WorldWideScience

Sample records for roll-isolated inertial measurement

  1. Lightweight, Miniature Inertial Measurement System

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  2. Physical measurements of inertial-fusion targets

    Weinstein, B.W.

    1981-01-01

    Measurement of inertial-fusion targets has stimulated the development of many new techniques and instruments. This paper reviews the basis for selected target measurement requirements and the development of optical interferometry, optical scattering, microradiography and scanning electron microscopy as applied to target measurement. We summarize the resolution and speed which have been achieved to date, and describe several systems in which these are traded off to fill specific measurement applications. We point out the extent to which present capabilities meet the requirements for target measurement and the key problems which remain to be solved

  3. Measurement of inertial confinement fusion reaction rate

    Peng Xiaoshi; Wang Feng; Tang Daorun; Liu Shenye; Huang Tianxuan; Liu Yonggang; Xu Tao; Chen Ming; Mei Yu

    2011-01-01

    Fusion reaction rate is an important parameter for measuring compression during the implosion in inertial confinement fusion experiment. We have developed a system for fusion reaction history measurement with high temporal resolution. The system is composed of plastic scintillator and nose cone, optical system and streak camera. We have applied this system on the SG-III prototype for fusion reaction rate measuring. For the first time, fusion reaction rate history have been measured for deuterium-tritium filled targets with neutrons yields about 10 10 . We have analyzed possible influence factor during fusion reaction rate measuring. It indicates that the instrument measures fusion reaction bang time at temporal resolutions as low as 30 ps.(authors)

  4. Measurements of Inertial Torques on Sedimenting Fibers

    Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg

    2017-11-01

    Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.

  5. Low-cost inertial measurement unit.

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  6. Sampling and Control Circuit Board for an Inertial Measurement Unit

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  7. IceBridge IMU L0 Raw Inertial Measurement Unit Data

    National Aeronautics and Space Administration — The NASA IceBridge IMU L0 Raw Inertial Measurement Unit Data (IPUTI0) data set contains Inertial Measurement Unit (IMU) readings, including latitude, longitude,...

  8. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  9. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian

    2016-01-01

    to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle

  10. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the

  11. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    Karina Lebel

    2016-07-01

    Full Text Available Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning performed under varying conditions (speed, environment. An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility.

  12. An Optimal Calibration Method for a MEMS Inertial Measurement Unit

    Bin Fang

    2014-02-01

    Full Text Available An optimal calibration method for a micro-electro-mechanical inertial measurement unit (MIMU is presented in this paper. The accuracy of the MIMU is highly dependent on calibration to remove the deterministic errors of systematic errors, which also contain random errors. The overlapping Allan variance is applied to characterize the types of random error terms in the measurements. The calibration model includes package misalignment error, sensor-to-sensor misalignment error and bias, and a scale factor is built. The new concept of a calibration method, which includes a calibration scheme and a calibration algorithm, is proposed. The calibration scheme is designed by D-optimal and the calibration algorithm is deduced by a Kalman filter. In addition, the thermal calibration is investigated, as the bias and scale factor varied with temperature. The simulations and real tests verify the effectiveness of the proposed calibration method and show that it is better than the traditional method.

  13. Tremor analysis by decomposition of acceleration into gravity and inertial acceleration using inertial measurement unit

    Šprdlík, Otakar; Hurák, Z.; Hoskovcová, M.; Ulmanová, O.; Růžička, E.

    2011-01-01

    Roč. 6, č. 3 (2011), s. 269-289 ISSN 1746-8094 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Tremor * Accelerometer * Inertial measurementunit * Gravitational artifact * Regression * Tremor ratingscale Subject RIV: BC - Control Systems Theory Impact factor: 1.000, year: 2011 http://library.utia.cas.cz/separaty/2011/TR/sprdlik-0350248.pdf

  14. Generation and measurement of multi megagauss fields in inertial ...

    We present here the development of a facility to generate high (multi megagauss) magnetic field of 4 to 5 s rise time, using inertial magnets. The facility includes a low inductance, high current capacitor bank (280 kJ/40 kV) and an inertial magnet, which is a copper disk machined to have a keyhole in it. As the high current ...

  15. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-06-13

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  16. Postural Stability Analysis with Inertial Measurement Units in Alzheimer's Disease

    Miguel F. Gago

    2014-01-01

    Full Text Available Background: The cause of frequent falls in patients with Alzheimer's disease (AD is still not well understood. Nevertheless, balance control and sensory organization are known to be critical for moving safely and adapting to the environment. Methods: We evaluated postural stability in 20 AD patients (11 fallers and 9 nonfallers and 16 healthy controls with an inertial measurement unit (triaxial accelerometers and gyroscopes attached to the center of mass (COM in different balance conditions (Romberg on flat surface and frontward/backward-inclined surface, with or without visual suppression in a motor lab. Results: In AD patients, the group of fallers showed a different kinetic pattern of postural stability characterized by higher vulnerability to visual suppression, higher total/maximal displacement and a mediolateral/anteroposterior range of sway, and a consequent need for more corrections of COM pitch and roll angles. Conclusion: Further studies are needed to consolidate the normative values of the discriminatory kinetic variables with the potential of inclusion in a multifactorial analysis of the risk of falls. Nevertheless, these results highlight signs of impairment of central postural control in AD, which may require early therapeutic intervention.

  17. Painting recognition with smartphones equipped with inertial measurement unit

    Masiero, Andrea; Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2015-06-01

    Recently, several works have been proposed in the literature to take advantage of the diffusion of smartphones to improve people experience during museum visits. The rationale is that of substituting traditional written/audio guides with interactive electronic guides usable on a mobile phone. Augmented reality systems are usually considered to make the use of such electronic guides more effective for the user. The main goal of such augmented reality system (i.e. providing the user with the information of his/her interest) is usually achieved by properly executing the following three tasks: recognizing the object of interest to the user, retrieving the most relevant information about it, properly presenting the retrieved information. This paper focuses on the first task: we consider the problem of painting recognition by means of measure- ments provided by a smartphone. We assume that the user acquires one image of the painting of interest with the standard camera of the device. This image is compared with a set of reference images of the museum objects in order to recognize the object of interest to the user. Since comparing images taken in different conditions can lead to unsatisfactory recognition results, the acquired image is typically properly transformed in order to improve the results of the recognition system: first, the system estimates the homography between properly matched features in the two images. Then, the user image is transformed accordingly to the estimated homography. Finally, it is compared with the reference one. This work proposes a novel method to exploit inertial measurement unit (IMU) measurements to improve the system performance, in particular in terms of computational load reduction: IMU measurements are exploited to reduce both the computational burden required to estimate the transformation to be applied to the user image, and the number of reference images to be compared with it.

  18. INCLINATION AND VIBRATION MEASUREMENT BY INERTIAL SENSING FOR STRUCTURAL HEALTH MONITORING

    Sugisaki, Koichi; Abe, Masato; Koshimizu, Satoru

    To develop a practical health monitoring system, inertial sensing which can readily be done for wide variety of situations is useful. However inertial sensors are measuring inclination and acceleration in reference to gravity. Therefore inclination are influence by acceleration and vice versa caused measuring errors. Especially, errors are more affected at low-frequency band which is important to estimate displacement. In this study, to establish correcting theory for inertial sensing and to develop method to estimate parameters for some structural system. And conducted a field test targeted at the real railway bridge to verify the effectiveness of the proposed method using response records of the pier under passing train load.

  19. Classification of deadlift biomechanics with wearable inertial measurement units.

    O'Reilly, Martin A; Whelan, Darragh F; Ward, Tomas E; Delahunt, Eamonn; Caulfield, Brian M

    2017-06-14

    The deadlift is a compound full-body exercise that is fundamental in resistance training, rehabilitation programs and powerlifting competitions. Accurate quantification of deadlift biomechanics is important to reduce the risk of injury and ensure training and rehabilitation goals are achieved. This study sought to develop and evaluate deadlift exercise technique classification systems utilising Inertial Measurement Units (IMUs), recording at 51.2Hz, worn on the lumbar spine, both thighs and both shanks. It also sought to compare classification quality when these IMUs are worn in combination and in isolation. Two datasets of IMU deadlift data were collected. Eighty participants first completed deadlifts with acceptable technique and 5 distinct, deliberately induced deviations from acceptable form. Fifty-five members of this group also completed a fatiguing protocol (3-Repition Maximum test) to enable the collection of natural deadlift deviations. For both datasets, universal and personalised random-forests classifiers were developed and evaluated. Personalised classifiers outperformed universal classifiers in accuracy, sensitivity and specificity in the binary classification of acceptable or aberrant technique and in the multi-label classification of specific deadlift deviations. Whilst recent research has favoured universal classifiers due to the reduced overhead in setting them up for new system users, this work demonstrates that such techniques may not be appropriate for classifying deadlift technique due to the poor accuracy achieved. However, personalised classifiers perform very well in assessing deadlift technique, even when using data derived from a single lumbar-worn IMU to detect specific naturally occurring technique mistakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Diagnostic measurements related to laser driven inertial confinement fusion

    Campbell, D.E.

    1979-01-01

    Scientists at the Lawrence Livermore Laboratory have been conducting laser driven inertial confinement fusion experiments for over five years. The first proof of the thermonuclear burn came at the Janus target irradiation facility in the spring of 1975. Since that time three succeedingly higher energy facilities have been constructed at Livermore, Cyclops, Argus and Shiva, where increased fusion efficiency has been demonstrated. A new facility, called Nova, is now in the construction phase and we are hopeful that scientific break even (energy released compared to incident laser energy on target) will be demonstrated here in early 1980's. Projected progress of the Livermore program is shown

  1. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.

    Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar

    2017-12-01

    Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.

  2. Postural Stability Evaluation of Patients Undergoing Vestibular Schwannoma Microsurgery Employing the Inertial Measurement Unit

    Patrik Kutilek

    2018-01-01

    Full Text Available The article focuses on a noninvasive method and system of quantifying postural stability of patients undergoing vestibular schwannoma microsurgery. Recent alternatives quantifying human postural stability are rather limited. The major drawback is that the posturography system can evaluate only two physical quantities of body movement and can be measured only on a transverse plane. A complex movement pattern can be, however, described more precisely while using three physical quantities of 3-D movement. This is the reason why an inertial measurement unit (Xsens MTx unit, through which we obtained 3-D data (three Euler angles or three orthogonal accelerations, was placed on the patient’s trunk. Having employed this novel method based on the volume of irregular polyhedron of 3-D body movement during quiet standing, it was possible to evaluate postural stability. To identify and evaluate pathological balance control of patients undergoing vestibular schwannoma microsurgery, it was necessary to calculate the volume polyhedron using the 3-D Leibniz method and to plot three variables against each other. For the needs of this study, measurements and statistical analysis were made on nine patients. The results obtained by the inertial measurement unit showed no evidence of improvement in postural stability shortly after surgery (4 days. The results were consistent with the results obtained by the posturography system. The evaluated translation variables (acceleration and rotary variables (angles measured by the inertial measurement unit correlate strongly with the results of the posturography system. The proposed method and application of the inertial measurement unit for the purpose of measuring patients with vestibular schwannoma appear to be suitable for medical practice. Moreover, the inertial measurement unit is portable and, when compared to other traditional posturography systems, economically affordable. Inertial measurement units can

  3. Reliability of Wearable Inertial Measurement Units to Measure Physical Activity in Team Handball.

    Luteberget, Live S; Holme, Benjamin R; Spencer, Matt

    2018-04-01

    To assess the reliability and sensitivity of commercially available inertial measurement units to measure physical activity in team handball. Twenty-two handball players were instrumented with 2 inertial measurement units (OptimEye S5; Catapult Sports, Melbourne, Australia) taped together. They participated in either a laboratory assessment (n = 10) consisting of 7 team handball-specific tasks or field assessment (n = 12) conducted in 12 training sessions. Variables, including PlayerLoad™ and inertial movement analysis (IMA) magnitude and counts, were extracted from the manufacturers' software. IMA counts were divided into intensity bands of low (1.5-2.5 m·s -1 ), medium (2.5-3.5 m·s -1 ), high (>3.5 m·s -1 ), medium/high (>2.5 m·s -1 ), and total (>1.5 m·s -1 ). Reliability between devices and sensitivity was established using coefficient of variation (CV) and smallest worthwhile difference (SWD). Laboratory assessment: IMA magnitude showed a good reliability (CV = 3.1%) in well-controlled tasks. CV increased (4.4-6.7%) in more-complex tasks. Field assessment: Total IMA counts (CV = 1.8% and SWD = 2.5%), PlayerLoad (CV = 0.9% and SWD = 2.1%), and their associated variables (CV = 0.4-1.7%) showed a good reliability, well below the SWD. However, the CV of IMA increased when categorized into intensity bands (2.9-5.6%). The reliability of IMA counts was good when data were displayed as total, high, or medium/high counts. A good reliability for PlayerLoad and associated variables was evident. The CV of the previously mentioned variables was well below the SWD, suggesting that OptimEye's inertial measurement unit and its software are sensitive for use in team handball.

  4. Inertial measurement unit–based iterative pose compensation algorithm for low-cost modular manipulator

    Yunhan Lin

    2016-01-01

    Full Text Available It is a necessary mean to realize the accurate motion control of the manipulator which uses end-effector pose correction method and compensation method. In this article, first, we established the kinematic model and error model of the modular manipulator (WUST-ARM, and then we discussed the measurement methods and precision of the inertial measurement unit sensor. The inertial measurement unit sensor is mounted on the end-effector of modular manipulator, to get the real-time pose of the end-effector. At last, a new inertial measurement unit–based iterative pose compensation algorithm is proposed. By applying this algorithm in the pose compensation experiment of modular manipulator which is composed of low-cost rotation joints, the results show that the inertial measurement unit can obtain a higher precision when in static state; it will accurately feedback to the control system with an accurate error compensation angle after a brief delay when the end-effector moves to the target point, and after compensation, the precision errors of roll angle, pitch angle, and yaw angle are reached at 0.05°, 0.01°, and 0.27° respectively. It proves that this low-cost method provides a new solution to improve the end-effector pose of low-cost modular manipulator.

  5. Equimoves: A wireless networked inertial measurement system for objective examination of horse gait

    Bosch, Stephan; Serra Bragança, Filipe; Marin-Perianu, Mihai; Marin-Perianu, Raluca; van der Zwaag, Berend Jan; Voskamp, John; Back, Willem; Van Weeren, René; Havinga, Paul

    2018-01-01

    In this paper, we describe and validate the EquiMoves system, which aims to support equine veterinarians in assessing lameness and gait performance in horses. The system works by capturing horse motion from up to eight synchronized wireless inertial measurement units. It can be used in various

  6. Pattern recognition in cyclic and discrete skills performance from inertial measurement units

    Seifert, Ludovic; L'Hermette, Maxime; Komar, John; Orth, Dominic; Mell, Florian; Merriaux, Pierre; Grenet, Pierre; Caritu, Yanis; Hérault, Romain; Dovgalecs, Vladislavs; Davids, Keith

    2014-01-01

    The aim of this study is to compare and validate an Inertial Measurement Unit (IMU) relative to an optic system, and to propose methods for pattern recognition to capture behavioural dynamics during sport performance. IMU validation was conducted by comparing the motions of the two arms of a

  7. Application of inertial measuring unit in air navigation for ALS and DAP

    This article describes the inertial measuring device IMU, as well as its use in airborne laser scanning and digital aerial photography. This device is used during the operation of a scanning unit and an aerial photo camera. The structure of an additional connection for a digital video camera is proposed, which will record video ...

  8. Validity and repeatability of inertial measurement units for measuring gait parameters.

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Attitude and gyro bias estimation by the rotation of an inertial measurement unit

    Wu, Zheming; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2015-01-01

    In navigation applications, the presence of an unknown bias in the measurement of rate gyros is a key performance-limiting factor. In order to estimate the gyro bias and improve the accuracy of attitude measurement, we proposed a new method which uses the rotation of an inertial measurement unit, which is independent from rigid body motion. By actively changing the orientation of the inertial measurement unit (IMU), the proposed method generates sufficient relations between the gyro bias and tilt angle (roll and pitch) error via ridge body dynamics, and the gyro bias, including the bias that causes the heading error, can be estimated and compensated. The rotation inertial measurement unit method makes the gravity vector measured from the IMU continuously change in a body-fixed frame. By theoretically analyzing the mathematic model, the convergence of the attitude and gyro bias to the true values is proven. The proposed method provides a good attitude estimation using only measurements from an IMU, when other sensors such as magnetometers and GPS are unreliable. The performance of the proposed method is illustrated under realistic robotic motions and the results demonstrate an improvement in the accuracy of the attitude estimation. (paper)

  10. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  11. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data

    Wenting Luo

    2016-04-01

    Full Text Available Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU. The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with kinematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.

  12. Validation of an inertial measurement unit for the measurement of jump count and height.

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  14. Human Body Parts Tracking and Kinematic Features Assessment Based on RSSI and Inertial Sensor Measurements

    Gaddi Blumrosen

    2013-08-01

    Full Text Available Acquisition of patient kinematics in different environments plays an important role in the detection of risk situations such as fall detection in elderly patients, in rehabilitation of patients with injuries, and in the design of treatment plans for patients with neurological diseases. Received Signal Strength Indicator (RSSI measurements in a Body Area Network (BAN, capture the signal power on a radio link. The main aim of this paper is to demonstrate the potential of utilizing RSSI measurements in assessment of human kinematic features, and to give methods to determine these features. RSSI measurements can be used for tracking different body parts’ displacements on scales of a few centimeters, for classifying motion and gait patterns instead of inertial sensors, and to serve as an additional reference to other sensors, in particular inertial sensors. Criteria and analytical methods for body part tracking, kinematic motion feature extraction, and a Kalman filter model for aggregation of RSSI and inertial sensor were derived. The methods were verified by a set of experiments performed in an indoor environment. In the future, the use of RSSI measurements can help in continuous assessment of various kinematic features of patients during their daily life activities and enhance medical diagnosis accuracy with lower costs.

  15. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    Mousa, Mustafa

    2016-04-28

    Probe vehicles consist in mobile traffic sensor networks that evolve with the flow of vehicles, transmitting velocity and position measurements along their path, generated using GPSs. To address the urban positioning issues of GPSs, we propose to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle to be able to process the acceleration and rate gyro data. In this article, we propose a scheme that can perform this calibration automatically by leveraging the kinematic constraints of ground vehicles, and that can be implemented on low-end computational platforms. Preliminary testing shows that the proposed scheme enables one to accurately estimate the actual accelerations and rotation rates in the vehicle coordinates. © 2016 IEEE.

  16. Human pose recovery using wireless inertial measurement units

    Lin, Jonathan F S; Kulić, Dana

    2012-01-01

    Many applications in rehabilitation and sports training require the assessment of the patient’s status based on observation of their movement. Small wireless sensors, such as accelerometers and gyroscopes, can be utilized to provide a quantitative measure of the human movement for assessment. In this paper, a kinematics-based approach is developed to estimate human leg posture and velocity from wearable sensors during the performance of typical physiotherapy and training exercises. The proposed approach uses an extended Kalman filter to estimate joint angles from accelerometer and gyroscopic data and is capable of recovering joint angles from arbitrary 3D motion. Additional joint limit constraints are implemented to reduce drift, and an automated approach is developed for estimating and adapting the process noise during online estimation. The approach is validated through a user study consisting of 20 subjects performing knee and hip rehabilitation exercises. When compared to motion capture, the approach achieves an average root-mean-square error of 4.27 cm for unconstrained motion, with an average joint error of 6.5°. The average root-mean-square error is 3.31 cm for sagittal planar motion, with an average joint error of 4.3°. (paper)

  17. A novel redundant INS based on triple rotary inertial measurement units

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-10-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h-1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h-1, which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required.

