH self compacting concrete for deposition tunnel plugs

    International Nuclear Information System (INIS)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska; Jonasson, Jan-Erik

    2009-04-01

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality crushed

  16. Low pH self compacting concrete for deposition tunnel plugs

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska (Swedish Cement and Concrete Research Institute, Stockholm (Sweden)); Jonasson, Jan-Erik (Luleaa Univ. of Technology, Luleaa (Sweden))

    2009-04-15

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality

  17. Steel hollow columns with an internal profile filled with self-compacting concrete under fire conditions

    OpenAIRE

    Chu, Thi Binh; Gernay, Thomas; Dotreppe, Jean-Claude; Franssen, Jean-Marc

    2016-01-01

    A detailed experimental and numerical investigation has been performed on the behavior under fire conditions of concrete filled steel hollow section (CFSHS) columns. In this study the internal reinforcement consists of another profile (tube or H section) being embedded with the concrete, and filling is realized by self-compacting concrete (SCC). Ten columns filled with self-compacting concrete embedding another steel profile have been tested in the Fire Testing Laboratory of the University of...

  18. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    Science.gov (United States)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  19. The effect of measuring procedure on the apparent rheological properties of self-compacting concrete

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Bradl, M.; Thrane, L.N.

    2002-01-01

    Torque versus time during testing of the rheological properties of fresh concrete has been investigated. The testing was performed in a BML viscometer and on a self-compacting concrete (w/c = 0.45, 70% rapid hardening Portland cement, 3% silica fume, 27% fly ash, third generation superplasticizer......, lack of steady state may explain the apparent shear-thickening behaviour of self-compacting concrete reported elsewhere. (C) 2002 Elsevier Science Ltd. All rights reserved....

  20. Investigation of the existence of self compacting properties in high performance concrete through experimental tests

    Directory of Open Access Journals (Sweden)

    Heitor H. Yoshida

    2007-03-01

    Full Text Available The self compacting concrete is characterized by its capacity to flow inside the formwork filling it exclusively by the force of the gravity with adequate cohesion and viscosity in such a way that segregation does not occur. One of its characteristic is the presence of fines which provide the necessary cohesion,and grains with maximum diameter of 20 mm. This work presents some procedures and experimental methods that make it possible to evaluate self compacting properties of high performance concrete. First, a bibliographical review on the subject was carried out, and later, the equipment used for the accomplishment of the assays were manufactured, in order to verify the properties related to the self compacting concrete: cohesion, viscosity and segregation. As for the work, two concretes were produced with Portland ARI Cement, thick sand, stone powder, sand 0, superplasticizer made of ether-carboxilate chains that differentiate from each other for the presence of active silica in one of them and fly ash in the other. Based on the results, it was verified whether the high performance concrete had self compacting characteristics. In this case, both were considered positive. It was also analyzed the behavior of these concretes in their hardened state by means of the compressive strength test. The Self Compacting Concrete has many advantages such as: reduction in the number of employees, shorter construction period, the non-use of the vibrator and the filling of formworks with high density of… or of complex geometry.

  1. Impact of Pigments on Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Ernestas Ivanauskas

    2011-04-01

    Full Text Available We describe an impact of using iron oxide pigment on self-compacting concrete (SCC properties. We have experimented with adding portions of iron oxide pigment from 3 % to 6 % into cement paste. A few alternative pigments (chromic oxide and iron oxide hydroxide were used for performing the same experiments. The impact of these pigments on a normal cement paste is described in this paper. We demonstrate that iron oxide pigment reduces the need for water in a normal cement paste. However, adding the pigment also reduces the compressive strength of concrete up to 20 %. The concrete specimens were tested in various time spans, i.e. 1 day to 28 days, by keeping them in 20 ± 2 ºC water – normal consolidation regimen. Some of the specimens were processed in steam chamber, at 60 ºC in order to make the process of the cement hydration faster, as well as to estimate an impact of active SiO2 proportion in ash on SCC properties. We show that using iron oxide pigment for SCC mixture increases the slump-flow property of concrete mix up to 5 %. Experiments with solidified concrete have demonstrated that iron oxide diminishes water absorption up to 6 % and decreases open concrete porosity that makes concrete resistant against freezing. Article in Lithuanian

  2. ESEARCH OF THE PROPERTIES OF THE SELF-COMPACTED CONCRETE OVER TIME

    Directory of Open Access Journals (Sweden)

    S. Bugayevskiy

    2017-12-01

    Full Text Available Concrete mixture is examined as a complex multicomponent system that becomes a single unit and can be studied as a physical unity with certain rheological, physical and mechanical properties. Studying the change of properties of self-compacted concrete over time, as well as the effect of two-phasic introduction of super-plasticizer on properties of concrete mixture are presented in this article.

  3. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  4. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis

    DEFF Research Database (Denmark)

    Allesø, Morten; Carstensen, Jens Michael; Holm, Per

    2016-01-01

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique...... illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within...... milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic...

  5. Application of the fluid dynamics model to the field of fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    Ability to properly simulate a form filling process with steel fibre reinforced self-compacting concrete is a challenging task. Such simulations may clarify the evolution of fibre orientation and distribution which in turn significantly influences final mechanical properties of the cast body. We...... have developed such a computational model and briefly introduce it in this paper. The main focus of the paper is towards validation of the ability of the model to properly mimic the flow of the fibre reinforced self-compacting concrete. An experiment was conducted where a square slab was filled...... behaviour of the self-compacting fibre reinforced concrete....

  6. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  7. Quality evaluation of concrete under compacting by vibration using resistance of electro current

    International Nuclear Information System (INIS)

    Nozaki, Yoshisugu

    2006-01-01

    Quality of concrete in structures is affected not only quality of materials; i.e. fresh concrete delivered to site but also placing and compaction works. Factors related to the latter are not studied minutely, and the works in site are judged and controlled by skilled person under his experience, and these process are said to the neck in QC and rationalization in construction site. The study to develop the evaluation system of fresh concrete quality is described in the paper, In the experiment, electrode was attached to formwork and resistance of electro current was recorded while vibrating. It can recognized that resistance is closely related to internal quality of concrete, so the resistance may be the effective index to know optimum compaction time in placing work.

  8. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  9. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    Science.gov (United States)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  10. Study some mechanical properties of self-compacting concrete with nano silica under severe saline environment conditions

    Directory of Open Access Journals (Sweden)

    Habeeb Ghalib

    2018-01-01

    Full Text Available The main aim of this research is to evaluate the performance of Nano silica self-compacting concrete which is subjected to severe saline conditions that contain sulfates and chlorides at concentrations similar to those existing in the soils and ground water of the middle and southern parts of Iraq. For this purpose, ordinary and sulfate resistant Portland cement without and with 3% Nano silica addition by weight of cementitious materials were used. Splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity were investigated for all exposure conditions and all types of mixes of self-compacting concrete at ages of 28, 60, 90, 120 and 180 days. Test results revealed that the inclusion of Nano Silica in concrete mixes improved clearly the mechanical properties of self-compacting concrete compared with reference concrete.

  11. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  12. The uniform design experimental research of a large amount of fly ash self-compaction concrete

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M.; Ji, C.; Xiao, J. [Liaoning Technical University, Fuxin (China)

    2005-08-15

    The paper studied the effect of quantity of cementing material and fly ash, W/B (water-binder) ratio, admixture and sand percentage to the performance of super fly-ash self-compaction concrete. It also utilized the step-by-step regression analysis method in SPSS software to found regression equation, which uses the flow rate of concrete mixture and strength of concrete as objective function, and obtained the optimum mix proportion of super fly ash self-compaction by the optimization technology in the Matlab software.

  13. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  14. Prediction of flow induced inhomogeneities in self compacting concrete

    DEFF Research Database (Denmark)

    Skocek, Jan; Švec, Oldřich; Geiker, Mette Rica

    2011-01-01

    A model for simulation of flow of suspension of a non-Newtonian fluid and particles of arbitrary shape is briefly introduced and demonstrated on examples of flow of self compacting concrete. The model is based on the lattice Boltzmann method for flow, the immersed boundary method with direct...

  15. Research on Real-Time Supervisory System for Compaction Quality in Face Rockfill Dam Engineering

    Directory of Open Access Journals (Sweden)

    Shengxiang Huang

    2018-01-01

    Full Text Available Compaction quality control in filling construction is of great significance to the stability and durability of the face rockfill dam. The conventional method of quality control mainly relies on manual process control and inspection for a limited number of test holes, which cannot meet the high requirements of modern mechanized construction and schedule anymore, with increasing of scale of face rockfill dams. There is an urgent need to propose a new quality control method of face rockfill dams during the entire compaction process. In this paper, a supervisory system based on GNSS (Global Navigation Satellite System technology, wireless data communication technology, Internet of things technology, and computer technology is developed to supervise the real-time roller compaction parameters of the working surface including rolling track, rolling times, rolling speed, thickness, and smoothness. The system obtains continuous and high-precision spatial position information of roller compaction machines through GNSS technology and then calculates the roller compaction parameter information. The compaction quality control for the face rockfill dam is achieved through the supervision of roller compaction parameters. The feasibility and robustness of the developed supervisory system are validated by a case study in the face rockfill dam of Shuibuya project in China. The practice shows that the system provides a new and effective method of process control for the construction quality of the roller compaction in dam engineering and realizes real-time, precision, and automatic supervising of roller compaction parameters and ensures better construction quality.

  16. Determining fracture energy parameters of concrete from the modified compact tension test

    Czech Academy of Sciences Publication Activity Database

    Canteli, A.; Castañón, L.; Nieto, B.; Lozano, M.; Holušová, Táňa; Seitl, Stanislav

    2014-01-01

    Roč. 30, OCT (2014), s. 383-393 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) EE2.3.20.0214 Grant - others:interní podpora AV ČR(CZ) M100411204 Institutional support: RVO:68081723 Keywords : Concrete fracture energy * Modified compact tension test * Concrete * Numerical simulation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Influence of compaction on the interfacial transition zone and the permeability of concrete

    International Nuclear Information System (INIS)

    Leemann, Andreas; Muench, Beat; Gasser, Philippe; Holzer, Lorenz

    2006-01-01

    The interfacial transition zone (ITZ) is regarded as a key feature for the transport properties and the durability of concrete. In this study one self-compacting concrete (SCC) mixture and two conventionally vibrated concrete (CVC) mixtures are studied in order to determine the influence of compaction on the porosity of the ITZ. Additionally oxygen permeability and water conductivity were measured in vertical and horizontal direction. The quantitative analysis of images made with an optical microscope and an environmental scanning electron microscope shows a significantly increased porosity and width of the ITZ in CVC compared to SCC. At the same time oxygen permeability and water conductivity of CVC are increased in comparison to SCC. Moreover, considerable differences in the porosity of the lower, lateral and upper ITZ are observed in both types of concrete. The anisotropic distribution of pores in the ITZ does not necessarily cause anisotropy in oxygen permeability and water conductivity though

  18. The positive and negative influences of VMA's on the robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; De Schutter, G.

    2015-01-01

    Over time, several mix design metliods liave been developed to obtain a selfcompacting concrete (SCC) with suitable fresh and hardened concrete properties. The very fluid concrete with no need for external compaction is achieved by using a higher powder content and the use of chemical admixtures.

  19. 3D Simulation of Self-Compacting Concrete Flow Based on MRT-LBM

    Directory of Open Access Journals (Sweden)

    Liu-Chao Qiu

    2018-01-01

    Full Text Available A three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM with a D3Q27 discrete velocity model is applied for simulation of self-compacting concrete (SCC flows. In the present study, the SCC is assumed as a non-Newtonian fluid, and a modified Herschel–Bulkley model is used as constitutive mode. The mass tracking algorithm was used for modeling the liquid-gas interface. Two numerical examples of the slump test and enhanced L-box test were performed, and the calculated results are compared with available experiments in literatures. The numerical results demonstrate the capability of the proposed MRT-LBM in modeling of self-compacting concrete flows.

  20. PENGGUNAAN FLY ASH DAN VISCOCRETE PADA SELF COMPACTING CONCRETE

    Directory of Open Access Journals (Sweden)

    Handoko Sugiharto

    2001-01-01

    Full Text Available Self Compacting Concrete (SCC gives a new solution in concrete technology, since SCC does not need vibrator for compacting. SCC has been used and developed abroad, however in Indonesia SCC is not used because there is no research about SCC yet. In this preliminary research, trial mix is performed to understand the characteristics and to calculate the materials composition to be used in SCC. From this trial mix, some variables are fixed and others are varied. This variable is examined further in the next trial mix. The workability is examined using slump cone method and flowability using L-shaped box. From this test, it is found out that to get the condition of self compactibility, viscocrete must be used. The binder (cement-fly ash composition, is examined using 10:0, 8:2, 7:3, 6:4 cement to fly ash ratio, until the maximum of flowability and workability, which is 5:5. Viscocrete dose 1.5 % and 2 % did not show a significant difference for all binder composition. From the workability, flowability and strength point of view, binder composition 6:4 and viscocrete dose 1.5 % gives the optimal condition. Abstract in Bahasa Indonesia : Self Compacting Concrete (SCC memberikan solusi baru dalam dunia teknologi beton karena tidak memerlukan vibrator untuk pemadatannya. SCC telah digunakan dan dikembangkan di luar negeri, tetapi di Indonesia belum begitu dikenal, dikarenakan belum adanya penelitian tentang SCC di Indonesia. Pada penelitian awal ini dilakukan trial mix untuk mengetahui karakteristik dan memperkirakan komposisi bahan yang dibutuhkan untuk SCC. Kemudian dari trial mix tersebut ditetapkan variabel-variabel berubah dan variabel-variabel tetap yang akan diuji pada trial mix selanjutnya. Pengujian workability dilakukan dengan alat slump cone sedangkan pengujian flowability dilakukan dengan alat L-shaped box. Dari hasil pengujian yang telah dilakukan, ternyata harus digunakan viscocrete untuk mendapatkan kondisi self compactibility. Untuk

  1. Comparisons of ratchetting analysis methods using RCC-M, RCC-MR and ASME codes

    International Nuclear Information System (INIS)

    Yang Yu; Cabrillat, M.T.

    2005-01-01

    The present paper compares the simplified ratcheting analysis methods used in RCC-M, RCC-MR and ASME with some examples. Firstly, comparisons of the methods in RCC-M and efficiency diagram in RCC-MR are investigated. A special method is used to describe these two methods with curves in one coordinate, and the different conservation is demonstrated. RCC-M method is also be interpreted by SR (second ratio) and v (efficiency index) which is used in RCC-MR. Hence, we can easily compare the previous two methods by defining SR as abscissa and v as ordinate and plotting two curves of them. Secondly, comparisons of the efficiency curve in RCC-MR and methods in ASME-NH APPENDIX T are investigated, with significant creep. At last, two practical evaluations are performed to show the comparisons of aforementioned methods. (authors)

  2. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  3. Experimental analysis of reinforced concrete columns strengthened with Self-Compacting concrete

    Directory of Open Access Journals (Sweden)

    M. Y. M. Omar

    Full Text Available This paper presents the results of reinforced concrete columns strengthened by addition of a self-compacting concrete overlay at the compressed and at the tensioned face of the member, with and without addition of longitudinal steel bars. Eight columns were submit- ted to loading with an initial eccentricity of 60 mm . These columns had 120 mm x 250 mm of rectangular cross section, 2000 mm in length and four longitudinal reinforcement steel bars with 10 mm in diameter. Reference columns P1 and P2 were tested to failure without any type of rehabilitation. Columns P3 to P8 were loaded to a predefined load (close to the initial yield point of tension reinforce- ment, then unloaded and strengthened for a subsequent test until failure. Results showed that the method of rehabilitation used was effective, increasing the loading capacity of the strengthened pieces by 2 to 5 times the ultimate load of the reference column.

  4. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    OpenAIRE

    Miguel Ángel Álvarez; Jaime Lorenzo; Itziar Goicoechea; María Fenollera; José Luis Míguez

    2013-01-01

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the o...

  5. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  6. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  7. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  8. Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller

    Science.gov (United States)

    Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang

    2018-03-01

    In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.

  9. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on flexural strength of self compacting concrete. → Physical and microstructural consideration. → Mechanical tests. → Thermal analysis. → Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO 2 nanoparticles has been investigated. SiO 2 nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO 2 nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO 2 nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH) 2 amount at the early ages of hydration. The increased the SiO 2 nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO 2 nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO 2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  10. Micro and macrolevel properties of fly ash blended self compacting concrete

    International Nuclear Information System (INIS)

    Guru Jawahar, J.; Sashidhar, C.; Ramana Reddy, I.V.; Annie Peter, J.

    2013-01-01

    Highlights: ► Effect of class F fly ash on micro and macrolevel properties of self compacting concrete is studied. ► Decrease in microcracking width and Ca/Si ratio was observed in SCC with the age. ► Micro and macrolevels properties of SCC were compared to those of conventional concrete. ► Micro and macrolevel properties of SCC are reasonably correlated. ► Recommendation of SCC mix with medium compressive strength of 32 MPa for the building constructions. - Abstract: This investigation is mainly focused on the effect of class F fly ash on the micro and macrolevel properties of self compacting concrete (SCC) after 28, 56 and 112 days of curing. The microlevel properties studied were the microcrack widths between aggregate and paste and atomic Calcium–Silica (Ca/Si) ratio. The macrolevel properties studied were compressive strength, modulus of elasticity and splitting tensile strength. A conventional concrete (CC) having an equivalent 28-day SCC compressive strength has also been examined at different ages. Scanning electron microscope (SEM) analysis was carried to examine the width of microcracks and energy dispersive X-ray analysis (EDAX) was carried out to determine the chemical elements of both SCC and CC. Studies revealed that pozzolanic action of class F fly ash improved the microlevel properties of SCC with age by reducing the microcracking width and Ca/Si ratio and thus enhanced the macrolevel properties

  11. Advantage of using high strength self compacting concrete for precast product

    Science.gov (United States)

    Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis

    2017-11-01

    According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.

  12. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  13. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  14. Impact Analysis of Roller System Stability for Four-High Mill Horizontal Vibration

    Directory of Open Access Journals (Sweden)

    Xiao-bin Fan

    2016-01-01

    Full Text Available In order to study the hot Compact Strip Production (CSP, four-high mill vibration characteristics, and vibration suppression method, the roller system structure stability was analyzed and calculated at first in the paper. And then, the mill stand gap was measured at field and its influence on roll transverse vibration was analyzed. The drum gear coupling effect on the roller system stability and the automatic balance conditions of the coupling transmission torque were studied; the influence of axial force caused by the roller cross on the system stability was analyzed. Finally, the roller transverse friction chatter vibration mechanics model was established; the simulation analysis was carried out with eliminating mill house-bearing clearance and adding floating support for coupling, respectively. And the characteristics of the roller “jump vibration” were studied. We applied copper gaskets to eliminate or reduce mill house-bearing clearance for suppressing the rolling mill vibration on the spot; the test results show that the roller transverse vibration was suppressed after eliminating clearance.

  15. Impact Resistance of Rubberized Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Eehab Khalil

    2015-04-01

    Full Text Available Impact loads due to ship collision on irrigation structures is significantly decreasing their durability. Loss of material and degradation are quite common problems facing lock walls and piers. In the current research, rubberized self-compacting concrete (SCC was used to investigate problems associated with impact. SCC with cement kiln dust cement replacement was used for that purpose. Concrete specimens were prepared with different crumb rubber ratios of 10% (RSCC-10, 20% (RSCC-20, 30% (RSCC-30, and 40% (RSCC-40 sand replacement by volume. Standard compressive, flexure, and splitting strength tests were conducted to monitor the effect of the added rubber on concrete behavior. Moreover, impact testing program was applied to specific specimens, cylinder of diameter 200 mm and thickness 50 mm, according to ACI committee 544 procedures. The number of blows to first and ultimate cracks was determined. The relationship between the mechanical properties and impact resilience is also presented. With the increase in rubber percentage the resistance to impact increased, but there was a decrease in specimen strength and modulus of elasticity. The variation in results was discussed and mix RSCC-30 exhibited the best impact resistance, 3 times over control mix with 40% reduction of compressive strength.

  16. Influence of curing conditions on the sorptivity and weight change characteristics of self-compacting concrete

    International Nuclear Information System (INIS)

    Caliskan, S.

    2006-01-01

    This paper reports on a study carried out to investigate the influence of curing conditions on the capillary water absorption and weight change characteristics of self compacting concrete (SCC). Specimens were prepared using three types of concrete (SCC, Portland cement (PC), Fly ash (FA) concretes) and were cured under three different curing conditions (20C water and 20C and 40C air cure) for 28 days. Weight gain (water intake) in water curing and weight loss (water loss) in 20C and 40C air curing were recorded throughout the curing period. Compressive strength, water absorption and capillary water absorption tests were carried out at 28 days. The results indicated that FA concrete gained about 0.5% whilst PC and self-compacting concretes gained about 1.0% of the initial weight. This indicates that due to the slower reaction process more free water remains within FA concrete avoiding further water intake. In the weight loss study, FA concrete lost about 4.0% and 6.0% of the initial weight at 20C and 40C air curing, respectively; whereas SCC and PC concretes (both had almost identical values) lost about 3.2 and 5.2% at 20C and 40C, respectively. The absorption test results indicated that SCC gave the lowest captivity coefficient values followed by PC and FA concretes in all curing conditions. (author)

  17. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  18. Simulation of the Test Method "L-Box" for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    Both filling and passing ability are important properties to be considered for self-compacting concrete. This paper presents simulations of the L-box test and corresponding experiments. The assumption of a continuum mechanical approach, where the fluid rheology is described by the Bingham model...

  19. Design of cost-effective M 25 grade of self compacting concrete

    International Nuclear Information System (INIS)

    Guru Jawahar, J.; Sashidhar, C.; Ramana Reddy, I.V.; Annie Peter, J.

    2013-01-01

    Highlights: ► Design of cost-effective M 25 grade of self compacting concrete is done. ► Mechanical properties of SCC compared with M 25 grade of conventional concrete. ► Effect of class F fly ash is studied on the SCC mechanical properties. ► Cost analysis is done between M 25 grade of CC and SCC. ► Recommendation of M 25 grade of SCC for normal building constructions. - Abstract: This investigation is mainly focused on the development of cost-effective normal strength M 25 grade of self compacting concrete (SCC) for the use of normal building constructions. Keeping in view of the normal strength, cost, quality and durability of SCC and greenhouse gas emissions, a combination type of SCC was developed with 35% replacement of cement with class F fly ash. This study recommended a SCC mix with moderate fines to obtain a cost-effective normal strength SCC for the normal building constructions. Studies also revealed that further reduction in fines content in SCC with the same replacement level of fly ash decreased the SCC strength and its performance. Cost analysis has been done between M 25 grade of SCC and conventional concrete (CC). Results shown that the SCC material cost is slightly higher than that of CC of the same strength class, but the savings in labour cost and construction time and quality of SCC would offset the SCC material cost and reduce the total life cycle cost of SCC

  20. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on flexural strength of self compacting concrete. {yields} Physical and microstructural consideration. {yields} Mechanical tests. {yields} Thermal analysis. {yields} Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO{sub 2} nanoparticles has been investigated. SiO{sub 2} nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO{sub 2} nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO{sub 2} nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH){sub 2} amount at the early ages of hydration. The increased the SiO{sub 2} nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO{sub 2} nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO{sub 2} nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  1. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    Science.gov (United States)

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Understanding asphalt compaction: An action research strategy

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.; Amaratunga, Dilanthi

    2007-01-01

    In Hot Mix Asphalt (HMA) construction, rollers provide the compaction energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA paving

  3. Permeability and pore size distribution in medium strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    2010-09-01

    Full Text Available The use of self-compacting concrete (SCC has been on the rise in recent years. Research on this type of concrete has focused primarily on determining optimal dosage, while durability, particularly for medium strength SCC, has received much less attention. The present study explored the permeability of a number of medium strength (characteristic strength, 30 MPa self-compacting concretes, including SCCs made with common cement, in pursuit of a balance between performance and cost. Pressurised water and mercury intrusion porosimetry tests were conducted to determine concrete behaviour when exposed to aggressive agents. The findings showed that the capillary networks of these concretes are essentially impermeable to aggressive agents.

    El hormigón autocompactante ha experimentado un amplio desarrollo en los últimos años. Los estudios sobre este hormigón se han centrado en obtener dosificaciones óptimas, mientras los relativos a su durabilidad son escasos, especialmente en el caso de hormigones de resistencia moderada. Este trabajo se centra en el estudio de la permeabilidad de distintos hormigones autocompactantes de resistencia moderada (resistencia característica 30 MPa. El estudio incluye hormigones fabricados con cementos comunes, en los que se ha buscado un equilibrio entre prestaciones y precio. Con el fin de estudiar su comportamiento frente a la penetración de agentes agresivos, se han realizado los ensayos de permeabilidad al agua bajo presión y estudio de la porosimetría por intrusión de mercurio. Los resultados de los ensayos ponen de manifiesto el buen comportamiento de estos hormigones frente a la posible penetración de agentes agresivos por la red capilar.

  4. Experimental analysis of compaction of concrete and mortar

    Science.gov (United States)

    Burlion, Nicolas; Pijaudier-Cabot, Gilles; Dahan, Noël

    2001-12-01

    Compaction of concrete is physically a collapse of the material porous microstructure. It produces plastic strains in the material and, at the same time, an increase of its bulk modulus. This paper presents two experimental techniques aimed at obtaining the hydrostatic response of concrete and mortar. The first one is a uniaxial confined compression test which is quite simple to implement and allows to reach hydrostatic pressures of about 600 MPa. The specimen size is large enough so that concrete with aggregate sizes up to 16 mm can be tested. The second one is a true hydrostatic test performed on smaller (mortar) specimens. Test results show that the hydrostatic response of the material is elasto-plastic with a stiffening effect on both the tangent and unloading bulk moduli. The magnitude of the irreversible volumetric strains depends on the initial porosity of the material. This porosity can be related in a first approximation to the water/cement ratio. A comparison of the hydrostatic responses obtained from the two testing techniques on the same material show that the hydrostatic response of cementitious materials cannot be uncoupled from the deviatoric response, as opposed to the standard assumption in constitutive relations for metal alloys. This feature should be taken into account in the development of constitutive relations for concrete subjected to high confinement pressures which are needed in the modelling of impact problems.

  5. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Self-compacting concretes (SCC: comparison of methods of dosage

    Directory of Open Access Journals (Sweden)

    B. F. Tutikian

    Full Text Available The composition of a self-compacting concrete (SCC should be defined to fulfills a number of requirements, such as self-compactibility, strength and durability. This study aims to compare three methods of dosage for SCC with local materials, so as to determine which one is the most economical and rational, thus assisting the executor in making a decision and enabling economic and technical feasibility for its application. The methods used in the experimental program were: Nan Su et al., which was developed in 2001 [1]; Repette-Melo, which was proposed in 2005 [2]; and Tutikian & Dal Molin, which was developed in 2007 [3]. From the results obtained in the experimental program, it was observed that the method which presented the lowest cost and highest compressive strength at the ages of 7, 28 and 91 days was Tutikian & Dal Molin, while the one which reached the lowest chloride ion penetration, best compactness and highest elasticity modulus was Repette-Melo. In tests carried out in the fresh state, all tested methods yielded mixtures which comply with the self-compactibility levels required by ABNT NBR 15823:2010 [4].

  7. Performance of self-compacting rubberized concrete

    Directory of Open Access Journals (Sweden)

    Hamza Bensaci

    2018-01-01

    Full Text Available Used tyre rubber wastes present a serious environmental problem of pollution and storage. The recycling of this waste in the industry of construction could be an appropriate solution to produce an eco-concrete and could contribute to the improvement of some of its properties. This paper aims to study the possibility of using tyre rubber waste as fine aggregate replacement in self-compacting concrete (SCC. Fines rubber particles of 0-2 mm of waste tyres were added SCC mixtures as a partial substitution of the total volume of sand at different percentages (5, 10, 15, 20 and 30%. The influence of fines rubber of used tyres on fresh and hardened properties of the SCC was investigated. The fresh properties of SCC were performed by using slump-flow, T50 flow time, L-box, V-funnel and segregation resistance tests. Characteristics of the hardened state were obtained by compressive strength and thermal conductivity. The experimental results showed that the inclusion of fines rubber in SCC decreases the workability, reduced its passing capacity and increases the possibility of blocking. A decrease in compressive strength is observed with the increase in rubber content. On the other hand, the incorporation of the rubber fines aggregates enhances in a remarkably way the thermal conductivity.

  8. Aligning laboratory and field compaction practices for asphalt - the influence of compaction temperature on mechanical properties

    NARCIS (Netherlands)

    Bijleveld, Frank; Miller, Seirgei Rosario; de Bondt, A.H.; Doree, Andries G.

    2015-01-01

    The approach used to identify a compaction temperature in the laboratory, based on binder viscosity, provides a single compaction temperature whereas, on-site, a roller operates within a temperature window. The effect on the density and mechanical properties of rolling during a temperature window

  9. Sea Dredged Gravel versus Crushed Granite as Coarse Aggregate for Self Compacting Concrete in Aggressive Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Kristensen, Lasse Frølich

    2007-01-01

    Properties of self compacting concrete (SCC) with two types of coarse aggregate - sea dredged gravel with smooth and rounded particles and crushed granite with rough and angular particles - have been studied. Sea gravel allowed a higher aggregate proportion in the concrete leading to a higher...

  10. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation

    International Nuclear Information System (INIS)

    Klein, N. S.; Fuente, A. de la; Aguado, A.; Maso, D.

    2011-01-01

    The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF) has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems. (Author) 24 refs.

  11. Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles

    Directory of Open Access Journals (Sweden)

    Xiaodong He

    2017-04-01

    Full Text Available In the process of composite prepreg tape winding, the compaction force could influence the quality of winding products. According to the analysis and experiments, during the winding process of a rocket motor nozzle aft exit cone with a winding angle, there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller, which could influence the compaction force. Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles. Thus, a flexible winding system has been developed for rocket motor nozzle winding. In the system, feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force. According to experiments, the force deformation model of the winding tape is a time-varying system. Thus, a forgetting factor recursive least square based parameter estimation proportional-integral-differential (PID controller has been developed, which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process. According to the experimental results, a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.

  12. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self-compacting

  13. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  14. High Capacity cylinder roller bearing; High Capacity Zylinderrollenlager. Ein vollrolliges Lager mit Kaefig

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J.; Baum, J. [SKF, Schweinfurt (Germany)

    2007-07-15

    The high capacity cylinder roller bearing is an example for continuous development of SKF products and does an effective contribution to increase operational safety and offers the possibility to reduce weight and compact design. (GL)

  15. Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil

    Directory of Open Access Journals (Sweden)

    Nada Mahdi Fawzi

    2017-01-01

    Full Text Available This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil on mechanical properties of polymer modified self-compacting concrete (PMSCC after different exposure periods of (30 ,60 ,90 ,and 180 days. Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC. The test results show that the PMSCC (15% P/C ratio which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio was (6.03% and (9.61% up to 180 days of exposure to kerosene and gas oil respectively, relative to the same mix immersed in water, while the percentages of reduction in compressive strength values of SCC (reference concrete was (21.18% and (25.19% up to 180 days of exposure to kerosene and gas oil respectively, relative to the same mix immersed in water. Flexural strength results present improvement for all ages and for all concrete mixes with all percentages of polymer content The total water absorption values of PMSCC (15% P/C ratio showed a better performance than reference concrete mix when exposed to oil products. It was (1.34, 2.21, 2.17 % up to 180 days with samples immersed in water, kerosene, and gas oil respectively, with percentages of reduction of (23.86%, (33.83%, and (31.33% relative to the SCC (reference concrete.

  16. Instrumented roll technology for the design space development of roller compaction process.

    Science.gov (United States)

    Nesarikar, Vishwas V; Vatsaraj, Nipa; Patel, Chandrakant; Early, William; Pandey, Preetanshu; Sprockel, Omar; Gao, Zhihui; Jerzewski, Robert; Miller, Ronald; Levin, Michael

    2012-04-15

    Instrumented roll technology on Alexanderwerk WP120 roller compactor was developed and utilized successfully for the measurement of normal stress on ribbon during the process. The effects of process parameters such as roll speed (4-12 rpm), feed screw speed (19-53 rpm), and hydraulic roll pressure (40-70 bar) on normal stress and ribbon density were studied using placebo and active pre-blends. The placebo blend consisted of 1:1 ratio of microcrystalline cellulose PH102 and anhydrous lactose with sodium croscarmellose, colloidal silicon dioxide, and magnesium stearate. The active pre-blends were prepared using various combinations of one active ingredient (3-17%, w/w) and lubricant (0.1-0.9%, w/w) levels with remaining excipients same as placebo. Three force transducers (load cells) were installed linearly along the width of the roll, equidistant from each other with one transducer located in the center. Normal stress values recorded by side sensors and were lower than normal stress values recorded by middle sensor and showed greater variability than middle sensor. Normal stress was found to be directly proportional to hydraulic pressure and inversely to screw to roll speed ratio. For active pre-blends, normal stress was also a function of compressibility. For placebo pre-blends, ribbon density increased as normal stress increased. For active pre-blends, in addition to normal stress, ribbon density was also a function of gap. Models developed using placebo were found to predict ribbon densities of active blends with good accuracy and the prediction error decreased as the drug concentration of active blend decreased. Effective angle of internal friction and compressibility properties of active pre blend may be used as key indicators for predicting ribbon densities of active blend using placebo ribbon density model. Feasibility of on-line prediction of ribbon density during roller compaction was demonstrated using porosity-pressure data of pre-blend and normal stress

  17. Development of Soil Compaction Analysis Software (SCAN Integrating a Low Cost GPS Receiver and Compactometer

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-02-01

    Full Text Available A software for soil compaction analysis (SCAN has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1 improving the accuracy of low cost GPS receiver’s positioning results; (2 modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3 extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

  18. Roller bearing geometry design

    Science.gov (United States)

    Savage, M.; Pinkston, B. H. W.

    1976-01-01

    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.

  19. Visualizing asphalt roller trajectories in context: acquiring, processing, and representing sensor readings

    NARCIS (Netherlands)

    Vasenev, Alexandr

    2015-01-01

    The asphalt compaction process relies heavily on the skills and knowledge of roller operators who act alongside other stakeholders involved in asphalt paving. It is essential that these construction specialists: (1) are adequately informed about the initial temperature distribution of the asphalt

  20. Fresh and hardened properties of binary blend high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    S.S. Vivek

    2017-06-01

    Full Text Available Self compacting concrete (SCC made a remarkable impact on the concrete construction industry because of its innovative nature. Assessment of optimal ratio between chemical and mineral admixtures plays a vital role in developing SCC. In the present work three different mineral admixtures were used as partial substitute in different proportions to cement to produce SCC with a characteristic compressive strength of 60 MPa. All the three types of SCC were investigated for its fresh and hardened properties. From the results, 50% GGBFS, 10% SF and 20% MK were found to the optimum values as partial substitute to cement.

  1. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Álvarez

    2013-08-01

    Full Text Available The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  2. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-08-15

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  3. Measurement of properties and of the resistance to segregation in heavyweight, self-compacting barite concrete

    Directory of Open Access Journals (Sweden)

    Navarro, D.

    2009-07-01

    Full Text Available Heavyweight concrete is used for shielding in structures requiring protection against radiation. The addition of superplasticizers to mixes yields workable, high density materials with low water/cement ratios. This paper discusses the results of adding a polycarboxylate-based superplasticizer to heavyweight barite concrete to obtain a self-compacting mix. The fresh properties were characterized with trials suitable for self-compacting concrete. Since the large differences in constituent densities make segregation a key issue in this type of concrete, a specific trial was designed to check for homogeneity. The flowability, passing ability and resistance to segregation findings showed that the product obtained was a self-compacting concrete.El hormigón de alta densidad se emplea en estructuras en las que se necesita protección frente a radiaciones. El empleo de superplastificantes permite obtener mezclas trabajables con bajas relaciones agua/cemento y alta densidad. Este trabajo muestra los resultados obtenidos con el empleo de un superplastificante basado en policarboxilatos en un hormigón pesado de barita, que condujo a la obtención de un hormigón autocompactante. Las propiedades en el estado fresco se caracterizaron mediante ensayos adecuados para el hormigón autocompactante. Puesto que la segregación puede ser un aspecto clave en este tipo de hormigón, por las grandes diferencias entre las densidades de los componentes, se diseñó un ensayo específico para comprobar la homogeneidad del mismo. Los resultados permitieron comprobar que el hormigón fabricado poseía propiedades de autocompactabilidad, puesto que poseía la fluidez, la capacidad de paso a través de armaduras y la resistencia a la segregación adecuadas.

  4. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  5. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  6. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  7. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  8. Determining fracture energy parameters of concrete from the modified compact tension test

    Directory of Open Access Journals (Sweden)

    A. Fernández-Canteli

    2014-10-01

    Full Text Available The modified compact tension (MCT test, though not yet recognized as a valid test for determining fracture energy of concrete, is believed to represent a plausible and suitable alternative versus other well established procedures, such as the wedge-splitting test (WST and the three point (3PB or four point bending (4PB tests, due to its simplicity and low cost. The aim of the paper is twofold: Firstly, to demonstrate the necessary correspondence between the experimental MCT test setup and finite element simulations and secondly, to initiate the way of establishing the desirable conversion between the fracture energy parameter values resulting from the MCT test and the standard conventional procedures. MCT tests are carried out and compared with the numerical results from 2-D and 3-D finite element calculations using the commercial codes ABAQUS and ATENA, the latter being specifically developed for applications on concrete structures and elements. In this way, the usability of the modified compact tension test for practical purposes is confirmed.

  9. Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Sumrerng Rukzon

    2014-01-01

    Full Text Available This paper presents the use of blend of Portland cement with rice husk-bark ash in producing self-compacting concrete (SCC. CT was partially replaced with ground rice husk-bark ash (GRHBA at the dosage levels of 0%–40% by weight of binder. Compressive strength, porosity, chloride penetration, and corrosion of SCC were determined. Test results reveal that the resistance to chloride penetration of concrete improves substantially with partial replacement of CT with a blend of GRHBA and the improvement increases with an increase in the replacement level. The corrosion resistances of SCC were better than the CT concrete. In addition, test results indicated that the reduction in porosity was associated with the increase in compressive strength. The porosity is a significant factor as it affects directly the durability of the SCC. This work is suggested that the GHRBA is effective for producing SCC with 30% of GHRBA replacement level.

  10. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  11. Experimental analysis of reinforced concrete columns strengthened with self-compacting concrete and connectors

    Directory of Open Access Journals (Sweden)

    P. P. Nascimento

    Full Text Available There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups, bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.

  12. Transfer and anchorage bond behaviour in self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Rigueira-Víctor, J. W.

    2006-12-01

    Full Text Available Self-compacting concretes (SCC provide solutions to the problems facing precast concrete construction, enhancing competitiveness, reducing turnaround times and improving final product quality. SCC is fast becoming a key product for the future development of the precast pre-stressed concrete industry.The present paper compares the bond performance of SCC and traditional concrete (TC. The bond performance results confirm the viability of SCC in precast pre-stressed concrete manufacture, despite a slightly higher loss of pre-stressing force and slightly greater anchorage lengths in SCC with a low water/cement ratio. No differences in transfer or anchorage length were detected,however, when high strength TC and SCC were compared. The ECADA test method proved to be well suited to detecting the differences between the concretes analyzed.El desarrollo de los hormigones autocompactantes (SCCofrece muchas posibilidades a las construcciones con hormigón prefabricado, aumentando su competitividad, reduciéndolos plazos de fabricación y ofreciendo mejoras en la calidad del producto final. El SCC se está convirtiendo en un producto clave para el futuro desarrollo de la industria de prefabricados de hormigón pretensado.En este estudio se compara el comportamiento adherente de los SCC con el de los hormigones tradicionales (TC actuales. Los resultados obtenidos confirman la viabilidad del uso de los SCC para la fabricación de elementos prefabricados con hormigón pretensado, en lo relativo a su comportamiento adherente, aunque con la necesidad de considerar unas pérdidas de pretensado ligeramente mayores. Asimismo,debe esperarse un ligero aumento de las longitudes de anclaje cuando se trabaje con SCC de baja relación agua/cemento. Sin embargo, no se han detectado diferencias de comportamiento entre ambos tipos de hormigón cuando la resistencia a compresión es alta en lo relativo a las longitudes de transmisión y anclaje. El método de ensayo ECADA

  13. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    Science.gov (United States)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  14. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Science.gov (United States)

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  15. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  16. Ultimate stress increase in unbonded tendons in post-tensioned indeterminate I-beams cast with high strength normal and self compacting concrete

    Directory of Open Access Journals (Sweden)

    Yousef Askari Dolatabad

    2018-06-01

    Full Text Available The use of un-bonded tendons is prevalent in post-tensioned concrete structures. Equations for prediction of stress in un-bonded tendons of post-tensioned normal (vibrating concrete flexural members have been given in various codes. They are based on experience and don’t account all of important parameters such as concrete strength (normal and high strength and its type (vibrating and non-vibrating concrete. Since self-compacting concrete (SCC is nearly a new innovation therefore, understanding the implementation of this type of non-vibrating concrete on the ultimate unbonded tendon stress is critical. For this aim, in this paper there are presented experimental results of six continuous un-bonded post-tensioned I-beams in two groups were casted and monitored by different electrical strain gauges. In the first tested group, the beams (UPN1-12, UPN1-18, UPN1-22 were consisting of high strength normal concrete (HSNC where as in the second group (UPS1-12, UPS1-18, UPS1-22 high strength self-compacting concrete (HSSCC were tested. The variables included the type of concrete and percentage of bounded non-prestressed steel. Experimental monitored results of ultimate stress increase in unbonded tendons are compared with predicted equations of different researchers and standards. It was found that, the proposed equation is in better agreement with the test results. The results of standard error of estimate Sy/x, indicates that for two types of HSCs, the ACI 318-2011 provides better estimates than AASHTO-2010 model whereas this model provides better estimates than BS 8110-97. Keywords: Post-tensioned, Unbonded tendons, Stress increase, High strength normal and self-compacting concrete, Continuous beams

  17. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites.

    Science.gov (United States)

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  18. X-Ray Investigation and Strength Measurement of Steel Fibre Reinforced Self-Compacting Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ponikiewski Tomasz

    2016-12-01

    Full Text Available The paper presents a study on self-compacting concrete with two types of steel fibres. Under consideration was the effect the method of forming of beam elements has on the distribution of steel fibres. Formed we beams of dimensions 120×15×15 cm3 and 180×15×15 cm3. The self-compacting mixture contained steel fibres of varying lengths (35 and 50 mm and varying levels of their volume ratio in the mix (0.5% - 1.0% - 1.5%.

  19. The use of compaction in the manufacture of tablets

    Directory of Open Access Journals (Sweden)

    O. V. Tryhubchak

    2016-08-01

    Full Text Available In the production of tablets direct compression method, wet and dry granulationare used. Dry granulation can be used if materials have sufficient cohesive properties to form granules. Scientific publications of recent years clearly demonstrate the prospects of roller compaction using in pharmaceutical industry. Aim. The aim of work is to generalize available data regarding to the use of compaction in the pharmaceutical industry. Materials and methods. We have studied and analyzed the available scientific sources in order to generalize the available literature on the use of compacting in the production of the tablets. During this study we used methods of observation and systematization analysis. Results. Materials for compaction characteristics of the process, its benefits and conditions of application have been collected and systematized, parameters of process have been selected, theories of compaction have been generalized, the characteristics and examples of compaction equipment have been adduced, and the key characteristics of the material used in the pharmaceutical industry have been demonstrated. Compacting is dry granulation technology in which powder containing active ingredients and excipients are compacted between two opposing spinning rollers by applying mechanical pressure. Compared with the original powder, granules after compression are characterized by much better fluidity and higher density by reducing the volume. The roller consolidation process substantially affects the particle size distribution, flowability, homogeneity, pressing, compaction substances and excipients, therefore, can affect dissolution, time of disintegration, resistance to crushing, abrasion of tablets. The main parameters of compacting are seal and method of its application, conditions and speed of the process. Conclusions. It has been established that the use of compacting decreases or increases particles size to form granules, which leads to improved

  20. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Investigation on the Mechanisms Governing the Robustness of Self-Compacting Concrete at Paste Level

    NARCIS (Netherlands)

    van der Vurst, F; Lesage, Karel; Grunewald, S.; Vandewalle, Lucie; Vantomme, John; Schutter, G; Khayat, Kamal H.

    2016-01-01

    In spite of the many advantages, the use of self-compacting concrete
    (SCC) is currently widely limited to application in precast factories and sihiations
    in which external vibration would cause large difficulties. One of the main
    limitations is the higher sensitivity to small variations

  2. The combined influence of paste volume and volumetric water-to- powder ratio on robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; Feys, D.; De Schutter, G.

    2015-01-01

    In order to avoid durability problems caused by an inadequate consolidation of concrete, self-compacting concrete (SCC) has been developed. The mix design of SCC aims at balancing a minimum flowability allowing air bubbles to escape and a maximum flowability in order to avoid segregation. Because of

  3. A method for calculating equivalent diameter of fiber in self-compacting fiber reinforced concrete

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    This paper presents a method for calculating the equivalent diameter of fiber in self-compacting fiber reinforced concrete (SCFRC). The key idea is to utilize a small amount of particles with a narrow particle size distribution to replace the fibers by the same volume, without causing any obvious

  4. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing.

    Science.gov (United States)

    Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; Gómez-Galán, Juan Antonio; Cifuentes, Héctor; González Carvajal, Ramón

    2018-03-15

    This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution.

  5. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-07-20

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm² resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  6. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  7. Improvement of Base and Soil Construction Quality by Using Intelligent Compaction Technology : Final Report.

    Science.gov (United States)

    2017-08-01

    Intelligent Compaction (IC) technique is a fast-developing technology for base and soil compaction quality control. Proof-rolling subgrades and bases using IC rollers upon completion of compaction can identify the less stiff spots and significantly i...

  8. Evaluating the Carbonation Resistance of Self Compacting Concrete made with Recycled Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper presents the results of an investigation conducted to examine carbonation resistance of Self Compacting Concrete (SCC made with coarse Recycled Concrete Aggregates (RCA. In total, five SCC mixes were prepared by systematically replacing coarse Natural Aggregates (NA by RCA at 0, 25, 50, 75 and 100%. In order to measure the carbonation resistance of SCC made with RCA, accelerated carbonation tests were performed for 4 and 12 weeks of exposure to carbon dioxide. The carbonation resistance has been evaluated after curing periods of 28 and 90 days. In addition to this, the compressive strength of all the mixes was also obtained after 7, 28 and 90 days of curing and ultra-sonic pulse velocity tests (UPV were also conducted. The results indicate that with the increase in the content of RCA as replacement of NA, decrease in the carbonation resistance, compressive strength and UPV was observed for all SCC mixes. It has been observed that the SCC mixes containing low percentages of RCA (i.e. 25% as replacement of NA do not impart detrimental behaviour in the overall performance but higher replacement levels (>50% have been found to deteriorate the performance in terms of carbonation resistance, compressive strength and UPV.

  9. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  10. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arefi

    2012-04-01

    Full Text Available In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%, and the mechanical (flexural and split tensile strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  11. The effects of coarse aggregate cleanliness and moisture content on asphalt concrete compactability and moisture susceptibility.

    Science.gov (United States)

    2011-12-31

    Twelve field projects were studied where forty-four locations were evaluated to assess the cause or : causes of asphalt concrete that exhibits tender zone characteristics (i.e. instability during compaction) and to : investigate the tendency of...

  12. Analysis of Mechanical Properties of Self Compacted Concrete by Partial Replacement of Cement with Industrial Wastes under Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Junaid Mansoor

    2018-03-01

    Full Text Available Self-Compacting Concrete (SCC differs from the normal concrete as it has the basic capacity to consolidate under its own weight. The increased awareness regarding environmental disturbances and its hazardous effects caused by blasting and crushing procedures of stone, it becomes a delicate and obvious issue for construction industry to develop an alternative remedy as material which can reduce the environmental hazards and enable high-performance strength to the concrete, which would make it durable and efficient for work. A growing trend is being established all over the world to use industrial byproducts and domestic wastes as a useful raw material in construction, as it provides an eco-friendly edge to the construction process and especially for concrete. This study aims to enlighten the use and comparative analysis for the performance of concrete with added industrial byproducts such as Ground Granulated Blast Furnace Slag (GGBFS, Silica fumes (SF and Marble Powder (MP in the preparation of SCC. This paper deals with the prediction of mechanical properties (i.e., compressive, tensile and flexural Strength of self-compacting concrete by considering four major factors such as type of additive, percentage additive replaced, curing days and temperature using Artificial Neural Networks (ANNs.

  13. Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Olesen, John Forbes

    An evolution of distribution and orientation of fibres in the fibre reinforced self-compacting concrete during the casting process is an important matter as the final orientation and distribution of fibres can significantly influence mechanical properties of the structural elements. A two-way cou...

  14. ZrO2 nanoparticles' effects on split tensile strength of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In the present study, split tensile strength of self compacting concrete with different amount of ZrO2 nanoparticles has been investigated. ZrO2 nanoparticles with the average particle size of 15 nm were added partially to cement paste (Portland cement together with polycarboxylate superplasticizer and split tensile strength of the specimens has been measured. The results indicate that ZrO2 nanoparticles are able to improve split tensile strength of concrete and recover the negative effects of polycarboxylate superplasticizer. ZrO2 nanoparticle as a partial replacement of cement up to 4 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration. The increased the ZrO2 nanoparticles' content more than 4 wt. (%, causes the reduced the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix.

  15. The behavior of self-compacting concrete (SCC) with bagasse ash

    Science.gov (United States)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  16. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sun, Changquan Calvin

    2015-01-01

    In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts...... compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines...... and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes....

  17. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing

    Science.gov (United States)

    Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; González Carvajal, Ramón

    2018-01-01

    This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution. PMID:29543765

  18. Towards understanding asphalt compaction: An action research strategy (in special issue for the IPRC)

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.

    2008-01-01

    During Hot Mix Asphalt (HMA) construction, compaction rollers provide the energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA

  19. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    María Fenollera

    2015-07-01

    Full Text Available The research focuses on the use of recycled aggregate (RA, from waste pieces generated during production in precast plants for self-compacting concrete (SCC manufactured with a double sustainable goal: recycle manufacturing waste (consumption and improvement of the thermal properties of the manufactured product (energy efficiency. For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%. The main parameters that characterize a SCC in both states, fresh (slump-flow and hard (compressive strength, have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  20. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-01-01

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters. PMID:28793449

  1. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The use of self-compacting concrete (SCC) as a construction material has been getting more attention from the industry. Its application area varies from standard structural elements in bridges and skyscrapers to modern architecture having geometrical challenges. However, heterogeneities induced...

  2. Kinematic correction for roller skewing

    Science.gov (United States)

    Savage, M.; Loewenthal, S. H.

    1980-01-01

    A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to product changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the rollers while eight have rollers with compound transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature.

  3. Kinematics of Planetary Roller Screw Mechanism considering Helical Directions of Screw and Roller Threads

    Directory of Open Access Journals (Sweden)

    Shangjun Ma

    2015-01-01

    Full Text Available Based on the differential principle of thread transmission, an analytical model considering helical directions between screw and roller threads in planetary roller screw mechanism (PRSM is presented in this work. The model is critical for the design of PRSM with a smaller lead and a bigger pitch to realize a higher transmission accuracy. The kinematic principle of planetary transmission is employed to analyze the PRSM with different screw thread and roller thread directions. In order to investigate the differences with different screw thread and roller thread directions, the numerical model is developed by using the software Adams to validate the analytical solutions calculated by the presented model. The results indicate, when the helical direction of screw thread is identical with the direction of roller thread, that the lead of PRSM is unaffected regardless of whether sliding between screw and rollers occurs or not. Only when the direction of screw thread is reverse to the direction of roller thread, the design of PRSM with a smaller lead can be realized under a bigger pitch. The presented models and numerical simulation method can be used to research the transmission accuracy of PRSM.

  4. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  5. Mechanical Behavior of Self-Compacting Concrete Containing Nano-Metakaolin

    Directory of Open Access Journals (Sweden)

    Mohammed Kareem Abed

    2017-08-01

    Full Text Available This paper presents the influence of nano- metakaolin addition for production self-compacting concrete (SCC. Nano-metakaolin material was used at four percentages (0, 1, 3 and 5 % as partial replacement by weight of cement [Reference mix (PC, (1%, 3%, 5% nano-metakaolin(1, 3, 5 NMK]. This research studied the influence of nano-metakaolin material on the fresh and mechanical properties which represented by the different tests were slump flow, T50cm, L-Box, V-funnel, compressive and flexural strength. From the results of this study, found that the SCC with 5% of nano-metakaolin material as partial replacement by weight of cement give the best results of fresh and mechanical properties of SCC mixes.

  6. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    Science.gov (United States)

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  7. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  8. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  9. Self-Mobilization Using a Foam Roller Versus a Roller Massager: Which Is More Effective for Increasing Hamstrings Flexibility?