  18. A novel redundant INS based on triple rotary inertial measurement units

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-01-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h −1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h −1 , which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required. (paper)

  19. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  20. An Implementation of Error Minimization Position Estimate in Wireless Inertial Measurement Unit using Modification ZUPT

    Adytia Darmawan

    2016-12-01

    Full Text Available Position estimation using WIMU (Wireless Inertial Measurement Unit is one of emerging technology in the field of indoor positioning systems. WIMU can detect movement and does not depend on GPS signals. The position is then estimated using a modified ZUPT (Zero Velocity Update method that was using Filter Magnitude Acceleration (FMA, Variance Magnitude Acceleration (VMA and Angular Rate (AR estimation. Performance of this method was justified on a six-legged robot navigation system. Experimental result shows that the combination of VMA-AR gives the best position estimation.

  1. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    Miyanaga, N.; Ohba, N.; Fujimoto, K.

    1997-01-01

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics

  2. The instantaneous linear motion information measurement method based on inertial sensors for ships

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  3. Attitude Estimation of Skis in Ski Jumping Using Low-Cost Inertial Measurement Units

    Xiang Fang

    2018-02-01

    Full Text Available This paper presents an approach to estimate the attitude of skis for an entire ski jump using wearable, MEMS-based, low-cost Inertial Measurement Units (IMUs. First of all, a kinematic attitude model based on rigid-body dynamics and a sensor error model considering bias and scale factor error are established. Then, an extended Rauch-Tung-Striebel (RTS smoother is used to combine measurement data provided by both gyroscope and magnetometer to achieve an attitude estimation. Moreover, parameters for the bias and scale factor error in the sensor error model and the initial attitude are determined via a maximum-likelihood principle based parameter estimation algorithm. By implementing this approach, an attitude estimation of skis is achieved without further sensor calibration. Finally, results based on both the simulated reference data and the real experimental measurement data are presented, which proves the practicability and the validity of the proposed approach.

  4. Development of position measurement unit for flying inertial fusion energy target

    Tsuji, R; Endo, T; Yoshida, H; Norimatsu, T

    2016-01-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre. (paper)

  5. Development of position measurement unit for flying inertial fusion energy target

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  6. A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area

    Andreu Català

    2013-10-01

    Full Text Available Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU, which are wearable and comfortable devices with long battery life. The IMU’s movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson’s disease symptoms, in gait analysis, and in a fall detection system.

  7. Inertial sensors as measurement tools of elbow range of motion in gerontology

    Sacco, G; Turpin, JM; Marteu, A; Sakarovitch, C; Teboul, B; Boscher, L; Brocker, P; Robert, P; Guerin, O

    2015-01-01

    Background and purpose Musculoskeletal system deterioration among the aging is a major reason for loss of autonomy and directly affects the quality of life of the elderly. Articular evaluation is part of physiotherapeutic assessment and helps in establishing a precise diagnosis and deciding appropriate therapy. Reference instruments are valid but not easy to use for some joints. The main goal of our study was to determine reliability and intertester reproducibility of the MP-BV, an inertial sensor (the MotionPod® [MP]) combined with specific software (BioVal [BV]), for elbow passive range-of-motion measurements in geriatrics. Methods This open, monocentric, randomized study compared inertial sensor to inclinometer in patients hospitalized in an acute, post-acute, and long-term-care gerontology unit. Results Seventy-seven patients (mean age 83.5±6.4 years, sex ratio 1.08 [male/female]) were analyzed. The MP-BV was reliable for each of the three measurements (flexion, pronation, and supination) for 24.3% (CI 95% 13.9–32.8) of the patients. Separately, the percentages of reliable measures were 59.7% (49.2–70.5) for flexion, 68.8% (58.4–79.5) for pronation, and 62.3% (51.2–73.1) for supination. The intraclass correlation coefficients were 0.15 (0.07–0.73), 0.46 (0.27–0.98), and 0.50 (0.31–40 0.98) for flexion, pronation, and supination, respectively. Conclusion This study shows the convenience of the MP-BV in terms of ease of use and of export of measured data. However, this instrument seems less reliable and valuable compared to the reference instruments used to measure elbow range of motion in gerontology. PMID:25759568

  8. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    Mousa, Mustafa

    2017-12-06

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  9. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian G.

    2017-01-01

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  10. A system to measure the kinematics during the entire ski jump sequence using inertial sensors.

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2013-01-04

    Three-dimensional analysis of the entire sequence in ski jumping is recommended when studying the kinematics or evaluating performance. Camera-based systems which allow three-dimensional kinematics measurement are complex to set-up and require extensive post-processing, usually limiting ski jumping analyses to small numbers of jumps. In this study, a simple method using a wearable inertial sensors-based system is described to measure the orientation of the lower-body segments (sacrum, thighs, shanks) and skis during the entire jump sequence. This new method combines the fusion of inertial signals and biomechanical constraints of ski jumping. Its performance was evaluated in terms of validity and sensitivity to different performances based on 22 athletes monitored during daily training. The validity of the method was assessed by comparing the inclination of the ski and the slope at landing point and reported an error of -0.2±4.8°. The validity was also assessed by comparison of characteristic angles obtained with the proposed system and reference values in the literature; the differences were smaller than 6° for 75% of the angles and smaller than 15° for 90% of the angles. The sensitivity to different performances was evaluated by comparing the angles between two groups of athletes with different jump lengths and by assessing the association between angles and jump lengths. The differences of technique observed between athletes and the associations with jumps length agreed with the literature. In conclusion, these results suggest that this system is a promising tool for a generalization of three-dimensional kinematics analysis in ski jumping. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cervical Coupling Motion Characteristics in Healthy People Using a Wireless Inertial Measurement Unit

    Hyunho Kim

    2013-01-01

    Full Text Available Objective. The objectives were to show the feasibility of a wireless microelectromechanical system inertial measurement unit (MEMS-IMU to assess the time-domain characteristics of cervical motion that are clinically useful to evaluate cervical spine movement. Methods. Cervical spine movements were measured in 18 subjects with wireless IMUs. All rotation data are presented in the Euler angle system. Amount of coupling motions was evaluated by calculating the average angle ratio and the maximum angle ratio of the coupling motion to the primary motion. Reliability is presented with intraclass correlation coefficients (ICC. Results. Entire time-domain characteristics of cervical motion were measured with developed MEMS-IMU system. Cervical range of motion (CROM and coupling motion range were measured with high ICCs. The acquired data and calculated parameters had similar tendency with the previous studies. Conclusions. We evaluated cervical motion with economic system using a wireless IMU of high reliability. We could directly measure the three-dimensional cervical motion in degrees in realtime. The characteristics measured by this system may provide a diagnostic basis for structural or functional dysfunction of cervical spine. This system is also useful to demonstrate the effectiveness of any intervention such as conventional medical treatment, and Korean medical treatment, exercise therapy.

  12. Validity and Reliability of a Wearable Inertial Sensor to Measure Velocity and Power in the Back Squat and Bench Press.

    Orange, Samuel T; Metcalfe, James W; Liefeith, Andreas; Marshall, Phil; Madden, Leigh A; Fewster, Connor R; Vince, Rebecca V

    2018-05-08

    Orange, ST, Metcalfe, JW, Liefeith, A, Marshall, P, Madden, LA, Fewster, CR, and Vince, RV. Validity and reliability of a wearable inertial sensor to measure velocity and power in the back squat and bench press. J Strength Cond Res XX(X): 000-000, 2018-This study examined the validity and reliability of a wearable inertial sensor to measure velocity and power in the free-weight back squat and bench press. Twenty-nine youth rugby league players (18 ± 1 years) completed 2 test-retest sessions for the back squat followed by 2 test-retest sessions for the bench press. Repetitions were performed at 20, 40, 60, 80, and 90% of 1 repetition maximum (1RM) with mean velocity, peak velocity, mean power (MP), and peak power (PP) simultaneously measured using an inertial sensor (PUSH) and a linear position transducer (GymAware PowerTool). The PUSH demonstrated good validity (Pearson's product-moment correlation coefficient [r]) and reliability (intraclass correlation coefficient [ICC]) only for measurements of MP (r = 0.91; ICC = 0.83) and PP (r = 0.90; ICC = 0.80) at 20% of 1RM in the back squat. However, it may be more appropriate for athletes to jump off the ground with this load to optimize power output. Further research should therefore evaluate the usability of inertial sensors in the jump squat exercise. In the bench press, good validity and reliability were evident only for the measurement of MP at 40% of 1RM (r = 0.89; ICC = 0.83). The PUSH was unable to provide a valid and reliable estimate of any other criterion variable in either exercise. Practitioners must be cognizant of the measurement error when using inertial sensor technology to quantify velocity and power during resistance training, particularly with loads other than 20% of 1RM in the back squat and 40% of 1RM in the bench press.

  13. Accuracy of position measurement method using Arago spot for inertial fusion energy target tracking system

    Saruta, Koichi; Tsuji, Ryusuke

    2007-01-01

    The accuracy of a position measurement method using the Arago spot is reported for an inertial fusion energy (IFE) target tracking system, where the position of the target is determined by the position of the Arago spot, which is a bright spot appearing in the central portion of the diffraction pattern of a spherical obstacle. We use a He-Ne laser as the light source and a charge-coupled device (CCD) camera with a microscope objective lens to magnify and record the diffraction pattern of a spherical target. We examine two different algorithms to determine the center of the Arago spot in order to compare the measurement performances. The experimental results show that the position of a 5-mm-diameter target can be obtained with a measurement resolution of 1 μm and an rms measurement error of less than 0.2μm for both algorithms when the distance between the target and the microscope objective lens is 5 cm. (author)

  14. Compact laser interferometer for translation and tilt measurement as optical readout for the LISA inertial sensor

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2007-10-01

    The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an ƒ -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an ƒ -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.

  15. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    Noel C. Perkins

    2012-08-01

    Full Text Available Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher’s hand. While radar guns and video-based motion capture (mocap resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball’s velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  16. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  17. A Smartphone Inertial Balance

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  18. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  19. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Sang Cheol Lee

    2016-12-01

    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  20. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration.

    van der Slikke, R M A; Berger, M A M; Bregman, D J J; Lagerberg, A H; Veeger, H E J

    2015-09-18

    Knowledge of wheelchair kinematics during a match is prerequisite for performance improvement in wheelchair basketball. Unfortunately, no measurement system providing key kinematic outcomes proved to be reliable in competition. In this study, the reliability of estimated wheelchair kinematics based on a three inertial measurement unit (IMU) configuration was assessed in wheelchair basketball match-like conditions. Twenty participants performed a series of tests reflecting different motion aspects of wheelchair basketball. During the tests wheelchair kinematics were simultaneously measured using IMUs on wheels and frame, and a 24-camera optical motion analysis system serving as gold standard. Results showed only small deviations of the IMU method compared to the gold standard, once a newly developed skid correction algorithm was applied. Calculated Root Mean Square Errors (RMSE) showed good estimates for frame displacement (RMSE≤0.05 m) and speed (RMSE≤0.1m/s), except for three truly vigorous tests. Estimates of frame rotation in the horizontal plane (RMSE0.90), rotational speed (ICC>0.99) and IRC (ICC> 0.90) showed high correlations between IMU data and gold standard. IMU based estimation of wheelchair kinematics provided reliable results, except for brief moments of wheel skidding in truly vigorous tests. The IMU method is believed to enable prospective research in wheelchair basketball match conditions and contribute to individual support of athletes in everyday sports practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    Kamiar Aminian

    2012-09-01

    Full Text Available Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer’s natural technique.

  2. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-01-01

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  3. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes.

    Blair, Stephanie; Duthie, Grant; Robertson, Sam; Hopkins, William; Ball, Kevin

    2018-05-17

    Wearable inertial measurement systems (IMS) allow for three-dimensional analysis of human movements in a sport-specific setting. This study examined the concurrent validity of a IMS (Xsens MVN system) for measuring lower extremity and pelvis kinematics in comparison to a Vicon motion analysis system (MAS) during kicking. Thirty footballers from Australian football (n = 10), soccer (n = 10), rugby league and rugby union (n = 10) clubs completed 20 kicks across four conditions. Concurrent validity was assessed using a linear mixed-modelling approach, which allowed the partition of between and within-subject variance from the device measurement error. Results were expressed in raw and standardised units for assessments of differences in means and measurement error, and interpreted via non-clinical magnitude-based inferences. Trivial to small differences were found in linear velocities (foot and pelvis), angular velocities (knee, shank and thigh), sagittal joint (knee and hip) and segment angle (shank and pelvis) means (mean difference: 0.2-5.8%) between the IMS and MAS in Australian football, soccer and the rugby codes. Trivial to small measurement errors (from 0.1 to 5.8%) were found between the IMS and MAS in all kinematic parameters. The IMS demonstrated acceptable levels of concurrent validity compared to a MAS when measuring kicking biomechanics across the four football codes. Wearable IMS offers various benefits over MAS, such as, out-of-laboratory testing, larger measurement range and quick data output, to help improve the ecological validity of biomechanical testing and the timing of feedback. The results advocate the use of IMS to quantify biomechanics of high-velocity movements in sport-specific settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Analysis of ergonomic and unergonomic human lifting behaviors by using Inertial Measurement Units

    Kuschan Jan

    2017-03-01

    Full Text Available This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU with 9 Dimensions of Freedom (DOF each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.

  5. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  6. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    Antonia M Zaferiou

    Full Text Available Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs. Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1 agility drill time, 2 horizontal body speed, 3 foot trajectory turning radius, and 4 tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges, and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in

  7. Quantifying Stability Using Frequency Domain Data from Wireless Inertial Measurement Units

    Stephen Slaughter

    2013-06-01

    Full Text Available The quantification of gait stability can provide valuable information when evaluating subjects for age related and neuromuscular disease changes. Using tri-axial inertial measurement units (IMU for acceleration and rotational data provide a non-linear profile for this type of movement. As subjects traverse various surfaces representing decreasing stability, the different phasing of gait data make comparisons difficult. By converting from time to frequency domain data, the phase effects can be ignored, allowing for significant correlations. In this study, 12 subjects provided gait information over various surfaces while wearing an IMU. Instabilities were determined by comparing frequency domain data over less stable surfaces to frequency domain data of neural network (NN models representing the normal gait for any given participant. Time dependent data from 2 axes of acceleration and 2 axes of rotation were converted using a discrete Fourier transform (FFT algorithm. The data over less stable surfaces were compared to the normal gait NN model by averaging the Pearson product moment correlation (r values. This provided a method to quantify the decreased stability. Data showed progressively decreasing correlation coefficient values as subjects encountered progressively less stable surface environments. This methodology has allowed for the quantification of instability in gait situations for application in real-time fall prevention situations.

  8. Quantifying Stability Using Frequency Domain Data from Wireless Inertial Measurement Units

    Stephen Slaughter

    2012-08-01

    Full Text Available The quantification of gait stability can provide valuable information when evaluating subjects for age related and neuromuscular disease changes. Using tri-axial inertial measurement units (IMU for acceleration and rotational data provide a non-linear profile for this type of movement. As subjects traverse various surfaces representing decreasing stability, the different phasing of gait data make comparisons difficult. By converting from time to frequency domain data, the phase effects can be ignored, allowing for significant correlations. In this study, 12 subjects provided gait information over various surfaces while wearing an IMU. Instabilities were determined by comparing frequency domain data over less stable surfaces to frequency domain data of neural network (NN models representing the normal gait for any given participant. Time dependent data from 2 axes of acceleration and 2 axes of rotation were converted using a discrete Fourier transform (FFT algorithm. The data over less stable surfaces were compared to the normal gait NN model by averaging the Pearson product moment correlation (r values. This provided a method to quantify the decreased stability. Data showed progressively decreasing correlation coefficient values as subjects encountered progressively less stable surface environments. This methodology has allowed for the quantification of instability in gait situations for application in real-time fall prevention situations.

  9. Measurements of strongly localized potential well profiles in an inertial electrostatic fusion neutron source

    Yoshikawa, K.; Takiyama, K.; Koyama, T.

    2001-01-01

    Direct measurements of localized electric fields are made by the laser-induced fluorescence (LIF) method by use of the Stark effects in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron (proton) source, which is expected for various applications, such as luggage security inspection, non-destructive testing, land mine detector, or positron emitter production for cancer detection, currently producing continuously about 10 7 n/sec D-D neutrons. Since 1967 when the first fusion reaction was successfully proved experimentally in a very compact IECF device, potential well formation due to space charge associated with spherically converging ion beams has been a central key issue to be clarified in the beam-beam colliding fusion, which is the major mechanism of the IECF neutron source. Many experiments, but indirect, were made so far to clarify the potential well, but none of them produced definitive evidence, however. Results by the present LIF method show a double well potential profile with a slight concave for ion beams with relatively larger angular momenta, whereas for ions with smaller angular momenta, potential but much steeper peak to develop. (author)

  10. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    Zhou, C. D.; Betti, R.

    2008-01-01

    It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T i h ) and the total areal density (ρR tot ), which includes the cold shell contribution. A marginal ignition curve is derived in the ρR tot , T i h plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to the ignition condition when scaled up in the laser-driver energy. For 3 i h > n i h > n 2.6 · tot > n >50 keV 2.6 · g/cm 2 , where tot > n and i h > n are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D 2 and subignited DT target implosions perform with respect to the one-dimensional ignition threshold.

  11. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

    Mohammad Al-Amri

    2018-02-01

    Full Text Available The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements.

  12. Data Glove System Embedded With Inertial Measurement Units for Hand Function Evaluation in Stroke Patients.

    Lin, Bor-Shing; Hsiao, Pei-Chi; Yang, Shu-Yu; Su, Che-Shih; Lee, I-Jung

    2017-11-01

    This paper proposes a data glove system integrated with six-axis inertial measurement unit sensors for evaluating the hand function of patients who have suffered a stroke. The modular design of this data glove facilitates its use for stroke patients. The proposed system can use the hand's accelerations, angular velocities, and joint angles as calculated by a quaternion algorithm, to help physicians gain new insights into rehabilitation treatments. A clinical experiment was performed on 15 healthy subjects and 15 stroke patients whose Brunnstrom stages (BSs) ranged from 4 to 6. In this experiment, the participants were subjected to a grip task, thumb task, and card turning task to produce raw data and three features, namely, the average rotation speed, variation of movement completion time, and quality of movement; these features were extracted from the recorded data to form 2-D and 3-D scatter plots. These scatter plots can provide reference information and guidance to physicians who must determine the BSs of stroke patients. The proposed system demonstrated a hit rate of 70.22% on average. Therefore, this system can effectively reduce physicians' load and provide them with detailed information about hand function to help them adjust rehabilitation strategies for stroke patients.

  13. A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.

    Wang, Yan; Li, Xin; Zou, Jiaheng

    2018-03-01

    With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.

  14. A Foot-Mounted Inertial Measurement Unit (IMU Positioning Algorithm Based on Magnetic Constraint

    Yan Wang

    2018-03-01

    Full Text Available With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.

  15. Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures

    Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino

    2018-05-01

    This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.

  16. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  17. Validation of a High Sampling Rate Inertial Measurement Unit for Acceleration During Running.

    Provot, Thomas; Chiementin, Xavier; Oudin, Emeric; Bolaers, Fabrice; Murer, Sébastien

    2017-08-25

    The musculo-skeletal response of athletes to various activities during training exercises has become a critical issue in order to optimize their performance and minimize injuries. However, dynamic and kinematic measures of an athlete's activity are generally limited by constraints in data collection and technology. Thus, the choice of reliable and accurate sensors is crucial for gathering data in indoor and outdoor conditions. The aim of this study is to validate the use of the accelerometer of a high sampling rate ( 1344 Hz ) Inertial Measurement Unit (IMU) in the frame of running activities. To this end, two validation protocols are imposed: a classical one on a shaker, followed by another one during running, the IMU being attached to a test subject. For each protocol, the response of the IMU Accelerometer (IMUA) is compared to a calibrated industrial accelerometer, considered as the gold standard for dynamic and kinematic data collection. The repeatability, impact of signal frequency and amplitude (on shaker) as well as the influence of speed (while running) are investigated. Results reveal that the IMUA exhibits good repeatability. Coefficient of Variation CV is 1 % 8.58 ± 0.06 m / s 2 on the shaker and 3 % 26.65 ± 0.69 m / s 2 while running. However, the shaker test shows that the IMUA is affected by the signal frequency (error exceeds 10 % beyond 80 Hz ), an observation confirmed by the running test. Nevertheless, the IMUA provides a reliable measure in the range 0-100 Hz, i.e., the most relevant part in the energy spectrum over the range 0-150 Hz during running. In our view, these findings emphasize the validity of IMUs for the measurement of acceleration during running.

  18. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  19. Inertial sensors as measurement tools of elbow range of motion in gerontology

    Sacco G

    2015-02-01

    Full Text Available G Sacco,1–3,* JM Turpin,3,4,* A Marteu,5 C Sakarovitch,6 B Teboul,2 L Boscher,4,5 P Brocker,4 P Robert,1–3 O Guerin2,3,7 1Memory Center, Claude Pompidou Institut, Department of Geriatrics, University Hospital of Nice, Nice, France; 2Centre d’Innovation et d’Usages en Santé (CIU-S, University Hospital of Nice, Cimiez Hospital, Nice, France; 3CoBTeK Cognition Behaviour Technology EA 7276, Research Center Edmond and Lily Safra, Nice Sophia-Antipolis University, Nice, France; 4Rehabilitation Unit, Department of Geriatrics, University Hospital of Nice, Cimiez Hospital, Nice, France; 5Rehabilitation Unit, Department of Neurosciences, University Hospital of Nice, L’Archet Hospital, Nice, France; 6Department of Clinical Research and Innovation, University Hospital of Nice, Cimiez Hospital, Nice, France; 7Acute Geriatrics Unit, Department of Geriatrics, University Hospital of Nice, Cimiez Hospital, Nice, France *These authors contributed equally to this work Background and purpose: Musculoskeletal system deterioration among the aging is a major reason for loss of autonomy and directly affects the quality of life of the elderly. Articular evaluation is part of physiotherapeutic assessment and helps in establishing a precise diagnosis and deciding appropriate therapy. Reference instruments are valid but not easy to use for some joints. The main goal of our study was to determine reliability and intertester reproducibility of the MP-BV, an inertial sensor (the MotionPod® [MP] combined with specific software (BioVal [BV], for elbow passive range-of-motion measurements in geriatrics. Methods: This open, monocentric, randomized study compared inertial sensor to inclinometer in patients hospitalized in an acute, post-acute, and long-term-care gerontology unit. Results: Seventy-seven patients (mean age 83.5±6.4 years, sex ratio 1.08 [male/female] were analyzed. The MP-BV was reliable for each of the three measurements (flexion, pronation, and

  20. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. A compact, large-range interferometer for precision measurement and inertial sensing

    Cooper, S. J.; Collins, C. J.; Green, A. C.; Hoyland, D.; Speake, C. C.; Freise, A.; Mow-Lowry, C. M.

    2018-05-01

    We present a compact, fibre-coupled interferometer with high sensitivity and a large working range. We propose to use this interferometer as a readout mechanism for future inertial sensors, removing a major limiting noise source, and in precision positioning systems. The interferometer’s peak sensitivity is 2 × 10-{14} m \\sqrt{Hz-1} at 70 Hz and 7 × 10-{11} m \\sqrt{Hz-1} at 10 mHz. If deployed on a GS-13 geophone, the resulting inertial sensing output will be limited by the suspension thermal noise of the reference mass from 10 mHz to 2 Hz.

  2. EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait

    Stephan Bosch

    2018-03-01

    Full Text Available In this paper, we describe and validate the EquiMoves system, which aims to support equine veterinarians in assessing lameness and gait performance in horses. The system works by capturing horse motion from up to eight synchronized wireless inertial measurement units. It can be used in various equine gait modes, and analyzes both upper-body and limb movements. The validation against an optical motion capture system is based on a Bland–Altman analysis that illustrates the agreement between the two systems. The sagittal kinematic results (protraction, retraction, and sagittal range of motion show limits of agreement of ± 2.3 degrees and an absolute bias of 0.3 degrees in the worst case. The coronal kinematic results (adduction, abduction, and coronal range of motion show limits of agreement of − 8.8 and 8.1 degrees, and an absolute bias of 0.4 degrees in the worst case. The worse coronal kinematic results are most likely caused by the optical system setup (depth perception difficulty and suboptimal marker placement. The upper-body symmetry results show no significant bias in the agreement between the two systems; in most cases, the agreement is within ±5 mm. On a trial-level basis, the limits of agreement for withers and sacrum are within ±2 mm, meaning that the system can properly quantify motion asymmetry. Overall, the bias for all symmetry-related results is less than 1 mm, which is important for reproducibility and further comparison to other systems.

  3. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  4. Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units.

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Seifert, Ludovic

    2017-01-01

    Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the

  5. Dragging of inertial frames.

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  6. Calibration of an inertial-magnetic measurement unit without external equipment, in the presence of dynamic magnetic disturbances

    Metge, J; Giremus, A; Mégret, R; Berthoumieu, Y; Décamps, T

    2014-01-01

    Inertial-magnetic measurement units are inexpensive sensors, widely used in electronic systems (smartphones, GPS, micro-UAV, etc). However the precision of these sensors is highly dependent on their calibration. This article proposes a complete solution to calibrate the sensors (accelerometers, gyrometers and magnetometers), the inter-sensor rotations and the dynamic disturbances of the magnetic field due to the immediate environment. Contrary to most of the existing techniques, the proposed method does not necessitate any external equipment, apart from the sensors already included in the system. The calibration can be performed by hand manipulation by the final user. Simulations and experiments show the advantages of the proposed approach. (paper)

  7. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  8. Image deblurring in smartphone devices using built-in inertial measurement sensors

    Šindelář, Ondřej; Šroubek, Filip

    2013-01-01

    Long-exposure handheld photography is degraded with blur, which is difficult to remove without prior information about the camera motion. In this work, we utilize inertial sensors (accelerometers and gyroscopes) in modern smartphones to detect exact motion trajectory of the smartphone camera during exposure and remove blur from the resulting photography based on the recorded motion data. The whole system is implemented on the Android platform and embedded in the smartphone device, resulting in a close-to-real-time deblurring algorithm. The performance of the proposed system is demonstrated in real-life scenarios.

  9. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  10. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  11. A polar-region-adaptable systematic bias collaborative measurement method for shipboard redundant rotational inertial navigation systems

    Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang

    2018-05-01

    The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.

  12. Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation. Ph.D. Thesis

    Carpenter-Smith, Theodore R.; Futamura, Robert G.; Parker, Donald E.

    1995-01-01

    The present study focused on the development of a procedure to assess perceived self-motion induced by visual surround motion - vection. Using an apparatus that permitted independent control of visual and inertial stimuli, prone observers were translated along their head x-axis (fore/aft). The observers' task was to report the direction of self-motion during passive forward and backward translations of their bodies coupled with exposure to various visual surround conditions. The proportion of 'forward' responses was used to calculate each observer's point of subjective equality (PSE) for each surround condition. The results showed that the moving visual stimulus produced a significant shift in the PSE when data from the moving surround condition were compared with the stationary surround and no-vision condition. Further, the results indicated that vection increased monotonically with surround velocities between 4 and 40/s. It was concluded that linear vection can be measured in terms of changes in the amplitude of whole-body inertial acceleration required to elicit equivalent numbers of 'forward' and 'backward' self-motion reports.

  13. Inertial measurements units for assessment of the pattern of forward bending among blue-collar workers from the DPhacto cohort

    Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk

    Background. New developments in electronics have enabled the use of Inertial Measurement Units (IMUs) to record physical activity in a minimally obstructive manner over several days. Individual, physical and psychosocial risk factors are known to play a role in the development of work...... of forward bending was found during leisure compared to work (pgender (pphysical and psychosocial risk factors leading to low...... of the trunk were extracted from all-day IMU recordings, both at work and during leisure time. Exposure variation analysis was applied on forward bending during both work and leisure time.Low-back pain intensity was measured on a 0–10 scale and divided into low and high pain. Individual factors (age, gender...

  14. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1997-01-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor and National Ignition Facility experiments will be discussed. copyright 1997 American Institute of Physics

  15. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed

  16. Installation with magnetic suspension of test bodies for measurement of small forces. Verification of equivalence of inertial and gravitational mass

    Kalebin, S.M.

    1988-01-01

    Torsion installation with magnetic suspension of test bodies for detection of small forces is considered. Installation application for verification of equivalence of inertial and gravitational mass in the case of test body incidence on the Earth (Etvesh experiment) and in the case of their incidene on the Sun (Dicke experiment) is discussed. The total mass of test bodies, produced in the form of cylinders with 3 cm radius, equals 50 kg (one lead body and one copper body); beam radius of test bodies equals 3 cm (the cylinders are tight against one another); ferrite cylinder with 3 cm radius and 10 cm height is used for their suspension in magnetic field. Effect of thermal noise and electromagnetic force disturbances on measurement results is considered. Conducted calculations show that suggested installation enables to improve the accuracy of verifying mentioned equivalence at least by one order and upwards. This suggests that such installation is a matter of interest for experiments on small force detection

  17. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  18. An in situ hand calibration method using a pseudo-observation scheme for low-end inertial measurement units

    Li, You; Niu, Xiaoji; Zhang, Quan; Zhang, Hongping; Shi, Chuang

    2012-01-01

    MEMS chips have become ideal candidates for various applications since they are small sized, light weight, have low power consumption and are extremely low cost and reliable. However, the performance of MEMS sensors, especially their biases and scale factors, is highly dependent on environmental conditions such as temperature. Thus a quick and convenient calibration is needed to be conducted by users in field without any external equipment or any expert knowledge of calibration. A novel and efficient in situ hand calibration method is presented to meet these demands in this paper. The algorithm of the proposed calibration method makes use of the navigation algorithm of the loosely-coupled GPS/INS integrated systems, but replaces the GPS observations with a kind of pseudo-observations, which can be stated as follows: if an inertial measurement unit (IMU) was rotating approximately around its measurement center, the range of its position and its linear velocity both would be within a limited scope. Using a Kalman filtering algorithm, the biases and scale factors of both accelerometer triad and gyroscope triad can be calibrated together within a short period (about 30 s), requiring only motions by hands. Real test results show that the proposed method is suitable for most consumer grade MEMS IMUs due to its zero cost, easy operation and sufficient accuracy. (paper)

  19. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  20. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  1. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor

    Bodo eRückauer

    2016-04-01

    Full Text Available In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS. For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240x180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS. This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  2. Wheel skid correction is a prerequisite to reliably measure wheelchair sports kinematics based on inertial sensors

    Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, H.E.J.

    2015-01-01

    Accurate knowledge of wheelchair kinematics during a match could be a significant factor in performance improvement in wheelchair basketball. To date, most systems for measuring wheelchair kinematics are not suitable for match applications or lack detail in key kinematic outcomes. This study

  3. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  4. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  5. Galactically inertial space probes for the direct measurement of the metric expansion of the universe

    Cagnani, Ivan

    2011-01-01

    Astrometric data from the future GAIA and OBSS missions will allow a more precise calculation of the local galactic circular speed, and better measurements of galactic movements relative to the CMB will be obtained by post-WMAP missions (ie Planck). Contemporary development of high specific impulse electric propulsion systems (ie VASIMIR) will enable the development of space probes able to properly compensate the galactic circular speed as well as the resulting attraction to the centre of our galaxy. The probes would appear immobile to an ideal observer fixed at the centre of the galaxy, in contrast of every other galactic object, which would appear moving according to their local galactic circular speed and their proper motions. Arranging at least three of these galactically static probes in an extended formation and measuring reciprocal distances of the probes over time with large angle laser ranges could allow a direct measurement of the metric expansion of the universe. Free-drifting laser-ranged targets released by the spacecrafts could also be used to measure and compensate solar system's induced local perturbations. For further reducing local effects and increase the accuracy of the results, the distance between the probes should be maximized and the location of the probes should be as far as possible from the Sun and any massive object (ie Jupiter, Saturn). Gravitational waves could also induce random errors but data from GW observatories like the planned LISA could be used to correct them.

  6. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames

    Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)

    2016-03-15

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)

  7. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  8. Potential well measurements in spherical electrostatic-inertial plasma confinement (SEIC) using a collimated proton detector

    Miley, G.H.; Nadler, J.H.; Gu, Y.B.

    1992-01-01

    A collimated proton detector has been developed for spatially resolved proton measurement in SEIC deuterium fusion experiments. The results are used to infer the potential well depth and well dynamics during SEIC operation. The SEIC operates as follows: ions enter the cathode-grid and are decelerated due to the presence of the positive space charge in the center created by the high ion density there. Since the fusion cross-section is ion-velocity dependent, the greater the height of the positive potential, the lower is the fusion reaction rate in that region. This source profile is determined by the collimated proton measurement. Analysis of the observed proton energy and parametric dependence on voltage current indicates that beam-background fusion predominantly occurs (for a typical 12-mA cathode current, 30-kV cathode voltage in a 4-mTorr D, background). Computer simulations suggest that for these parameters, a positive space charge potential of magnitude about 1/2 of the applied voltage forms inside the cathode. These results establish the first measurement of a positive potential well structure inside an ion injected SEIC device. The dynamics of the well profile with changing injected current is described along with a description of the technique used for unfolding the proton data

  9. Measurement of the inertial properties of the Helios F-1 spacecraft

    Gayman, W. H.

    1975-01-01

    A gravity pendulum method of measuring lateral moments of inertia of large structures with an error of less than 1% is outlined. The method is based on the fact that in a physical pendulum with a knife-edge support the distance from the axis of rotation to the system center of gravity determines the minimal period of oscillation and is equal to the system centroidal radius of gyration. The method is applied to results of a test procedure in which the Helios F-1 spacecraft was placed in a roll fixture with crossed flexure pivots as elastic constraints and system oscillation measurements were made with each of a set of added moment-of-inertia increments. Equations of motion are derived with allowance for the effect of the finite pivot radius and an error analysis is carried out to find the criterion for maximum accuracy in determining the square of the centroidal radius of gyration. The test procedure allows all measurements to be made with the specimen in upright position.

  10. Two calibration procedures for a gyroscope-free inertial measurement system based on a double-pendulum apparatus

    Cappa, P.; Patanè, F.; Rossi, S.

    2008-05-01

    This paper presents a novel calibration algorithm to be used with a gyro-free inertial measurement unit (GF-IMU) based on the use of linear accelerometers (AC). The analytical approach can be implemented in two calibration procedures. The first procedure (P-I) is articulated in the conduction of a static trial, to compute the sensitivity and the direction of the sensing axis of each AC, followed by a dynamic trial, to determine the AC locations. By contrast, the latter procedure (P-II) consists in the calculation of the previously indicated calibration parameters by means of a dynamic trial only. The feasibility of the two calibration procedures has been investigated by testing two GF-IMUs, equipped with ten and six bi-axial linear ACs, with an ad hoc instrumented double-pendulum apparatus. P-I and P-II were compared to a calibration procedure used as a reference (P-REF), which incorporates the AC positions measured with an optoelectronic system. The experimental results we present in this paper demonstrate that (i) P-I is able to determine the calibration parameters of the AC array with a higher accuracy than P-II; (ii) consequently, the errors associated with translational (a0 - g) and rotational (\\dot{\\bm \\omega }) acceleration components for the two GF-IMUs are significantly greater using P-II than P-I and (iii) the errors in (a0 - g) and \\dot{\\bm \\omega } obtained with P-I are comparable with the ones obtainable by using P-REF. Thus, the proposed novel algorithm used in P-I, in conjunction with the double-pendulum apparatus, can be globally considered a viable tool in GF-IMU calibration.

  11. Electron cloud measurements in heavy-ion driver for HEDP and inertial fusion energy

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Cohen, Ronald; Vay, Jean-Luc; Bieniosek, Frank; Baca, David; Seidl, Peter A.; Logan, Grant; Vujic, Jasmina L.

    2007-01-01

    The high-current experiment (HCX) at LBNL is a driver scale single beam injector that provides a 1 MeV K + ion beam current of 0.18 A for 5 μs. It transports high-current beams with large fill factor (ratio of the maximum beam envelope radius to the beam pipe radius) and low emittance growth that are required to keep the cost of the power plant competitive and to satisfy the target requirements of focusing ion beams to high-power density. Beam interaction with the background gas and walls desorbs electrons that can multiply and accumulate, creating an electron cloud. This ubiquitous effect grows at higher fill factors and degrades the quality of the beam. We review simulations and diagnostics tools used to measure electron production, accumulation and its properties

  12. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study.

    Aslani, Navid; Noroozi, Siamak; Davenport, Philip; Hartley, Richard; Dupac, Mihai; Sewell, Philip

    2018-06-01

    Traditional shoulder range of movement (ROM) measurement tools suffer from inaccuracy or from long experimental setup times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a 'frozen' shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291 ± 538 deg 2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg 2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace. Graphical abstract The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. The assessment tool consists of an IMU sensor, an EMG sensor, a microcontroller and a Bluetooth module. The assessment tool was attached to subjects arm. Individuals were instructed to move their arms with the elbow fully extended. They were then asked to provide the maximal voluntary elevation envelope of the arm in 3D space in multiple attempts starting from a small movement envelope going to the biggest

  13. Patient-reported outcome measures versus inertial performance-based outcome measures: A prospective study in patients undergoing primary total knee arthroplasty.

    Bolink, S A A N; Grimm, B; Heyligers, I C

    2015-12-01

    Outcome assessment of total knee arthroplasty (TKA) by subjective patient reported outcome measures (PROMs) may not fully capture the functional (dis-)abilities of relevance. Objective performance-based outcome measures could provide distinct information. An ambulant inertial measurement unit (IMU) allows kinematic assessment of physical performance and could potentially be used for routine follow-up. To investigate the responsiveness of IMU measures in patients following TKA and compare outcomes with conventional PROMs. Patients with end stage knee OA (n=20, m/f=7/13; age=67.4 standard deviation 7.7 years) were measured preoperatively and one year postoperatively. IMU measures were derived during gait, sit-stand transfers and block step-up transfers. PROMs were assessed by using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Knee Society Score (KSS). Responsiveness was calculated by the effect size, correlations were calculated with Spearman's rho correlation coefficient. One year after TKA, patients performed significantly better at gait, sit-to-stand transfers and block step-up transfers. Measures of time and kinematic IMU measures demonstrated significant improvements postoperatively for each performance-based test. The largest improvement was found in block step-up transfers (effect size=0.56-1.20). WOMAC function score and KSS function score demonstrated moderate correlations (Spearman's rho=0.45-0.74) with some of the physical performance-based measures pre- and postoperatively. To characterize the changes in physical function after TKA, PROMs could be supplemented by performance-based measures, assessing function during different activities and allowing kinematic characterization with an ambulant IMU. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Empirical evidence for inertial mass anisotropy

    Heller, M.; Siemieniec, G.