    Science.gov (United States)

    DeBruyne, Danielle M; Dewhurst, Marina M; Fischer, Katelyn M; Wojtanowski, Michael S; Durall, Chris

    2017-01-01

    Clinical Scenario: Increasing the length of the muscle-tendon unit may prevent musculotendinous injury. Various methods have been proposed to increase muscle-tendon flexibility, including self-mobilization using foam rollers or roller massagers, although the effectiveness of these devices is uncertain. This review was conducted to determine if the use of foam rollers or roller massagers to improve hamstrings flexibility is supported by moderate- to high-quality evidence. Are foam rollers or roller massagers effective for increasing hamstrings flexibility in asymptomatic physically active adults? Summary of Key Findings: The literature was searched for studies on the effects of using foam rollers or roller massagers to increase hamstrings flexibility in asymptomatic physically active adults. Four randomized controlled trials were included; 2 studies provided level 2 or 3 evidence regarding foam rollers and 2 studies provided level 2 or 3 evidence regarding roller massagers. Both roller-massager studies reported increases in hamstrings flexibility after treatment. Data from the foam-roller studies did not demonstrate a statistically significant increase in hamstrings flexibility, but 1 study did demonstrate a strong effect size. Clinical Bottom Line: The reviewed moderate-quality studies support the use of roller massagers but provide limited evidence on the effectiveness of foam rolling to increase hamstrings flexibility in asymptomatic physically active adults. Flexibility gains may be improved by a longer duration of treatment and administration by a trained therapist. Gains appear to decline rapidly postrolling. Neither device has been shown to confer a therapeutic benefit superior to static stretching, and the effectiveness of these devices for preventing injury is unknown. Strength of Recommendation: Grade B evidence supports the use of roller massagers to increase hamstrings flexibility in asymptomatic physically active adults.

  10. A COST-REDUCTION OF SELF-COMPACTING CONCRETE INCORPORATING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    H. AWANG

    2016-01-01

    Full Text Available The higher material cost of self-compacting concrete (SCC as compared to normal vibrated concrete is mainly due to its higher cement content. In order to produce economical SCC, a significant amount of cement should be replaced with cheaper material options, which are commonly found in byproduct materials such as limestone powder (LP, fly ash (FA and raw rice husk ash (RRHA. However, the use of these byproduct materials to replace the high volumes of cement in an SCC mixture will produce deleterious effects such as strength reduction. Thus, the objective of this paper is to investigate the optimum SCC mixture proportioning capable of minimizing SCC’s material cost. A total of fifteen mixes were prepared. This study showed that raw rice husk ash exhibited positive correlations with fly ash and fine limestone powder and were able to produce high compressive and comparable to normal concrete. The SCC-mix made with quaternary cement-blend comprising OPC/LP/FA/RRHA at 55/15/15/15 weight percentage ratio is found to be capable of maximizing SCC’s material-cost reduction to almost 19% as compared with the control mix

  11. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  12. THE EFFECT OF DRY GRANULATION ON THE CONSOLIDATION AND COMPACTION OF CRYSTALLINE LACTOSE

    NARCIS (Netherlands)

    RIEPMA, KA; VROMANS, H; ZUURMAN, K; LERK, CF

    1993-01-01

    The consolidation and compaction properties of granule fractions prepared by dry granulation (slugging) of alpha-lactose monohydrate and roller dried beta-lactose, respectively, were studied. The results showed that the compactibility of the granule fractions was determined by the type of lactose

  13. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  14. Technical viability of self-compacting concretes with by-products from crushed coarse aggregate production

    Directory of Open Access Journals (Sweden)

    Edgar Bacarji

    Full Text Available Abstract The main objective of this work is to present the technical viability of Self Compacting Concretes (SCC containing by-products from crushed coarse aggregate production. For this purpose, a vast characterization of these by-products was made; six mixtures of SCC were produced using two different aggregates: granite and mica schist. The binder/dry aggregate (b/agg ratio by mass was 1:3. The following properties were analyzed: compressive strength, direct tensile strength, flexural tensile strength and splitting tensile strength. Granite presented the best mechanical performance. The replacement of natural sand by granite sand generated concretes with the same level of compressive strength and caused an increase in tensile strength values. The incorporation of silica fume into concrete with granite produced an increase of 17% in compressive strength. So, the use of these by-product materials can provide a technically feasible solution that is also consistent with the aims of sustainable development and preservation of the environment.

  15. Problematics of Reliability of Road Rollers

    Science.gov (United States)

    Stawowiak, Michał; Kuczaj, Mariusz

    2018-06-01

    This article refers to the reliability of road rollers used in a selected roadworks company. Information on the method of road rollers service and how the service affects the reliability of these rollers is presented. Attention was paid to the process of the implemented maintenance plan with regard to the machine's operational time. The reliability of road rollers was analyzed by determining and interpreting readiness coefficients.

  16. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  17. Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair

    Directory of Open Access Journals (Sweden)

    Woong Kim

    2018-01-01

    Full Text Available This study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiber-reinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%, and the reinforcement fiber (jute versus macrosynthetic fiber. In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. The abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.

  18. Analysis of Flexural Fatigue Strength of Self Compacting Fibre Reinforced Concrete Beams

    Science.gov (United States)

    Murali, G.; Sudar Celestina, J. P. Arul; Subhashini, N.; Vigneshwari, M.

    2017-07-01

    This study presents the extensive statistical investigation ofvariations in flexural fatigue life of self-compacting Fibrous Concrete (FC) beams. For this purpose, the experimental data of earlier researchers were examined by two parameter Weibull distribution.Two methods namely Graphical and moment wereused to analyse the variations in experimental data and the results have been presented in the form of probability of survival. The Weibull parameters values obtained from graphical and method of moments are precise. At 0.7 stress level, the fatigue life shows 59861 cyclesfor areliability of 90%.

  19. Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat

    Directory of Open Access Journals (Sweden)

    Caiyun Lu

    2017-01-01

    Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.

  20. Influence of high volumes of ultra-fine additions on self-compacting concrete[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, R. [Naples Univ., Naples (Italy). Faculty of Engineering; Colangelo, F. [Naples Univ., Naples (Italy). Dept. of Technologies; Caputo, D.; Liguori, B. [Naples Univ., Naples (Italy). Dept. of Materials and Production Engineering

    2006-07-01

    The addition of fine minerals can reduce water demand and increase the slump characteristics of concrete. This paper examined the influence of high volumes of ultra-fine fly ash, raw fly ash, silica fume and natural zeolites on the properties of self-compacting concrete (SCC). Three samples of SCC were prepared using various mineral additions to determine normal slump and J-ring slump flows of fresh concrete as well as the compressive strength and elastic modulus properties of hardened concrete. Cement and crushed limestone natural aggregates were used. The fly ash, silica fume and natural zeolites were subjected to wet high energy milling. The rotating speed, milling time, water-to-solid ratio, and size of milling media were optimized to obtain powders with varying qualities. Results of the study showed that values for the normal slump flow ranged between 604 and 785 mm, while the differences with the J-ring slump flow were less than 30 mm. The samples were then tested to evaluate the mechanical properties of the hardened concrete after 7 and 28 curing days. The modulus of elasticity and compressive strength showed improvements in the concretes containing the ultra-fine fly ash. No segregation phenomena were observed in the case of the cylindrical column specimens. It was concluded that all the specimens provided environmentally sustainable, high workability concretes which can be successfully prepared with the addition of high volumes of minerals. 17 refs., 5 tabs., 6 figs.

  1. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  2. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  3. Test of workability of concrete for PCCV

    International Nuclear Information System (INIS)

    Fujii, Tadayoshi; Nagase, Tetsuo; Yoshimori, Yoshinari

    1987-01-01

    The construction of the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. is the first case in Japan, and since the concrete having high strength and low slump is placed, the test of concrete placing by taking out a part of a full size test wall and the test of workability regarding the vibration compacting of concrete using a vibrator were carried out beforehand, and the results were reflected to the actual construction works. In this report, the workability test on the concrete is described. As difficulty is expected in the actual placing of the concrete having high strength and low slump, for the purpose of confirming the property of placing of the concrete in the cylindrical wall, and obtaining the basic data for the management of the actual concrete works and the quality control, the concrete placing test was carried out. At the time of concrete placing, the compacting of concrete is important, therefore, the basic data on the effect that the type, diameter, vibrating time and vibration propagation range of vibrators exert on the compacting of concrete were obtained, and reflected to the actual compacting. The purpose, testing method, results and the reflection to the actual works of these tests are reported. (Kako, I.)

  4. Development of roller type side slip tester; Roller shiki side slip tester no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, S [Hiroshima City Industrial Technology Institute, Hiroshima (Japan); Harada, S; Harada, K

    1997-10-01

    This paper presents a new development of roller type side slip tester (RTSSI). The test equipment consists of four parts, which are developed in this research. These are a roller part, a control part, a remote control part and a CRT part. In this study, we especially investigated the mechanism and performance between tire and roller. We analyzed the amount of side slip with various toe angles. The developed tester is examined under the conditions that is considered in industrial applications. We investigated the influences of toe angle, size of tire, pressure of tire, coefficient of friction between tire and roller, pushing force of tire, revolution velocity of roller, axle load and so on. The validity of the developed RTSST is confirmed under these conditions. It was found that the RTSST can be used in practical use. Some measurement results are presented in the form of parametric plots. And we also compared measurements data between the RTSST and that of flat type using several automobiles. 4 refs., 8 figs., 4 tabs.

  5. Simulation of HMA compaction by using FEM

    NARCIS (Netherlands)

    ter Huerne, H.L.; van Maarseveen, M.F.A.M.; Molenaar, A.A.A.; van de Ven, M.F.C.

    2008-01-01

    This paper introduces a simulation tool for the compaction process of Hot Mix Asphalt (HMA) using a roller under varying external conditions. The focus is on the use of the Finite Element Model (FEM) with code DiekA, on its necessary requirements and on the presentation of simulation results. The

  6. Analisa Beban Kerja Dan Gaya Dinamis Pada Round Roller Dan Sliding Roller Untuk Sistem CVT (Continuously Variable Transmission Sepeda Motor Matic

    Directory of Open Access Journals (Sweden)

    Ahmad Bagus Prasojo

    2017-01-01

    Full Text Available Primary shave weight atau sering disebut roller merupakan salah satu komponen dari sistem CVT pada motor matik yang sering mengalami kerusakan, baik itu aus maupun crack atau pecah. Metodologi yang dilakukan pada penelitian ini adalah menganalisa beban kerja (gaya yang dialami oleh roller. Selanjutnya akan dihitung besar tegangan (stress yang terjadi pada roller menggunakan teori tegangan kontak (contact stress. Kemudian analisa akan dilanjutkan menggunakan teori kelelahan (fatigue. Gaya normal yang didapat pada posisi stasioner sebesar 37,268 N dan posisi puncak sebesar 525,279 N. Untuk total tegangan ekivalen yang terjadi berbeda dikarenakan luasan kontaknya, round roller dengan luasan kontak yang lebih kecil menghasilkan total tegangan yang lebih besar yaitu 21,423 MPa sedangkan sliding roller sebesar 14,559 MPa. Dengan frekuensi real pembebanan roller sebesar 0,0667 Hz dan berdasarkan teori kelelahan Gerber stress amplitude round roller didapatkan 8,8756 Mpa dan untuk sliding roller sebesar 6,195 Mpa. Jadi setelah stress amplitude diplotkan pada sn-curve PTFE hasil prediksi umur untuk round roller adalah 4,081 ≈ 4 bulan dan untuk sliding roller adalah 5,89 ≈ 6 bulan.

  7. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  8. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  9. RCC1 regulates inner centromeric composition in a Ran-independent fashion.

    Science.gov (United States)

    Zhang, Michael Shaofei; Furuta, Maiko; Arnaoutov, Alexei; Dasso, Mary

    2018-01-01

    RCC1 associates to chromatin dynamically within mitosis and catalyzes Ran-GTP production. Exogenous RCC1 disrupts kinetochore structure in Xenopus egg extracts (XEEs), but the molecular basis of this disruption remains unknown. We have investigated this question, utilizing replicated chromosomes that possess paired sister kinetochores. We find that exogenous RCC1 evicts a specific subset of inner KT proteins including Shugoshin-1 (Sgo1) and the chromosome passenger complex (CPC). We generated RCC1 mutants that separate its enzymatic activity and chromatin binding. Strikingly, Sgo1 and CPC eviction depended only on RCC1's chromatin affinity but not its capacity to produce Ran-GTP. RCC1 similarly released Sgo1 and CPC from synthetic kinetochores assembled on CENP-A nucleosome arrays. Together, our findings indicate RCC1 regulates kinetochores at the metaphase-anaphase transition through Ran-GTP-independent displacement of Sgo1 and CPC.

  10. t(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases.

    Science.gov (United States)

    Smith, Nathaniel E; Illei, Peter B; Allaf, Mohamed; Gonzalez, Nilda; Morris, Kerry; Hicks, Jessica; Demarzo, Angelo; Reuter, Victor E; Amin, Mahul B; Epstein, Jonathan I; Netto, George J; Argani, Pedram

    2014-05-01

    Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Urological Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cathepsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that

  11. t(6;11) Renal Cell Carcinoma (RCC) Expanded Immunohistochemical Profile Emphasizing Novel RCC Markers and Report of 10 New Genetically Confirmed Cases

    Science.gov (United States)

    Smith, Nathaniel E.; Illei, Peter B.; Allaf, Mohamed; Gonzalez, Nilda; Morris, Kerry; Hicks, Jessica; DeMarzo, Angelo; Reuter, Victor E.; Amin, Mahul B.; Epstein, Jonathan I.; Netto, George J.; Argani, Pedram

    2015-01-01

    Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Uro-logical Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cath-epsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that

  12. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    Science.gov (United States)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  13. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-03-01

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  14. Self-compacting fine-grained concretes with compensated shrinkage

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available This paper substantiates the efficiency of application of fine-grained concrete for erection of cast-in-place concrete and reinforced concrete structures of different purpose. On the basis of analysis of experimental research results it was established that the introduction of microfillers with expansion effect to composite binder allows not only improving the rheological properties of fine-grained concrete, but also decreasing of value of shrinkage strain and improving of concrete crack resistance and durability. The analysis of the results of industrial use of fine-grained concretes with compensated shrinkage is given.

  15. THE RELATIONSHIP BETWEEN BULK-DENSITY AND COMPACTIBILITY OF LACTOSE GRANULATIONS

    NARCIS (Netherlands)

    ZUURMAN, K; RIEPMA, KA; BOLHUIS, GK; VROMANS, H; LERK, CF

    1994-01-01

    The relationship between the bulk density and the compactibility of lactose granulations was studied. The granulations were prepared from different alpha-lactose monohydrate and roller dried beta-lactose powders by wet granulation, using different techniques with only water as a binder, or by

  16. Influence of DAD-TA temperature-reducing additive on physical and mechanical properties of bitumen and compaction of asphalt concrete.

    Science.gov (United States)

    Yadykina, V. V.; Akimov, A. E.; Trautvain, A. I.; Kholopov, V. S.

    2018-03-01

    The paper is devoted to the use of DAD-TA temperature-reducing additive for the preparation and pouring of asphalt concrete mixes at reduced temperatures. It also shows positive influence of the modified bitumen on the efficiency of organo-mineral composite compaction at reduced temperatures. Physical and mechanical properties of asphalt concrete with the use of bitumen modified by DAD-TA additive including indicators characterizing road surfacing life are presented. Arguments to use this material from the point of view of its production technology and environmental impact are given.

  17. Estudio experimental del comportamiento a compresión de hormigones autocompactantes reforzados con fibras de acero = Experimental study of performance self-compacting concrete reinforced with steel fibers

    Directory of Open Access Journals (Sweden)

    J. L. Sánchez

    2015-09-01

    Full Text Available El hormigón autocompactante reforzado con fibras de acero presenta simultáneamente las ventajas de los hormigones autocompactantes y de los reforzados con fibras. Se consigue un material de altas prestaciones en cuanto a su colocación en obra, tenacidad y ductilidad. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante reforzado con fibras de acero. Se han realizado ensayos a compresión a distintas edades, así como ensayos no destructivos (medida de la velocidad de ultrasonidos e índice esclerométrico. Los resultados muestran la variación de la respuesta del hormigón con el tiempo, la diferencia existente con los hormigones tradicionales y la viabilidad del empleo de técnicas no destructivas para el control de este tipo de hormigones.Abstract Self-compacting steel fibers reinforced concrete simultaneously has the advantages of self-compacting concrete and reinforced with fibers. A material of high performance in their laying on site, toughness and ductility is achieved. This paper has studied the mechanical behavior of a self-compacting concrete reinforced with steel fibers. Have been made compression tests, as well as non-destructive testing (measuring the speed of ultrasound and sclerometer test. The results show the variation of the response of concrete with time, the difference with the traditional concrete and the feasibility of using non-destructive techniques for controlling this type of concrete.

  18. The 1982 epidemic--roller skating injuries.

    Science.gov (United States)

    Bunker, T. D.

    1983-01-01

    A series of 100 roller skating injuries is presented. Roller skating injuries have been occurring at a higher rate than the previously reported skateboarding epidemic of 1977. The severity of injury has been lower, 32% fractures and dislocations occurring whilst roller skating, compared to 60% whilst skateboarding. In particular a striking reduction is seen in ankle fractures. Fifty questionnaires detailing method of injury were analysed. Images p205-a Fig. 1 Fig. 2 PMID:6652406

  19. Lab-scale roller table mill for investigating the grinding behaviour of coal

    Energy Technology Data Exchange (ETDEWEB)

    Werner, V.; Zelkowski, J.; Schoenert, K. [Inst. for Energy Process Engineering and Fuel Technology and Inst. of Mineral Processing, Univ. Clausthal, Clausthal-Zellerfeld (Germany)

    1999-11-01

    The test mill is equipped with one roller. The material bed can be discharged completely after overroling. Grinding force, torque and gap width are measured. Cycle tests with three coals have been performed for simulating a closed circuit process. The grinding behaviour is characterized by the following relations: compaction of the particle bed and specific power draft vs. specific grinding force, production of fine material (dust), circuit factor, specific surface of the dust and specific work-input of the grinding circuit vs. specific power draft. (orig.)

  20. Development of ceramic roller bush for diesel fuel injection pump; Nenryo funsha pump yo ceramics sei roller bush no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K; Kamiya, S; Fujimura, M; Tsuzuki, M [Toyota Motor Corp., Aichi (Japan); Taniguchi, K [Denso Corp., Aichi (Japan)

    1997-10-01

    Silicon nitride ceramics have been applied to roller bush for diesel fuel injection pump in order to improve the seizure resistance. It was found that ceramic roller bush made it possible to improve the seizure load by more than three times as compared to conventional metal roller bush when the kerosene was used as lubricant The ceramic roller bush proved to be durable under engine operating conditions. 6 refs., 13 figs., 1 tab.

  1. 49 CFR 215.115 - Defective roller bearing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective roller bearing. 215.115 Section 215.115... § 215.115 Defective roller bearing. (a) A railroad may not place or continue in service a car, if the car has— (1) A roller bearing that shows signs of having been overheated as evidenced by— (i...

  2. Depreciation of bearing blocks of rollers of roller conveyers of rolling mills

    Science.gov (United States)

    Artiukh, Viktor; Belyaev, Michael; Ignatovich, Igor; Miloradova, Nadezda

    2017-10-01

    Essential increase in functional durability of a node of a roller of the roller conveyer of the rolling mill by the rational choice of parameters of the small-size shock-absorber (buffer adapter) is shown. At the same time dimensions of a node don’t change, costs of reconstruction are small. The possibility of management of loadings in a bearing node without change of technology parameters of the process which is carried out by the rolling mill is confirmed.

  3. The use of non-destructive tests to estimate Self-compacting concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Djamila Boukhelkhal

    2018-01-01

    Full Text Available Until now, there are few studies on the effect of mineral admixtures on correlation between compressive strength and ultrasonic pulse velocity for concrete. The aim of this work is to study the effect of mineral admixture available in Algeria such as limestone powder, granulated slag and natural pozzolana on the correlation between compressive strength and corresponding ultrasonic pulse velocity for self-compacting concrete (SCC. Compressive strength and ultrasonic pulse velocity (UPV were determined for four different SCC (with and without mineral admixture at the 3, 7, 28 and 90 day curing period. The results of this study showed that it is possible to develop a good correlation relationship between the compressive strength and the corresponding ultrasonic pulse velocity for all SCC studied in this research and all the relationships had exponential form. However, constants were different for each mineral admixture type; where, the best correlation was found in the case of SCC with granulated slag (R2 = 0.85. Unlike the SCC with pozzolana, which have the lowest correlation coefficient (R2 = 0.69.

  4. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  5. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  6. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In this work, strength assessments and percentage of water absorption of high performance self compacting concrete containing different amounts of ground granulated blast furnace slag and CuO nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early age of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (% at later ages. CuO nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. CuO nanoparticle as a partial replacement of cement up to 3.0 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased the CuO nanoparticles' content more than 3.0 wt. (%, causes the reduced the split tensile strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. More rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles could improve mechanical and physical properties of the concrete specimens.

  7. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on self-compacting concrete. → Strength assessments. → Water permeability. → Thermal properties. → Pore structure. → Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO 2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO 2 nanoparticles in the cement paste up to 4.0 wt%. TiO 2 nanoparticles, as a result of increased crystalline Ca(OH) 2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO 2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO 2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  8. Influence of calcined mud on the mechanical properties and shrinkage of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fatima Taieb

    2018-01-01

    Full Text Available The use of SCC has a particular interest in terms of sustainable development. Indeed, their specific formulation leads to a greater volume of dough than for common concretes, thus, a larger quantity of cement. However, for economical, ecological and technical reasons, it is sought to limit their cement content [1]. It is therefore necessary to almost always use mineral additions as a partial replacement for cement because the technology of self-compacting concretes can consume large quantities of fines, in this case calcinated mud issued from dams dredging sediments that can give and/or ameliorate characteristics and performances of this type of concretes. Four SCCs had been formulated from the same composition where the only percentage of calcinated mud of Chorfa (west of Algeria dam changed (0%, 10%, 20% and 30%. The effect of calcinated mud on characteristics at fresh state of SCC according to AFGC was quantified. Mechanical strengths and shrinkage deformation (total, autogenous, drying were evaluated. The results show the possibility to make SCCs with different dosages of calcinated mud having strengths that can defy those of the control SCC. The analysis of free deformations indicates the beneficial impact of the mud by contributing to decrease the amplitudes of the shrinkage compared to those of the control SCC.

  9. Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Sonebi [University of Paisley, Paisley (United Kingdom). Advanced Concrete and Masonry Centre

    2004-07-01

    This investigation aims to develop medium strength self-compacting concrete (MS-SCC). The cost of materials will be decreased by reducing the cement content and by using pulverised fuel ash (PFA) with a minimum amount of superplasticizer (SP). A factorial design was carried out to mathematically model the influence of five key parameters on filling and passing abilities, segregation and compressive strength, which are important for the successful development of medium strength self-compacting concrete incorporating PFA. The parameters considered in the study were the contents of cement and PFA, water-to-powder (cement+PFA) ratio (W/P) and dosage of SP. The responses of the derived statistical models are slump flow, fluidity loss, Orimet time, V-funnel time, L-box, JRing combined to the Orimet, JRing combined to cone, rheological parameters, segregation and compressive strength at 7, 28 and 90 days. Twenty-one mixes were prepared to derive the statistical models, and five were used for the verification and the accuracy of the developed models. The models are valid for mixes made with 0.38 to 0.72 W/P, 60 to 216 kg/m{sup 3} of cement content, 183 to 317 kg/m{sup 3} of PFA and 0% to 1% of SP, by mass of powder. The influences of W/P, cement and PFA contents, and the dosage of SP were characterised and analysed using polynomial regression, which can identify the primary factors and their interactions on the measured properties. The results show tha MS-SCC can be achieved with a 28-day compressive strength of 30 to 35 MPa by using up to 210 kg/m{sup 3} of PFA.

  10. ROLLER RIG TESTING AT THE CZECH TECHNICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    J. Kalivoda

    2016-08-01

    Full Text Available Purpose. Although the advancements in computer simulation technology have paved way to provide very reliable simulation results, track tests still play an essential role during the process of development and homologation of any railway vehicle. On the other hand, track tests depend on weather conditions, are difficult to organize and are not suitable for testing vehicles in critical situations. On a roller rig, the tested vehicle is longitudinally fixed and a track is replaced by rotating rollers. Such device offer testing of railway vehicle running dynamics in safe and stable laboratory environment. The purpose of an article is to investigate and describe roller rig testing at the Czech technical university in Prague (CTU. Methodology. In the paper it is shown the history of development of the scaled CTU roller rig from the earlier stages until the current projects for which the CTU roller rig is utilized for. The current design of the experimental bogie, roller rig, sensors instrumentation and types of experiments conducted at the CTU roller rig are described in more detail. Findings. Although the differences in vehicle behaviour on a track and a scaled model on a roller rig are not negligible, scaled roller rig experiments are found as a relatively inexpensive way for verification and demonstration of computer simulations results. They are especially useful for verification of multibody system simulations (MBS of entirely new running gear concepts. Originality. The CTU roller rig is currently used for the experiments with active controlled wheelset guidance. According to simulations results published in many papers such systems offer, in principle, better performance compared to conventional passive vehicles. However, utilization and testing of active controlled wheelset guidance on vehicles is still rare. CTU roller rig serves as a tool to verify computer simulations and demonstrate benefits of active wheelset guidance. Practical value

  11. THE EFFECT OF SINGLE AND HYBRID FIBRES ON FIBRE REINFORCED SELF COMPACTING CONCRETE PRODUCED WITH HIGH LEVEL OF FLY ASH USAGE

    OpenAIRE

    BOZKURT, Nusret; YAZICIOĞLU, Salih; GÖNEN, Tahir

    2013-01-01

    The aim of this paper is to present results of investigation carried out on fresh and mechanical properties of Fibre Reinforced Self Compacting Concrete (FRSCC) produced with fly ash which is an industrial waste material. Concrete industry is an important one between the industry branches for sustainability. In this study, high level of fly ash was used to reduce Portland Cement (PC) consumption as well as CO2 emission through the use of that waste material. For this purpose, a control Self C...

  12. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  13. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  14. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  15. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    Science.gov (United States)

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  16. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    viscosity of micro-concretes improves the solid holding capacity of this composite. According to flow ...... J. Env. Management 78(3): 232–239 ... Felekoglu B 2007 Utilisation of high volumes of limestone quarry wastes in concrete industry (self-.

  17. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation

    Directory of Open Access Journals (Sweden)

    Klein, N. S.

    2011-06-01

    Full Text Available The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems.

    Los forjados de ciertos edificios del ensanche de Barcelona, formados por viguetas unidireccionales con un revoltón de cerámica entre ellas y un relleno posterior (material cerámico y residuos de construcción, suelen presentar problemas de movimientos y despegues de las baldosas situadas en la parte superior, con el consiguiente riesgo para el usuario, aparte de los problemas de durabilidad asociados. Para rehabilitar esas estructuras se ha diseñado un hormigón ligero autocompactante con fibras (HLACF, como relleno de modo que mejore la rigidez a la estructura. El artículo presenta el análisis estructural de una solución tipo así como los resultados de una campaña experimental realizada. Como resultado se obtiene un hormigón de densidad de 1.665 kg/m3, escurrimiento de 605 mm y resistencia a compresión de 22,3 MPa, a los 28 días, que cumple con los requisitos y significa superar problemas de segregación previsibles para este tipo de hormigones.

  18. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  19. Ice-skating and roller disco injuries in Dublin.

    OpenAIRE

    Horner, C.; McCabe, M. J.

    1984-01-01

    A comparative study was carried out on a series of 72 ice-skating and 57 roller skating injuries over a sixteen month period. The average patient age was 20.5 years in the ice-skating group and 16.5 years in the roller skating group. Females predominated in both groups accounting for 72% of ice-skaters injured and 77% of roller skaters injured. Ice-skaters sustained more serious injuries than roller skaters as was evident from the significant difference in fracture numbers in the two groups. ...