    1985-01-01

    A several attempts at measuring the possible deviations from inertial mass isotropy caused by a non-uniform distribution of matter are reviewed. A simple model of the inertial mass anisotropy and the results of the currently performed measurements concerning this effect are presented. 34 refs. (author)

  15. Player Monitoring in Indoor Team Sports: Concurrent Validity of Inertial Measurement Units to Quantify Average and Peak Acceleration Values

    Mareike Roell

    2018-02-01

    Full Text Available The increasing interest in assessing physical demands in team sports has led to the development of multiple sports related monitoring systems. Due to technical limitations, these systems primarily could be applied to outdoor sports, whereas an equivalent indoor locomotion analysis is not established yet. Technological development of inertial measurement units (IMU broadens the possibilities for player monitoring and enables the quantification of locomotor movements in indoor environments. The aim of the current study was to validate an IMU measuring by determining average and peak human acceleration under indoor conditions in team sport specific movements. Data of a single wearable tracking device including an IMU (Optimeye S5, Catapult Sports, Melbourne, Australia were compared to the results of a 3D motion analysis (MA system (Vicon Motion Systems, Oxford, UK during selected standardized movement simulations in an indoor laboratory (n = 56. A low-pass filtering method for gravity correction (LF and two sensor fusion algorithms for orientation estimation [Complementary Filter (CF, Kalman-Filter (KF] were implemented and compared with MA system data. Significant differences (p < 0.05 were found between LF and MA data but not between sensor fusion algorithms and MA. Higher precision and lower relative errors were found for CF (RMSE = 0.05; CV = 2.6% and KF (RMSE = 0.15; CV = 3.8% both compared to the LF method (RMSE = 1.14; CV = 47.6% regarding the magnitude of the resulting vector and strongly emphasize the implementation of orientation estimation to accurately describe human acceleration. Comparing both sensor fusion algorithms, CF revealed slightly lower errors than KF and additionally provided valuable information about positive and negative acceleration values in all three movement planes with moderate to good validity (CV = 3.9 – 17.8%. Compared to x- and y-axis superior results were found for the z-axis. These findings demonstrate that

  16. Effect of trotting speed on kinematic variables measured by use of extremity-mounted inertial measurement units in nonlame horses performing controlled treadmill exercise.

    Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E

    2018-02-01

    OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.

  17. Micromachined Precision Inertial Instruments

    Najafi, Khalil

    2003-01-01

    This program focuses on developing inertial-grade micromachined accelerometers and gyroscopes and their associated electronics and packaging for use in a variety of military and commercial applications...

  18. Inertial navigation without accelerometers

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  19. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  20. Energy from inertial fusion

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  1. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  2. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-01-01

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF

  3. Estimation of Joint Forces and Moments for the In-Run and Take-Off in Ski Jumping Based on Measurements with Wearable Inertial Sensors

    Grega Logar

    2015-05-01

    Full Text Available This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton–Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers’ body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  4. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  5. Inertial fusion energy

    Mima, K.

    2001-01-01

    Reviewed is the present status of the inertial confinement energy (IFE) research. The highlights of the IFE presentations are as follows. Toward demonstrating ignition and burning of imploded plasmas, ignition facilities of mega jule class blue laser system are under construction at Lawrence Livermore National Laboratory and the CEA laboratory of Bordeaux. The central ignition by both indirect drive and direct drive will be explored by the middle of 2010's. A new ignition concept so called 'fast ignition' has also been investigated intensively in the last two years. Peta watt level (1PW∼0.1PW output) CPA lasers have been used for heating solid targets and imploded plasmas. With 50J∼500J/psec pulses, solid targets are found to be heated up to 300eV. They were measured by X-ray spectroscopy, neutron energy spectrum, and so on. Summarized are also researches on simulation code developments, target design and fabrication, heavy ion beam fusion, Z-pinch based X-ray source, and laser driver technology. (author)

  6. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-01-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.

  7. Inertial fusion energy

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  8. Prospect for inertial fusion energy

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  9. Using Inertial Fusion Implosions to Measure the T+^{3}He Fusion Cross Section at Nucleosynthesis-Relevant Energies.

    Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D

    2016-07-15

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  10. Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation.

    Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel

    2018-09-01

    The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.

  11. Progress in inertial fusion

    Hogan, W.; Storm, E.

    1985-10-01

    The requirements for high gain in inertial confinement are given in terms of target implosion requirements. Results of experimental studies of the laser/target interaction and of the dynamics of laser implosion. A report of the progress of advanced laser development is also presented. 3 refs., 8 figs., 1 tab

  12. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    Spears, B.K.; Glenzer, S.; Edwards, M.J.; Brandon, S.; Clark, D.; Town, R.; Cerjan, C.; Dylla-Spears, R.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.; Weber, S.; Hatchett, S.; Haan, S.; Springer, P.; Moses, E.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.

    2011-01-01

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  13. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  14. A Highly Automated, Wireless Inertial Measurement Unit Based System for Monitoring Gym-Based Push-Start Training Sessions by Bob-Skeleton Athletes

    Mark GAFFNEY

    2015-01-01

    Full Text Available Wireless Inertial Measurement Units (WIMUs are increasingly used to improve our understanding of complex human motion scenarios. In sports this allows for more valid coaching, selection and training methods leading to improved athletic performance. The Push-Start in the Winter Olympic sport of Bob-Skeleton is poorly understood but believed to be critical to performance. At the University of Bath a piece of gym-based equipment called the “Assassin” used by athletes to practice the Push-Start was instrumented with a custom WIMU system to investigate this motion regime. A test subject performed 36 runs, comprising 3 runs at each of 12 combinations of 3 Incline and 4 Weight settings. A developed algorithm automatically identified valid data-files, extracted the Pushing-Phase Acceleration data, and estimated sled Velocity and Displacement. The average velocities derived from an existing Light-Gate and WIMU data-files were comparable, with an average Root Mean Squared Error of 0.105 meters per second over the 52 valid WIMU data-files identified, covering 11 of the 12 Weight and Incline settings. Additional investigation of WIMU data revealed information such as: step count; track incline; and whether weights had been added could be determined, although further verification and validation of these features are required. Such an automated WIMU-based system could replace performance monitoring methods such as Light-Gates, providing higher fidelity performance data, additional information on equipment setup with lower-cost and greater ease-of-use by coaches or athletes. Its portable and modular nature also allow use with other training scenarios or equipment, such as using additional on-body WIMUs, or use with outdoor and ice-track sleds, enabling performance monitoring from the gym to the ice-track for improved candidate selection, comparison and training in Bob-Skeleton and other ice-track based sled sports.

  15. Turbulent heat fluxes by profile and inertial dissipation methods: analysis of the atmospheric surface layer from shipboard measurements during the SOFIA/ASTEX and SEMAPHORE experiments

    H. Dupuis

    Full Text Available Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.

  16. Turbulent heat fluxes by profile and inertial dissipation methods: analysis of the atmospheric surface layer from shipboard measurements during the SOFIA/ASTEX and SEMAPHORE experiments

    H. Dupuis

    1995-10-01

    Full Text Available Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.

  17. Turbulent heat fluxes by profile and inertial dissipation methods: analysis of the atmospheric surface layer from shipboard measurements during the SOFIA/ASTEX and SEMAPHORE experiments

    Dupuis, Hélène; Weill, Alain; Katsaros, Kristina; Taylor, Peter K.

    1995-10-01

    Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.

  18. Work and Inertial Frames

    Kaufman, Richard

    2017-12-01

    A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.

  19. Heavy ion inertial fusion

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  20. Heavy ion inertial fusion

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  1. Nuclear diagnostics for inertial confinement fusion implosions

    Murphy, T.J.

    1997-01-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used

  2. Mapping in inertial frames

    Arunasalam, V.

    1989-05-01

    World space mapping in inertial frames is used to examine the Lorentz covariance of symmetry operations. It is found that the Galilean invariant concepts of simultaneity (S), parity (P), and time reversal symmetry (T) are not Lorentz covariant concepts for inertial observers. That is, just as the concept of simultaneity has no significance independent of the Lorentz inertial frame, likewise so are the concepts of parity and time reversal. However, the world parity (W) [i.e., the space-time reversal symmetry (P-T)] is a truly Lorentz covariant concept. Indeed, it is shown that only those mapping matrices M that commute with the Lorentz transformation matrix L (i.e., [M,L] = 0) are the ones that correspond to manifestly Lorentz covariant operations. This result is in accordance with the spirit of the world space Mach's principle. Since the Lorentz transformation is an orthogonal transformation while the Galilean transformation is not an orthogonal transformation, the formal relativistic space-time mapping theory used here does not have a corresponding non-relativistic counterpart. 12 refs

  3. Inertial confinement fusion (ICF)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  4. Inertial Symmetry Breaking

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  5. Inertial confinement fusion

    Nuckolls, J.H.; Wood, L.L.

    1988-01-01

    Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot

  6. Status of inertial fusion

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  7. Inertial fusion commercial power plants

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  8. Inertial confinement fusion target

    Bourdier, A.

    2001-12-01

    A simple, zero-dimensional model describing the temporal behaviour of an imploding-shell, magnetized fuel inertial confinement fusion target is formulated. The addition of a magnetic field to the fuel reduces thermal conduction losses. As a consequence, it might lead to high gains and reduce the driver requirements. This beneficial effect of the magnetic field on thermonuclear gains is confirmed qualitatively by the zero-dimensional model results. Still, the extent of the initial-condition space for which significant gains can occur is not, by far, as large as previously reported. One-dimensional CEA code simulations which confirm this results are also presented. Finally, we suggest to study the approach proposed by Hasegawa. In this scheme, the laser target is not imploded, and the life-time of the plasma can be very much increased. (author)

  9. Inertial fusion by laser

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  10. Ion beam inertial fusion

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  11. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  12. Transformations between inertial and linearly accelerated frames of reference

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  13. Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations

    Veth, Mike; Raquet, John

    2007-01-01

    Aircraft navigation information (position, velocity, and attitude) can be determined using optical measurements from an imaging sensor pointed toward the ground combined with an inertial navigation system...

  14. On inertial range scaling laws

    Bowman, J.C.

    1994-12-01

    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed

  15. Uticaj mesta ugradnje inercijalnog mernog bloka i akcelerometara na grešku u određivanju pozicije aviona / Size effect of the inertial measurement unit and inside IMU accelerometers on aircraft position error

    Slobodan Janićijević

    2003-03-01

    Full Text Available U ovom članku analiziran je uticaj mesta ugradnje inercijalnog mernog bloka (IMB u avionu i mesta ugradnje akcelerometara u IMB na tačnost određivanja pozicije pomoću bes-platformskog inercijalnog navigacijskog sistema (BINS. Pokazano je da se ovi uticaji ne mogu uvek zanemariti. Izračunata je ukupna greška u određivanju pozicije aviona ako se IMB ugrađuje van centra rotacije aviona, a akcelerometri van centra IMB. Predložena je optimalna orijentacija akcelerometara u IMB-u, kako bi se minimizirao uticaj ugradnje akcelerometara van centra IMB na tačnost određivanja pozicije aviona. Predložen je i način kompenzacije greške. / This paper analyzes the mounting offset size effect of the inertial measurement unit (IMU in aircraft and accelerometers mounting offset size effect in the IMU on the accuracy of strap down inertial navigation system (SDINS. It is also shown that these effects cannot be always neglected. The total size effect error for the IMU has been the computed. An accelerometers optimum orientation inside the IMU has been proposed to minimize size effects on the accuracy of navigation parameters. A manner to compensate these size effects has been proposed as well.

  16. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  17. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±DD-neutron yield diagnostics at the NIF.

  18. A novel visual-inertial monocular SLAM

    Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo

    2018-02-01

    With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.

  19. Physics of inertial confinement pellets

    Mead, W.C.

    1979-01-01

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  20. Heavy ion inertial fusion

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  1. Summary of inertial fusion

    Lindl, J.

    2003-01-01

    There has been rapid progress in inertial fusion since the last IAEA meeting. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers and ion beams. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in about 1 year. Ignition experiments are expected to begin in 7-9 years at both facilities. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF and LMJ. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets have been obtained at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko Petawatt facility. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with dry-wall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets. (author)

  2. Inertial Fusion Energy

    Mima, K

    2012-09-15

    In 1917, Albert Einstein suggested the theory of stimulated emission of light that led to the development of the laser. The first laser, based on Einstein's theory, was demonstrated by the Maiman experiment in 1960. In association with the invention and developments of the laser, N.G. Basov, A. Prokorov and C.H. Towns received the Nobel prize for physics in 1963. On the other hand, it had been recognized that nuclear fusion energy is the energy source of our universe. It is the origin of the energy in our sun and in the stars. Right after the laser oscillation experiment, it was suggested by J. Nuckolls, E. Teller and S. Colgate in the USA and A. Sakharov in the USSR that nuclear fusion induced by lasers be used to solve the energy problem. Following the suggestion, the pioneering works for heating plasmas to a thermonuclear temperature with a laser were published by N. Basov, O.N. Krohin, J.M. Dawson, C.R. Kastler, H. Hora, F. Flux and S. Eliezer. The new concept of fusion ignition and burn by laser 'implosion' was proposed by J. Nuckolls, which extended the spherically imploding shock concept discovered by G. Guderley to the laser fusion concept. Since then, laser fusion research has started all over the world. For example, many inertial fusion energy (IFE) facilities have been constructed for investigating implosion physics: Lasers: GEKKO I, GEKKO II, GEKKO IV, GEKKO MII and GEKKO xII at ILE, Osaka University, Japan; JANUS, CYCLOPS, ARUGUS, SHIVA and NOVA at Lawrence Livermore National Laboratory (LLNL), USA; OMEGA at the Laboratory for Laser Energetics (LLE), University of Rochester, USA; PHEBUS at Limeil, Paris, France; the ASTERIx iodine laser at the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, Germany; MPI, GLECO at the Laboratoire d'Utilisation des Lasers Intenses (LULI), ecole Polytecnique, France; HELIOS at Los Alamos National Laboratory, USA; Shengan II at the Shanghai Institute of Optics and Fine Mechanics, China; VULCAN at the Rutherford

  3. The technology benefits of inertial confinement fusion research

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  4. Industry's role in inertial fusion

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  5. Dynamic analysis of nonlinear behaviour in inertial actuators

    Borgo, M Dal; Tehrani, M Ghandchi; Elliott, S J

    2016-01-01

    Inertial actuators are devices typically used to generate the control force on a vibrating structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. The inertial force due to the moving mass is used to produce the secondary force needed to control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, such as stroke saturation when driven at high input voltages. If the input voltage is beyond their limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force generated by an inertial actuator is measured experimentally and numerical simulations of a linear piecewise stiffness model are carried out and compared with the results of analytical methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric study is carried out to investigate the change of the end stop stiffness. In addition, the variation of the amplitude of the excitation is considered and a comparison is made with the analytical solution using the harmonic balance method. Finally, experimental measurements are carried out and the results are compared with simulated data to establish the accuracy of the model. (paper)

  6. Micromachining of inertial confinement fusion targets

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-01-01

    Many experiments conducted on today's largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron

  7. Inertial thermonuclear fusion by laser

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  8. High performance inertial fusion targets

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  9. High performance inertial fusion targets

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  10. Centrifuges and inertial shear forces

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  11. Inertial forces and physics teaching

    Oliva Martinez, J.M.; Pontes Pedrajas, A.

    1996-01-01

    An epistemological and didactic analysis about inertial forces and the role of validity of Newton's Laws seen from several reference systems is performed. On the basis of considerations fulfilled, a discussion about the necessity of introducing these topics in the curriculum of physics teaching at different levels is also carried out. (Author) 21 refs

  12. Saturation of equatorial inertial instability

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  13. Hydrodynamic instabilities in inertial fusion

    Hoffman, N.M.

    1994-01-01

    This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability

  14. Analysis of Indoor Rowing Motion using Wearable Inertial Sensors

    Bosch, S.; Shoaib, M.; Geerlings, Stephen; Buit, Lennart; Meratnia, Nirvana; Havinga, Paul J.M.

    2015-01-01

    In this exploratory work the motion of rowers is analyzed while rowing on a rowing machine. This is performed using inertial sensors that measure the orientation at several positions on the body. Using these measurements, this work provides a preliminary analysis of the differences between

  15. The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-06-26

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.

  16. The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-01-01

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472

  17. Interplanetary propulsion using inertial fusion

    Orth, C.D.; Hogan, W.J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F.C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

  18. Systems and Methods for Determining Inertial Navigation System Faults

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  19. Inertial-confinement-fusion targets

    Hendricks, C.D.

    1981-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented

  20. Inertial fusion experiments and theory

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-01-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  1. Inertial objects in complex flows

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  2. Economic potential of inertial fusion

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents

  3. Characteristics of inertial currents observed in offshore wave records

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  4. The development and validation of using inertial sensors to monitor postural change in resistance exercise.

    Gleadhill, Sam; Lee, James Bruce; James, Daniel

    2016-05-03

    This research presented and validated a method of assessing postural changes during resistance exercise using inertial sensors. A simple lifting task was broken down to a series of well-defined tasks, which could be examined and measured in a controlled environment. The purpose of this research was to determine whether timing measures obtained from inertial sensor accelerometer outputs are able to provide accurate, quantifiable information of resistance exercise movement patterns. The aim was to complete a timing measure validation of inertial sensor outputs. Eleven participants completed five repetitions of 15 different deadlift variations. Participants were monitored with inertial sensors and an infrared three dimensional motion capture system. Validation was undertaken using a Will Hopkins Typical Error of the Estimate, with a Pearson׳s correlation and a Bland Altman Limits of Agreement analysis. Statistical validation measured the timing agreement during deadlifts, from inertial sensor outputs and the motion capture system. Timing validation results demonstrated a Pearson׳s correlation of 0.9997, with trivial standardised error (0.026) and standardised bias (0.002). Inertial sensors can now be used in practical settings with as much confidence as motion capture systems, for accelerometer timing measurements of resistance exercise. This research provides foundations for inertial sensors to be applied for qualitative activity recognition of resistance exercise and safe lifting practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Generalized Lawson Criteria for Inertial Confinement Fusion

    Tipton, Robert E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  6. Inertial fusion in the nineties

    Harris, D.; Dudziak, D.J.; Cartwright, D.C.

    1987-01-01

    The 1980s have proven to be an exciting time for the inertial confinement fusion (ICF) program. Major new laser and light-ion drivers have been constructed and have produced some encouraging results. The 1990s will be a crucial time for the ICF program. A decision for proceeding with the next facility is scheduled for the early 1990s. If the decision is positive, planning and construction of this facility will occur. Depending on the time required for design and construction, this next-generation facility could become operational near the turn of the century

  7. Inertial confinement fusion at NRL

    Bodner, S.E.; Boris, J.P.; Cooperstein, G.