  20. Influence of superplasticizer on microstructure of a 40 MPa strength concrete

    International Nuclear Information System (INIS)

    Teixeira, Sandra M.F.; Menezes, Raquel Maria R.O.; Figueiredo, Roberto B.; Aguilar, Maria Teresa P.; Franca, Fabricio Carlos; Bezerra, Augusto Cesar da S.

    2016-01-01

    The self compacting concrete has high fluidity and deformability. Studies analyze its performance through compressive strength, mortar content and / or water cement factor, which does not allow the evaluation of superplasticante influence the microstructure of these concretes. In this work, we evaluated the influence of superplasticizer comparing the phases present in a self-compacting concrete 40 MPa and at a same conventional compressive strength, same water / cement and mortar content. Therefore, scanning techniques were employed by electron microscope low vacuum using backscattered electrons and thermal analysis. The observed results show no significant differences in the microstructure of the two composites, ie the superplasticizer does not alter the microstructure of the self-compacting concrete. However, thermal analysis indicates that the present self-compacting concrete greater calcium hydroxide content which may suggest a lower content of such dry cement concrete. (author)

  1. The effect of TiO{sub 2} nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-12-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on self-compacting concrete. {yields} Strength assessments. {yields} Water permeability. {yields} Thermal properties. {yields} Pore structure. {yields} Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO{sub 2} nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO{sub 2} nanoparticles in the cement paste up to 4.0 wt%. TiO{sub 2} nanoparticles, as a result of increased crystalline Ca(OH){sub 2} amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO{sub 2} nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO{sub 2} nanoparticles could improve mechanical and physical properties of the concrete specimens.

  2. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  3. Ice-skating and roller disco injuries in Dublin.

    Science.gov (United States)

    Horner, C.; McCabe, M. J.

    1984-01-01

    A comparative study was carried out on a series of 72 ice-skating and 57 roller skating injuries over a sixteen month period. The average patient age was 20.5 years in the ice-skating group and 16.5 years in the roller skating group. Females predominated in both groups accounting for 72% of ice-skaters injured and 77% of roller skaters injured. Ice-skaters sustained more serious injuries than roller skaters as was evident from the significant difference in fracture numbers in the two groups. Ice-skating fractures accounted for 40% of all injuries while roller skating fractures were only 14% of their total injuries. The majority of ice-skating fractures occurred in females. As a result of our study we recommended several preventative measures. Images p207-a p207-b PMID:6487948

  4. 21 CFR 870.4370 - Roller-type cardiopulmonary bypass blood pump.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Roller-type cardiopulmonary bypass blood pump. 870... Roller-type cardiopulmonary bypass blood pump. (a) Identification. A roller-type cardiopulmonary bypass blood pump is a device that uses a revolving roller mechanism to pump the blood through the...

  5. 49 CFR 215.117 - Defective roller bearing adapter.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective roller bearing adapter. 215.117 Section... Suspension System § 215.117 Defective roller bearing adapter. A railroad may not place or continue in service a car, if the car has a roller bearing adapter that is— (a) Cracked or broken; (b) Not in its design...

  6. Fresh and mechanical properties of self-compacting concrete with coarse aggregate replacement using Waste of Oil Palm Shell

    Science.gov (United States)

    Prayuda, Hakas; Saleh, Fadillawaty; Ilham Maulana, Taufiq; Monika, Fanny

    2018-05-01

    Self-compacting Concrete (SCC) is a real innovation that can solidify itself without the help of tools to ease field practice. In its implementation, SCC can use alternative materials to reduce waste, such as Oil Palm Shell (OPS). In this research, OPS used as a replacement of crushed stone as the main coarse aggregate. The concrete mixture used consists of cement, sand, crushed stone, OPS as a variation of aggregate substitutes, palm oil fuel ash, and superplasticizer. OPS used were variated with 0%, 5%, 10%, 25% and 50% of crushed stone aggregate weight with age up to 28 days. Tests were conducted on fresh and mechanical properties. From the results, it is known that replacement of aggregate using OPS meets fresh properties criteria and although the compressive strength of OPS concrete mixture is lower than normal SCC, OPS still can be an alternative in making SCC and reducing palm oil industrial waste.

  7. Porous concrete mixtures for pervious urban pavements

    Directory of Open Access Journals (Sweden)

    Castro, J.

    2007-08-01

    Full Text Available The present study aimed to analyze the hydraulic and mechanical behaviour of a series of roller-compacted, laboratory porous concrete mixtures. The mix design variables examined were the actual void ratio in the hardened concrete and the water/cement ratio. From these results the better dosages from the mechanical and hydraulical behaviour point of view were determined. One of the designs developed was found to exhibit excellent hydraulic capacity and 20% greater strength than the mixtures recommended in the literature. Moreover, concrete with an actual void ratio of only 14% was observed to meet permeability requirements. Maximum flexural strength of concretes with different w/c ratios was achieved with a cement paste content of 250 l/m3. Relationships were found between the void ratio and both 28-day concrete permeability and flexural strength. Finally, the doses exhibiting the best mechanical and hydraulic performance were identified.El trabajo realizado en este estudio consistió en analizar el comportamiento de diferentes dosificaciones de mezclas de hormigón poroso, fabricadas en laboratorio y compactadas con rodillo pesado para simular las condiciones de terreno. Las variables consideradas para el diseño de las mezclas fueron el porcentaje real de huecos en el hormigón endurecido y la razón agua/cemento. A partir de estos resultados se determinaron las dosificaciones que presentan mejor comportamiento desde el punto de vista mecánico e hidráulico. Los resultados muestran que existe una dosificación de hormigón poroso, distinta a las encontradas actualmente en la literatura internacional, que permite obtener resistencias hasta 20% más altas, manteniendo todavía una excelente capacidad hidráulica. Se determinó que una permeabilidad suficiente se puede obtener con un porcentaje real de huecos de 14%, y que agregar pasta de cemento en una proporción de 250 l/m3 permite maximizar la resistencia a flexotracción de hormigones que

  8. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    Science.gov (United States)

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  10. Design algorithm for generatrix profile of cylindrical crowned rollers

    Directory of Open Access Journals (Sweden)

    Creţu Spiridon

    2017-01-01

    Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.

  11. 49 CFR 230.103 - Tender roller bearing journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tender roller bearing journal boxes. 230.103... Locomotives and Tenders Running Gear § 230.103 Tender roller bearing journal boxes. Tender roller bearing journal boxes shall be maintained in a safe and suitable condition. ...

  12. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  13. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  14. Durability Properties of Self Compacting Concrete containing Fly ash, Lime powder and Metakaolin

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-01-01

    Full Text Available This paper investigates the durability properties of Self-compacting concrete (SCC, with different amounts of fly ash (FA, lime powder (LP and metakaolin (MK. A total of 6 mixes were prepared that have a constant water-binder ratio (w/b of 0.41 and superplasticizer dosage of 1% by weight of cement. In addition to compressive strength, the durability properties of SCC mixes were determined by means of Initial surface absorption test (ISAT and Capillary suction test. The test results indicated that the durability properties of the mixes appeared to be very dependent on the type and amount of the mineral admixture used; the mixes containing MK were found to have considerably higher permeability resistance. Good co-relation between strength and absorption were achieved.

  15. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  16. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation; Hormigon ligero autocompactante con fibras para rehabilitacion de forjados

    Energy Technology Data Exchange (ETDEWEB)

    Klein, N. S.; Fuente, A. de la; Aguado, A.; Maso, D.

    2011-07-01

    The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF) has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems. (Author) 24 refs.

  17. Kinematics and Dynamics of Roller Chain Drives

    DEFF Research Database (Denmark)

    Fuglede, Niels

    There are two main subjects of this work: Kinematic and dynamic modeling and analysis of roller chain drives. In the kinematic analysis we contribute first with a complete treatment of the roller chain drive modeled as a four-bar mechanism. This includes a general, exact and approximate analysis...... which is useful for predicting the characteristic loading of the roller chain drive. As a completely novel contribution, a kinematic model and analysis is presented which includes both spans and sprockets in a simple chain drive system. A general procedure for determination of the total wrapping length...... is presented, which also allows for exact sprocket center positions for a chain with a given number of links. Results show that the total chain wrapping length varies periodically with the tooth frequency. These results are of practical importance to both the design, installation and operation of roller chain...

  18. The effect of aging on the fracture characteristics and ductility of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad T.; Nikbin, Iman M.; Vaseghi Amiri, Javad

    2014-01-01

    Highlights: • Fracture properties of SCC were obtained using two different methods. • Results showed with increase of age the fracture toughness increases. • As SCC becomes older, brittleness number is almost doubled. • The Size effect curve showed SCC brittleness increases with increase of age. - Abstract: Good knowledge of fracture parameters and cracking behavior of self-compacting concrete (SCC) from early ages until the SCC becomes mature plays an important role in design of SCC structure and also in evaluation of durability and consequently prevention of damage. In this paper, variation of fracture parameters and corresponding ductility behavior of SCC at different ages (e.g. 3 days, 7 days, 28 days and 90 days) for SCC mixes with w/c ratios of 0.45 and 0.65 have been experimentally studied. To do so, three-point bending tests were carried out on 120 notched beams. Then, size effect method (SEM) and work of fracture method (WFM) were applied to interpret the results. The results of analyses indicated that as the concrete is aging from 3 days to 90 days: (a) fracture energies from SEM (G f ) and WFM (G F ) are increased: (b) effective size of the process zone (C f ) in SEM and characteristic length (L ch ) in WFM are considerably decreased indicating increase of concrete brittleness: (c) fracture surface of concrete passing through the aggregate is increased which is attributed to strength improvement of hardened cement paste and aggregate–paste transition zone: (d) fracture toughness is significantly increased: (e) brittleness number is almost doubled. Also, the ratio of G F /G f , which is applied for calibration of numerical models of cracking at different ages, is equal to 2.70

  19. RCC-MX (2008 edition)

    International Nuclear Information System (INIS)

    Bravo, X.; Drubay, B.

    2008-10-01

    The RCC-MX books is a compilation of design and construction rules for the mechanical materials of experimental reactors, for their auxiliaries and irradiation devices. This second edition includes the updates of references to NF, EN and ISO standards, the compliance with the regulations for nuclear pressure equipments, and the feedback since the 2005 edition. It comprises 9 books and a CD-Rom and includes a presentation document. The RCC-MX has been developed for the Jules Horowitz reactor but can be used for the design and construction of new projects of new experimental reactors or new equipments and devices for existing facilities. Content: - Book 1: general dispositions, materials for experimental reactors and their auxiliaries, for irradiation devices and for control or handling mechanisms, complementary requirements and particular dispositions; - Book 2: materials for the reactor and for its level 1 auxiliaries; - Book 3: materials for the reactor and for its level 2 and level 3 auxiliaries, control and handling mechanisms, materials for irradiation devices; - Book 4: technical appendixes - materials characteristics (steels and alloys); - Book 5: technical appendixes (design rules); - Book 6: technical specifications of materials; - Book 7: tests and control methods; - Book 8: welding; - Book 9: fabrication. (J.S.)

  20. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  1. Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun

    2015-03-13

    In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.

  2. Roller-chain Drives Mechanics using Multibody Dynamics Tools

    DEFF Research Database (Denmark)

    Ambrosio, Jorge A. C.; Hansen, John Michael

    1999-01-01

    An integrated model for the simulation of roller-chain drives based on a multibody dynamics methodology is presented here in order to describeits complex dynamic behavior. The chain is modeled by masses lumped at the roller locations and connected by translational spring-damper elements in order ...... engagement on the sprockets responsible for the polygonal effect is thoroughly analyzed and the induced impulsive forces developed during that action are treated by a strategy where kinematic constraints between sprockets and rollers are added and deleted....

  3. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    International Nuclear Information System (INIS)

    Vasilic, Ksenija

    2016-01-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  4. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    Energy Technology Data Exchange (ETDEWEB)

    Vasilic, Ksenija

    2016-05-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  5. High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete

    KAUST Repository

    Celik, Kemal; Jackson, Marie D.; Mancio, Mauricio; Meral, Cagla; Emwas, Abdul-Hamid M.; Mehta, P. Kumar; Monteiro, Paulo José Meleragno

    2014-01-01

    A laboratory study demonstrates that high volume, 45% by mass replacement of portland cement (OPC) with 30% finely-ground basaltic ash from Saudi Arabia (NP) and 15% limestone powder (LS) produces concrete with good workability, high 28-day compressive strength (39 MPa), excellent one year strength (57 MPa), and very high resistance to chloride penetration. Conventional OPC is produced by intergrinding 95% portland clinker and 5% gypsum, and its clinker factor (CF) thus equals 0.95. With 30% NP and 15% LS portland clinker replacement, the CF of the blended ternary PC equals 0.52 so that 48% CO2 emissions could be avoided, while enhancing strength development and durability in the resulting self-compacting concrete (SCC). Petrographic and scanning electron microscopy (SEM) investigations of the crushed NP and finely-ground NP in the concretes provide new insights into the heterogeneous fine-scale cementitious hydration products associated with basaltic ash-portland cement reactions. © 2013 Published by Elsevier Ltd.

  6. New concrete materials technology for competitive house building

    OpenAIRE

    Peterson, Markus

    2003-01-01

    The research project aims at investigating the potential of new concrete materials technology (high performance concrete, HPC and self-compacting concete, SCC) for competitive design, production and function of structural frames of cast in-situ concrete in house building.

  7. Concrete conditioners for low-intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Roehl, J.L.; Lorentz, R.G.; Franzen, H.R.

    1986-01-01

    The conditioning of low-intermediate level radioactive waste disposal, in Brazil, with concrete packages designed in such way that, in spite of being destined to receive compacted materials in long term sub-surface disposal, they may also be able to attend other storage or disposal necessities, is analysed. A design of a reinforced concrete package with a net volume of 360 l and, with compatible diameter to contain compacted 200 l drums, was developed. A study on compactation of 200 l steel packages is done. A pressure of 30.000 KN for compacting these 200 l drums was adapted, and two series of tests to verify the pressure volume reduction ratio and, the final dimensions and density of the compacted elements, was executed. (Author) [pt

  8. A FILTRATION METHOD AND APPARATUS INCLUDING A ROLLER WITH PORES

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention offers a method for separating dry matter from a medium. A separation chamber is at least partly defined by a plurality of rollers (2,7) and is capable of being pressure regulated. At least one of the rollers is a pore roller (7) having a surface with pores allowing permeabi...

  9. The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In this work, strength assessments and coefficient of water absorption of high performance self compacting concrete containing different amounts of ZrO2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding ZrO2 nanoparticles in the cement paste up to 4.0 wt. (%. ZrO2 nanoparticles, as a result of increased crystalline Ca(OH2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, ZrO2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that ZrO2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  10. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  11. Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method

    Science.gov (United States)

    Zhang, Xuan; Li, Zhida; Zhang, Zhihua

    2017-11-01

    In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.

  12. Asphalt dust waste material as a paste volume in developing sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.

  13. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  14. Salmonella transfer during pilot plant scale washing and roller conveying of tomatoes.

    Science.gov (United States)

    Wang, Haiqiang; Ryser, Elliot T

    2014-03-01

    Salmonella transfer during washing and roller conveying of inoculated tomatoes was quantified using a pilot scale tomato packing line equipped with plastic, foam, or brush rollers. Red round tomatoes (2.3 kg) were dip inoculated with Salmonella enterica serovar Typhimurium LT2 (avirulent) (4 log CFU/g), air dried for 2 h, and then washed in sanitizer-free water for 2 min. Inoculated tomatoes were then passed single file over a 1.5-m conveyor equipped with plastic, foam, or brush rollers followed by 25 previously washed uninoculated tomatoes. Tomato samples were collected after 2 min of both washing and roller conveying, with all 25 uninoculated tomatoes collected individually after conveying. Roller surface samples were collected before and after conveying the uninoculated tomatoes. Both tomato and surface samples were quantitatively examined for Salmonella by direct plating or membrane filtration using xylose lysine Tergitol 4 agar. Regardless of the roller type, Salmonella populations on inoculated tomatoes did not significantly (P conveyors. After conveying uninoculated tomatoes over contaminated foam rollers, 96% of the 25 tomatoes were cross-contaminated with Salmonella at >100 CFU per tomato. With plastic rollers, 24 and 76% of tomatoes were cross-contaminated with Salmonella at 10 to 100 and 1 to 10 CFU per tomato, respectively. In contrast, only 8% of 25 tomatoes were cross-contaminated with brush rollers with Salmonella populations of 1 to 10 CFU per tomato. Overall, cross-contamination was greatest with foam, followed by plastic and brush rollers (P < 0.05). Adding peroxyacetic acid or chlorine to the wash water significantly decreased cross-contamination during tomato conveying, with chlorine less effective in controlling Salmonella on foam compared with plastic and brush rollers.

  15. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  16. Placement of pre-compacted and in situ compacted dense backfill materials in shaft seals

    International Nuclear Information System (INIS)

    Martino, J.; Dixon, D.; Kim, C.S.

    2010-01-01

    Document available in extended abstract form only. In 2003, a decision was made to discontinue operation of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) and ultimately to decommission and permanently close the underground portion of this facility. As part of the Nuclear Legacy Liability Program (NLLP) being funded by Natural Resources Canada (NRCan), an ongoing program of work is being undertaken to decommission and deal with facilities that are no longer part of AECL's mandate or operations. The URL is included in these facilities. Part of this work is the installation of seals at the intersection of the access and ventilation shafts and an ancient thrust fault, Fracture Zone 2 (FZ2), approximately 275 m below surface. These seals are being installed in order to limit the potential for mixing of deeper saline and shallower, less saline groundwater. The seal design in each shaft is similar with a heavily reinforced lower concrete component, a central bentonite clay-sand component and an upper un-reinforced concrete component. The main shaft at the URL at the location of the seal is circular (∼5-m diameter), and was excavated using careful drill and blast techniques. The seal itself consists of two keyed, conical sectioned, 3-m-thick by 5 to 6-m diameter concrete segments that confine a 6-m-thick swelling clay section. The ventilation shaft at the URL is 1.8 m in diameter and was excavated using raise-boring. The ventilation shaft will consist of two keyed, conical sectioned, 2-m-thick concrete by 1.8 to 2.8 m diameter concrete segments confining a 5-m-thick assembly of pre-compacted clay-sand blocks. The concrete is a low pH concrete designed for repository use, which can develop a 70 MPa unconfined compressive strength after 28 days. It has a pH of less than 11 achieved by substitution of 75% of the cement powder with silica fume and ground silica so the likelihood of free calcium and an alkaline plume is

  17. Errors of car wheels rotation rate measurement using roller follower on test benches

    Science.gov (United States)

    Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.

    2018-03-01

    The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.

  18. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation.

    Science.gov (United States)

    Wu, Nan; Ren, Dong; Li, Su; Ma, Wenli; Hu, Shaoyan; Jin, Yan; Xiao, Sheng

    2018-01-10

    Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.

  19. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  20. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  1. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  2. Surface area of lactose and lactose granulates on consolidation and compaction

    OpenAIRE

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems. The crystalline lactose types used are: a-lactose monohydrate, anhydrous a-lactose, crystalline B-lactose and roller dried B-lactose. ... Zie: Summary

  3. Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

    International Nuclear Information System (INIS)

    Jiang, Liang-Ting; Huang, Tzu-Chien; Chang, Chih-Yuan; Ciou, Jian-Ren; Yang, Sen-Yeu; Huang, Po-Hsun

    2008-01-01

    This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time

  4. An eco-friendly self-compacting concrete with recycled coarse aggregates

    Directory of Open Access Journals (Sweden)

    Pereira-de Oliveira, L. A.

    2013-09-01

    Full Text Available The potential uses of coarse recycled aggregates in the composition of SCC increases the ecological value and partly solve the issues of waste disposal sites generated by construction and demolition of structures. Thus, this paper present an experimental study of SCC properties where the normal coarse aggregates were replaced by different percentages of recycled aggregates, i.e., 0% (SCC, 10% (SCCR10, 20% (SCCR20, 30% (SCCR30 and 40% (SCCR40. The results from fresh concrete (rheological properties and self-compactability as the hardened concrete properties (compressive strength, density and dynamic modulus of elasticity, show only minor discrepancies. From the standpoint of mechanical behaviour, the results confirm the viability to incorporate coarse recycled aggregates in the SCC demonstrating the conservative character of the currently recommended limits.Los usos potenciales de áridos gruesos reciclados en la composición del hormigón autocompactante (SCC aumenta el valor ecológico y en parte resuelve los problemas de los sitios de disposición de residuos generados por la construcción y la demolición de las estructuras. Por lo tanto, este trabajo presenta un estudio experimental de las propiedades de SCC en el cual los áridos gruesos naturales fueron reemplazados por distintos porcentajes de áridos reciclados, es decir, 0% (SCC, el 10% (SCCR10, el 20% (SCCR20, el 30% (SCCR30 y el 40% (SCCR40. Los resultados del hormigón fresco (propiedades reológicas y la auto-compactación, como las propiedades de hormigón endurecido (resistencia a la compresión, densidad y módulo de elasticidad dinámico, muestran sólo pequeñas discrepancias. Desde el punto de vista del comportamiento mecánico, los resultados confirman la viabilidad de incorporar áridos gruesos reciclados en los SCC demostrando el carácter conservador de los límites actualmente recomendados.

  5. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  6. Strengthening of self-compacting reinforced concrete deep beams containing circular openings with CFRP

    Directory of Open Access Journals (Sweden)

    Al-Bayati Nabeel

    2018-01-01

    Full Text Available This paper shows the behavior of reinforced self-compacting concrete deep beams with circular openings strengthened in shear with various arrangements of externally bonded Carbon Fibre Reinforced Polymer (CFRP. Six simply supported deep beams were constructed and tested under two points load up to the failure for this purpose. All tested beams had same geometry, compressive strength, shear span to depth ratio, main flexural and web reinforcement. The variables considered in this study include the influence of fiber orientation, utilizing longitudinal CFRP strips with vertical strips and area of CFRP. The test results indicated that the presence of the circular openings in center of load path reduce stiffness and ultimate strength by about 50% when compared with solid one, also it was found that the externally bonded CFRP can significantly increase the ultimate load and enhance the stiffness of deep beam with openings.

  7. KINEMATICS AND DYNAMICS MODELS OF CYLINDRICAL ROLLER BEARING OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    A. V. Gaydamaka

    2014-05-01

    Full Text Available Purpose. Lack of kinematics models and imperfection of the known dynamics models of the roller bearings of railway rolling stock axle-boxes do not allow designing the optimal structure of bearing cages, providing the required service life and reliability of bearing units of wheel sets for cars and locomotives. The studies of kinematics and dynamics of roller bearings of axle boxes for cars and locomotives and modeling of their parts interaction to create the analytical method of bearing cages calculation are necessary. Methodology. This purpose has been achieved due to the modeling of kinematics of the ideal (without gaps and real (taking account the gaps, manufacturing and installation errors bearings, substantiation of the transfer mechanism of motion from the rollers to bearing cage, modeling the dynamics of rolling, research of interaction forces of the rollers with bearing cage. Findings. It is established that the kinematics of ideal bearing is determined by the contact deformations of the rollers and rings, when the kinematics of real bearing depends mainly on the side gaps in the windows of the bearing cage. On the basis of studies of the real bearing kinematics the dynamics models of the rollers and bearing cage interaction were constructed. The conducted studies of kinematics and dynamics of rolling bearings have changed our view of them as of the planetary mechanism, explained the reason of bearing cage loading, and confirmed the possibility of destruction during operation. Originality. It was first proposed a mechanism for motion transfer from the rollers to the bearing cage of roller bearings, consisting in that the side gap in the bearing cage window is reduced gradually multiple of the number of rollers of radial loading area according to the bearing cage motion. The models of roller bearing dynamics, which allow calculating the interaction forces of parts for all modes of operation, were improved. Practical value. Use of the

  8. Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Ríjos, J. D.; Cifuentes, H.

    2017-01-01

    Roč. 11, č. 42 (2017), s. 56-65 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA16-18702S; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Concrete * Stress intensity factors * T-stress * Compact tension test * Fracture behavior * Fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  9. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  10. A study on rheological characteristics of roller milled fenugreek fractions.

    Science.gov (United States)

    Sakhare, Suresh D; Inamdar, Aashitosh A; Prabhasankar, P

    2016-01-01

    Fenugreek seeds were fractionated by roller milling to get various fractions. The roller milled fractions and whole fenugreek flour (WFF) were evaluated for the flow behavior and time-dependent flow properties using a rotational viscometer at the temperatures of 10-60 (0)C. The samples subjected to a programmed shear rate increase linearly from 0 to 300 s(-1) in 3 min and successive decrease linearly shear rate from 300 s(-1) to 0 in 3 min. The roller milled fractions and WFF paste exhibited non-Newtonian pseudoplastic behavior. Difference in hysteresis loop area was observed among the roller milled fractions and WFF, being more noticeable at lower temperatures. Power law and Casson models were used to predict flow properties of samples. The power law model described well the flow behavior of the roller milled fractions and WFF at temperatures tested. Except flour (FL) fraction, consistency coefficient, m, increased with the temperature both in the forward and backward measurements. The roller milled fractions and WFF exhibited rheopectic behavior that increased viscosity with increasing the shear speed and the temperature. For all the sample tested, initial shear stress increased with increase in shear rate and temperature.

  11. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete

    Science.gov (United States)

    Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir

    2013-02-01

    The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.

  12. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  13. GSK-3 inhibition in vitro and in vivo enhances antitumor effect of sorafenib in renal cell carcinoma (RCC)

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Hisashi; Bilim, Vladimir N. [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan); Ugolkov, Andrey V., E-mail: ugolkov@northwestern.edu [Tumor Biology Core, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Silverman Hall B733, Northwestern University, Evanston, IL (United States); Yuuki, Kaori; Naito, Sei; Nagaoka, Akira; Kato, Tomoyuki [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan); Tomita, Yoshihiko, E-mail: ytomita@med.id.yamagata-u.ac.jp [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Sorafenib treatment upregulated GSK-3{beta} levels in RCC cells. Black-Right-Pointing-Pointer Pharmacologic inhibition of GSK-3 suppressed xenograft RCC tumor growth. Black-Right-Pointing-Pointer Inhibition of GSK-3 enhanced antitumor effect of sorafenib in vitro and in vivo. -- Abstract: Sorafenib is a multikinase inhibitor approved for the systemic treatment of renal cell carcinoma (RCC). However, sorafenib treatment has a limited effect due to acquired chemoresistance of RCC. Previously, we identified glycogen synthase kinase-3 (GSK-3) as a new therapeutic target in RCC. Here, we observed that sorafenib inhibits proliferation and survival of RCC cells. Significantly, we revealed that sorafenib enhances GSK-3 activity in RCC cells, which could be a potential mechanism of acquired chemoresistance. We found that pharmacological inhibition of GSK-3 potentiates sorafenib antitumor effect in vitro and in vivo. Our results suggest that combining GSK-3 inhibitor and sorafenib might be a potential new therapeutic approach for RCC treatment.

  14. Improved technology for spun-cast concrete poles

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, W H; Ghali, A

    1984-07-01

    Different types of concrete were investigated with the goal of developing concrete suitable for the production of spun-cast concrete poles. A total of 65 different concrete mixes were investigated, with the suitability criteria defined as: compactability, no segregation of the mix components during the spinning operation, no shrinkage cracking, high strength, and durability. High strength normal weight concretes and semi-lightweight concretes, both with and without fly ash and/or silica fume and with different types of admixtures were used to produce spun-cast concrete pole segments. Of the 35 lightweight concretes only 3 were considered successful, as in all other specimens the inner layer of coarse aggregate was not well embedded in the mortar, and many mixes could not be compacted properly because they were too stiff, too wet, or started to set before spinning commenced. The three successful specimens contained fly ash and one contained silica fume, and had low water/cement ratios (0.26 to 0.29). Of the 23 normal weight concretes tested, only 5 were considered suitable, and all these had a sand/coarse aggregate ratio of 0.25 or smaller and a cement content between 350 and 400 kg/m{sup 3}. A theoretical study of the stresses in the end zones of pretensioned poles is presented. 10 refs., 53 figs., 14 tabs.

  15. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    Science.gov (United States)

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  16. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    International Nuclear Information System (INIS)

    Ye, G.; Liu, X.; De Schutter, G.; Taerwe, L.; Vandevelde, P.

    2007-01-01

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m 3 of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently

  17. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    Science.gov (United States)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  18. Armed rollers: does nestling's vomit function as a defence against predators?

    Directory of Open Access Journals (Sweden)

    Deseada Parejo

    Full Text Available Chemical defences against predators are widespread in the animal kingdom although have been seldom reported in birds. Here, we investigate the possibility that the orange liquid that nestlings of an insectivorous bird, the Eurasian roller (Coracias garrulus, expel when scared at their nests acts as a chemical defence against predators. We studied the diet of nestling rollers and vomit origin, its chemical composition and deterrent effect on a mammal generalist predator. We also hypothesized that nestling rollers, as their main prey (i.e. grasshoppers do from plants, could sequester chemicals from their prey for their use. Grasshoppers, that also regurgitate when facing to a threat, store the harmful substances used by plants to defend themselves against herbivores. We found that nestling rollers only vomit after being grasped and moved. The production of vomit depended on food consumption and the vomit contained two deterrent chemicals (hydroxycinnamic and hydroxybenzoic acids stored by grasshoppers and used by plants to diminish herbivory, suggesting that they originate from the rollers' prey. Finally, we showed for the first time that the oral secretion of a vertebrate had a deterrent effect on a model predator because vomit of nestling rollers made meat distasteful to dogs. These results support the idea that the vomit of nestling rollers is a chemical defence against predators.

  19. Development of Flat Roof Construction with Waterproofing from Modified Self-Compacting Concrete

    Science.gov (United States)

    Bogdanov, R. R.; Ibragimov, R. A.

    2017-11-01

    The given article considers the issues of increase of building flat roof durability by application of the modified self-compacting concrete (SSC). When SSC was modified, a complex modifier was developed and the optimization of the complex modifier composition was carried out using a three-factor experiment. The physico-mechanical properties of the obtained SSC are determined. The microstructure and phase composition of the modified cement stone were studied. On the basis of the studies carried out, namely, X-ray phase analysis and electron microscopy, it was concluded that the reduced content of calcium hydroxide in the samples with a complex modifier is due to the adsorption of calcium hydroxide on highly dispersed particles and the reaction of interaction with metakaolin also contributing to reduction in the content of calcium hydroxide in cement stone. The received data allow one to speak about SSC high operational characteristics. With the mark for the spreading of cone P5, the modified SSC has a class of compressive strength B50, high frost resistance (F600) and water resistance (W16).

  20. 48 CFR 225.7009 - Restriction on ball and roller bearings.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on ball and roller bearings. 225.7009 Section 225.7009 Federal Acquisition Regulations System DEFENSE ACQUISITION... roller bearings. ...

  1. Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams

    OpenAIRE

    Khoa Tan Nguyen; Tuan Anh Le; Kihak Lee

    2016-01-01

    This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occ...

  2. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  3. Harmonization of welding qualification provisions in RCC-M and European standards

    International Nuclear Information System (INIS)

    Lemoine, M.; Lainez, B.; Anastassiades, P.

    2007-01-01

    Since a long time, numerous precautions for welding have been integrated in the nuclear codes, in particular in the RCC-M applicable to pressurized water reactors, in order to guarantee a high quality level of permanent assemblies. In parallel, European and ISO standardization works have led to a harmonisation of practices on qualification of welding processes, welders and operators. In the context of the regulatory evolutions presented during this conference, it was judged appropriate to bring closer the RCC-M practices and those of EN and ISO standards, while taking the precaution of specifying, if necessary, the complementary provisions allowing maintaining guarantees of quality consistent with the prior experience feedback. This paper presents the amendments brought to the RCC-M Code by the 2005 and 2007 addenda, in order to respond to this objective, and develops their motivations. (authors) [fr

  4. Revisión del empleo de fibras de acero en hormigones autocompactantes = Review of the steel fibers use in concrete self-compacting

    Directory of Open Access Journals (Sweden)

    Gabriela Vega

    2016-12-01

    Full Text Available En la actualidad el hormigón es un material indispensable en la construcción. Tiene muchas ventajas, entre las que destaca su alta resistencia a compresión, pero a su vez presenta algunas deficiencias sobre las que se va a centrar este documento. Entre las deficiencias más destacables están la baja resistencia a tracción del material y su comportamiento frágil. Por ello desde sus orígenes se ha intentado cubrir esas deficiencias utilizando diferentes tipos de materiales para reforzar y complementar las capacidades estructurales del hormigón. La incorporación de fibras en este material ha ido implantándose en el mercado ya que gracias a sus características ayudan a abaratar los costos de ejecución y a una sustitución parcial o total de la armadura. En este trabajo se hará un repaso a al uso de los hormigones autocompactantes en la construcción y a las diferentes tipos de fibras que pueden aplicarse al hormigón convencional para la mejora de la tenacidad, control de fisuración y resistencia a flexotracción, con el fin de elaborar un hormigón autocompactante con fibras de acero que reúna las características propias del hormigón y que optimice algunos aspectos del mismos. Abstract Concrete is now an indispensable material in construction. It has many advantages, including its high resistance to compression, but in turn presents some deficiencies on which this document will be focused. Among the most notable deficiencies are the low tensile strength of the material and its brittle behavior. Therefore, from the outset, attempts have been made to cover these deficiencies by using different types of materials to reinforce and complement the structural capacities of concrete. The incorporation of fibers in this material has been implanted in the market since, thanks to their characteristics, they help to reduce the execution costs and to a partial or total replacement of the armature. This work will review the use of self-compacting

  5. A Methodology of Designing the Teeth Conjugation in a Planetary Roller Screw

    Directory of Open Access Journals (Sweden)

    Lisowski Filip

    2016-12-01

    Full Text Available The paper presents the methodology for designing the teeth conjunction of planetary gears in the planetary roller screw mechanism. A function of the planetary gears is to synchronize an operation of rollers in order to avoid axial displacements. A condition of the correct operation is no axial movement of rollers in relation to the nut. The planetary gears are integral parts of rollers and therefore an operation of the gear transmissions has a direct impact on cooperation of the screw, rollers and the nut. The proper design of gear engagements is essential for reducing slippage on surfaces of the cooperating threaded elements. For this purpose, in a designing method, both the limitations of operation and kinematic conditions of rollers’ operation have to be taken into account.

  6. Skateboarding: more dangerous than roller skating or in-line skating.

    Science.gov (United States)

    Osberg, J S; Schneps, S E; Di Scala, C; Li, G

    1998-10-01

    To describe the circumstances, severity, and outcomes of skating-related injuries among children admitted to trauma centers. A cross-sectional comparison of roller skaters (n = 154), in-line skaters (n = 190), and skateboarders (n = 254) aged 5 to 19 years who were hospitalized with injuries. Seventy-nine hospitals and pediatric trauma centers participating in the National Pediatric Trauma Registry between October 1988 and April 1997. Three quarters (75.8%) of the study sample were male, nearly half (47.8%) were injured on roads, and more than one third (37.1%) had head injuries. Among skateboarders, 50.8% had head injuries compared with 33.7% of in-line skaters and 18.8% of roller skaters (Pskateboarders were 8 times more likely to be severe or critical compared with roller skaters' injuries and more than 2 times as likely to be severe or critical compared with in-line skaters' injuries. Mean hospital length of stay was 6.0 days for skateboarders, 3.4 days for in-line skaters, and 2.4 days for roller skaters (PSkateboarders were more likely to be male and to be injured on roads than were in-line skaters or roller skaters. Skateboarding-related injuries are more severe and have more serious consequences than roller skating or in-line skating injuries. Research is needed to identify ergonomic and behavioral factors responsible for higher head injury risk to skateboarders, and interventions are needed to reduce the risk.

  7. Influence of interface properties on fracture behaviour of concrete

    Indian Academy of Sciences (India)

    Interface; concrete; bond strength; fracture toughness; stiffness; ductility. 1. Introduction .... behaviour of concrete using sandwich, and direct rock-mortar compact specimens under mode I and mode II ... pulse velocity technique. 4.2 Geometry of ...

  8. Experimental Study on Modification of Concrete with Asphalt Admixture

    Science.gov (United States)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  9. Pediatric fractures during skateboarding, roller skating, and scooter riding.

    Science.gov (United States)

    Zalavras, Charalampos; Nikolopoulou, Georgia; Essin, Daniel; Manjra, Nahid; Zionts, Lewis E

    2005-04-01

    Skateboarding, roller skating, and scooter riding are popular recreational and sporting activities for children and adolescents but can be associated with skeletal injury. The purpose of this study is to describe the frequency and characteristics of fractures resulting from these activities. Fractures from skateboarding, roller skating, and scooter riding compose a considerable proportion of pediatric musculoskeletal injuries. Case series; Level of evidence, 4. Demographic data and injury characteristics were analyzed for all patients who presented to the pediatric fracture clinic of the level I trauma center from January 2001 to May 2002 after sustaining fractures due to skateboarding, roller skating, and scooter riding. Among a total of 2371 fractures, the authors identified 325 fractures (13.7%) that occurred during one of these activities. There were 187 patients (mean age, 13 years; 95% male) who sustained 191 skateboard-related fractures, 64 patients (mean age, 10.8 years; 54% male) who sustained 65 fractures while roller skating, and 66 patients (mean age, 9.7 years; 64% male) who sustained 69 fractures while riding a scooter. The forearm was fractured most often, composing 48.2% of skate-boarding fractures, 63.1% of roller-skating fractures, and 50.7% of fractures due to scooter riding. Of the forearm fractures, 94% were located in the distal third. In the skateboarding group, 10 of 191 (5.2%) fractures were open injuries of the forearm, compared to 6 of 2046 (0.3%) fractures caused by other mechanisms of injury (significant odds ratio, 18.8). Skateboarding, roller-skating, and scooter-riding accidents result in a large proportion of pediatric fractures. An open fracture, especially of the forearm, was more likely to be caused by skateboarding than by other mechanisms of injury. Use of wrist and forearm protective equipment should be considered in all children who ride a skateboard.

  10. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  11. RCC-M - Design and Conception Rules for Mechanical Components of PWR Nuclear Islands

    International Nuclear Information System (INIS)

    2007-01-01

    The design and construction rules applicable to mechanical components of PWR Nuclear Islands (RCC-M) are a part of the collection of design and construction rules for nuclear power plants. It covers the rules applicable to the design and manufacture of pressure boundaries of mechanical equipment of pressurized water reactors (PWR). The pressure components subject to the RCC-M are specified in A 4000. They include the reactor fluid systems (primary, secondary and auxiliary systems) and other components which are not subject to pressure: vessel internals, supports for pressure components subject to the RCC-M, nuclear island storage tanks. When a pressure equipment is subject to the RCC-M, all its elements subject to pressure are also, in accordance with the provisions of A 4000, and these elements are the same class as the component. In this case all the provisions of the RCC-M are applicable: design, procurement, manufacture, inspection and pressure testing. Elements which are not subject to pressure and which are subject to the RCC-M may be covered within the Code by limited specific provisions (procurement of materials for example). The other rules applicable to this equipment must be in contractual form. The assemblies comprising pressure equipment assembled by a manufacturer to constitute an integrated and functional whole, shall be subject to the rules indicated in this Code. Main objectives of Code Requirements are to ensure the integrity and mechanical stability over the equipment design life. Function ability and operability of equipment are not directly addressed in the Code. The RCC-M contributes to ensuring compliance with regulatory requirements. These requirements depend on the applicable regulatory context. The RCC-M is representative of the state of the art as concerns the design and manufacture of PWR components, ensuring an overall safety level tested through experience. The RCC-M consists of five sections, which provide rules for the design and

  12. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  13. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Jumaat, Mohd Zamin; Jameel, Mohammed; Badiee, Hamid; Arumugam, Arul M.S.

    2012-01-01

    Highlights: ► Ductility decreased with increase in tensile reinforcement ratio. ► The width of the load point and the support point influences premature failure. ► Load–deflection relationship is linear till 85% of the ultimate load. ► The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load–deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  14. Standard test method for measurement of web/roller friction characteristics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers the simulation of a roller/web transport tribosystem and the measurement of the static and kinetic coefficient of friction of the web/roller couple when sliding occurs between the two. The objective of this test method is to provide users with web/roller friction information that can be used for process control, design calculations, and for any other function where web/roller friction needs to be known. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    phase composition to link fresh concrete workability and mixing intensity. In this paper, rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. SCMC mixtures with various HRWRA contents and conventional cement paste mixtures with varying water/cement ratios ...

  16. RCC-C: Design and construction rules for fuel assemblies of PWR nuclear power plants

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-C code contains all the requirements for the design, fabrication and inspection of nuclear fuel assemblies and the different types of core components (rod cluster control assemblies, burnable poison rod assemblies, primary and secondary source assemblies and thimble plug assemblies). The design, fabrication and inspection rules defined in RCC-C leverage the results of the research and development work pioneered in France, Europe and worldwide, and which have been successfully used by industry to design and build nuclear fuel assemblies and incorporate the resulting feedback. The code's scope covers: fuel system design, especially for assemblies, the fuel rod and associated core components, the characteristics to be checked for products and parts, fabrication methods and associated inspection methods. The RCC-C code is used by the operator of the PWR nuclear power plants in France as a reference when sourcing fuel from the world's top two suppliers in the PWR market, given that the French operator is the world's largest buyer of PWR fuel. Fuel for EPR projects is manufactured according to the provisions of the RCC-C code. The code is available in French and English. The 2005 edition has been translated into Chinese. Contents of the 2015 edition of the RCC-C code: Chapter 1 - General provisions: 1.1 Purpose of the RCC-C, 1.2 Definitions, 1.3 Applicable standards, 1.4 Equipment subject to the RCC-C, 1.5 Management system, 1.6 Processing of non-conformances; Chapter 2 - Description of the equipment subject to the RCC-C: 2.1 Fuel assembly, 2.2 Core components; Chapter 3 - Design: Safety functions, operating functions and environment of fuel assemblies and core components, design and safety principles; Chapter 4 - Manufacturing: 4.1 Materials and part characteristics, 4.2 Assembly requirements, 4.3 Manufacturing and inspection processes, 4.4 Inspection methods, 4.5 Certification of NDT inspectors, 4.6 Characteristics to be inspected for the

  17. Improvement of Railroad Roller Bearing Test Procedures & Development of Roller Bearing Diagnostic Techniques. Volume 2.

    Science.gov (United States)

    1982-04-01

    A comprehensive review of existing basic diagnostic techniques applicable to the railcar roller bearing defect and failure problem was made. Of the potentially feasible diagnostic techniques identified, high frequency vibration was selected for exper...

  18. Quality by design I: Application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of "main factors" in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets.

    Science.gov (United States)

    Fahmy, Raafat; Kona, Ravikanth; Dandu, Ramesh; Xie, Walter; Claycamp, Gregg; Hoag, Stephen W

    2012-12-01

    As outlined in the ICH Q8(R2) guidance, identifying the critical quality attributes (CQA) is a crucial part of dosage form development; however, the number of possible formulation and processing factors that could influence the manufacturing of a pharmaceutical dosage form is enormous obviating formal study of all possible parameters and their interactions. Thus, the objective of this study is to examine how quality risk management can be used to prioritize the number of experiments needed to identify the CQA, while still maintaining an acceptable product risk profile. To conduct the study, immediate-release ciprofloxacin tablets manufactured via roller compaction were used as a prototype system. Granules were manufactured using an Alexanderwerk WP120 roller compactor and tablets were compressed on a Stokes B2 tablet press. In the early stages of development, prior knowledge was systematically incorporated into the risk assessment using failure mode and effect analysis (FMEA). The factors identified using FMEA were then followed by a quantitative assessed using a Plackett-Burman screening design. Results show that by using prior experience, literature data, and preformulation data the number of experiments could be reduced to an acceptable level, and the use of FMEA and screening designs such as the Plackett Burman can rationally guide the process of reducing the number experiments to a manageable level.

  19. Use of waste from the marble industry as filler for the production of self-compacting concretes

    Directory of Open Access Journals (Sweden)

    Valdez, P.

    2011-03-01

    Full Text Available This study evaluates the possibilities of using residual slurry from the cutting and superficial treatment of marble for the production of self-compacting concrete (SCC. The study considers the replacement of 30% of cement by the waste material, and assessed the effects on SCC properties in fresh and hardened states. Rheological characteristics were evaluated at the paste and concrete levels. Physical-mechanical characterization considers the rate of shrinkage and compressive strength gain. Pastes and concrete properties using waste marble as filler are compared with mixtures that include limestone filler, either added to the concrete or the cement. For the same dosage, an improvement in the flowability was observed in SCC with waste marble filler. The mechanical properties of the SCC adopting marble waste are equivalent to the SCC with limestone filler. The study shows that residual slurry from the processing of marble can represents an appropriate filler to be used in SCC.

    El presente estudio evalúa las posibilidades de utilización de lodos residuo de la industria del corte y tratamiento superficial del mármol para la producción de hormigón autocompactante (HAC. Se estudia el efecto del remplazo de un 30% del cemento por el residuo. Se valoran las características reológicas a nivel pasta y hormigón. La caracterización físico-mecánica contempla la evolución de la retracción y de la resistencia a compresión. Se comparan las prestaciones de pastas y hormigones empleando el residuo con mezclas que incorporan filler calizo, ya sea adicionado al hormigón o presente en el cemento. Se observa una mejora de la fluidez en el caso de los HAC que contienen el residuo estudiado; las propiedades mecánicas de éstos resultan equivalentes a las de los HAC con filler calizo. Se concluye que los lodos residuo del procesamiento del mármol pueden representan un filler adecuado para su uso en HAC.

  20. 48 CFR 252.225-7016 - Restriction on acquisition of ball and roller bearings.

    Science.gov (United States)

    2010-10-01

    ... of ball and roller bearings. 252.225-7016 Section 252.225-7016 Federal Acquisition Regulations System... and roller bearings. As prescribed in 225.7009-5, use the following clause: Restriction on Acquisition of Ball and Roller Bearings (MAR 2006) (a) Definitions. As used in this clause' (1) Bearing...

  1. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  2. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2011-01-01

    Research highlights: → Nanoparticles in concrete. → Ground granulated blast furnace slag as concrete's binder. → Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO 2 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO 2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO 2 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH) 2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO 2 nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH) 2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO 2 nanoparticles could improve mechanical and physical properties of the concrete

  3. Modelación matemática del proceso de compactación en prensas de rodillos // A mathematical model for the process of compaction in rolling mills

    Directory of Open Access Journals (Sweden)

    A. Hernández Battez

    1998-01-01

    Full Text Available El carbón obtenido a partir de la paja de caña posee bajas propiedades mecánicas, debido a esto es indispensable sucompactación para utilizarlo en cocinas domésticas, calentadores de pollos, etc. La técnica de compactación más difundida, porsu rendimiento y bajo costo, es la compactación en prensas de rodillos. El Centro de Estudios y Desarrollo de la Oleohidráulicay la Neumática de la Universidad de Cienfuegos elaboró un modelo matemático para caracterizar el proceso de compactaciónen prensas de este tipo. Con dicho modelo se determina la reacción sobre los rodillos, la potencia consumida en el proceso decompactación y la relación existente entre la geometría de los rodillos y la compactación teórica máxima.__________________________________________________________________________AbstractThe carbon obtaining from the cane straw possesses low mechanic properties, due to this is indispensable their compaction inorder to utilize it in domestic kitchens, heaters of chickens, etc. The technique of compaction more diffused, for efficiency andlow cost, it is the compression in presses of rollers. The R&D Center for Fluid Power and Pneumatic of the University ofCienfuegos elaborated a mathematical model in order to characterize the process of compression in presses of this type. Withmentioning model are determined the reaction on the rollers, the consumed power in the process of compaction and the existentrelation between the Rollers geometry and the maximum theoretical compaction.

  4. Optimization of flowable concrete for structural design : Progress report of fib task group 8.8

    NARCIS (Netherlands)

    Grunewald, S.; Ferrara, L.; Dehn, F.

    2014-01-01

    With the tendency to apply concrete with a higher workability and the use of new concrete components more options are available to design concrete. New concrete types like self-compacting concrete (SCC), ultra-high performance fibre reinforced concrete (UHPFRC) and high performance fibre reinforced

  5. Plutonium recycle concept for RCC - type PWRs

    International Nuclear Information System (INIS)

    Bonet, H.; Charlier, A.; Deramaix, P.; Vanderberg, C.

    1975-01-01

    Self-generated Pu recycling schemes in RCC-type PWRs have been defined. The main results of survey studies performed to compare the relative merits of various Pu recycle strategies and the merits of alternative solutions of the assembly design such as the Pu-island assembly or the all-Pu assembly are presented [fr

  6. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  7. Self-compacting concrete containing different powders at elevated temperatures - Mechanical properties and changes in the phase composition of the paste

    International Nuclear Information System (INIS)

    Bakhtiyari, S.; Allahverdi, A.; Rais-Ghasemi, M.; Zarrabi, B.A.; Parhizkar, T.

    2011-01-01

    Fire resistance of self-compacting concretes (SCC) containing limestone and quartz powders, with two different compressive strengths, were evaluated and compared with normal concretes (NC). The residual mechanical strengths of the mixes at different temperatures were measured. The changes in the phase composition of the cement pastes at high temperatures were examined with thermal analysis and X-ray diffractometry methods. The SCC mixes showed a higher susceptibility to spalling at high temperatures but the NC mixes suffered much more from loss of the mechanical strengths. Both the powder types and the compressive strength notably influenced the fire behavior of the SCC. The quartz powder accelerated the hydration of the SCC cement paste at high temperatures, up to 500 o C. However, the quartz-contained SCC showed the highest risk of spalling among all the mixes. The results showed that the thermal analysis could be a useful device for evaluating the fire behavior of building materials.

  8. Self-compacting concrete containing different powders at elevated temperatures - Mechanical properties and changes in the phase composition of the paste

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiyari, S., E-mail: bakhtiyari@bhrc.ac.ir [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Allahverdi, A., E-mail: ali.allahverdi@iust.ac.ir [Cement Research Center, School of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Rais-Ghasemi, M., E-mail: raissghasemi@bhrc.ac.ir [Dep. of Concrete Technology, Building and Housing Research Center (BHRC), Tehran (Iran, Islamic Republic of); Zarrabi, B.A., E-mail: zarrabi@chalmers.se [Fire Technology Dep., SP Technical Research Institute of Sweden (Sweden); Parhizkar, T., E-mail: parhizkar@bhrc.ac.ir [Dep. of Concrete Technology, Building and Housing Research Center (BHRC), Tehran (Iran, Islamic Republic of)

    2011-02-20

    Fire resistance of self-compacting concretes (SCC) containing limestone and quartz powders, with two different compressive strengths, were evaluated and compared with normal concretes (NC). The residual mechanical strengths of the mixes at different temperatures were measured. The changes in the phase composition of the cement pastes at high temperatures were examined with thermal analysis and X-ray diffractometry methods. The SCC mixes showed a higher susceptibility to spalling at high temperatures but the NC mixes suffered much more from loss of the mechanical strengths. Both the powder types and the compressive strength notably influenced the fire behavior of the SCC. The quartz powder accelerated the hydration of the SCC cement paste at high temperatures, up to 500 {sup o}C. However, the quartz-contained SCC showed the highest risk of spalling among all the mixes. The results showed that the thermal analysis could be a useful device for evaluating the fire behavior of building materials.

  9. Quality-by-design III: application of near-infrared spectroscopy to monitor roller compaction in-process and product quality attributes of immediate release tablets.

    Science.gov (United States)

    Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W

    2015-02-01

    The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.

  10. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  11. Reviewing the Carbonation Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2 penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefly

  12. Phylogenetic relationships of rollers (Coraciidae) based on complete mitochondrial genomes and fifteen nuclear genes.