    1979-01-01

    The NRL Inertial Confinement Fusion Program's emphasis has moved toward pellet concepts which use longer (approximately 10ns) lower intensity driver pulses than previously assumed. For laser drivers, this change was motivated by recent experiments at NRL with enhanced stimulated Brillouin backscatter. For ion drivers, the motivation is the possibility that substantial energy at 10-ns pulse lengths may soon be available. To accept these 10-ns pulses, it may be necessary to consider pellets of larger radius and thinner shell. The computational studies of Rayleigh-Taylor instability at NRL indicate the possibility of a dynamic stabilization of these thinner shells. (author)

  8. Compact inertial confinement multireactor concepts

    Pendergrass, J.H.

    1985-01-01

    Inertial confinement fusion (ICF) commercial-applications plant-optimum driver pulse repetition rates may exceed reactor pulse-repetition-rate capabilities. Thus, more than one reactor may be required for low-cost production of electric power, process heat, fissionable fuels, etc., in ICF plants. Substantial savings in expensive reactor containment cells and blankets can be realized by placing more than one reactor in a cell and by surrounding more than one reactor cavity with a single blanket system. There are also some potential disadvantages associated with close coupling in compact multicavity blankets and multireactor cells. Tradeoffs associated with several scenarios have been studied

  9. Adaptive inertial shock-absorber

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  10. Inertial fusion and energy production

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  11. Mechanical Energy Change in Inertial Reference Frames

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  12. On-body inertial sensor location recognition

    Weenk, D.; van Beijnum, Bernhard J.F.; Goaied, Salma; Baten, Christian T.M.; Hermens, Hermanus J.; Veltink, Petrus H.

    2015-01-01

    Introduction and past research: In previous work we presented an algorithm for automatically identifying the body segment to which an inertial sensor is attached during walking [1]. Using this method, the set-up of inertial motion capture systems becomes easier and attachment errors are avoided. The

  13. Spin transport in non-inertial frame

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  14. Inertial fusion with hypervelocity impact

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  15. Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back

    Minh H. Pham

    2017-09-01

    Full Text Available IntroductionInertial measurement units (IMUs positioned on various body locations allow detailed gait analysis even under unconstrained conditions. From a medical perspective, the assessment of vulnerable populations is of particular relevance, especially in the daily-life environment. Gait analysis algorithms need thorough validation, as many chronic diseases show specific and even unique gait patterns. The aim of this study was therefore to validate an acceleration-based step detection algorithm for patients with Parkinson’s disease (PD and older adults in both a lab-based and home-like environment.MethodsIn this prospective observational study, data were captured from a single 6-degrees of freedom IMU (APDM (3DOF accelerometer and 3DOF gyroscope worn on the lower back. Detection of heel strike (HS and toe off (TO on a treadmill was validated against an optoelectronic system (Vicon (11 PD patients and 12 older adults. A second independent validation study in the home-like environment was performed against video observation (20 PD patients and 12 older adults and included step counting during turning and non-turning, defined with a previously published algorithm.ResultsA continuous wavelet transform (cwt-based algorithm was developed for step detection with very high agreement with the optoelectronic system. HS detection in PD patients/older adults, respectively, reached 99/99% accuracy. Similar results were obtained for TO (99/100%. In HS detection, Bland–Altman plots showed a mean difference of 0.002 s [95% confidence interval (CI −0.09 to 0.10] between the algorithm and the optoelectronic system. The Bland–Altman plot for TO detection showed mean differences of 0.00 s (95% CI −0.12 to 0.12. In the home-like assessment, the algorithm for detection of occurrence of steps during turning reached 90% (PD patients/90% (older adults sensitivity, 83/88% specificity, and 88/89% accuracy. The detection of steps during non-turning phases

  16. Summary on inertial confinement fusion

    Meyer-Ter-Vehn, J.

    1995-01-01

    Highlights on inertial confinement during the fifteenth international conference on plasma physics and controlled nuclear fusion are briefly summarized. Specifically the following topics are discussed: the US National Ignition Facility presently planned by the US Department of Energy; demonstration of diagnostics for hot spot formation; declassification of Hohlraum target design; fusion targets, in particular, the Hohlraum target design for the National Ignition Facility (NIF), Hohlraum experiments, direct drive implosions, ablative Rayleigh-Taylor instabilities, laser imprinting (of perturbations by the laser on the laser target surface), hot spot formation and mixing, hot spot implosion experiments at Lawrence Livermore National Laboratory, Livermore, USA, time resolving hot spot dynamics at the Institute of Laser Engineering (ILE), Osaka, Japan, laser-plasma interaction

  17. Inertial Electrostatic Confinement (IEC) devices

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  18. Alternate fusion -- continuous inertial confinement

    Barnes, D.C.; Turner, L.; Nebel, R.A.

    1993-01-01

    The authors argue that alternate approaches to large tokamak confinement are appropriate for fusion applications if: (1) They do not require magnetic confinement of a much higher quality than demonstrated in tokamaks; (2) Their physics basis may be succinctly stated and experimentally tested; (3) They offer near-term applications to important technical problems; and (4) Their cost to proof-of-principle is low enough to be consistent with current budget realities. An approach satisfying all of these criteria is presented. Fusion systems based on continuous inertial confinement are described. In these approaches, the inertia of a nonequilibrium plasma is used to produce local concentrations of plasma density in space and/or time. One implementation (inertial electrostatic confinement) which has been investigated both experimentally and theoretically uses a system of electrostatic grids to accelerate plasma ions toward a spherical focus. This system produced a steady 2 x 10 10 D-T neutrons/second with an overall fusion gain of 10 -5 in a sphere of about 9 cm radius. Recent theoretical developments show how to raise the fusion gain to order unity or greater by replacing the internal grids by a combination of applied magnetic and electrostatic fields. In these approaches, useful thermonuclear conditions may be produced in a system as small as a few mm radius. Confinement is that of a nonneutralized plasma. A pure electron plasma with a radial beam velocity distribution is absolutely confined by an applied Penning trap field. Spherical convergence of the confined electrons forms a deep virtual cathode near r = 0, in which thermonuclear ions are absolutely confined at useful densities. The authors have examined the equilibrium, stability, and classical relaxation of such systems, and obtained many positive physics results. Equilibria exist for both pure electron and partially charge-neutralized systems with arbitrarily high core-plasma densities

  19. Inertial fusion energy development strategy

    Coutant, J.; Hogan, W.J.; Nakai, S.; Rozanov, V.B.; Velarde, G.

    1995-01-01

    The research and development strategy for inertial fusion energy (IFE) is delineated. The development strategy must indicate how commercial IFE power can be made available in the first part of the next century, by which is meant that a Demonstration Power Plant (DPP) will have shown that in commercial operation IFE power plants can satisfy the requirements of public and employee safety, acceptably low impact on the environment, technical performance, reliability, maintainability and economic competitiveness. The technical issues associated with the various required demonstrations for each of the subsystems of the power plant (target, driver, reaction chamber, and remainder of plant (ROP) where the tritium for future targets is extracted and thermal energy is converted into electricity) are listed. The many developments required to make IFE commercially available can be oriented towards a few major demonstrations. These demonstrations do not necessarily each need separate facilities. The goals of these demonstrations are: (i) ignition demonstration, to show ignition and thermonuclear burn in an ICF target and determine the minimum required driver conditions; (ii) high gain demonstration, to show adequate driver efficiency-gain product; (iii) engineering demonstrations, to show high pulse rate operations in an integrated system and to choose the best designs of the various reactor systems; (iv) commercial demonstrations, to prove safe, environmentally benign, reliable, economic, near-commercial operation. In this document the present status of major inertial confinement research activities is summarized including a table of the major operating or planned facilities. The aspects involved in each of the required demonstrations are discussed. Also, for each of the subsystems mentioned above the technical developments that are needed are discussed. The document ends with a discussion of the two existing detailed IFE development plans, by the United States and Japan. 9

  20. Validation of an Inertial Sensor System for Swing Analysis in Golf

    Paul Lückemann

    2018-02-01

    Full Text Available Wearable inertial sensor systems are an upcoming tool for self-evaluation in sports, and can be used for swing analysis in golf. The aim of this work was to determine the validity and repeatability of an inertial sensor system attached to a player’s glove using a radar system as a reference. 20 subjects performed five full swings with each of three different clubs (wood, 7-iron, wedge. Clubhead speed was measured simultaneously by both sensor systems. Limits of Agreement were used to determine the accuracy and precision of the inertial sensor system. Results show that the inertial sensor system is quite accurate but with a lack of precision. Random error was quantified to approximately 17 km/h. The measurement error was dependent on the club type and was weakly negatively correlated to the magnitude of clubhead speed.

  1. Review of fall risk assessment in geriatric populations using inertial sensors

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2013-01-01

    Background Falls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population. Methods Forty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological f...

  2. Assessment of the pivot shift using inertial sensors

    Zaffagnini, Stefano; Signorelli, Cecilia; Grassi, Alberto; Yue, Han; Raggi, Federico; Urrizola, Francisco; Bonanzinga, Tommaso; Marcacci, Maurilio

    2016-01-01

    The pivot shift test is an important clinical tool used to assess the stability of the knee following an injury to the anterior cruciate ligament (ACL). Previous studies have shown that significant variability exists in the performance and interpretation of this manoeuvre. Accordingly, a variety of techniques aimed at standardizing and quantifying the pivot shift test have been developed. In recent years, inertial sensors have been used to measure the kinematics of the pivot shift. The goal o...

  3. On the generalized potential of inertial forces

    Siboni, S

    2009-01-01

    The generalized potential of the inertial forces acting on a holonomic system in an accelerated reference frame is derived in a way which admits a simple physical interpretation. It is shown that the generalized potential refers to all the inertial forces and, apart from the very special case of a uniformly rotating frame, it is impossible to distinguish a contribution to only the Coriolis force and a contribution pertaining to the residual, velocity-independent fictitious forces. Such an approach to the determination of the generalized potential of inertial forces may be helpful in introducing the topic of the generalized potential to advanced undergraduate and graduate students

  4. Spectral gaps, inertial manifolds and kinematic dynamos

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  5. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    Niu, Xiaoji; Wang, Qingjiang; Li, You; Li, Qingli; Liu, Jingnan

    2015-01-01

    Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS) and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubi...

  6. Micro-system inertial sensing technology overview.

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  7. Progress in high gain inertial confinement fusion

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  8. The Physics of Inertial Fusion

    Lebedev, S

    2004-01-01

    The growing effort in inertial confinement fusion (ICF) research, with the upcoming new MJ class laser facilities, NIF in USA and LMJ in France, and the upgraded MJ z-pinch ZR facility in the USA, makes the appearance of this book by Atzeni and Meyer-ter-Vehn very timely. This book is an excellent introduction for graduate or masters level students and for researchers just entering the field. It is written in a very pedagogical way with great attention to the basic understanding of the physical processes involved. The book should also be very useful to researchers already working in the field as a reference containing many key formulas from different relevant branches of physics; experimentalists will especially appreciate the presence of 'ready-to-use' numerical formulas written in convenient practical units. The book starts with a discussion of thermonuclear reactions and conditions required to achieve high gain in ICF targets, emphasizing the importance of high compression of the D-T fuel, and compares the magnetic confinement fusion and inertial confinement fusion approaches. The next few chapters discuss in detail the basic concepts of ICF: the hydrodynamics of a spherically imploding capsule, ignition and energy gain. This is followed by a thorough discussion of the physics of thermal waves, ablative drive and hydrodynamic instabilities, with primary focus on the Rayleigh--Taylor instability. The book also contains very useful chapters discussing the properties of hot dense matter (ionization balance, equation of state and opacity) and the interaction of laser and energetic ion beams with plasma. The book is based on and reflects the research interests of the authors and, more generally, the European activity in this area. This could explain why, in my opinion, some topics are covered in less detail than they deserve, e.g. the chapter on hohlraum physics is too brief. On the other hand, the appearance in the book of an interesting chapter on the concept of

  9. Influence of gravity on inertial particle clustering in turbulence

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  10. Heavy ion accelerators for inertial fusion

    Rubbia, C.

    1992-01-01

    Particle accelerators are used for accelerating the elementary, stable and separable constituents of matters to relativistic speed. These beams are of fundamental interest in the study on the ultimate constituents of matters and their interaction. Particle accelerators are the most promising driver for the fusion power reactors based on inertial confinement. The principle of inertial confinement fusion, radiation driven indirect drive, the accelerator complex and so on are described. (K.I.)

  11. A Visual-Aided Inertial Navigation and Mapping System

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  12. Vision-aided inertial navigation system for robotic mobile mapping

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  13. Inertial fusion science in Europe

    Bigot, B.

    2006-01-01

    Europe has built significant laser facilities to study inertial confinement fusion since the beginning of this science. The goal is to understand the processes of ignition and propagation of thermonuclear combustion. Three routes toward fusion are pursued, each of which has advantages and difficulties. The conventional routes are using a central hot spot created by the same compression and heating laser beams, either with indirect or direct drive. A more recent route, 'fast ignition', has been actively studied since the 90's, increasing the need for very high energy lasers to create the hot spot; some European lasers of this kind are already functioning, others are under construction or planned. Among European facilities, Laser Mega Joule (LMJ), which is under construction, will be the most powerful tool at the end of the decade, along with NIF in the Usa, to study and obtain fusion. LMJ is designed not only to obtain fusion but also to carry out experiments on all laser-plasma physics themes thanks to its flexibility. This facility, mainly dedicated to defence programmes, will be accessible to the academic research community. On all these facilities, numerous results are and will be obtained in the fields of High Energy Density Physics and Ultra High Intensity. (author)

  14. Review of Inertial Confinement Fusion

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  15. Inertial Motion Capture Costume Design Study

    Agnieszka Szczęsna

    2017-03-01

    Full Text Available The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs. Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results.

  16. Estimating Stair Running Performance Using Inertial Sensors

    Lauro V. Ojeda

    2017-11-01

    Full Text Available Stair running, both ascending and descending, is a challenging aerobic exercise that many athletes, recreational runners, and soldiers perform during training. Studying biomechanics of stair running over multiple steps has been limited by the practical challenges presented while using optical-based motion tracking systems. We propose using foot-mounted inertial measurement units (IMUs as a solution as they enable unrestricted motion capture in any environment and without need for external references. In particular, this paper presents methods for estimating foot velocity and trajectory during stair running using foot-mounted IMUs. Computational methods leverage the stationary periods occurring during the stance phase and known stair geometry to estimate foot orientation and trajectory, ultimately used to calculate stride metrics. These calculations, applied to human participant stair running data, reveal performance trends through timing, trajectory, energy, and force stride metrics. We present the results of our analysis of experimental data collected on eleven subjects. Overall, we determine that for either ascending or descending, the stance time is the strongest predictor of speed as shown by its high correlation with stride time.

  17. Theory of inertial waves in rotating fluids

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  18. Internally driven inertial waves in geodynamo simulations

    Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.

    2018-05-01

    Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.

  19. High resolution measurements supported by electronic structure calculations of two naphthalene derivatives: [1,5]- and [1,6]-naphthyridine—Estimation of the zero point inertial defect for planar polycyclic aromatic compounds

    Gruet, S., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr; Pirali, O. [AILES Beamline, Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette (France); Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS – Université Paris Sud, 91405 Orsay Cedex (France); Goubet, M., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS – Université Lille 1, 59655 Villeneuve d’Ascq Cedex (France)

    2014-06-21

    Polycyclic aromatic hydrocarbons (PAHs) molecules are suspected to be present in the interstellar medium and to participate to the broad and unresolved emissions features, the so-called unidentified infrared bands. In the laboratory, very few studies report the rotationally resolved structure of such important class of molecules. In the present work, both experimental and theoretical approaches provide the first accurate determination of the rotational energy levels of two diazanaphthalene: [1,5]- and [1,6]-naphthyridine. [1,6]-naphthyridine has been studied at high resolution, in the microwave (MW) region using a Fourier transform microwave spectrometer and in the far-infrared (FIR) region using synchrotron-based Fourier transform spectroscopy. The very accurate set of ground state (GS) constants deduced from the analysis of the MW spectrum allowed the analysis of the most intense modes in the FIR (ν{sub 38}-GS centered at about 483 cm{sup −1} and ν{sub 34}-GS centered at about 842 cm{sup −1}). In contrast with [1,6]-naphthyridine, pure rotation spectroscopy of [1,5]-naphthyridine cannot be performed for symmetry reasons so the combined study of the two intense FIR modes (ν{sub 22}-GS centered at about 166 cm{sup −1} and ν{sub 18}-GS centered at about 818 cm{sup −1}) provided the GS and the excited states constants. Although the analysis of the very dense rotational patterns for such large molecules remains very challenging, relatively accurate anharmonic density functional theory calculations appeared as a highly relevant supporting tool to the analysis for both molecules. In addition, the good agreement between the experimental and calculated infrared spectrum shows that the present theoretical approach should provide useful data for the astrophysical models. Moreover, inertial defects calculated in the GS (Δ{sub GS}) of both molecules exhibit slightly negative values as previously observed for planar species of this molecular family. We adjusted

  20. Inertial-range spectrum of whistler turbulence

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  1. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    Xiaoji Niu

    2015-03-01

    Full Text Available Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubiquitous and commonly contain off-the-shelf inertial sensors, as the experimental devices. A series of curriculum experiments are designed, including the Allan variance test, the calibration test, the initial leveling test and the drift feature test. These experiments are well-selected and can be implemented simply with the smartphones and without any other specialized tools. The curriculum syllabus was designed and tentatively carried out on 14 undergraduate students with a science and engineering background. Feedback from the students show that the curriculum can help them gain a comprehensive understanding of the inertial technology such as calibration and modeling of the sensor errors, determination of the device attitude and accumulation of the sensor errors in the navigation algorithm. The use of inertial sensors in smartphones provides the students the first-hand experiences and intuitive feelings about the function of inertial sensors. Moreover, it can motivate students to utilize ubiquitous low-cost sensors in their future research.

  2. Horizontal distribution of near-inertial waves in the western Gulf of Mexico: Eulerian vs Lagrangian.

    Pallas Sanz, E.; García-Carrillo, P.; Garcia Gomez, B. I.; Lilly, J. M.; Perez-Brunius, P.

    2016-02-01

    The time-average horizontal distribution of the near-inertial waves (NIWs) on the western Gulf of Mexico (GoM) is investigated using horizontal velocity data obtained from Lagrangian trajectories of 200 surface drifters drogued at 50m and deployed between September 2008 and September 2012. Preliminary results suggest maximum time-averaged near-inertial circle radius of 2.6km located in the southern Campeche bay near [22N,95W]; implying an inertial velocity of about 0.14m/s. Similar conclusions are delineated using horizontal velocity data obtained from 21 moorings deployed in the western GoM during the same time period. Maximum near-inertial kinetic energy and clockwise spectral energy is found in the mooring LNK3500 located at 21.850N and 94.028W. Maximum inertial circles measured with mooring data, however, are of about 1.6km leading to inertial currents of 0.087m/s, approximately a 40% smaller. This discrepancy seems to be due to the different depth level of the measurements and the bandwidth used to extract the near-inertial oscillations from the total flow. The time-average horizontal distributions of wind work computed from Lagrangian and Eulerian data are compared and they are not consistent with the time-averaged NIW field. The differences are not well understood but we speculate they may be due to the different time scales of wind fluctuations in the northwestern GoM compared to those observed in the Bay of Campeche, together with the change of sign of the background vorticity in the region; being negative (anticyclonic) in the northern GoM and positive (cyclonic) in the Bay of Campeche.