    Science.gov (United States)

    Johansson, Ulf S; Irestedt, Martin; Qu, Yanhua; Ericson, Per G P

    2018-04-06

    The rollers (Coraciidae) constitute a relative small avian family with ca. 12 species distributed in Africa, western and southern Eurasia, and eastern Australia. In this study we examine the phylogenetic relationships of all species currently recognized in the family, including two taxa whose taxonomic status is currently contested. By using shotgun sequencing on degraded DNA from museum study skins we have been able to recover complete mitochondrial genomes as well as 15 nuclear genes for in total 16 taxa. The gene sequences were analyzed both concatenated in a maximum likelihood framework as well in a species tree approach using MP-EST. The different analytical approaches yield similar, highly supported trees and support the current division of the rollers into two genera, Coracias and Eurystomus. The only conflict relates to the placement of the Blue-bellied Roller (C. cyanogaster), where the mitochondrial, and the concatenated nuclear and mitochondrial data set, place this taxon as sister to the other Coracias species, whereas nuclear data and the species tree analysis place it as the sister taxon of C. naevia and C. spatulatus. All analyses place the Eurasian roller (C. garrulus) with the two African species, Abyssinian Roller (C. abyssinica) and Liliac-breasted Roller (C. caudatus), and place this clade as the sister group to the Asian Coracias rollers. In addition, our results support a sister group relationship between the morphologically rather dissimilar Purple Roller (C. naevia) and Racquet-tailed Roller (C. spatulatus) and also support the division of Eurystomus in an African and an Asian clade. However, within the Asian clade the Azure Roller (E. azureus) from Halmahera appears to be nested within the Dollarbird (E. orientalis), indicating that that this taxon is a morphological divergent, but a rather recent offshoot, of the widespread Dollarbird. Similarly, the Purple-winged Roller (C. temminickii) from Sulawesi group together with C. benghalensis

  13. Material report in support to RCC-MRX code 2010 stainless steel parts and products

    International Nuclear Information System (INIS)

    Ancelet, Olivier; Lebarbe, Thierry; Dubiez-Le Goff, Sophie; Bonne, Dominique; Gelineau, Odile

    2012-01-01

    This paper presents the Material Report dedicated to stainless steels parts and products issued by AFCEN (Association Francaise pour les regles de Conception et de Construction des Materiels des Chaudieres Electro-Nucleaires) in support to RCC-MRx 2010 Code. The RCC-MRx Code is the result of the merger of the RCC-MX 2008, developed in the context of the research reactor Jules Horowitz Reactor project, in the RCC-MR 2007, which set up rules applicable to the design of components operating at high temperature and to the Vacuum Vessel of ITER (a presentation of RCC-MRx 2010 Code is the subject of another paper proposed in this Congress; it explains in particular the status of this Code). This Material Report is part of a set of Criteria of RCC-MRx (this set of Criteria is under construction). The Criteria aim at explaining the design and construction rules of the Code. They cover analyses rules as well as part procurement, welding, methods of tests and examination and fabrication rules. The Material Report particularly provides justifications and explanations on requirements and features dealing with parts and products proposed in the Code. The Material Report contains the following information: Introduction of the grade(s): codes and standards and Reference Procurement Specifications covering parts and products, applications and experience gained, - Physical properties, - Mechanical properties used for design calculations (base metal and welds): basic mechanical properties, creep mechanical properties, irradiated mechanical properties, - Fabrication: experience gained, metallurgy, - Welding: weldability, experience gained during welding and repair procedure qualifications, - Non-destructive examination, - In-service behaviour. In the article, examples of data supplied in the Material Report dedicated to stainless steels will be exposed. (authors)

  14. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  15. RCC-E: Design and construction rules for electrical equipment of PWR nuclear islands

    International Nuclear Information System (INIS)

    2016-01-01

    RCC-E describes the rules for designing, building and installing electrical and I and C systems and equipment for pressurized water reactors. The code was drafted in partnership with industry, engineering firms, manufacturers, building control firms and operators, and represents a collection of best practices in accordance with IAEA requirements and IEC standards. The code's scope covers: architecture and the associated systems, materials engineering and the qualification procedure for normal and accidental environmental conditions, facility engineering and management of common cause failures (electrical and I and C) and electromagnetic interference, testing and inspecting electrical characteristics, quality assurance requirements supplementing ISO 9001 and activity monitoring. Use: RCC-E has been used to build the following power plants: France's last 12 nuclear units (1,300 MWe (8) and 1,450 MWe (4)), 2 M310 reactors in Korea (2), 44 M310 (4), CPR-1000 (28), CPR-600 (6), HPR-1000 (4) and EPR (2) reactors in service or undergoing construction in China, 1 EPR reactor in France. RCC-E is used for maintenance operations in French power plants (58 units) and Chinese M310 and CPR-1000 power plants. RCC-E has been chosen for the construction of the EPR plants in Hinkley Point, UK. Contents of the 2016 edition of the RCC-E code: Volume 1 - General requirements and quality assurance; Volume 2 - Specification of requirements; Volume 3 - I and C systems; Volume 4 - Electrical systems; Volume 5 - Materials engineering; Volume 6 - Installation of electrical and I and C systems; Volume 7 - Inspection and test methods

  16. Development of a compaction system for solid waste

    International Nuclear Information System (INIS)

    Nair, J.S.; Roy, P.R.

    1990-01-01

    The Bhabha Atomic Research Centre has set up a Beryllium Pilot Plant at Vashi, New Bombay, which is in operation for nearly a decade now. In view of the high toxicity of beryllium and its compounds, the plant has a specially designed ventilation system with a bank of pre and absolute HEPA filters to prevent the escape of any toxic material into the outside atmosphere. The filters are periodically replaced to maintain efficiency. The used filters are sealed in cardboard cartons and stored in RCC containers. In order to minimise the expenditure on waste disposal, a solid waste compaction system with suitable toolings has been designed and fabricated in the plant. The compaction trials carried out using this system on non-toxic HEPA filters have shown that a reduction by a factor of 3 could be achieved in the overall volume of the filter. It is interesting to note that the actual volume reduction is limited by spring-back effects of the filter media. The paper gives details of the compaction system and presents some of the important results obtained in the trials using non-toxic filters. Efforts are presently being made to incorporate pneumatically operated robot in the place of the existing electromechanical devices for compaction. (author). 2 refs., 6 tabs

  17. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadhassani, Mohammad, E-mail: mmh356@yahoo.com [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Jumaat, Mohd Zamin; Jameel, Mohammed [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Badiee, Hamid [Department of Civil Engineering, University of Kerman (Iran, Islamic Republic of); Arumugam, Arul M.S. [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ductility decreased with increase in tensile reinforcement ratio. Black-Right-Pointing-Pointer The width of the load point and the support point influences premature failure. Black-Right-Pointing-Pointer Load-deflection relationship is linear till 85% of the ultimate load. Black-Right-Pointing-Pointer The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load-deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  18. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  19. Creep-fatigue rules in the RCC-MR code

    International Nuclear Information System (INIS)

    Drubay, B.

    1988-01-01

    In 1978, CEA, Electricite de France (EDF) and NOVATOME decided to draw up a complete set of design and construction rules for LMFBR components. This RCC-MR code issued in June 1985 and completed in November 1987 was chosen as a sound basis for the next European Fast Reactor (EFR). The purpose of this paper is to describe the present RCC-MR creep-fatigue design rules to be applied with elastic analysis including the modifications adopted in the first addenda. This method is based on a separate evaluation of a fatigue usage fraction V and creep rupture usage fraction W with the common linear summation rule. The fatigue usage fraction is obtained from continuous fatigue curves (without hold times) and from total strain ranges (elastic + plastic + creep). The creep rupture usage fraction W is obtained from stress to rupture curves and a stress σk evaluating the stress generated during the cycle. (author)

  20. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    Science.gov (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  1. Consideration of creep in design rules of AFCEN RCC-MRx 2012 code

    International Nuclear Information System (INIS)

    Lebarbe, T.; Petesch, C.; Lejeail, Y.; Lamagnere, P.; Dubiez-Le Goff, S.

    2014-01-01

    The 2012 edition of the RCC-MRx Code has been issued in French and English versions by AFCEN (Association Francaise pour les regles de Conception et de Construction des Materiels des Chaudieres Electro-nucleaires). This Code is the result of the merger of the RCC-MX 2008 developed in the context of the research reactor Jules Horowitz Reactor project, in the RCC-MR 2007 which set up rules applicable to the design of components operating at high temperature and to the Vacuum Vessel of ITER. This new edition is the opportunity to publish also the background of the rules. This paper is one illustration of what may be such a document, on a dedicated example, the creep rules. It contains an overview of the design rules associated to the creep damage and explains the purpose and the origins of these rules. This type of exercise is going to be generalized to all the parts of the code in AFCEN technical publications, the criteria. (authors)

  2. Effect of Lime Powder and Metakaolin on Fresh and Hardened Properties of Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-12-01

    Full Text Available This study investigated the fresh and hardened properties of Self-Compacting Concrete (SCC with different types and amounts of admixtures. Six mixes were prepared by replacing 30% of cement with different percentages of fly ash (FA, lime powder (LP and metakaolin (MK. Water- Cement ratio was kept constant at 0.41 and superplasticizer dosage of 1% by weight of cement. The filling and passing ability were investigated through Slump Flow, J-Ring, V-funnel and L-box test before filling the moulds. The compressive strength of hardened SCC cubes was also measured after specified days of curing (7, 14, 28, 60 & 90 days. The workability test results showed that as FA was replaced by increasing percentages of LP and MK, the mixes became dense and hence less workable. It was observed that the compressive strength showed an increase with increasing percentage replacement of FA with LP and MK. This increase was higher for mixes with MK than that of mixes with LP.

  3. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    One of the main obstacles for further development of Self-Compacting Concrete (SCC)is to relate the fresh concrete properties, form geometry, reinforcement configuration, and casting technique to the form filling ability. Simulation of the filling ability might provide a tool in obtaining this goal...

  4. Use of SCC in Prefabricated Concrete Elements

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Lauritsen, Ib

    2004-01-01

    This paper presents observations made on the use of self-compacting concrete for pre-cast elements at Byggebjerg Beton A/S during the last 3 years. The elements include L- and sandwich elements and are mainly produced for agriculture purposes. In general, the flow properties and air content...... of the concrete to achieve a good surface quality with a limited number of blowholes. For horizontal castings it is important to keep the concrete flowing to avoid casting joints. Blocking is avoided by using the right type of spacers and a maximum size aggregate of 8mm. However, if the concrete has to flow over...

  5. Design and Construction Rules for Mechanical components of FBR nuclear islands: RCC-MR. Tome 1, Volume A: generalities

    International Nuclear Information System (INIS)

    1985-06-01

    The French Rules of Mechanical equipments of Fast Neutron nuclear Reactors (RCC-MR) aims at equipments included in a safety classification. The equipments concerned are those of the nuclear boiler and its auxiliaries: tanks, vessels, internal equipments of the reactor, exchangers, pumps, fittings, pipes, and supports. The present edition of the RCC-MR comprises 12 books presented in the present one in the volume A. The chapter RA 3000 defines the documents to be established in application of the RCC-MR rules. The chapter RA 5000 defines the requirements to take into account to establish and carry out quality Assurance programs according to the RCC-MR rules [fr

  6. The design, construction and Heavy Vehicle Simulator testing results on Roller Compacted Concrete test sections at the CSIR Innovation Site and on a full-scale test road at Rayton

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2016-09-01

    Full Text Available . AASHTO), which was above the specified South African limit of a minimum CBR of 25 at 95% Mod AASHTO. The density of the subbase was measured with a nuclear density gauge after compaction. The subbase was only compacted to 90.7% Mod AASHTO, 2.3% short... and was concentrated around the shrinkage crack. 6.1.1 Elastic deflection response Figure 1 shows both the surface deflections captured by the joint deflection measuring devices (JDMDs) and multi-depth deflectometers (MDD). MDD 12 and JDMD 1 and 2 were placed...

  7. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  8. ASME and RCC-MR comparison for the prevention of fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.

    1989-01-01

    The purpose of this survey is to compare the simplified methods, without reference to the safety factor allowed for the mechanical properties. An application of both codes, RCC-MR and ASME, on the design of the wall mock-up of the NET project is made and also an estimation with an elastoplastic analysis. In the case of fatigue analysis according to ASME in the plastic field, the elastic stress is magnified by a K e factor derived from stress variation, S n , disregarding geometrical discontinuities. According to RCC-MR, the elastic maximum strain will magnified by two coefficients accounting for plasticity and variation of Poisson ratio

  9. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms.

    Science.gov (United States)

    Lawrie, Charles H; Armesto, María; Fernandez-Mercado, Marta; Arestín, María; Manterola, Lorea; Goicoechea, Ibai; Larrea, Erika; Caffarel, María M; Araujo, Angela M; Sole, Carla; Sperga, Maris; Alvarado-Cabrero, Isabel; Michal, Michal; Hes, Ondrej; López, José I

    2018-01-01

    Tubulocystic renal cell carcinoma (TC-RCC) is a rare recently described renal neoplasm characterized by gross, microscopic, and immunohistochemical differences from other renal tumor types and was recently classified as a distinct entity. However, this distinction remains controversial particularly because some genetic studies suggest a close relationship with papillary RCC (PRCC). The molecular basis of this disease remains largely unexplored. We therefore performed noncoding (nc) RNA/miRNA expression analysis and targeted next-generation sequencing mutational profiling on 13 TC-RCC cases (11 pure, two mixed TC-RCC/PRCC) and compared with other renal neoplasms. The expression profile of miRNAs and other ncRNAs in TC-RCC was distinct and validated 10 differentially expressed miRNAs by quantitative RT-PCR, including miR-155 and miR-34a, that were significantly down-regulated compared with PRCC cases (n = 22). With the use of targeted next-generation sequencing we identified mutations in 14 different genes, most frequently (>60% of TC-RCC cases) in ABL1 and PDFGRA genes. These mutations were present in  600) of The Cancer Genome Atlas database. In summary, this study is by far the largest molecular study of TC-RCC cases and the first to investigate either ncRNA expression or their genomic profile. These results add molecular evidence that TC-RCC is indeed a distinct entity from PRCC and other renal neoplasms. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. On Working Capacity Criteria for Screw-Roller Mechanisms

    Directory of Open Access Journals (Sweden)

    D. S. Blinov

    2015-01-01

    Full Text Available Today roller-screw mechanisms (RSM are the most prospective motion converters from rotary to linear type. RSM manufacturers have suggested their design in the way, similar to the rolling bearings, in static and dynamic load ratings. The latter means that during long operations the main criterion of the RSM working capacity is fatigue spalling. However, this approach does not permit to consider temporal changes of the most critical performance parameters of the RSM (such as the axial play, the efficiency factor, the axial stiffness, the accuracy, the starting torque force for zero lash RSMs, etc. through calculations. The abovementioned method was not perfect, because the choice of the main criterion of RSM working capacity was wrong. The article proves that wear-resistance is the main criterion of RSM working capacity. The proof is the RSM efficiency factor equal to 80-88% on the average. The power loss occurs because of overcoming a sliding friction between multiple (from 300 to 1000 interfacing turns of thread on the screw and the rollers as well as on the rollers and the nut. That is why the RSMs are the screwtype rolling mechanisms with an essential portion of sliding friction. High-accuracy measurements taken using the device called a form-tracer for threaded pieces permitted to determine the essential changes on the profiles of turns of threads on the rollers (a straight-line portion appeared on the radial profile; these changes could emerge only from wear. Besides, the length of this portion increased with the increasing RSM operation time. The JSC “Moskvich” has examined the RSMs, which have been put out of operation after completing their service life as parts of robot welding machines. There were no traces of fatigue spalling found on the threaded surfaces of the RSM parts, while the sizes of the straight-line portions on the turns of the roller threads were much bigger than they were during the measurements after the initial

  11. The role of SiO{sub 2} nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Nanoparticles in concrete. {yields} Ground granulated blast furnace slag as concrete's binder. {yields} Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO{sub 2} nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO{sub 2} nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO{sub 2} nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH){sub 2} amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO{sub 2} nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH){sub 2} content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO{sub 2} nanoparticles could

  12. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements

    DEFF Research Database (Denmark)

    Svec, Oldrich; Zirgulis, Giedrius; Bolander, John E.

    2014-01-01

    The influences of formwork surface on the final orientation of steel fibres immersed in self-compacting concrete and on the resulting mechanical response of the cast structural elements are investigated. Experimental observations of fibre orientation within cast slabs, obtained via computed...... as input to the lattice model. Through comparisons with the experimental data, it is shown that these simulations correctly predict the phenomena of interest. We conclude the paper by highlighting a relationship between the number and orientation of the immersed steel fibres crossing the fracture plane...

  13. Fast EEMD Based AM-Correntropy Matrix and Its Application on Roller Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Yunxiao Fu

    2016-06-01

    Full Text Available Roller bearing plays a significant role in industrial sectors. To improve the ability of roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller bearing fault characteristic: the Amplitude Modulation (AM based correntropy extracted from the Intrinsic Mode Functions (IMFs, which are decomposed by Fast Ensemble Empirical mode decomposition (FEEMD and employ Least Square Support Vector Machine (LSSVM to implement intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM as the fault feature matrix is calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore, depending on LSSVM, the fault identification results of the roller bearing are obtained. Through the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM generates more stable and higher diagnosis accuracy than conventional fault features such as energy moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis robustness than conventional fault features under cross-mixed roller bearing operating conditions. The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating conditions, and as such, it possesses potential prospects for a broad application of uses.

  14. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice......This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively...

  15. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    International Nuclear Information System (INIS)

    Zhang, Z L; Nielsen, S R K

    2014-01-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades

  16. Influence of superplasticizer on microstructure of a 40 MPa strength concrete; Influencia do aditivo superplastificante na microestrutura de um concreto de resistencia mecanica de 40 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Sandra M.F.; Menezes, Raquel Maria R.O.; Figueiredo, Roberto B.; Aguilar, Maria Teresa P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil); Franca, Fabricio Carlos [LafargeHolcim, Rio de Janeiro, RJ (Brazil); Bezerra, Augusto Cesar da S. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), MG (Brazil)

    2016-07-01

    The self compacting concrete has high fluidity and deformability. Studies analyze its performance through compressive strength, mortar content and / or water cement factor, which does not allow the evaluation of superplasticante influence the microstructure of these concretes. In this work, we evaluated the influence of superplasticizer comparing the phases present in a self-compacting concrete 40 MPa and at a same conventional compressive strength, same water / cement and mortar content. Therefore, scanning techniques were employed by electron microscope low vacuum using backscattered electrons and thermal analysis. The observed results show no significant differences in the microstructure of the two composites, ie the superplasticizer does not alter the microstructure of the self-compacting concrete. However, thermal analysis indicates that the present self-compacting concrete greater calcium hydroxide content which may suggest a lower content of such dry cement concrete. (author)

  17. Effect of mixing methods and aggregate type on strength of hardened concrete

    International Nuclear Information System (INIS)

    Elhadi, S.

    2006-01-01

    The objective of the research contained in this paper is to study the effect on strength of concrete which can be caused by changing method of concrete mix with or without changing aggregate crushing value under hand or mechanical compaction, and to compare results obtained when nondestructive testing techniques are used. It has been found that all methods of mix design are nearly identical in predicting the strength under a known value of w/c ratio. Up to strength of about 30 N/mm 2 , hand and mechanical compaction seems to be identical in all methods of concrete mixing. Important results regarding destructive and non-destructive testing has been drawn from the study.(Author)

  18. Daylighting performance evaluation of a bottom-up motorized roller shade

    Energy Technology Data Exchange (ETDEWEB)

    Kapsis, K.; Athienitis, A.K.; Zmeureanu, R.G. [Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC (Canada); Tzempelikos, A. [School of Civil Engineering, Purdue University, West Lafayette, IN (United States)

    2010-12-15

    This paper presents an experimental and simulation study for quantifying the daylighting performance of bottom-up roller shades installed in office spaces. The bottom-up shade is a motorized roller shade that opens from top to bottom operating in the opposite direction of a conventional roller shade, so as to cover the bottom part of the window, while allowing daylight to enter from the top part of the window, reaching deeper into the room. A daylighting simulation model, validated with full-scale experiments, was developed in order to establish correlations between the shade position, outdoor illuminance and work plane illuminance for different outdoor conditions. Then, a shading control algorithm was developed for application in any location and orientation. The validated model was employed for a sensitivity analysis of the impact of shade optical properties and control on the potential energy savings due to the use of daylighting. The results showed that Daylight Autonomy for the bottom-up shade is 8-58% higher compared to a conventional roller shade, with a difference of 46% further away from the facade, where the use of electric lighting is needed most of the time. The potential reduction in energy consumption for lighting is 21-41%. (author)

  19. INFLUENCE CONSTRUCTION OF THE ROLLER ON THE POWER OF THE DRIVE SYSTEM OF THE BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Tadeusz OPASIAK

    2014-09-01

    Full Text Available The paper presents a study of new design of rollers. The study focused on the measurement of static and dynamic resistance of rotating rollers and the impact of new construction on the power consumption of the belt conveyor. Rollers have been modified through the use of class C4 bearing seals and labyrinth seal U4Exp 62/65 with a cover 2LU4 of runner construction. Measurements of static and dynamic resistance of rotating rollers were made on a universal rollers stand and power measurements were carried out on a belt conveyor power supply system Gwarek 1200 No. TW in mine KWK Mysłowice–Wesoła.

  20. Estudio de dosificaciones en laboratorio para pavimentos porosos de hormigón Laboratory study of mixture proportioning for pervious concrete pavement

    Directory of Open Access Journals (Sweden)

    Javier Castro

    2009-12-01

    Full Text Available El trabajo presentado en este estudio muestra la deducción de una ecuación que permite dosificar hormigones porosos en función de la razón agua-cemento y del porcentaje de vacíos interconectados que se requieren en el hormigón endurecido. Usando esta ecuación se analizó el comportamiento de 1 8 mezclas de hormigón poroso conteniendo razones agua-cemento entre 0,29 y 0,41. Las probetas fueron fabricadas en laboratorio y compactadas con rodillo pesado simulando el proceso constructivo en terreno. Los resultados permiten caracterizas de buena forma el comportamiento estructural e hidráulico de estas mezclas. Relaciones entre el porcentaje de vacíos en el hormigón endurecido y la tasa de infiltración, la resistencia a flexotracción y la densidad en estado fresco son presentadas.The present research shows the results of an equation that allows to dose pervious concrete in function of water to cement ratio and the required interconnected void content in hardened concrete. Eighteen different mixtures - with w/c ratio between 0.29 and 0.41- were analyzed using this equation. The samples were made in the laboratory and compacted with a heavy roller simulating site conditions. The results allow a good characterization of these mixtures both mechanical and hydraulic behavior. Reliationships between void contents, infiltration rate and flexural strength were found.

  1. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  2. The System of Simulation and Multi-objective Optimization for the Roller Kiln

    Science.gov (United States)

    Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu

    It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.

  3. Design, development and evaluation of a divergent roller sizer for almond kernels

    Directory of Open Access Journals (Sweden)

    D Ghanbarian

    2015-09-01

    Full Text Available Introduction: Iran is one of the major producers of almonds. According to the statistics released by FAO (2011, Iran with more than 110000 tons of almonds is the third in rank throughout the world. However, most Iranian almonds are presented as an unsorted and unpackaged product. Some producers sort their products by hand which is very time-consuming and labor-intensive. So, there is an essential need for suitable grading and packaging machines especially for the export of almond kernels.Grading, which is sometimes called sorting, is basically separating the material in different homogenous groups according to its specific characteristics like size, shape, color and on the basis of quality. Weighing is one of the best methods for grading agricultural products based on size, but due to its high cost and complexity of operations, usage of weigh size sorting machines is practically limited. So, sizing of most agricultural products is accomplished based on their dimensional attributes such as diameter, length, thickness or a combination of them. Field study shows that recently vibrating sizing machines are used for grading almond kernels. This type of sizing machine is huge, expensive, noisy and it consumes a lot of energy. Thus, the main objective of the present study was the design, development and evaluation of a new prototype of an almond kernel sizing machine. Materials and methods: It is important that the machine could resolve defects of existing vibrating machines. It should provide efficient and cost effective sizing for a wide range of kernel sizes and shapes. Furthermore, it should be of simple construction and be able to accept manual feeding. Previously conducted experiments showed that the thickness of the kernel is the most appropriate dimension for its sizing. Among the different types of dimensional sizing machines, the divergent roller grader which grades the products based on their thickness is considered to be one of the simplest

  4. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  5. Creep design rules in french ''RCC-MR'' code

    International Nuclear Information System (INIS)

    Roche, H.

    1986-04-01

    In this paper, four points enlightening the originality of the ''RCC-MR'' analysis rules in the creep range will be discussed. The three first points will concern elastic analysis, the fourth one materials data. The rules given in this paper are applicable for class 1 components and level A conditions. They are given by way of illustration in a simplified form

  6. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  7. An Investigation on Self-Compacting Concrete Using Ultrafine Natural Steatite Powder as Replacement to Cement

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2017-01-01

    Full Text Available An experimental investigation was made on flow properties and compressive strength of self-compacting concrete (SCC with ultrafine natural steatite powder (UFNSP as replacement to cement. The tests were conducted on specimens with 5%, 10%, 15%, 20%, and 25% of replacement of UFNSP to the weight of cement and compared to the control specimens. The flow properties of all specimens were tested and checked for their limit with the existing guidelines. The compressive strength test was done on all specimens for strength of 7 days, 14 days, 28 days, and 56 days. The hardened samples were tested for their microstructural behavior and the elements Mg, Ca, and Si were mapped. Through mapping, the formations of M-S-H along with C-S-H are observed. The results show that the addition of UFNSP influences the flow property, by reducing the flow, and increases the compressive strength till 20% replacement. Further the addition of UFNSP increases the denseness of microstructure of the specimens thus resulting in the strength increment.

  8. Roller Skating; Physical Education: 9.8414.

    Science.gov (United States)

    Amacker, Kathy; Mikell, Lenora

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Methods and procedures of roller skating. ORGANIZATION AND PHYSICAL APPEARANCE: The contents are divided into six areas, which are Course Guidelines, Course Description and Accreditation Standard Broad Goal, Course of Study Behavioral Objectives, Course Content, Learning Activities and Teaching…

  9. Chloride ingress in cracked concrete : A laser induced breakdown spectroscopy (LIBS) study

    NARCIS (Netherlands)

    Savija, B.; Schlangen, E.; Pacheco Farias, J.; Millar, S.; Eichler, T.; Wilsch, G.

    2014-01-01

    racks are always present in reinforced concrete structures. In the presented research, influence of mechanical cracks on chloride ingress is studied. A compact reinforced concrete specimen was designed, mimicking the cracking behaviour of beam elements. Cracks of different widths were induced by

  10. Knee joint position sense of roller hockey players: a comparative study.

    Science.gov (United States)

    Venâncio, João; Lopes, Diogo; Lourenço, Joaquim; Ribeiro, Fernando

    2016-06-01

    This study aimed to compare knee joint position sense of roller hockey players with an age-matched group of non-athletes. Forty-three male participants voluntarily participated in this cross-sectional study: 21 roller hockey players (mean age: 23.2 ± 4.2 years old, mean weight: 81.8 ± 9.8 kg, mean height: 180.5 ± 4.1 cm) and 22 age-matched non-athletes (mean age: 23.7 ± 3.9 years old, mean weight: 85.0 ± 6.2 kg, mean height: 181.5 ± 5.0 cm). Knee joint position sense of the dominant limb was evaluated using a technique of open-kinetic chain and active knee positioning. Joint position sense was reported using absolute, relative and variable angular errors. The main results indicated that the group of roller hockey players showed significantly lower absolute (2.4 ± 1.2º vs. 6.5 ± 3.2º, p ≤ 0.001) and relative (1.7 ± 2.1º vs. 5.8 ± 4.4º, p ≤ 0.001) angular errors in comparison with the non-athletes group. In conclusion, the results from this present study suggest that proprioceptive acuity, assessed by measuring joint position sense, is increased in roller hockey players. The enhanced proprioception of the roller hockey players could contribute to injury prevention and improved performance during sporting activities.

  11. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  12. Modelling of a mecanum wheel taking into account the geometry of road rollers

    Science.gov (United States)

    Hryniewicz, P.; Gwiazda, A.; Banaś, W.; Sękala, A.; Foit, K.