  3. Definition of Ignition in Inertial Confinement Fusion

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Inertial effects in laser-driven ablation

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  5. Inertial Oscillations and the Galilean Transformation

    Korotaev, G. K.

    2018-03-01

    This paper presents a general solution of shallow-water equations on the f-plane. The solution describes the generation of inertial oscillations by wind-pulse forcing over the background of currents arbitrarily changing in time and space in a homogeneous fluid. It is shown that the existence of such a complete solution of shallow-water equations on the f-plane is related to their invariance with respect to the generalized Galilean transformations. Examples of velocity hodographs of inertial oscillations developing over the background of a narrow jet are presented which explain the diversity in their forms.

  6. Inertial and interference effects in optical spectroscopy

    Karstens, W; Smith, D Y

    2015-01-01

    Interference between free-space and material components of the displacement current plays a key role in determining optical properties. This is illustrated by an analogy between the Lorentz optical model and a-c circuits. Phase shifts in material-polarization currents, which are inertial, relative to the non-inertial vacuum-polarization current cause interference in the total displacement current and, hence, variation in E-M wave propagation. If the displacement-current is reversed, forward propagation is inhibited yielding the semimetallic reflectivity exhibited by intrinsic silicon. Complete cancellation involves material currents offsetting free-space currents to form current-loops that correspond to plasmons. (paper)

  7. Inertial algorithms for the stationary Navier-Stokes equations

    Hou, Yanren; Mattheij, R.M.M.

    2003-01-01

    Several kind of new numerical schemes for the stationary Navier-Stokes equations based on the virtue of Inertial Manifold and Approximate Inertial Manifold, which we call them inertial algorithms in this paper, together with their error estimations are presented. All these algorithms are constructed

  8. Inertial Effects on Flow and Transport in Heterogeneous Porous Media.

    Nissan, Alon; Berkowitz, Brian

    2018-02-02

    We investigate the effects of high fluid velocities on flow and tracer transport in heterogeneous porous media. We simulate fluid flow and advective transport through two-dimensional pore-scale matrices with varying structural complexity. As the Reynolds number increases, the flow regime transitions from linear to nonlinear; this behavior is controlled by the medium structure, where higher complexity amplifies inertial effects. The result is, nonintuitively, increased homogenization of the flow field, which leads in the context of conservative chemical transport to less anomalous behavior. We quantify the transport patterns via a continuous time random walk, using the spatial distribution of the kinetic energy within the fluid as a characteristic measure.

  9. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  10. Studies of spherical inertial-electrostatic confinement

    Miley, G.H.

    1992-01-01

    Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed

  11. Actuation stability test of the LISA pathfinder inertial sensor front-end electronics

    Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter

    In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.

  12. Estimating the orientation of a rigid body moving in space using inertial sensors

    He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)

    2015-09-15

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.

  13. Estimating the orientation of a rigid body moving in space using inertial sensors

    He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric

    2015-01-01

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method

  14. Inertial frames and breakthrough propulsion physics

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  15. Inertial Confinement Fusion at Los Alamos

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on Inertial Confinement Fusion: ICF contributions to science and technology; target fabrication; laser-target interaction; KrF laser development; advanced KrF lasers; KrF laser technology; and plasma physics for light-ion program

  16. Inertial reference frames and gravitational forces

    Santavy, I.

    1981-01-01

    The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)

  17. Inertial fusion: strategy and economic potential

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity)

  18. Inertial Confinement Fusion at Los Alamos

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on inertial confinement fusion: distribution of electron-beam energy in KrF laser media; electron collision processes in KrF laser media; Krf laser kinetics; and properties of the KrF laser medium

  19. A flexible cell concentrator using inertial focusing.

    Tu, Chunglong; Zhou, Jian; Liang, Yitao; Huang, Bobo; Fang, Yifeng; Liang, Xiao; Ye, Xuesong

    2017-09-11

    Cell concentration adjustment is intensively implemented routinely both in research and clinical laboratories. Centrifuge is the most prevalent technique for tuning biosample concentration. But it suffers from a number of drawbacks, such as requirement of experienced operator, high cost, low resolution, variable reproducibility and induced damage to sample. Herein we report on a cost-efficient alternative using inertial microfluidics. While the majority of existing literatures concentrate on inertial focusing itself, we identify the substantial role of the outlet system played in the device performance that has long been underestimated. The resistances of the outlets virtually involve in defining the cutoff size of a given inertial filtration channel. Following the comprehensive exploration of the influence of outlet system, we designed an inertial device with selectable outlets. Using both commercial microparticles and cultured Hep G2 cells, we have successfully demonstrated the automated concentration modification and observed several key advantages of our device as compared with conventional centrifuge, such as significantly reduced cell loss (only 4.2% vs. ~40% of centrifuge), better preservation of cell viability and less processing time as well as the increased reproducibility due to absence of manual operation. Furthermore, our device shows high effectiveness for concentrated sample (e.g., 1.8 × 10 6 cells/ml) as well. We envision its promising applications in the circumstance where repetitive sample preparation is intensely employed.

  20. CHAOTIC DUFFING TYPE OSCILLATOR WITH INERTIAL DAMPING

    Tamaševicius, Arunas; Mykolaitis, Gytis; Kirvaitis, Raimundas

    2009-01-01

    A novel Duffing-Holmes type autonomous chaotic oscillator is described. In comparison with the well-known non-autonomous Duffing-Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback sub-circuits, namely a direct positive feedback loop, and an inertial negati...... feedback loop. SPICE simulation and hardware experimental results are presented....

  1. Hohlraum manufacture for inertial confinement fusion

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-01-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components

  2. Inertial fusion research: Annual technical report, 1985

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  3. Inertial forces and the foundations of optical geometry

    Jonsson, Rickard

    2006-01-01

    Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in general relativity. Inspired by the works of Abramowicz et al (see e.g. Abramowicz and Lasota 1997 Class. Quantum Grav. 14 A23-30), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways of describing spatial curvature of a trajectory have been discussed in papers prior to this, one particular prescription (which differs from the standard projected curvature when the reference congruence is shearing), appears novel. For the particular case of a hypersurface-forming congruence, using a suitable rescaling of spacetime, we show that a geodesic photon always follows a line that is spatially straight with respect to the new curvature measure. This fact is intimately connected to Fermat's principle, and allows for a certain generalization of the optical geometry as will be further pursued in a companion paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61). For the particular case when the shear tensor vanishes, we present the inertial force equation in a three-dimensional form (using the bold-face vector notation), and note how similar it is to its Newtonian counterpart. From the spatial curvature measures that we introduce, we derive corresponding covariant differentiations of a vector defined along a spacetime trajectory. This allows us to connect the formalism of this paper to that of Jantzen and co-workers (see e.g. Bini et al 1997 Int. J. Mod. Phys. D 6 143-98)

  4. Inertial confinement fusion and fast ignitor studies

    Willi, O.; Barringer, L.; Bell, A.

    1999-01-01

    The paper discusses inertial confinement fusion research carried out at several different laser facilities including the VULCAN laser at the Rutherford Appleton Laboratory, the TRIDENT laser at the Los Alamos National Laboratory and the PHEBUS laser at Limeil. Low density foam targets were irradiated either with nanosecond laser or soft x-ray pulses. Laser imprinting was studied and in particular saturation of areal density perturbations induced by near-single mode laser imprinting has been observed. Several issues important for the foam buffered direct drive scheme were investigated. These studies included measurements of the absolute levels of Stimulated Brillouin and Raman Scattering observed from laser irradiated low density foam targets either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. Low density foams that are mounted onto a foil target are heated with an intense pulse of soft x-ray radiation. If the foam is heated supersonically the pressure generated is not only the ablation pressure but the combined pressure due to ablation at the foam/foil interface and the heated foam material. The scheme was confirmed on planar targets. Brominated foil targets overcoated with a low density foam were irradiated by a soft x-ray pulse emitted from a hohlraum. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft x-ray radiography to one dimensional radiation hydrodynamic simulations. Further, measurements were carried out to observe the transition from super- to subsonic propagation of an ionisation front in low density chlorinated foam targets irradiated by an intense soft x-ray pulse both in open and confined geometry. The diagnostic for these measurements was K-shell point projection absorption spectroscopy. In the fast ignitor area the channeling and guiding of picosecond laser pulses through underdense plasmas, preformed density

  5. Inertial confinement fusion and fast ignitor studies

    Willi, O.; Barringer, L.; Bell, A.

    2001-01-01

    The paper discusses inertial confinement fusion research carried out at several different laser facilities including the VULCAN laser at the Rutherford Appleton Laboratory, the TRIDENT laser at the Los Alamos National Laboratory and the PHEBUS laser at Limeil. Low density foam targets were irradiated either with nanosecond laser or soft x-ray pulses. Laser imprinting was studied and in particular saturation of areal density perturbations induced by near-single mode laser imprinting has been observed. Several issues important for the foam buffered direct drive scheme were investigated. These studies included measurements of the absolute levels of Stimulated Brillouin and Raman Scattering observed from laser irradiated low density foam targets either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. Low density foams that are mounted onto a foil target are heated with an intense pulse of soft x-ray radiation. If the foam is heated supersonically the pressure generated is not only the ablation pressure but the combined pressure due to ablation at the foam/foil interface and the heated foam material. The scheme was confirmed on planar targets. Brominated foil targets overcoated with a low density foam were irradiated by a soft x-ray pulse emitted from a hohlraum. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft x-ray radiography to one dimensional radiation hydrodynamic simulations. Further, measurements were carried out to observe the transition from super- to subsonic propagation of an ionisation front in low density chlorinated foam targets irradiated by an intense soft x-ray pulse both in open and confined geometry. The diagnostic for these measurements was K-shell point projection absorption spectroscopy. In the fast ignitor area the channeling and guiding of picosecond laser pulses through underdense plasmas, preformed density

  6. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.

    Erdem, Arif Tanju; Ercan, Ali Özer

    2015-02-01

    In a setup where camera measurements are used to estimate 3D egomotion in an extended Kalman filter (EKF) framework, it is well-known that inertial sensors (i.e., accelerometers and gyroscopes) are especially useful when the camera undergoes fast motion. Inertial sensor data can be fused at the EKF with the camera measurements in either the correction stage (as measurement inputs) or the prediction stage (as control inputs). In general, only one type of inertial sensor is employed in the EKF in the literature, or when both are employed they are both fused in the same stage. In this paper, we provide an extensive performance comparison of every possible combination of fusing accelerometer and gyroscope data as control or measurement inputs using the same data set collected at different motion speeds. In particular, we compare the performances of different approaches based on 3D pose errors, in addition to camera reprojection errors commonly found in the literature, which provides further insight into the strengths and weaknesses of different approaches. We show using both simulated and real data that it is always better to fuse both sensors in the measurement stage and that in particular, accelerometer helps more with the 3D position tracking accuracy, whereas gyroscope helps more with the 3D orientation tracking accuracy. We also propose a simulated data generation method, which is beneficial for the design and validation of tracking algorithms involving both camera and inertial measurement unit measurements in general.

  7. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  8. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    Jin-Chun Piao

    2017-11-01

    Full Text Available Simultaneous localization and mapping (SLAM is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  9. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  10. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  11. Inertial sensor-based methods in walking speed estimation: a systematic review.

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  12. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    Qingguo Li

    2012-05-01

    Full Text Available Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  13. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  14. Data analysis of inertial sensor for train positioning detection system

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  15. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  16. High precision estimation of inertial rotation via the extended Kalman filter

    Liu, Lijun; Qi, Bo; Cheng, Shuming; Xi, Zairong

    2015-11-01

    Recent developments in technology have enabled atomic gyroscopes to become the most sensitive inertial sensors. Atomic spin gyroscopes essentially output an estimate of the inertial rotation rate to be measured. In this paper, we present a simple yet efficient estimation method, the extended Kalman filter (EKF), for the atomic spin gyroscope. Numerical results show that the EKF method is much more accurate than the steady-state estimation method, which is used in the most sensitive atomic gyroscopes at present. Specifically, the root-mean-squared errors obtained by the EKF method are at least 103 times smaller than those obtained by the steady-state estimation method under the same response time.

  17. Tritium burning in inertial electrostatic confinement fusion facility

    Ohnishi, Masami, E-mail: onishi@kansai-u.ac.jp [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Yamamoto, Yasushi; Osawa, Hodaka [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Hatano, Yuji; Torikai, Yuji [Hydrogen Isotope Science Center, University of Toyama, Gofuku, Toyama 930-8555 (Japan); Murata, Isao [Faculty of Engineering Environment and Energy Department, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamakura, Keita; Onishi, Masaaki; Miyamoto, Keiji; Konda, Hiroki [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Masuda, Kai [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hotta, Eiki [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-11-01

    Highlights: • An experiment on tritium burning is conducted in an inertial electrostatic confinement fusion (IECF) facility. • A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used. • The neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. • The neutron production rate of the D–T gas mixture in 1:1 ratio is expected to be more than 10{sup 8}(1/sec) in the present D–T experiment. - Abstract: An experiment on tritium burning is conducted to investigate the enhancement in the neutron production rate in an inertial electrostatic confinement fusion (IECF) facility. The facility is designed such that it is shielded from the outside for safety against tritium and a getter pump is used for evacuating the vacuum chamber and feeding the fuel gas. A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used, and its neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. Moreover, the results show good agreement with those of a simplified theoretical estimation of the neutron production rate. After tritium burning, the exhausted fuel gas undergoes a tritium recovery procedure through a water bubbler device. The amount of gaseous tritium released by the developed IECF facility after tritium burning is verified to be much less than the threshold set by regulations.

  18. Tritium burning in inertial electrostatic confinement fusion facility

    Ohnishi, Masami; Yamamoto, Yasushi; Osawa, Hodaka; Hatano, Yuji; Torikai, Yuji; Murata, Isao; Kamakura, Keita; Onishi, Masaaki; Miyamoto, Keiji; Konda, Hiroki; Masuda, Kai; Hotta, Eiki

    2016-01-01

    Highlights: • An experiment on tritium burning is conducted in an inertial electrostatic confinement fusion (IECF) facility. • A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used. • The neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. • The neutron production rate of the D–T gas mixture in 1:1 ratio is expected to be more than 10"8(1/sec) in the present D–T experiment. - Abstract: An experiment on tritium burning is conducted to investigate the enhancement in the neutron production rate in an inertial electrostatic confinement fusion (IECF) facility. The facility is designed such that it is shielded from the outside for safety against tritium and a getter pump is used for evacuating the vacuum chamber and feeding the fuel gas. A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used, and its neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. Moreover, the results show good agreement with those of a simplified theoretical estimation of the neutron production rate. After tritium burning, the exhausted fuel gas undergoes a tritium recovery procedure through a water bubbler device. The amount of gaseous tritium released by the developed IECF facility after tritium burning is verified to be much less than the threshold set by regulations.

  19. Enhanced Subsea Acoustically Aided Inertial Navigation

    Jørgensen, Martin Juhl

    time is expensive so lots of effort is put into cutting down on time spent on all tasks. Accuracy demanding tasks such as subsea construction and surveying are subject to strict quality control requirements taking up a lot of time. Offshore equipment is rugged and sturdy as the environmental conditions...... are harsh, likewise should the use of it be simple and robust to ensure that it actually works. The contributions of this thesis are all focused on enhancing accuracy and time efficiency while bearing operational reliability and complexity strongly in mind. The basis of inertial navigation, the inertial...... at desired survey points; the other uses a mapping sensor such as subsea lidar to simply map the area in question. Both approaches are shown to work in practice. Generating high resolution maps, as the latter approach, is how the author anticipates all subsea surveys will be conducted in the near future....

  20. Prospects for developing attractive inertial fusion concepts

    Cornwall, T.; Bodner, S.; Herrmannsfeldt, W.B.; Hogan, W.; Storm, E.; VanDevender, J.P.

    1986-01-01

    The authors discuss the role of inertial fusion in relationship to defense activities as well as in relation to energy alternatives. Other general advantages to inertial fusion besides maintaining the system more cheaply and easily, are discussed such as certain designs and the use of very short wavelength with a very modest laser intensity. A discussion on the direct illumination approach is offered. The progress made in high-gain target physics and the potential for development of solid-state lasers as a potential multimegajoule driver and a potential high-rep-rate fusion driver are discussed. Designs for reaction chambers are examined, as is the heavy-ion fusion program. Light-ion accelerators are also discussed

  1. Inertial confinement: concept and early history

    Linhart, J.G.

    1986-01-01

    The concept of inertial confinement is linked to the general theme of energy compression and staging. It is shown how it arose from the ideas and experiments on dynamic pinches towards the end of the fifties and how the important key concept of a linear was further developed during the sixties. THe various attempts at driving linears to speeds in excess of 1 cm/μs are reviewed in chronological order, mentioning the important impetus given to this field by the consideration of laser as a driver. It is concluded that the field of inertial confinement fusion (ICF) is becoming ever richer in possibilities, and the understanding of the physics of high-energy density has reached now a satisfactory level

  2. The history and hopes of inertial confinement

    Linhart, J.G.

    1987-01-01

    The development of the concept of inertial confinement is followed through its several incarnations starting from hammer and anvil, tamping of chemical explosives to Veksler's idea of collective and impact acceleration. The application of inertial confinement to the controlled nuclear fusion appears as a natural extension of these previous applications. The early association with the research on macroparticle-acceleration is also mentioned. Follows a brief description of the development of ideas on liner-acceleration, including those linked with a rocket-propulsion, or as it is known today-ablation. The recent trends in liner-acceleration, energy-compression and energy-staging are mentioned, as well as the hopes and fears connected with reactor projects

  3. Designing the Cascade inertial confinement fusion reactor

    Pitts, J.H.

    1987-01-01

    The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors

  4. Heavy ion drivers for inertial confinement fusion

    Keefe, D.

    1983-01-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  5. Heavy ion drivers for inertial confinement fusion

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  6. Twenty years of ''Nuclear Fusion''. Inertial confinement

    Yamanaka, C.

    1980-01-01

    Inertial confinement (ICF) fusion research is directed towards demonstrating the feasibility of very rapidly heating and compressing small pellets of suitable fuel until conditions exist where thermonuclear fusion can occur and useful amounts of power can be produced. Major problems which have to be solved are the following: 1) pellet design based on driver-plasma coupling; 2) the technology of energy drivers; 3) feasibility of ICF reactor systems

  7. Target support for inertial confinement fusion

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  8. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors

    Wouda, Frank J.; Giuberti, Matteo; Bellusci, Giovanni; Maartens, Erik; Reenalda, Jasper; van Beijnum, Bernhard J.F.; Veltink, Peter H.

    2018-01-01

    Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics

  9. Inertial effects in systems with magnetic charge

    Armitage, N. P.

    2018-05-01

    This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.

  10. Inertial particle manipulation in microscale oscillatory flows

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha

    2017-11-01

    Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.

  11. The vacuum in non-inertial systems

    Soto, F.; Cocho, G.; Villarreal, C.; Hacyan, S.; Sarmiento, A.

    1987-01-01

    A brief presentation of the attemps made by our group on understanding the physics of the thermal effects appearing in quantum field theory in the non-inertial frames or in curved spacetime is made. The idea of the vacuum field being directly responsible for the thermal effects in non-inertial frames is introduced and explored; the thermal distributions observed from a non-inertial frame are due to the Doppler distortion undergone by the vacuum field. To support this idea we use the results obtained by T.H. Boyer in stochastic field theory, and further on we develop a formalism which leads to consistent results. We also show that the thermal character of the denominators in the distributions, appearing in quantum field theory in non-inertia frames, is directly linked to the discreteness originated by confining the space where the field is being quantized. This confinement implies the absence of some long wave modes, which in turn implies a modification of the states density in phase space. (author)

  12. Status of light ion inertial fusion research at NRL

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  13. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  14. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  15. Inertial Fusion Program. Progress report, January-December 1980

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO 2 -laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized

  16. Inertial Fusion Program. Progress report, January-December 1980

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  17. Theory of gravitational-inertial field of universe. 2

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  18. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  19. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  20. Electron Shock Ignition of Inertial Fusion Targets

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  1. Hydrodynamic instabilities in inertial confinement fusion

    Hoffman, N.M.

    1995-01-01

    The focus of these (two) lectures is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. (author)

  2. Fast inertial particle manipulation in oscillating flows

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  3. Commercial applications of inertial confinement fusion

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  4. Inertial mass of a superconducting vortex

    Chudnovsky, E. M.; Kuklov, A. B.

    2003-01-01

    We show that a large contribution to the inertial mass of a moving superconducting vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is $M_{l} = ({\\rm m}_e^2c^{2}/64{\\pi}{\\alpha}^{2}{\\mu}{\\lambda}_{L}^{4})\\ln({\\lambda}_{L}/{\\xi})$ , where ${\\rm m}_{e}$ is the the bare electron mass, $c$ is the speed of light, ${\\alpha}=e^{2}/{\\hbar}c {\\approx} 1/137$ is the fine structure constant, ${\\mu}$ is the shear mod...

  5. Jason: heavy-ion-driven inertial fusion

    Callan, C.G. Jr.; Dashen, R.F.; Garwin, R.L.; Muller, R.A.; Richter, B.; Rosenbluth, M.N.

    1978-02-01

    A few of the problems in heavy-ion-driven inertial-fusion systems are reviewed. Nothing was found within the scope of this study that would in principle bar such systems from delivering the energy and peak power required to ignite the fuel pellet. Indeed, ion-fusion seems to show great promise, but the conceptual design of ion-fusion systems is still in a primitive state. A great deal of work, mostly theoretical, remains to be done before proceeding with massive hardware development. Conclusions are given about the state of the work

  6. Application of inertial sensors for motion analysis

    Ferenc Soha

    2012-06-01

    Full Text Available This paper presents our results on the application of various inertial sensors for motion analysis. After the introduction of different sensor types (accelerometer, gyroscope, magnetic field sensor, we discuss the possible data collection and transfer techniques using embedded signal processing and wireless data communication methods [1,2]. Special consideration is given to the interpretation of accelerometer readings, which contains both the static and dynamic components, and is affected by the orientation and rotation of the sensor. We will demonstrate the possibility to decompose these components for quasiperiodic motions. Finally we will demonstrate the application of commercially available devices (Wii sensor, Kinect sensor, mobile phone for motion analysis applications.

  7. Inertial fusion reactors and magnetic fields

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  8. Inertial cavitation threshold of nested microbubbles.

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Tertiary proton diagnostics in future inertial confinement fusion experiments

    Cremer, S.; Verdon, C.P.; Petrasso, R.D.

    1998-01-01

    Recently, it was proposed to use energetic (up to 31 MeV) tertiary protons produced during the final stage of inertial confinement fusion implosions to measure the fuel areal density of compressed deuterium endash tritium (DT). The method is based on seeding the fuel with 3 He. The reaction of 3 He ions with the energetic knock-on deuterons, produced via the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from very large areal density targets. This work presents results of detailed time-dependent Monte Carlo simulations of the nuclear processes involved in producing and transporting these protons through imploding targets proposed for direct-drive experiments on OMEGA [D. K. Bradley et al., Phys. Plasmas 5, 1870 (1998)] and the National Ignition Facility [S. W. Haan et al., Phys. Plasmas 2, 2480 (1995)]. copyright 1998 American Institute of Physics

  10. Propagation of inertial-gravity waves on an island shelf

    Bondur, V. G.; Sabinin, K. D.; Grebenyuk, Yu. V.

    2015-09-01

    The propagation of inertial-gravity waves (IGV) at the boundary of the Pacific shelf near the island of Oahu (Hawaii), whose generation was studied in the first part of this work [1], is analyzed. It is shown that a significant role there is played by the plane oblique waves; whose characteristics were identified by the method of estimating 3D wave parameters for the cases when the measurements are available only for two verticals. It is established that along with the descending propagation of energy that is typical of IGVs, wave packets ascend from the bottom to the upper layers, which is caused by the emission of waves from intense jets of discharged waters flowing out of a diffusor located at the bottom.

  11. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  12. Neutronics issues and inertial fusion energy: a summary of findings

    Latkowski, J.F.

    1998-01-01

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES ampersand H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES ampersand H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES ampersand H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions

  13. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  14. Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY

    Soares, S. M.; Natarov, A.; Richards, K. J.

    2016-05-01

    A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.

  15. Physics of Non-Inertial Reference Frames

    Kamalov, Timur F.

    2010-01-01

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  16. Review of the Inertial Fusion Energy Program

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  17. Inertial fusion with heavy ion beams

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  18. Review of the Inertial Fusion Energy Program

    2004-01-01

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of @@@drivers@@@ for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  19. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Silvia Fantozzi

    Full Text Available Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23° and the ankle more dorsiflexed (≈ 9° at heel strike, and the hip was more flexed at toe-off (≈ 13° in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7° and showed a more inversed mean value (≈ 7°. The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered

  20. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  1. Self-similarity in the inertial region of wall turbulence.

    Klewicki, J; Philip, J; Marusic, I; Chauhan, K; Morrill-Winter, C

    2014-12-01

    The inverse of the von Kármán constant κ is the leading coefficient in the equation describing the logarithmic mean velocity profile in wall bounded turbulent flows. Klewicki [J. Fluid Mech. 718, 596 (2013)] connects the asymptotic value of κ with an emerging condition of dynamic self-similarity on an interior inertial domain that contains a geometrically self-similar hierarchy of scaling layers. A number of properties associated with the asymptotic value of κ are revealed. This is accomplished using a framework that retains connection to invariance properties admitted by the mean statement of dynamics. The development leads toward, but terminates short of, analytically determining a value for κ. It is shown that if adjacent layers on the hierarchy (or their adjacent positions) adhere to the same self-similarity that is analytically shown to exist between any given layer and its position, then κ≡Φ(-2)=0.381966..., where Φ=(1+√5)/2 is the golden ratio. A number of measures, derived specifically from an analysis of the mean momentum equation, are subsequently used to empirically explore the veracity and implications of κ=Φ(-2). Consistent with the differential transformations underlying an invariant form admitted by the governing mean equation, it is demonstrated that the value of κ arises from two geometric features associated with the inertial turbulent motions responsible for momentum transport. One nominally pertains to the shape of the relevant motions as quantified by their area coverage in any given wall-parallel plane, and the other pertains to the changing size of these motions in the wall-normal direction. In accord with self-similar mean dynamics, these two features remain invariant across the inertial domain. Data from direct numerical simulations and higher Reynolds number experiments are presented and discussed relative to the self-similar geometric structure indicated by the analysis, and in particular the special form of self

  2. The dynamics of small inertial particles in weakly stratified turbulence

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  3. Dispersion of (light) inertial particles in stratified turbulence

    van Aartrijk, M.; Clercx, H.J.H.; Armenio, Vincenzo; Geurts, Bernardus J.; Fröhlich, Jochen

    2010-01-01

    We present a brief overview of a numerical study of the dispersion of particles in stably stratified turbulence. Three types of particles arc examined: fluid particles, light inertial particles ($\\rho_p/\\rho_f = \\mathcal{O}(1)$) and heavy inertial particles ($\\rho_p/\\rho_f \\gg 1$). Stratification

  4. Inertial range spectrum of field-aligned whistler turbulence

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-01-01

    the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov-Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model...

  5. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N. [and others

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  6. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-01-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade

  7. Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers.

    Sinhuber, Michael; Bewley, Gregory P; Bodenschatz, Eberhard

    2017-09-29

    Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 10^{10} samples of the turbulent fluctuating velocity, which corresponds to O(10^{7}) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from R_{λ}=110 up to R_{λ}=1600, using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.

  8. Inertial Confinement Fusion Target Component Fabrication and Technology Development report

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included ''Capabilities Activation'' and ''Capabilities Demonstration'' to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included ''Small Glass Shell Deliveries'' and ''Composite Polymer Capsules'' for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct ''Onsite Support'' at LLNL and LANL. We continued planning for the transfer of ''Micromachining Equipment from Rocky Flats'' and established ''Target Component Micromachining and Electroplating Facilities'' at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the ''Characterization of Opaque b-Layered Targets.'' We developed deuterated and UV-opaque polymers for use by the University of Rochester's Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process

  9. Lifting style and participant’s sex do not affect optimal inertial sensor location for ambulatory assessment of trunk inclination

    Faber, G.S.; Chang, C.C.; Kingma, I.; Dennerlein, J.T.

    2013-01-01

    Trunk inclination (TI) is often used as a measure to quantify back loading in ergonomic workplace evaluation. The goal of the present study was to determine the effects of lifting style and participant's sex on the optimal inertial sensor (IS) location on the back of the trunk for the measurement of

  10. Are OPERA neutrinos faster than light because of non-inertial reference frames?

    Germanà, C.

    2012-02-01

    Context. Recent results from the OPERA experiment reported a neutrino beam traveling faster than light. The challenging experiment measured the neutrino time of flight (TOF) over a baseline from the CERN to the Gran Sasso site, concluding that the neutrino beam arrives ~60 ns earlier than a light ray would do. Because the result, if confirmed, has an enormous impact on science, it might be worth double-checking the time definitions with respect to the non-inertial system in which the neutrino travel time was measured. An observer with a clock measuring the proper time τ free of non-inertial effects is the one located at the solar system barycenter (SSB). Aims: Potential problems in the OPERA data analysis connected with the definition of the reference frame and time synchronization are emphasized. We aim to investigate the synchronization of non-inertial clocks on Earth by relating this time to the proper time of an inertial observer at SSB. Methods: The Tempo2 software was used to time-stamp events observed on the geoid with respect to the SSB inertial observer time. Results: Neutrino results from OPERA might carry the fingerprint of non-inertial effects because they are timed by terrestrial clocks. The CERN-Gran Sasso clock synchronization is accomplished by applying corrections that depend on special and general relativistic time dilation effects at the clocks, depending on the position of the clocks in the solar system gravitational well. As a consequence, TOF distributions are centered on values shorter by tens of nanoseconds than expected, integrating over a period from April to December, longer if otherwise. It is worth remarking that the OPERA runs have always been carried out from April/May to November. Conclusions: If the analysis by Tempo2 holds for the OPERA experiment, the excellent measurement by the OPERA collaboration will turn into a proof of the general relativity theory in a weak field approximation. The analysis presented here is falsifiable

  11. Inertial-confinement fusion with lasers

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  12. Inertial effects in diffusion-limited reactions

    Dorsaz, N; Foffi, G; De Michele, C; Piazza, F

    2010-01-01

    Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.

  13. Fast ignition schemes for inertial confinement fusion

    Deutsch, C.

    2003-01-01

    The controlled production of a local hot spot in super-compressed deuterium + tritium fuel is examined in details. Relativistic electron beams (REB) in the MeV and proton beams in the few tens MeV energy range produced by PW-lasers are respectively considered. A strong emphasis is given to the propagation issues due to large density gradients in the outer core of compressed fuel. A specific attention is also paid to the final and complete particle stopping resulting in hot spot generation as well as to the interplay of collective vs. particle stopping at the entrance channel on the low density side in plasma target. Moreover, REB production and fast acceleration mechanisms are also given their due attention. Proton fast ignition looks promising as well as the wedged (cone angle) approach circumventing most of transport uncertainties between critical layer and hot spot. Global engineering perspectives for fast ignition scenario (FIS) driven inertial confinement fusion are also detailed. (author)

  14. Pulsed power systems for inertial confinement fusion

    VanDevender, J.P.

    1979-01-01

    Sandis's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. The power and energy requirements for net energy gain are 10 14 to 10 15 W and 1 to 10 MJ. Recent advances in pulsed power and power flow technologies permit suitable accelerators to be built. The first accelerator of this new generation is PBFA I. It operates at 2 MV, 15 MA, 30 TW for 35 ns and is scheduled for completion in June 1980. The principles of this new accelerator technology and their application to ICF will be presented

  15. Inertial mass of the Abrikosov vortex.

    Chudnovsky, E M; Kuklov, A B

    2003-08-08

    We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)

  16. Target production for inertial fusion energy

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  17. Laser drivers for inertial confinement fusion

    Holzrichter, J.F.

    1983-01-01

    Inertial Confinement Fusion (ICF) is the technology that we are developing to access the vast stored energy potential of deuterium fuel located in the world's water supply. This form of fusion is accomplished by compressing and heating small volumes of D-T fuel to very high temperatures (greater than 100M 0 C) and to very high densities (greater than 1000 times the normal liquid density). Under these fuel conditions, a thermonuclear reaction can occur, leading to a net energy release compared to the energy used to heat the fuel initially. To accomplish the condition where fusion reactions begin, effective drivers are required. These are lasers or particle beam accelerators which can provide greater than 10 14 W/cm 2 over millimeter scale targets with an appropriately programmed intensity vs time. At present, we are using research lasers to obtain an understanding of the physics and engineering of fuel compression

  18. Heavy ion inertial fusion - an overview

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  19. SEBREZ: an inertial-fusion-reactor concept

    Meier, W.R.

    1982-01-01

    The neutronic aspects of an inertial fusion reactor concept that relies on asymmetrical neutronic effects to enhance the tritium production in the breeding zones have been studied. We find that it is possible to obtain a tritium breeding ratio greater than 1.0 with a chamber configuration in which the breeding zones subtend only a fraction of the total solid angle. This is the origin of the name SEBREZ which stands for SEgregated BREeding Zones. It should be emphasized that this is not a reactor design study; rather this study illustrates certain neutronic effects in the context of a particular reactor concept. An understanding of these effects forms the basis of a design technique which has broader application than just the SEBREZ concept

  20. Hydrodynamic instabilities in inertial confinement fusion

    Freeman, J.R.

    1977-01-01

    Inertial confinement fusion targets generally consist of hollow high-density spheres filled with low density thermonuclear fuel. Targets driven ablatively by electrons, ions, or lasers are potentially unstable during the initial acceleration phase. Later in time, the relatively low density fuel decelerates the dense inner portion of the sphere (termed the pusher), permitting unstable growth at the fuel-pusher interface. The instabilities are of the Rayleigh-Taylor variety, modified by thermal and viscous diffusion and convection. These problems have been analyzed by many in recent years using both linearized perturbation methods and direct numerical simulation. Examples of two-dimensional simulations of the fuel-pusher instability in electron beam fusion targets will be presented, along with a review of possible stabilization mechanisms

  1. Inertial confinement fusion and related topics

    Starodub, A. N.

    2007-01-01

    The current state of different approaches (laser fusion, light and heavy ions, electron beam) to the realization of inertial confinement fusion is considered. From comparative analysis a conclusion is made that from the viewpoint of physics, technology, safety, and economics the most realistic way to future energetics is an electric power plant based on a hybrid fission-fusion reactor which consists of an external source of neutrons (based on laser fusion) and a subcritical two-cascade nuclear blanket, which yields the energy under the action of 14 MeV neutrons. The main topics on inertial confinement fusion such as the energy driver, the interaction between plasmas and driver beam, the target design are discussed. New concept of creation of a laser driver for IFE based on generation and amplification of radiation with controllable coherence is reported. The performed studies demonstrate that the laser based on generation and amplification of radiation with controllable coherence (CCR laser) has a number of advantages as compared to conventional schemes of lasers. The carried out experiments have shown a possibility of suppression of small-scale self-focusing, formation of laser radiation pulses with required characteristics, simplification of an optical scheme of the laser, good matching of laser-target system and achievement of homogeneous irradiation and high output laser energy density without using traditional correcting systems (phase plates, adaptive optics, space filters etc.). The results of the latest experiments to reach ultimate energy characteristics of the developed laser system are also reported. Recent results from the experiments aimed at studying of the physical processes in targets under illumination by the laser with controllable coherence of radiation are presented and discussed, especially such important laser-matter interaction phenomena as absorption and scattering of the laser radiation, the laser radiation harmonic generation, X

  2. Inertial Sensor-Based Gait Recognition: A Review

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  3. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  4. A Novel AHRS Inertial Sensor-Based Algorithm for Wheelchair Propulsion Performance Analysis

    Jonathan Bruce Shepherd; Tomohito Wada; David Rowlands; Daniel Arthur James

    2016-01-01

    With the increasing rise of professionalism in sport, athletes, teams, and coaches are looking to technology to monitor performance in both games and training in order to find a competitive advantage. The use of inertial sensors has been proposed as a cost effective and adaptable measurement device for monitoring wheelchair kinematics; however, the outcomes are dependent on the reliability of the processing algorithms. Though there are a variety of algorithms that have been proposed to monito...

  5. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas. PMID:26927125

  6. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-02-27

    This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas.

  7. On the construction of inertial manifolds under symmetry constraints II: O(2) constraint and inertial manifolds on thin domains

    Rodriguez-Bernal, A.

    1993-01-01

    On a model example, the Kuramoto-Velarde equation, which includes the Kuramoto-Sivashin-sky and the Cahn-Hilliard models, and under suitable and reasonable hypothesis, we show the dimension and determining modes of inertial manifolds for several classes of solutions. We also give bounds for the dimensions of inertial manifolds of the full system as a parameter is varied. The results are pointed out to be almost model-independent. The same ideas are also applied to a class of parabolic equations in higher space dimension, obtaining results about inertial manifolds on thin and small domains. (Author). 30 refs

  8. Comparison of quantitative evaluation between cutaneous and transosseous inertial sensors in anterior cruciate ligament deficient knee: A cadaveric study.

    Murase, Atsunori; Nozaki, Masahiro; Kobayashi, Masaaki; Goto, Hideyuki; Yoshida, Masahito; Yasuma, Sanshiro; Takenaga, Tetsuya; Nagaya, Yuko; Mizutani, Jun; Okamoto, Hideki; Iguchi, Hirotaka; Otsuka, Takanobu

    2017-09-01

    Recently several authors have reported on the quantitative evaluation of the pivot-shift test using cutaneous fixation of inertial sensors. Before utilizing this sensor for clinical studies, it is necessary to evaluate the accuracy of cutaneous sensor in assessing rotational knee instability. To evaluate the accuracy of inertial sensors, we compared cutaneous and transosseous sensors in the quantitative assessment of rotational knee instability in a cadaveric setting, in order to demonstrate their clinical applicability. Eight freshly frozen human cadaveric knees were used in this study. Inertial sensors were fixed on the tibial tuberosity and directly fixed to the distal tibia bone. A single examiner performed the pivot shift test from flexion to extension on the intact knees and ACL deficient knees. The peak overall magnitude of acceleration and the maximum rotational angular velocity in the tibial superoinferior axis was repeatedly measured with the inertial sensor during the pivot shift test. Correlations between cutaneous and transosseous inertial sensors were evaluated, as well as statistical analysis for differences between ACL intact and ACL deficient knees. Acceleration and angular velocity measured with the cutaneous sensor demonstrated a strong positive correlation with the transosseous sensor (r = 0.86 and r = 0.83). Comparison between cutaneous and transosseous sensor indicated significant difference for the peak overall magnitude of acceleration (cutaneous: 10.3 ± 5.2 m/s 2 , transosseous: 14.3 ± 7.6 m/s 2 , P sensors. Therefore, this study indicated that the cutaneous inertial sensors could be used clinically for quantifying rotational knee instability, irrespective of the location of utilization. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  9. Accelerators for heavy ion inertial fusion: Progress and plans

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy

  10. Fusion of Inertial Navigation and Imagery Data, Phase I

    National Aeronautics and Space Administration — The innovations of the Fusion of Inertial Navigation and Imagery Data are the application of the concept to the dynamic entry-interface through near-landing phases,...