    2017-08-01

    During the process planning in a company one of the basic factors associated with the production costs is the operation time for particular technological jobs. The operation time consists of time units associated with the machining tasks of a workpiece as well as the time associated with loading and unloading and the transport operations of this workpiece between machining stands. Full automation of manufacturing in industry companies tends to a maximal reduction in machine downtimes, thereby the fixed costs simultaneously decreasing. The new construction of wheeled vehicles, using Mecanum wheels, reduces the transport time of materials and workpieces between machining stands. These vehicles have the ability to simultaneously move in two axes and thus more rapid positioning of the vehicle relative to the machining stand. The Mecanum wheel construction implies placing, around the wheel free rollers that are mounted at an angle 450, which allow the movement of the vehicle not only in its axis but also perpendicular thereto. The improper selection of the rollers can cause unwanted vertical movement of the vehicle, which may cause difficulty in positioning of the vehicle in relation to the machining stand and the need for stabilisation. Hence the proper design of the free rollers is essential in designing the whole Mecanum wheel construction. It allows avoiding the disadvantageous and unwanted vertical vibrations of a whole vehicle with these wheels. In the article the process of modelling the free rollers, in order to obtain the desired shape of unchanging, horizontal trajectory of the vehicle is presented. This shape depends on the desired diameter of the whole Mecanum wheel, together with the road rollers, and the width of the drive wheel. Another factor related with the curvature of the trajectory shape is the length of the road roller and its diameter decreases depending on the position with respect to its centre. The additional factor, limiting construction of

  13. The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad T.; Nikbin, Iman M.; Amiri, Javad. Vaseghi

    2013-01-01

    Highlights: ► Fracture properties of SCC were obtained using two different methods. ► Results showed with decrease of w/c ratio the fracture toughness increases. ► Size effect method can predict the peak load with a good precision for SCC beams. ► The size effect curve showed SCC ductility increases with increase of w/c ratio. - Abstract: The paper describes an experimental research on fracture characteristics of self-compacting concrete (SCC). Three point bending tests conducted on 154 notched beams with different water to cement (w/c) ratios. The specimens were made from mixes with various w/c ratios from 0.7 to 0.35. For all mixes, common fracture parameters were determined using two different methods, the work-of-fracture method (WFM) and the size effect method (SEM). Test results showed that with decrease of w/c ratio from 0.7 to 0.35 in SCC: (a) the fracture toughness increases linearly: (b) the brittleness number is approximately doubled: (c) the effective size of the process zone c f in SEM and the characteristic length (l ch ) in WFM decrease which may be explained by the change in structural porosity of the aggregate–paste transition zone; and (d) the fracture surface of concrete is roughly smoother, which can be attributed to the improved bond strength between the aggregates and the paste. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F ≅ 2.92G f )

  14. Case histories of roller cone core bit application in crystalline rock

    International Nuclear Information System (INIS)

    Dahlem, J.S.

    1988-01-01

    The increased interest in deep crystalline rock drilling projects has resulted in a requirement for premium coring bits which are effective in such a harsh and abrasive environment. Hard formation roller cone insert bits have traditionally and constantly performed well in crystalline rock. As a result, the application of state of the art roller cone rock bit technology to the design and development of core bits has made crystalline coring projects more viable than ever before. This paper follows the development of roller cone core bits by examining their use on project such as HDR (Hot Dry Rock, Los Alamos); NAGRA (Nuclear Waste Disposal Wells in Switzerland); Camborne School of Mines Geothermal Project in Cornwall, UK; Deep Gas Project in Sweden; and the KTB Deep Drilling Project in West Germany

  15. The use of a volcanic material as filler in self-compacting concrete production for lower strength applications

    Directory of Open Access Journals (Sweden)

    D. Burgos

    2017-01-01

    Full Text Available This study evaluates the use of large amounts of fine powders (fillers derived from a Colombian volcanic material into the production of self-compacting concrete (SCC for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.

  16. The use of a volcanic material as filler in self-compacting concrete production for lower strength applications

    International Nuclear Information System (INIS)

    Burgos, D.; Guzmán, A.; Hossain, K.M.A.; Delvasto, S.

    2017-01-01

    This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively. [es

  17. Dropping a particle out of a roller coaster

    International Nuclear Information System (INIS)

    Mungan, Carl E; Lipscombe, Trevor C

    2014-01-01

    A rider in a roller coaster lets go of a particle such as a small marble. How far does the marble travel horizontally from the point of release before hitting the ground, assuming the speed of the roller coaster is determined by conservation of mechanical energy starting from the highest hill up which it was pulled? Where should the marble be released along the track if one wishes to maximize the range of the marble? These questions constitute interesting variations on conventional problems in two-dimensional kinematics, appropriate for an undergraduate course in classical mechanics. Exploration of various shapes of tracks could form interesting student projects for numerical or experimental investigation. (paper)

  18. Case study of the gradient features of in situ concrete

    Directory of Open Access Journals (Sweden)

    Pengkun Hou

    2014-01-01

    Full Text Available The recognition of gradient features of the properties of in situ concrete is important for the interpretation/prediction of service life. In this work, the gradient features: water absorption, porosity, mineralogy, morphology and micromechanical properties were studied on two in situ road concretes (15 and 5 years old, respectively by weighing, MIP, XRD, IR, SEM/EDS and micro-indentation techniques. Results showed that a coarsening trend of the pores of the concrete leads to a gradual increase of liquid transport property from inside to outside. Although the carbonation of the exposed surface results in a compact microstructure of the paste, its combined action with calcium-leaching leads to a comparable porosity of different concrete layers. Moreover, the combining factors result in three morphological features, i.e. a porous and granular exposed-layer, a fibrous and porous subexposed-layer and a compact inner-layer. Micro-indentation test results showed that a hard layer that moves inward with aging exists due to the alterations of the mineralogy, the pore and the gel structure.

  19. Conditioning and storage of spent fuel cladding hulls by rolling and embedding in concrete

    International Nuclear Information System (INIS)

    Spenk, G.; Frotscher, H.; Graebner, H.; Kapulla, H.

    1981-01-01

    Under a contract with the European Atomic Energy Community the Kernforschungszentrum Karlsruhe, KfK, developed a conditioning process for LWR cladding waste. After compaction of the hulls by rolling they are embedded in a concrete matrix. In addition to basic data of the cladding waste, the compaction process, consisting of a dosage system and a rolling mill, is described. Several embedding techniques are possible, but a final selection has still to be made. Best results will probably be achieved by a vacuum technique. To characterize the waste product, leach tests have been started. The compression strength of compacted hulls embedded in concrete was determined to 2300 N.cm -2 . Hydrogen release due to radiolyses lies around 3 μl.g -1 sub(concrete).Mrad -1 which corresponds to the values expected on account of the water content of the samples. Less hydrogen was determined in samples with Zircaloy added. The tritium release of tritiated Zircaloy hulls embedded in concrete is greatly dependent on temperature and irradiation. At 100 0 C and with γ-irradiation the tritium release is about two orders of magnitude higher compared with experiments without irradiation. The thermal conductivity of samples of Zircaloy hulls embedded in concrete was determined to be 1.4W.m -1 .K -1 . (author)

  20. 3000-HP Roller Gear Transmission Development Program. Volume 3. Roller Gear Manufacture

    Science.gov (United States)

    1975-07-01

    power is fed through the ramp roller clutch type free- wheel units to spur gears which mesh with the combining spur gear whose centerline is common...when the engine tends to turn faster than the main rotor shaft. It is in the free- wheel mode when the main rotor shaft tends to turn faster than the...gears are cut progrind at this time. Check face runout on each end of largo gears. Not to exceed .002" TIR 30 EBW one end 40 EBW opposite end

  1. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  2. Modelling and simulation of dynamic wheel-rail interaction using a roller rig

    International Nuclear Information System (INIS)

    Anyakwo, A; Pislaru, C; Ball, A; Gu, F

    2012-01-01

    The interaction between the wheel and rail greatly influences the dynamic response of railway vehicles on the track. A roller rig facility can be used to study and monitor real time parameters that influence wheel-rail interaction such as wear, adhesion, friction and corrugation without actual field tests being carried out. This paper presents the development of the mathematical models for full scale roller rig and 1/5 scale roller rig and the wear prediction model based on KTH wear function. The simulated critical speed for the 1/5 scale roller rig is about one-fifth of the critical speed for the full scale model so the simulated results compare well with the theory related to wheel-rail contact and dynamics. Also the differences between the simulated rolling radii for the full scale model with and without wear function are analysed. This paper presents the initial stage of a large scale research project where the influence of wear on the wheel-rail performance will be studied in more depth.

  3. Separate effects testing to investigate liner tearing of the 1:6-scale reinforced concrete containment building

    International Nuclear Information System (INIS)

    Spletzer, B.L.; Lambert, L.D.

    1993-01-01

    The US Nuclear Regulatory Commission (NRC) is investigating the performance of containments subject to severe accidents. This work is being performed by Sandia National Laboratories (SNL). In 1987, a 1:6-scale Reinforced Concrete Containment (RCC) model was tested to failure. The failure mode was a liner tear. As a result, a separate effects test program has been conducted to investigate liner tearing. This paper discusses the design of test specimens and the results of the testing. The post-test examination of the 1:6-scale RCC model revealed that the large tear was not an isolated event. Other small tears in similar locations were also discovered. All tears occurred near the insert-to-liner transition which is also the region of closest stud spacing. Also, all tears propagated vertically, in response to the hoop strain. Finally, all tears were adjacent to a row of studs. The tears point to a mechanism which could involve the liner/insert transition, the liner anchorage, and the material properties. The separate effects tests investigated these effects. The program included the design of three types of specimens with each simulating some features of the 1:6-scale RCC model. The specimens were instrumented using strain gages and photoelastic materials

  4. ANALYSIS OF MOVEMENT RESISTANCE OF CONVEYOR BELT AND ROLLERS IN THE COAL MINE MYSŁOWICE-WESOŁA

    Directory of Open Access Journals (Sweden)

    Tadeusz OPASIAK

    2014-03-01

    Full Text Available The paper presents a study of new design of SAG rollers. The study focused on the measurement of static and dynamic resistance of rotating rollers and the impact of new construction on the power consumption of the conveyor. Rollers have been modified through the use of class C4 bearing seals and labyrinth seal U4Exp 62/65 with a cover 2LU4 of runner construction. Measurements of static and dynamic resistance of rotating rollers were made on a universal rollers test bench, and power measurements were carried out on a belt conveyor power supply system Gwarek 1200 No. TW in KWK Mysłowice-Wesoła

  5. Rock 'n roller coaster : an explorative study on the evolution of the European steel roller coaster industry

    NARCIS (Netherlands)

    Timmermans, B.; Bekkers, R.N.A.; Bordoli, L.

    2012-01-01

    This article investigates the 50 years evolution of the European steel roller coaster industry, which can be classified as a complex products systems (CoPS) industry. This industry is characterized as a non-shake out industry where entry can be divided in three waves, i.e. early diversifiers, new

  6. Cost of a roller skating rink to the local accident and emergency department.

    Science.gov (United States)

    Nayeem, N; Shires, S E; Porter, J E

    1990-01-01

    A 14 month retrospective study was undertaken to determine the cost implications of the opening of a roller skating rink to the local hospital accident and emergency department (A and E). A total of 398 patients attended following injury at the roller skating rink, of whom 384 were included in the study. The estimated cost of their injuries was determined by the hospital accounts department. The average cost per patient attending the A and E department following roller skating injury was about 100 pounds. The total cost to the A and E department of all injuries sustained at the rink over this period was 38,412 pounds. The cost implications of opening a roller skating rink for the A and E department are considerable. If proposals for self-budgeting are applied, A and E departments will have to seek additional funding if such leisure facilities are opened in their vicinity. PMID:2097020

  7. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1985-11-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-600 0 C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  8. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.

  9. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete; Influencia de la composición de la mezcla sobre la energía de fractura de hormigones autocompactantes de resistencias media y alta.

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-04-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [Spanish] Los hormigones autocompactantes tienen una microestructura interna inherente a su composición específica. Su mayor contenido de partículas finas, en comparación con hormigones vibrados equivalentes, provoca un comportamiento diferente en fractura que afecta a los principales parámetros de fractura. En este trabajo, se ha realizado una amplia investigación experimental del comportamiento en fractura de hormigones autocompactantes. Así, se han realizado ensayos de flexión en tres puntos para determinar sus propiedades de fractura sobre 12 hormigones autocompactantes de diferente composición, con resistencias a compresión que van desde 39 hasta 124 MPa (mayor que en otros estudios). De esta forma, se ha analizado la influencia de la dosificación del hormigón y su composición (contenido en árido grueso, relación agua-cemento y pasta-sólidos) sobre su comportamiento en fractura. Además, se ha validado, para hormigones autocompactantes, la objetividad de los

  10. Influence of Surface-profile and Movement-path of Roller on Thickness Thinning during Multi-pass Deep Drawing Spinning

    Directory of Open Access Journals (Sweden)

    Xia Qinxiang

    2016-01-01

    Full Text Available Over thinning is a serious defect influencing the forming quality of spun workpiece during multi-pass deep drawing spinning. Surface-profile and movement-path of roller are the key factors influencing the thinning ratio of wall thickness of spun workpiece. The influence of surface-profile and movement-path of roller on thickness thinning were studied based on numerical simulation and experimental research, four groups of forming experiments were carried out under the combination of the different surface-profile of roller (R12 and R25-12 and movement-path of roller (spinning from the bottom of the blank and spinning from the middle of the blank. The results show that both the surface-profile and movement-path of roller have great influence on wall thickness thinning during multi-pass deep drawing spinning; and compared with the movement-path of roller, the influence of surface-profile of roller is more significant. The experimental results conform well to the simulation ones. It indicates that the FEA model established is reasonable and reliable.

  11. Coronin-1C and RCC2 guide mesenchymal migration by trafficking Rac1 and controlling GEF exposure

    Science.gov (United States)

    Williamson, Rosalind C.; Cowell, Christopher A. M.; Hammond, Christina L.; Bergen, Dylan J. M.; Roper, James A.; Feng, Yi; Rendall, Thomas C. S.; Race, Paul R.; Bass, Mark D.

    2014-01-01

    ABSTRACT Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion. Coro1C mediates release of inactive Rac1 from non-protrusive membrane and is necessary for Rac1 redistribution to a protrusive tip and fibronectin-dependent Rac1 activation. The second component, RCC2, attenuates Rac1 activation outside the protrusive tip by binding to the Rac1 switch regions and competitively inhibiting GEF action, thus preventing off-axial protrusion. Depletion of Coro1C or RCC2 by RNA interference causes loss of cell polarity that results in shunting migration in 1D or 3D culture systems. Furthermore, morpholinos against Coro1C or RCC2, or mutation of any of the binding sites in the Rac1–RCC2–Coro1C complex delays the arrival of neural crest derivatives at the correct location in developing zebrafish, demonstrating the crucial role in migration guidance in vivo. PMID:25074804

  12. Oriented Onion Sowing by a Forked-Roller Sowing Unit

    Directory of Open Access Journals (Sweden)

    Aleksandr G.

    2018-03-01

    Full Text Available Introduction: The existing sowing machines do not provide a single feeding of the bulbs with a planting (sowing unit that leads to a violation of the agrotechnical requirements of planting bulbs. It is necessary to search new solutions to preserve the position of the bulbs in the furrow with the bottom down and their regularly spaced distribution. Materials and Methods: The article presents the design for a prototype for a planting machine equipped with a forked-roller sowing unit for orienting the onion-sowing into a furrow. Testing the forked-roller sowing unit were carried out on a flat area where the physical and mechanical properties of the soil were determined on the days of sowing, and the indices of the quality of the onion-sowing were determined. The study of the effect of the sowing machine speed on the quality of the onion-seed bulb landing was determined by the change in the translational speed of the sowing unit in the range of 0.8 m/s to 1.2 m/s with a variation interval of 0.1 m/s. The indicators of the quality of the planting of the bulbs were determined by the opening of the closed furrow. The results of laboratory-field studies of the planting machine prototype are presented. Results: The results of laboratory-field studies of a planting machine equipped with a forked-roller sowing unit for planting onion bulbs are presented. The optimal technological parameters are determined experimentally. It was determined the number of bulbs that are for up is 51 % and the regularity of planting by the forked-roller sowing unit – 79 %. These figures are provided at the forward speed of the planting machine VM = 0.9–1.0 m/s, the height of the fall of the bulb HA = 0.12 m, and the rotation frequency of the landing drum nБ = 0.47 c-1. Discussion and Conclusions: The use of a forked-roller sowing unit makes it possible to increase the proportion of onions planted by bottom down by 200 %, and the uniformity of planting bulbs by 19 %, in

  13. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  14. Improvement of Roller Bearing Diagnosis with Unlabeled Data Using Cut Edge Weight Confidence Based Tritraining

    Directory of Open Access Journals (Sweden)

    Wei-Li Qin

    2016-01-01

    Full Text Available Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.

  15. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  16. Verkkokaupan kansainvälistäminen Facebook-mainonnalla : Case HighRoller

    OpenAIRE

    Heikkinen, Tiia

    2016-01-01

    Verkkokauppa toimii HighRoller Suomi Oy:n HighRoller-lihashuoltolaiteen pääasiallisena myyntikanavana ja Facebook-markkinointikanavana. Tähän mennessä tuotetta on markkinoitu Facebookissa ilman varsinaista strategiaa. Nyt tuotetta viedään Ruotsiin ja uusia markkinoita varten suunniteltiin ja toteutettiin Facebook-mainoskampanja. Teoreettisessä viitekehyksessä käydään läpi aluksi digimarkkinointia, minkä jälkeen pohditaan sosiaalisen median merkitystä verkkokaupalle. Seuraavaksi keskitytää...

  17. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  18. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  19. Cleveland Dam East Abutment : seepage control project

    Energy Technology Data Exchange (ETDEWEB)

    Huber, F.; Siu, D. [Greater Vancouver Regional District, Burnaby, BC (Canada); Ahlfield, S.; Singh, N. [Klohn Crippen Consultants Ltd., Vancouver, BC (Canada)

    2004-09-01

    North Vancouver's 91 meter high Cleveland Dam was built in the 1950s in a deep bedrock canyon to provide a reservoir for potable water to 18 municipalities. Flow in the concrete gravity dam is controlled by a gated spillway, 2 mid-level outlets and intakes and 2 low-level outlets. This paper describes the seepage control measures that were taken at the time of construction as well as the additional measures that were taken post construction to control piezometric levels, seepage and piping and slope instability in the East Abutment. At the time of construction, a till blanket was used to cover the upstream reservoir slope for 200 meters upstream of the dam. A single line grout curtain was used through the overburden from ground surface to bedrock for a distance of 166 meters from the dam to the East Abutment. Since construction, the safety of the dam has been compromised through changes in piezometric pressure, seepage and soil loss. Klohn Crippen Consultants designed a unique seepage control measure to address the instability risk. The project involved excavating 300,000 cubic meters of soil to form a stable slope and construction bench. A vertical wall was constructed to block seepage. The existing seepage control blanket was also extended by 260 meters. The social, environmental and technical issues that were encountered during the rehabilitation project are also discussed. The blanket extension construction has met design requirements and the abutment materials that are most susceptible to internal erosion have been covered by non-erodible blanket materials such as plastic and roller-compacted concrete (RCC). The project was completed on schedule and within budget and has greatly improved the long-term stability of the dam and public safety. 2 refs., 8 figs.

  20. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  1. The Effect of Adding PET (Polyethylen Terephthalate) Plastic Waste on SCC (Self-Compacting Concrete) to Fresh Concrete Behavior and Mechanical Characteristics

    Science.gov (United States)

    Aswatama W, K.; Suyoso, H.; Meyfa U, N.; Tedy, P.

    2018-01-01

    To study the effect PET waste plastics on SCC then PET plastic waste content for SCC is made into 2.5%; 5%; 7.5%; and 10%. As reference concrete is made SCC with 0% PET level. The results on all fresh concrete test items indicate that for all PET waste levels made are meeting the criteria as SCC. The effect of adding PET to fresh concrete behavior on all test items shows that the filling ability and passing ability of concrete work increases with increasing of PET. However, the increase in PET will decrease its mechanical properties. The result of heat test shows that the mechanical properties of concrete (compressive strength, splitting, and elastic modulus) after heating at 250°C temperature has not changed, while at 600°C has significant capacity decline. To clarify the differences between SCC before and after heating, microstructure analysis was done in the form of photo magnification of specimen using SEM (Scanning Electron Microscope).

  2. Design rules for out-of-plane stability of roller bent steel arches with FEM

    NARCIS (Netherlands)

    Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.; Beg, D.

    2012-01-01

    This paper describes a numerical investigation into the out-of-plane buckling behavior of freestanding roller bent steel arches. As roller bent arches have structural imperfections which differ considerably from those of hot-rolled or welded sections, specific attention is paid to their inclusion in

  3. Tumor mutational load and immune parameters across metastatic Renal Cell Carcinoma (mRCC) risk groups

    Science.gov (United States)

    de Velasco, Guillermo; Miao, Diana; Voss, Martin H.; Hakimi, A. Ari; Hsieh, James J.; Tannir, Nizar M.; Tamboli, Pheroze; Appleman, Leonard J.; Rathmell, W. Kimryn; Van Allen, Eliezer M.; Choueiri, Toni K.

    2016-01-01

    Patients with metastatic renal cell carcinoma (mRCC) have better overall survival when treated with nivolumab, a cancer immunotherapy that targets the immune checkpoint inhibitor programmed cell death 1 (PD-1), rather than everolimus (a chemical inhibitor of mTOR and immunosuppressant). Poor-risk mRCC patients treated with nivolumab seemed to experience the greatest overall survival benefit, compared to patients with favorable or intermediate-risk, in an analysis of the CheckMate-025 trial subgroup of the Memorial Sloan Kettering Cancer Center (MSKCC) prognostic risk groups. Here we explore whether tumor mutational load and RNA expression of specific immune parameters could be segregated by prognostic MSKCC risk strata and explain the survival seen in the poor-risk group. We queried whole exome transcriptome data in RCC patients (n = 54) included in The Cancer Genome Atlas that ultimately developed metastatic disease or were diagnosed with metastatic disease at presentation and did not receive immune checkpoint inhibitors. Nonsynonymous mutational load did not differ significantly by MSKCC risk group, nor was the expression of cytolytic genes –granzyme A and perforin – or selected immune checkpoint molecules different across MSKCC risk groups. In conclusion, this analysis found that mutational load and expression of markers of an active tumor microenvironment did not correlate with MSKCC risk prognostic classification in mRCC. PMID:27538576

  4. Self-healing of polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Abd_Elmoaty M. Abd_Elmoaty

    2011-06-01

    Full Text Available Self healing phenomenon of concrete has been observed in traditional, fibrous, self compacting concrete. This phenomenon occurred mainly due to the presence of unhydrated cement particles in the presence of water. Mechanism of polymer in concrete depends on creating a layer and net of polymer around cement particles which enhances the properties of polymer modified concrete. This mechanism may affect the self healing of this type of concrete. This work aims to study the presence of the self healing phenomenon in polymer modified concrete and the related parameters. An experimental investigation on self healing of polymer modified concrete was undertaken. In this research work, effect of polymer type, polymer dose, cement content, cement type, w/cm ratio and age of damage were studied. The healing process extended up to 60 days. Ultrasonic pulse velocity measurements were used to evaluate the healing process. Results indicated that, the self healing phenomenon existed in polymer modified concrete as in traditional concrete. The increase of polymer dose increases the healing degree at the same healing time. This increase depends on polymer type. Also, the decrease of w/cm ratio reduces the self healing degree while the use of Type V Portland cement improves the self healing process compared with Type I Portland cement. Cement content has an insignificant effect on healing process for both concrete with and without polymer. In addition, the increase of damage age decreases the efficiency of self healing process.

  5. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  6. Experimental study of properties of heavy concrete with bottom ash from power stations

    Directory of Open Access Journals (Sweden)

    Bondar Victor

    2017-01-01

    Full Text Available This article deals with the influence of cement quantity, plasticizing additives and compaction time on the strength and water consumption of concrete during its manufacturing using bottom ash from a thermal power station. The study was carried out using three factorial experiments. Variables varied on three levels. The obtained pattern functions characterize a relationship between strength, water consumption and variable factors. These factors include cement quantity, plasticize additives and compaction time. Compilation of Pareto effect charts allowed estimation of the significance of function indexes. Analysis of surface pattern function has revealed the optimal correlation between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time. Compression strength of concrete was taken as the pattern in the pattern function. When analyzing the pattern function with water consumption as a pattern, optimal correlations between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time were revealed. Application of STATISTICA 12 software has specified values of factors when the maximum strength is achieved. Correlations of components which have an impact on water consumption have been determined. The conclusions contain the quantitative findings of the study.

  7. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  8. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  9. Application research of ferrous matrix composites in roller ring used in high-speed wire/bar rolling mill

    International Nuclear Information System (INIS)

    Song Yanpei; Li Xiuqing; Bi Shuangxu

    2010-01-01

    Research highlights: → A composite structure roller rings was fabricated by centrifugal casting. → The roller rings consisted of outer WCP/Fe-C composites layer and inner Fe-C alloy matrix. → Hardness attained to HRA80-85 in the composites layer, and HRA73-76 in inner Fe-C alloy matrix where the toughness was over 8 J/cm 2 . → The wear resistance of the roller rings excelled that of high-speed steel, and approached to that of the WC hard alloy roll. → The production cost of the WCP/Fe-C composites roller ring decreased by 50%. - Abstract: Tungsten carbide particle (WC P ) reinforced ferrous matrix composites roller rings were fabricated by centrifugal casting. The microstructures, properties and application effect of the composites roller rings were investigated by SEM, TEM and various property testers. The experimental results show that the WC P were uniformly distributed in outer reinforced-layer (working-layer) of 20-50 mm in thickness and their volume fraction reached 60-80 vol.%; there was a good interface bonding between WC P and Fe-C alloy without any reaction products; hardness attained to HRA80-85 in working-layer, and HRA73-76 in inner ferrous matrix where the toughness was over 8 J/cm 2 ; the wear resistance of the composites roller rings excels that of high-speed steel; service life of the composites parts approached to that of the WC hard alloy roll when the same WC P -volume-fraction in working-layer were obtained for both of them, but the production cost of the WC P /Fe-C composites roller ring decreased by 50%.

  10. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    Science.gov (United States)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  11. Simple and Versatile Dynamic Model of Spherical Roller Bearing

    Directory of Open Access Journals (Sweden)

    Behnam Ghalamchi

    2013-01-01

    Full Text Available Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB is one variant witnessing increasing use because it is self-aligning and can support high loads. It is becoming increasingly important to understand how the SRB responds dynamically under a variety of conditions. This study introduces a computationally efficient, three-degree-of-freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to the nonlinear Hertzian contact theory. The results reveal how some of the more important parameters, such as diametral clearance, the number of rollers, and osculation number, influence ultimate bearing performance. One pair of calculations looked at bearing displacement with respect to time for two separate arrangements of the caged side-by-side roller arrays, when they are aligned and when they are staggered. As theory suggests, significantly lower displacement variations were predicted for the staggered arrangement. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system to demonstrate the application of this newly developed SRB model in a typical real world analysis.

  12. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  13. Roller pressure algometry as a new tool for assessing dynamic pressure sensitivity in migraine

    DEFF Research Database (Denmark)

    Guerrero-Peral, Ángel L.; Ruíz, Marina; Barón, Johanna

    2018-01-01

    from 500 to 5300 g. Each roller was moved at a speed of 0.5 cm/sec over a 60 mm horizontal line covering the temporalis muscle. The dynamic pain threshold (the pressure level of the first painful roller) and pain elicited during the pain threshold (roller evoked pain) were determined. Static pressure...... pain thresholds were assessed over the temporalis muscle, C5/C6 joint, second metacarpal, and tibialis anterior. Results Side-to-side consistency between dynamic pain threshold (rs = 0.769, p ... was slightly stronger in chronic migraine. Pain during dynamic pain threshold was negatively associated with widespread pressure pain thresholds (-0.336 

  14. General Case in Determining Center-To-Center Spacing Between the Screw and the Roller in a Roller Drive, and Initial Contact Point of Their Mating Thread Turns. Development of Calculation Method and Software

    Directory of Open Access Journals (Sweden)

    D. S. Blinov

    2017-01-01

    Full Text Available One of the most important trends in development of machine engineering is to improve load capacity of mechanisms, assemblies and parts without increasing their overall dimensions and weight. This is also relevant to the most promising items so far, i.e. orbital roller drives (ORD, which are the rotational-to-progressive motion converters widely used in vehicles. The previously published article suggested increasing a load capacity (by about 15% through reducing a thread turn section angle of the threaded ORD components and change of the radius of roller thread turn section outline. Due to such ORD modification, a number of the most critical ORD parameters are to be changed thereby demanding further research. Further, the article published suggests a method considering the abovementioned changes to calculate the dimensions of ORD main components and their tolerance ranges.Though this method being not complete as the increment of ORD center-to-center spacing in relation to its rated value, required for assembly, is unknown; and to determine the ORD center-to-center spacing increment, outer diameters of the roller and screw threads are to be known. Hence, these two methods are interconnected.This article presents the numerical calculation method, mathematical support and method to determine the increment of ORD center-to-center spacing and initial contact point of the mating roller and screw thread turns. Due to considerable scope of calculations, the method was turned into the software.Similar calculation methods and techniques were developed to a particular case, where the thread turn section angle of the threaded components was of 90°, and the roller thread turn section outline was a circular arc centered to the roller axis. Hence the developed numerical calculation method, mathematical support and technique refer to the general case which is to determine the ORD center-to-center spacing increment and initial contact point of the mating roller

  15. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-01-01

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F = 3.11G f )

  16. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu [Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313 (Iran, Islamic Republic of); Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir [Faculty of Civil Engineering, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Vaseghi Amiri, Javad, E-mail: Vaseghi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rabbanifar, Saeed, E-mail: Saeed.rabbanifar@yahoo.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rahmani, Ebrahim, E-mail: Ebrahim.rahmani84@gmail.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of)

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  17. High temperature behaviour of self-consolidating concrete

    International Nuclear Information System (INIS)

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-01-01

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  18. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.

    Science.gov (United States)

    Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-11-01

    Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.

  19. Kinematics and Path Following Control of an Articulated Drum Roller

    Science.gov (United States)

    BIAN, Yongming; YANG, Meng; FANG, Xiaojun; WANG, Xiahui

    2017-07-01

    Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work efficiency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state-feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simulation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial displacement error (-1.5 m), heading error (-0.11 rad) and steering angle (-0.19 rad). Finally, simulation and experimental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articulated drum roller can lock into a desired path with the proposed method in uneven fields.

  20. 77 FR 50716 - Tapered Roller Bearings From China

    Science.gov (United States)

    2012-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-344 (Third Review)] Tapered Roller..., the United States International Trade Commission (Commission) determines, pursuant to section 751(c... notice in the Office of the Secretary, U.S. International Trade Commission, Washington, DC, and by...

  1. A Roller Bearing Fault Diagnosis Method Based on LCD Energy Entropy and ACROA-SVM

    Directory of Open Access Journals (Sweden)

    HungLinh Ao

    2014-01-01

    Full Text Available This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs. Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.

  2. Risk assessment of soil compaction in Europe – Rubber tracks or wheels on machinery

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Greve, Mogens Humlekrog; Schjønning, Per

    2018-01-01

    Subsoil compaction is persistent and affects the wide diversity of ecological services provided by agricultural soils. Efficient risk assessment tools are required to identify sustainable agricultural practices. Vehicles should not transmit stresses that exceed soil strength. Wheel load is the pr......Subsoil compaction is persistent and affects the wide diversity of ecological services provided by agricultural soils. Efficient risk assessment tools are required to identify sustainable agricultural practices. Vehicles should not transmit stresses that exceed soil strength. Wheel load...... the magnitude of contact stresses, (ii) compare effects of traffic on soil physical properties using tires or tracks, and (iii) evaluate a state-of-the-art method for risk assessment of soil compaction beneath tracks or tires at the European level. We measured contact stress below a fully-loaded sugar beet....... The contact area was larger and the maximum and vertical stress smaller beneath the rubber track than beneath the tire. Nevertheless, stress distribution beneath the rubber track was far from uniform, presenting high peak stresses beneath the wheels and rollers. Dry bulk density was similar after traffic...

  3. Modification of cement concrete by multilayer carbon nano-tubes

    International Nuclear Information System (INIS)

    Yakovlev, G.I.; Pervushin, G.N.; Pudov, I.A.; Korzhenko, A.

    2012-01-01

    The compact structure of protective concrete-conservative on the basis of Portland cement modified by carbon nano-dispersed systems has been studied. Multilayer carbon nano-tubes Graphistrength TM by 'Arkema' dispersed in hydrodynamic plant in the solution of surfactant Polyplast SP-1 have been used as modifying additives. The bending strength of fine grain concrete has been observed to increase by 45.1% and compression strength - by 96.8%. The concrete strength increase is related to morphological changes of crystalline hydrate new formations providing the formation of less defective structure of cement matrix of high density, preventing the migration of radionuclides into the environment in the process of radioactive waste conservation

  4. Simulation and Analysis of Roller Chain Drive Systems

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard

    The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes to the syst......The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes...... mathematical models, and compare to the prior done research. Even though the model is developed at first for the use of analysing chain drive systems in marine engines, the methods can with small changes be used in general, as for e.g. chain drives in industrial machines, car engines and motorbikes. A novel...

  5. A method of increasing the depth of the plastically deformed layer in the roller burnishing process

    Science.gov (United States)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    The subject of this paper is an analysis of the determination of the depth of the plastically deformed layer in the process of roller burnishing a shaft using a newly developed method in which a braking moment is applied to the roller. It is possible to increase the depth of the plastically deformed layer by applying the braking moment to the roller during the burnishing process. The theoretical considerations presented are based on the Hertz-Bielayev and Huber-Mises theories and permit the calculation of the depth of plastic deformation of the top layer of the burnished shaft. The theoretical analysis has been verified experimentally and using numerical calculations based on the finite element method using the Msc.MARC program. Experimental tests were carried out on ring-shaped samples made of C45 carbon steel. The samples were burnished at different values of roller force and different values of braking moment. A significant increase was found in the depth of the plastically deformed surface layer of roller burnished shafts. Usage of the phenomenon of strain hardening of steel allows the technology presented here to increase the fatigue life of the shafts.

  6. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity.

    Science.gov (United States)

    Omolu, Abbie; Bailly, Maryse; Day, Richard M

    2017-11-01

    Many chronic wounds exhibit high matrix metalloproteinase (MMP) activity that impedes the normal wound healing process. Intradermal delivery (IDD) of sub-antimicrobial concentrations of doxycycline, as an MMP inhibitor, could target early stages of chronic wound development and inhibit further wound progression. To deliver doxycycline intradermally, the skin barrier must be disrupted. Microneedle rollers offer a minimally invasive technique to penetrate the skin by creating multiple microchannels that act as temporary conduits for drugs to diffuse through. In this study, an innovative and facile approach for delivery of doxycycline across Strat-M TM membrane was investigated using microneedle rollers. The quantity and rate of doxycycline diffusing through the micropores directly correlated with increasing microneedle lengths (250, 500 and 750 μm). Treatment of Strat-M TM with microneedle rollers resulted in a reduction in fibroblast-mediated collagen gel contraction and MMP activity compared with untreated Strat-M TM . Our results show that treatment of an epidermal mimetic with microneedle rollers provides sufficient permeabilization for doxycycline diffusion and inhibition of MMP activity. We conclude that microneedle rollers are a promising, clinically ready tool suitable for delivery of doxycycline intradermally to treat chronic wounds.

  7. Development of hull compaction system for nuclear recycle facility

    International Nuclear Information System (INIS)

    Manole, A.A.; Karkhanis, P.P.; Agarwal, Kailash; Basu, Sekhar

    2013-01-01

    India has adopted closed fuel cycle strategy for efficient management of available resources to meet long term energy requirements. Nuclear Recycle Facility (NRF) provides a vital link in three-stage Indian nuclear power programme. In a NRF for PHWR fuel cycle, reprocessing of spent fuel bundles from PHWRs is carried out using a chop-leach process where the spent fuel bundles are chopped into small pieces using a spent fuel chopper and the contents inside the zircaloy clad are dissolved using concentric nitric acid. This process generates empty zircaloy shells called 'hulls'. The present practice followed for management of hulls is to transfer them into SS drums and store these drums in underground RCC tile holes at a Waste Management Facility (WMF). This waste needs to be stored in an engineered WMF for at least 30-60 years before transferred to a final repository. The storage volumes required for this hull waste will keep increasing as the reprocessing capacity is being enhanced multi-folds. Compaction of hull waste has been employed internationally to reduce the volume required for storage. Hence indigenous development of hull compaction system was initiated by NRB to meet the future requirements. This is being achieved through a set of experiments and analysis with the available resources within the country. This paper describes the process of compaction, conceptualization of the system and benefits accrued from it. (author)

  8. Influence Of The Gripping Fixture On The Modified Compact Tension Test Results: Evaluation Of The Experiments On Cylindrical Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Holušová Táňa

    2015-12-01

    Full Text Available The modified compact tension test (MCT might become in the future a stable test configuration for the evaluation of fracture-mechanics parameters or also for description of fatigue behavior of composites materials such as concrete. Core drilling is used for sampling of existing structures. These samples have cylindrical shape with the selected thickness to avoid the stress concentration. This contribution focuses on the evaluation of the fracture behavior during static and quasi static tests. Static tests are performed on standard specimen with diameter 150 mm and length 300 mm. The quasi-static tests are performed using two different gripping fixtures. The results for quasi-static tests are represented as L-COD diagrams (i.e. load vs. crack opening displacement measured on the loading axis. The comparison of results and discussion of advantages and disadvantages are introduced.

  9. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge.

    Science.gov (United States)

    Bradbury-Squires, David J; Noftall, Jennifer C; Sullivan, Kathleen M; Behm, David G; Power, Kevin E; Button, Duane C

    2015-02-01

    Roller massagers are used as a recovery and rehabilitative tool to initiate muscle relaxation and improve range of motion (ROM) and muscular performance. However, research demonstrating such effects is lacking. To determine the effects of applying a roller massager for 20 and 60 seconds on knee-joint ROM and dynamic muscular performance. Randomized controlled clinical trial. University laboratory. Ten recreationally active men (age = 26.6 ± 5.2 years, height = 175.3 ± 4.3 cm, mass = 84.4 ± 8.8 kg). Participants performed 3 randomized experimental conditions separated by 24 to 48 hours. In condition 1 (5 repetitions of 20 seconds) and condition 2 (5 repetitions of 60 seconds), they applied a roller massager to the quadriceps muscles. Condition 3 served as a control condition in which participants sat quietly. Visual analog pain scale, electromyography (EMG) of the vastus lateralis (VL) and biceps femoris during roller massage and lunge, and knee-joint ROM. We found no differences in pain between the 20-second and 60-second roller-massager conditions. During 60 seconds of roller massage, pain was 13.5% (5.7 ± 0.70) and 20.6% (6.2 ± 0.70) greater at 40 seconds and 60 seconds, respectively, than at 20 seconds (P joint ROM was 10% and 16% greater in the 20-second and 60-second roller-massager conditions, respectively, than the control condition (P joint ROM and neuromuscular efficiency during a lunge.

  10. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  11. Dynamic contrast-enhanced CT (DCE-CT) as a potential biomarker in patients with metastatic renal cell carcinoma (mRCC)

    DEFF Research Database (Denmark)

    Mains, Jill Rachel; Donskov, Frede; Pedersen, Erik Morre

    Purpose To explore the impact of DCE-CT as a biomarker in mRCC.  Methods and Materials 12 patients with mRCC participating in a phase II trial with immunotherapy and bevacizumab and with a follow-up time of at least 2 years were included in this preliminary analysis. DCE-CT interpretation (max s...

  12. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    International Nuclear Information System (INIS)

    Muhin, U.; Belskij, S.; Makarov, E.; Koinov, T.

    2013-01-01

    Full text: A mathematical model of the thermal state of the metal on the run-out roller table of a continuous wide hot-strip mill is presented. The mathematical model takes into account the heat generation during the polymorphic γ → α transformation of super cooled austenite phase and the influence of chemical composition on the physical properties of the steel. The model allows the calculation of modes of accelerated cooling of strips on the run-out roller table of a continuous wide hot strip mill. Winding temperature calculation error does not exceed 20 °C for 98.5 % of the strips from low-carbon and low-alloyed steels. key words: hot rolled, wide-strip, accelerated cooling, run-out roller table, polymorphic transformation, mathematical modeling

  13. Increasing the Energy Efficiency of the Cyclic Action Mechanisms in Rolling for a Roller Bed Used as an Example

    Science.gov (United States)

    andreev, A. N.; Kolesnichenko, D. A.

    2017-12-01

    The possibility of increasing the energy efficiency of the production cycle in a roller bed is briefly reviewed and justified. The sequence diagram of operation of the electrical drive in a roller bed is analyzed, and the possible increase in the energy efficiency is calculated. A method for energy saving is described for the application of a frequency-controlled asynchronous electrical drive of drive rollers in a roller bed with an increased capacitor capacity in a dc link. A fine mathematical model is developed to describe the behavior of the electrical drive during the deceleration of a roller bed. An experimental setup is created and computer simulation and physical modeling are performed. The basic information flows of the general hierarchical automatic control system of an enterprise are described and determined with allowance for the proposed method of increasing the energy efficiency.

  14. Do Maximal Roller Skiing Speed and Double Poling Performance Predict Youth Cross-Country Skiing Performance?

    Directory of Open Access Journals (Sweden)

    Roland Stöggl, Erich Müller, Thomas Stöggl

    2017-09-01

    Full Text Available The aims of the current study were to analyze whether specific roller skiing tests and cycle length are determinants of youth cross-country (XC skiing performance, and to evaluate sex specific differences by applying non-invasive diagnostics. Forty-nine young XC skiers (33 boys; 13.8 ± 0.6 yrs and 16 girls; 13.4 ± 0.9 yrs performed roller skiing tests consisting of both shorter (50 m and longer durations (575 m. Test results were correlated with on snow XC skiing performance (PXC based on 3 skating and 3 classical distance competitions (3 to 6 km. The main findings of the current study were: 1 Anthropometrics and maturity status were related to boys’, but not to girls’ PXC; 2 Significant moderate to acceptable correlations between girls’ and boys’ short duration maximal roller skiing speed (double poling, V2 skating, leg skating and PXC were found; 3 Boys’ PXC was best predicted by double poling test performance on flat and uphill, while girls’ performance was mainly predicted by uphill double poling test performance; 4 When controlling for maturity offset, boys’ PXC was still highly associated with the roller skiing tests. The use of simple non-invasive roller skiing tests for determination of PXC represents practicable support for ski clubs, schools or skiing federations in the guidance and evaluation of young talent.

  15. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  16. Mechanical analysis and optimisation of large and highly-loaded bearing rollers For the "Riesenrad" Ion Gantry

    CERN Document Server

    Reimoser, S A

    2000-01-01

    A carbon ion gantry would allow the irradiation of cancer patients with carbon ions from any direction in space best suited for therapy. Till today, such a machine has not been built due to the expected size, mass and cost. A novel design, called "Riesenrad" ion gantry, promises to provide a competitive solution. The central part of the Riesenrad, which can rotate ± 90°, is supported (statically determinate) on pendular bearing units with two rollers each. High precision requirements for the structure rule out any plastic deformations in the area of contact. The present report describes the design of the highly-loaded rollers. In order to achieve a large contact area and a uniform distribution of contact stresses, a "barrel shape" for the rollers is proposed. An analysis using the finite element method (FEM) was performed to optimise the roller design, namely to establish the required crown roll (camber radius).

  17. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MRi is proposing, with its partner, Exotherm Corp (Camden, NJ) to demonstrate the feasibility of using exothermic brazing to join RCC (or C:SiC) composites to itself...

  18. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  19. Analytical evaluation of the roller bearing service life

    Directory of Open Access Journals (Sweden)

    Antsupov Aleksey

    2017-01-01

    Full Text Available An analytical method has been developed for the design evaluation of the service life of roller bearings by the criterion of contact endurance of elements that does not require carrying out the experimental studies. It is based on the kinetic approach to the description of the solids destruction process and the theory of parametric reliability of machine parts. In contradistinction to the standard empirical dependence, which is currently used, the method allows one to take into account the effect of the material properties, and basic design and operational parameters on the service life. The results of the theoretical studies of the service life of roller bearing No. 212 (DIN 5412 T1 are presented for the quantitative assessment of this effect. They showed that the temperature-force loading conditions or material properties that were not taken into account might result in the prediction error of 1.5 or more times.

  20. Application of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Lieshout, van B.; Spiesz, P.R.; Brouwers, H.J.H.

    2012-01-01

    Container glass aggregates and glass powder are waste products of the glass recycling industry. In this research, these products are incorporated in self-compacting concrete (SCC) mixtures, replacing conventional aggregates and fine powders. The SCC mixtures were designed using a particle packing

  1. Effect of Post-Fire Curing on the Residual Mechanical Properties of Fire-Damaged Self-Compacting Concrete

    NARCIS (Netherlands)

    Mirmomeni, M.; Heidarpour, A.; Schlangen, H.E.J.G.; Smith, S; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Concrete is recognized for being a fire-resistant construction material. At elevated temperatures concrete can, however, undergo considerable damage such as strength degradation, cracking, and explosive spalling. In recent decades, reuse of fire-damaged concrete structures by means of developing

  2. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Directory of Open Access Journals (Sweden)

    Pantoja Patrícia Dias

    2014-07-01

    Full Text Available This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions.

  3. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Science.gov (United States)

    Pantoja, Patrícia Dias; Mello, André; Liedtke, Giane Veiga; Kanitz, Ana Carolina; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2014-01-01

    This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions. PMID:25114728

  4. Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Vlcek, Brian L.; Hendricks, Robert C.

    2005-01-01

    Three decades have passed since the introduction of silicon nitride rollers and balls into conventional rolling-element bearings. For a given applied load, the contact (Hertz) stress in a hybrid bearing will be higher than an all-steel rolling-element bearing. The silicon nitride rolling-element life as well as the lives of the steel races were used to determine the resultant bearing life of both hybrid and all-steel bearings. Life factors were determined and reported for hybrid bearings. Under nominal operating speeds, the resultant calculated lives of the deep-groove, angular-contact, and cylindrical roller hybrid bearings with races made of post-1960 bearing steel increased by factors of 3.7, 3.2, and 5.5, respectively, from those calculated using the Lundberg-Palmgren equations. An all-steel bearing under the same load will have a longer life than the equivalent hybrid bearing under the same conditions. Under these conditions, hybrid bearings are predicted to have a lower fatigue life than all-steel bearings by 58 percent for deep-groove bearings, 41 percent for angular-contact bearings, and 28 percent for cylindrical roller bearings.

  5. To Enhance the Fire Resistance Performance of High-Speed Steel Roller Door with Water Film System

    Directory of Open Access Journals (Sweden)

    De-Hua Chung

    2015-01-01

    Full Text Available The structure of high-speed roller door with water film has improved in this study. The flameproof water film system is equipped with a water circulating device to reduce the water consumption of water film system. The water film is generated at the roller box of the high-speed roller door in this study. The heating test is done with the full-scale heating furnace. Both cases of the water film on unexposed surface and water film on exposed surface passed the fire resistance test based on ISO 834, proving that the high-speed roller door with water film system has 120A fire resistance period. The main findings indicate that the water film on exposed surface shows that as the amount of water film evaporated by high temperature inside the furnace must be greater than the evaporation capacity of water film on unexposed surface, the required water supply is 660 L more than the water film on unexposed surface.

  6. RCC-F: Design and construction rules for PWR fire protection systems

    International Nuclear Information System (INIS)

    2013-01-01

    The RCC-F code defines the rules for designing, building and installing the fire protection systems used to manage the nuclear hazards inherent in the outbreak of a fire inside the facility and thereby control the fundamental nuclear functions. The code provides fire protection recommendations in terms of: the industrial risk (loss of assets and/or operation), personnel safety, the environment. The code is divided into five main sections: generalities, design safety principles, fire protection design bases, construction provisions, rules for installing the fire protection components and equipment. The RCC-F code is available as an ETC-F version specifically for EPR projects (European pressurized reactor). Contents of the 2013 edition of the ETC-F code: Volume A - Generalities: Structure of ETC-F general points, documentation (in progress), chapter (provision) quality assurance; Volume B - Design safety principles: design nuclear safety principles; Volume C - Fire protection design bases: fire protection design bases; Volume D - Construction provisions: construction provisions; Volume E - Installation rules for fire protection: rules for installing the fire protection, components and equipment

  7. Assesment on Reproductive Performance and Hormonal Studies in Rural Women Beedi Rollers in Jagitial District of Telangana State

    Directory of Open Access Journals (Sweden)

    Vanitha Baluka

    2017-10-01

    Full Text Available Beedi manufacturing is the second largest industry in India. It provides employment to millions of women mostly from the poor socioeconomic class. In North region of Telangana, beedi rolling is a major occupation for illiterate women in many villages. It may affect due to the inhalation of unfiltered tobacco dust and volatile and toxic components of tobacco. Biomonitoring of women beedi rollers and their reproductive performance assessment is necessary to take prevention/control the reproduction failure and carcinogen effect on cervical system. Continuous exposed to unfiltered tobacco dust may have systemic effect and lead to many disorders including hormone defects and reproductive health problems. Although studies have been carried out on beedi industry workers and tobacco smoke exposed people at national and international level, no such studies were carried out on women beedi rollers living in rural areas in Telangana State. Hence, this investigation is attempted to understand the study is find to association with hormonal levels and reproductive outcome in rural women beedi rollers of reproductive age in North Telangana. Statistical analysis was done for the obtained results to find the significance between the two groups for the reproductive outcome and Hormonal Studies. Total 50 women (married who are exposed minimum 6-10 years to the unfiltered tobacco dust beedi rollers in the age group of 25 to 45 years from villages of Jagitial district were enrolled for this study. 50 equal numbers of women in the same age group belonging to the same socio economic status and not exposed occupationally to chemical and physical agents was selected for comparison (control group. Estroidal, Progesterone the T3, T4 and TSH levels were measured found significantly T3, T4 levels were low in the beedi rollers, compared the controls. TSH levels were found to be higher in the beedi rollers. Estroidal and progesterone levels were obtained non

  8. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  9. Application of "The Water Layer Model" to self-compacting mortar with different size distributions of fine aggregate

    NARCIS (Netherlands)

    Midorikawa, T.; Pelova, G.I.; Walraven, J.C.

    2009-01-01

    Self-Compacting Concrete is a relatively new type of concrete. Up to now only a few models have been developed to explain its physical behaviour, like the Water Layer Model and the Excess Paste Model. In this paper, the difference between the Water Layer Model and the Excess Paste Model is

  10. Compressed sensing of roller bearing fault based on multiple down-sampling strategy

    Science.gov (United States)

    Wang, Huaqing; Ke, Yanliang; Luo, Ganggang; Tang, Gang

    2016-02-01

    Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing’s vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults.

  11. Compressed sensing of roller bearing fault based on multiple down-sampling strategy

    International Nuclear Information System (INIS)

    Wang, Huaqing; Ke, Yanliang; Luo, Ganggang; Tang, Gang

    2016-01-01

    Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing’s vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults. (paper)

  12. Eco-friendly GGBS Concrete: A State-of-The-Art Review

    Science.gov (United States)

    Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.

  13. The effect of fly ash to self-compactability of pumice aggregate ...

    Indian Academy of Sciences (India)

    This paper presents the results of an experimental study on the effects .... There has been an increase in using self-compacting concrete (SCC) in recent years and a .... of SCLC and the ability for SCLC to change its path and to pass through.

  14. Validation of a Functional Pyelocalyceal Renal Model for the Evaluation of Renal Calculi Passage While Riding a Roller Coaster.

    Science.gov (United States)

    Mitchell, Marc A; Wartinger, David D

    2016-10-01

    The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.

  15. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  16. Rotating shield ceiling for the compact ignition tokamak test cell

    International Nuclear Information System (INIS)

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  17. Pervasive liquid metal based direct writing electronics with roller-ball pen

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2013-11-01

    Full Text Available A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to disclose several unique inner properties of the obtained electronics. An ever high writing resolution with line width and thickness as 200 μm and 80 μm, respectively was realized. Further, with the administration of external writing pressure, GaIn24.5 droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of the roller-ball pen electronics.

  18. Application of the active flexible fixture with passive RCC function to peg-in-hole task

    International Nuclear Information System (INIS)

    Yamaguchi, Tomomi; Higuchi, Masahiro

    2005-01-01

    This paper describes the application of the active flexible fixture (AFLEF) with passive RCC to the peg-in-hole task on the disk in the X-band accelerator. The AFLEF can fix any work and position the fixed work at short range. In this paper, the 2-dimensional AFLEF is proposed as the simplified type and is provided with passive RCC function to be equipped with dexterity for a peg-in-hole task. As results of the experiment on the peg-in-hole task on the X-band accelerator disks with the AFLEF, we make the ability of the AFLEF for the task clear and also the boundary conditions to the complete task clear. (author)

  19. Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC) : experiments and modeling

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2014-01-01

    This paper addresses the static properties and impact resistance of a "green" Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC). The design of concrete mixtures aims to achieve a densely compacted cementitious matrix, employing the modified Andreasen & Andersen particle packing

  20. High-energy roller injuries to the upper extremity.

    Science.gov (United States)

    Askins, G; Finley, R; Parenti, J; Bush, D; Brotman, S

    1986-12-01

    Eleven cases of high-energy industrial roller injuries treated between 1980 and 1984 were retrospectively reviewed. The dominant extremity was affected in nine. Six patients sustained fractures and/or dislocations, and three of these patients required fasciotomies for clinical signs of impending compartment syndromes. All fracture/dislocations, with the exception of a scapula fracture, anterior dislocation of a thumb interphalangeal joint, and a fractured coronoid process of the ulna, required open reduction with internal fixation. Three patients required split-thickness skin grafting for extensive skin degloving. Two patients required immediate amputation. Late sequelae included prolonged edema, nutritional depletion, neuroma formation of the superficial branch of the radial nerve, late carpal tunnel syndrome, and partial brachial plexus palsy. Industrial roller injuries continue to be an occupational hazard associated with more severe crushing trauma than the low-energy wringer washer injuries first described by MacCollum (11). Attention must be paid to the treatment of crushed skin, muscle, and nerves, fracture stabilization, nutritional support, and occupational therapy. Concurrent monitoring for signs of a developing compartment syndrome and complications of rhabdomyolysis is essential.