  11. Plan for the development and commercialization of inertial confinement fusion

    Willke, T.; Dingee, D.; Ault, L.; Bampton, M.; Bickford, W.; Hartman, J.; Rockwood, A.; Simonen, E.; Teofilo, V.; Frank, T.

    1978-01-01

    An engineering development program strategy to take inertial confinement fusion (ICF) from the milestone of scientific feasibility to a point where its commercial viability can be determined is described. The ICF program objectives and basic program strategy are discussed

  12. Time and Relative Distance Inertial Sensor, Phase I

    National Aeronautics and Space Administration — Precise location information is critical for crewmembers for safe EVA Moon and Mars exploration. Current inertial navigation systems are too bulky, fragile, and...

  13. Magnetic and inertial CTR: present status and outlook

    Wood, L.

    1975-01-01

    Some of the successes of controlled fusion research in both inertial confinement and magnetic confinement are described. The possibilities of scaled-up experiments are also discussed with respect to cost and economics

  14. Human Perception of Ambiguous Inertial Motion Cues

    Zhang, Guan-Lu

    2010-01-01

    Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that

  15. 3D-Calibration for IMU of the Strapdown Inertial Navigation Systems

    Avrutov V.V.

    2017-01-01

    Full Text Available A new calibration method for Inertial Measurement Unit (IMU of Strapdown Iner-tial Navigation Systems was presented. IMU has been composed of accelerometers, gyroscopes and a circuit of signal processing. Normally, a rate transfer test and multi-position tests are us-ing for IMU calibration. The new calibration method is based on whole angle rotation or finite rotation. In fact it’s suggested to turn over IMU around three axes simultaneously. In order to solve the equation of calibration, it is necessary to provide an equality of a rank of basic matrix into degree of basic matrix. The results of simulated IMU data presented to demonstrate the performance of the new calibration method.

  16. Noise reduction and estimation in multiple micro-electro-mechanical inertial systems

    Waegli, Adrian; Skaloud, Jan; Guerrier, Stéphane; Parés, Maria Eulàlia; Colomina, Ismael

    2010-01-01

    This research studies the reduction and the estimation of the noise level within a redundant configuration of low-cost (MEMS-type) inertial measurement units (IMUs). Firstly, independent observations between units and sensors are assumed and the theoretical decrease in the system noise level is analyzed in an experiment with four MEMS-IMU triads. Then, more complex scenarios are presented in which the noise level can vary in time and for each sensor. A statistical method employed for studying the volatility of financial markets (GARCH) is adapted and tested for the usage with inertial data. This paper demonstrates experimentally and through simulations the benefit of direct noise estimation in redundant IMU setups

  17. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-01-01

    The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459

  18. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  19. Quality Assurance and T&E of Inertial Systems for RLV Mission

    Sathiamurthi, S.; Thakur, Nayana; Hari, K.; Peter, Pilmy; Biju, V. S.; Mani, K. S.

    2017-12-01

    This work describes the quality assurance and Test and Evaluation (T&E) activities carried out for the inertial systems flown successfully in India's first reusable launch vehicle technology demonstrator hypersonic experiment mission. As part of reliability analysis, failure mode effect and criticality analysis and derating analysis were carried out in the initial design phase, findings presented to design review forums and the recommendations were implemented. T&E plan was meticulously worked out and presented to respective forums for review and implementation. Test data analysis, health parameter plotting and test report generation was automated and these automations significantly reduced the time required for these activities and helped to avoid manual errors. Further, T&E cycle is optimized without compromising on quality aspects. These specific measures helped to achieve zero defect delivery of inertial systems for RLV application.

  20. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  1. Inertial confinement fusion: present status and future potential

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  2. [Potential of using inertial sensors in high level sports].

    Ruzova, T K; Andreev, D A; Shchukin, A I

    2013-01-01

    The article thoroughly covers development of wireless inertial sensors technology in medicine. The authors describe main criteria of diagnostic value of inertial sensors, advantages and prospects of using these systems in sports medicine, in comparison with other conventional methods of biomechanical examination in sports medicine. The results obtained necessitate further development of this approach, specifically creation of algorithms and methods of biomechanic examination of highly qualified athletes in high achievements sports.

  3. Developing inertial fusion energy - Where do we go from here?

    Meier, W.R.; Logan, G.

    1996-01-01

    Development of inertial fusion energy (IFE) will require continued R ampersand D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work

  4. Using Posture Estimation to Enhance Personal Inertial Tracking

    2016-06-01

    augment tracking during periods without GPS coverage. The goal of this research is to improve the current personal inertial navigation system by...solution is to use inertial navigation systems to augment tracking during periods without GPS coverage. The goal of this research is to improve the...For large items such as vehicles or aircraft, a Global Positioning System ( GPS ) is used to track the locations of friendly units and display these

  5. Kalman Filter for Estimation of Sensor Acceleration Using Six - axis Inertial Sensor

    Lee, Jung Keun

    2015-01-01

    Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors

  6. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  7. Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors

    2008-03-01

    for this test. Though, marketed as a GPS/INS, it was in fact used simply as an IMU for this test. The raw inertial measurement data (from the...Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application. MS Thesis, UCGE Reports Number

  8. Inertial fusion with ultra-powerful lasers

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel

  9. New design for inertial piezoelectric motors

    Liu, Lige; Ge, Weifeng; Meng, Wenjie; Hou, Yubin; Zhang, Jing; Lu, Qingyou

    2018-03-01

    We have designed, implemented, and tested a novel inertial piezoelectric motor (IPM) that is the first IPM to have controllable total friction force, which means that it sticks with large total friction forces and slips with severely reduced total friction forces. This allows the IPM to work with greater robustness and produce a larger output force at a lower threshold voltage while also providing higher rigidity. This is a new IPM design that means that the total friction force can be dramatically reduced or even canceled where necessary by pushing the clamping points at the ends of a piezoelectric tube that contains the sliding shaft inside it in the opposite directions during piezoelectric deformation. Therefore, when the shaft is propelled forward by another exterior piezoelectric tube, the inner piezoelectric tube can deform to reduce the total friction force acting on the shaft instantly and cause more effective stepping movement of the shaft. While our new IPM requires the addition of another piezoelectric tube, which leads to an increase in volume of 120% when compared with traditional IPMs, the average step size has increased by more than 400% and the threshold voltage has decreased by more than 50 V. The improvement in performance is far more significant than the increase in volume. This enhanced performance will allow the proposed IPM to work under large load conditions where a simple and powerful piezoelectric motor is needed.

  10. Inertially confined fusion using heavy ion drivers

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts

  11. Externally guided target for inertial fusion

    Martinez-Val, J.M.; Piera, M.

    1996-01-01

    A totally new concept is proposed to reach fusion conditions by externally guided inertial confinement. The acceleration and compression of the fuel is guided by a cannon-like external duct with a conical section ending in a small-size cavity around the central point of the tube. The fuel pellets coming from each cannon mouth collide in the central cavity where the implosion and final compression of the fuel take place. Both the tube material density and its areal density must be much higher than the initial density and areal density of the fuel. The external tube will explode into pieces as a consequence of the inner pressures achieved after the fuel central collision. If the collision is suitably driven, a fusion burst can take place before the tube disassembly. because of the features of the central collision needed to trigger ignition, this concept could be considered as tamped impact fusion. Both the fusion products and the debris from the guide tube are caught by a liquid-lithium curtain surrounding the target. Only two driving beams are necessary. The system can be applied to any type of driver and could use a solid pellet at room temperature as the initial target. 54 refs., 24 figs., 1 tab

  12. Inertial confinement fusion with light ion beams

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  13. Thermal inertializing of solid incinerator residues

    Proelss, J.

    2003-01-01

    Inertialization of residues is a key task of incinerators. Residues of conventional incineration processes may contain high levels of inorganic or organic pollutants and must be treated prior to recycling. the most effective process is thermal treatment above the melting point. This will destroy organic pollutants like dioxins/furans and pathogenic compounds, while the heavy metals will be partly volatilized. The glassy slag obtained as end product is low in heavy metals and more or less resistant to leaching. The The author describes a method for calculating activity coefficients of volatile components of diluted, liquid multicomponent systems. With these data, the data base for thermodynamic description of fluid mixtures was updated, and a set of characteristic data was established for describing transport in an inflatable module. Once the activity coefficients of interesting constituents of the slag are known along with the transport conditions in the volatilization process, it is possible to optimize the thermal treatment of critical ashes and dusts with a view to energy consumption and process control. In two different exemplary process concepts, the energy consumption for residue treatment is estimated. The processes proposed are compared with published process proposals, and their energy consumption is assessed in a comoparative study [de

  14. Overview of the USA inertial fusion program

    Kahalas, S.L.

    1989-01-01

    The next step in the USA inertial fusion program is to begin planning for a Laboratory Microfusion Facility or LMF. The LMF would have an output energy of between 200 and 1000 MJ, the latter energy being equivalent to a quarter ton of high explosive, with an input driver energy of 5-10 MJ. This implies a high target gain, 100-200 or more, with either a laser or particle beam driver. The LMF would cost a half billion to a billion dollars and would require a serious commitment by the country and the Department of Energy. The Department is in the stage of preliminary planning for an LMF and beginning a process by which a driver selection can be made in the fiscal year 1991-1992 timeframe. Construction initiation will require that a departmental decision be made as well as appropriation of funds within the Congressional funding cycle. In this paper, we review recent progress leading to the new USA program planning for the next facility and describe the status of this preliminary planning as well as characteristics of the LMF. (orig.)

  15. Intense ion beams for inertial confinement fusion

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  16. Charged particle accelerators for inertial fusion energy

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  17. Cryogenic systems for inertial fusion energy

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  18. One-dimensional model of inertial pumping

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  19. Thermonuclear plasma physic: inertial confinement fusion

    Bayer, Ch.; Juraszek, D.

    2001-01-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  20. IMU: inertial sensing of vertical CoM movement.

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2009-07-22

    The purpose of this study was to use a quaternion rotation matrix in combination with an integration approach to transform translatory accelerations of the centre of mass (CoM) from an inertial measurement unit (IMU) during walking, from the object system onto the global frame. Second, this paper utilises double integration to determine the relative change in position of the CoM from the vertical acceleration data. Five participants were tested in which an IMU, consisting of accelerometers, gyroscopes and magnetometers was attached on the lower spine estimated centre of mass. Participants were asked to walk three times through a calibrated volume at their self-selected walking speed. Synchronized data were collected by an IMU and an optical motion capture system (OMCS); both measured at 100 Hz. Accelerations of the IMU were transposed onto the global frame using a quaternion rotation matrix. Translatory acceleration, speed and relative change in position from the IMU were compared with the derived data from the OMCS. Peak acceleration in vertical axis showed no significant difference (p> or =0.05). Difference between peak and trough speed showed significant difference (p or =0.05). These results indicate that quaternions, in combination with Simpsons rule integration, can be used in transforming translatory acceleration from the object frame to the global frame and therefore obtain relative change in position, thus offering a solution for using accelerometers in accurate global frame kinematic gait analyses.

  1. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  2. Direct-drive inertial confinement fusion: A review

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.

    2015-01-01

    direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source

  3. Direct-drive inertial confinement fusion: A review

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-11-15

    direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

  4. Servo Driven Corotation: Development of AN Inertial Clock.

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant

  5. A novel particle filter approach for indoor positioning by fusing WiFi and inertial sensors

    Zhu Nan

    2015-12-01

    Full Text Available WiFi fingerprinting is the method of recording WiFi signal strength from access points (AP along with the positions at which they were recorded, and later matching those to new measurements for indoor positioning. Inertial positioning utilizes the accelerometer and gyroscopes for pedestrian positioning. However, both methods have their limitations, such as the WiFi fluctuations and the accumulative error of inertial sensors. Usually, the filtering method is used for integrating the two approaches to achieve better location accuracy. In the real environments, especially in the indoor field, the APs could be sparse and short range. To overcome the limitations, a novel particle filter approach based on Rao Blackwellized particle filter (RBPF is presented in this paper. The indoor environment is divided into several local maps, which are assumed to be independent of each other. The local areas are estimated by the local particle filter, whereas the global areas are combined by the global particle filter. The algorithm has been investigated by real field trials using a WiFi tablet on hand with an inertial sensor on foot. It could be concluded that the proposed method reduces the complexity of the positioning algorithm obviously, as well as offers a significant improvement in position accuracy compared to other conventional algorithms, allowing indoor positioning error below 1.2 m.

  6. Turbulence modeling of the Von Karman flow: Viscous and inertial stirrings

    Poncet, Sebastien; Schiestel, Roland; Monchaux, Romain

    2008-01-01

    The present work considers the turbulent Von Karman flow generated by two counter-rotating smooth flat (viscous stirring) or bladed (inertial stirring) disks. Numerical predictions based on one-point statistical modeling using a low-Reynolds number second-order full stress transport closure (RSM model) are compared to velocity measurements performed at CEA (Commissariat a l'Energie Atomique, France). The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of inertial stirring instead of modeling the blades themselves. The influences of the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics and the turbulence properties in the Von Karman configuration. In particular, we highlighted the transition between the merged and separated boundary layer regimes and the one between the Batchelor [Batchelor, G.K., 1951. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quat. J. Mech. Appl. Math. 4 (1), 29-41] and the Stewartson [Stewartson, K., 1953. On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49, 333-341] flow structures in the smooth disk case. We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings

  7. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  8. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  9. Inertial Sensing Based Assessment Methods to Quantify the Effectiveness of Post-Stroke Rehabilitation

    Hsin-Ta Li

    2015-07-01

    Full Text Available In clinical settings, traditional stroke rehabilitation evaluation methods are subjectively scored by occupational therapists, and the assessment results vary individually. To address this issue, this study aims to develop a stroke rehabilitation assessment system by using inertial measurement units. The inertial signals from the upper extremities were acquired, from which three quantitative indicators were extracted to reflect rehabilitation performance during stroke patients’ movement examination, i.e., shoulder flexion. Both healthy adults and stroke patients were recruited to correlate the proposed quantitative evaluation indices and traditional rehab assessment scales. Especially, as a unique feature of the study the weight for each of three evaluation indicators was estimated by the least squares method. The quantitative results demonstrate the proposed method accurately reflects patients’ recovery from pre-rehabilitation, and confirm the feasibility of applying inertial signals to evaluate rehab performance through feature extraction. The implemented assessment scheme appears to have the potential to overcome some shortcomings of traditional assessment methods and indicates rehab performance correctly.

  10. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  11. Review of fall risk assessment in geriatric populations using inertial sensors

    2013-01-01

    Background Falls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population. Methods Forty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological features were extracted; including, sensor placement, derived parameters used to assess fall risk, fall risk classification method, and fall risk classification model outcomes. Results Inertial sensors were placed only on the lower back in the majority of papers (65%). One hundred and thirty distinct variables were assessed, which were categorized as position and angle (7.7%), angular velocity (11.5%), linear acceleration (20%), spatial (3.8%), temporal (23.1%), energy (3.8%), frequency (15.4%), and other (14.6%). Fallers were classified using retrospective fall history (30%), prospective fall occurrence (15%), and clinical assessment (32.5%), with 22.5% using a combination of retrospective fall occurrence and clinical assessments. Half of the studies derived models for fall risk prediction, which reached high levels of accuracy (62-100%), specificity (35-100%), and sensitivity (55-99%). Conclusions Inertial sensors are promising sensors for fall risk assessment. Future studies should identify fallers using prospective techniques and focus on determining the most promising sensor sites, in conjunction with determination of optimally predictive variables. Further research should also attempt to link predictive variables to specific fall risk factors and investigate disease populations that are at high risk of falls. PMID:23927446

  12. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  13. Improving Inertial Pedestrian Dead-Reckoning by Detecting Unmodified Switched-on Lamps in Buildings

    Antonio R. Jiménez

    2014-01-01

    Full Text Available This paper explores how inertial Pedestrian Dead-Reckoning (PDR location systems can be improved with the use of a light sensor to measure the illumination gradients created when a person walks under ceiling-mounted unmodified indoor lights. The process of updating the inertial PDR estimates with the information provided by light detections is a new concept that we have named Light-matching (LM. The displacement and orientation change of a person obtained by inertial PDR is used by the LM method to accurately propagate the location hypothesis, and vice versa; the LM approach benefits the PDR approach by obtaining an absolute localization and reducing the PDR-alone drift. Even from an initially unknown location and orientation, whenever the person passes below a switched-on light spot, the location likelihood is iteratively updated until it potentially converges to a unimodal probability density function. The time to converge to a unimodal position hypothesis depends on the number of lights detected and the asymmetries/irregularities of the spatial distribution of lights. The proposed LM method does not require any intensity illumination calibration, just the pre-storage of the position and size of all lights in a building, irrespective of their current on/off state. This paper presents a detailed description of the light-matching concept, the implementation details of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or Map-matching in order to compare their contribution in obtaining high accuracy indoor localization. The integrated solution achieves a localization error lower than 1 m in most of the cases.

  14. Improving inertial Pedestrian Dead-Reckoning by detecting unmodified switched-on lamps in buildings.

    Jiménez, Antonio R; Zampella, Francisco; Seco, Fernando

    2014-01-03

    This paper explores how inertial Pedestrian Dead-Reckoning (PDR) location systems can be improved with the use of a light sensor to measure the illumination gradients created when a person walks under ceiling-mounted unmodified indoor lights. The process of updating the inertial PDR estimates with the information provided by light detections is a new concept that we have named Light-matching (LM). The displacement and orientation change of a person obtained by inertial PDR is used by the LM method to accurately propagate the location hypothesis, and vice versa; the LM approach benefits the PDR approach by obtaining an absolute localization and reducing the PDR-alone drift. Even from an initially unknown location and orientation, whenever the person passes below a switched-on light spot, the location likelihood is iteratively updated until it potentially converges to a unimodal probability density function. The time to converge to a unimodal position hypothesis depends on the number of lights detected and the asymmetries/irregularities of the spatial distribution of lights. The proposed LM method does not require any intensity illumination calibration, just the pre-storage of the position and size of all lights in a building, irrespective of their current on/off state. This paper presents a detailed description of the light-matching concept, the implementation details of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or Map-matching) in order to compare their contribution in obtaining high accuracy indoor localization. The integrated solution achieves a localization error lower than 1 m in most of the cases.

  15. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  16. Modification of inertial oscillations by the mesoscale eddy field

    Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.

    2010-09-01

    The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.

  17. Inertial modes of rigidly rotating neutron stars in Cowling approximation

    Kastaun, Wolfgang

    2008-01-01

    In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes

  18. Near-inertial waves and deep ocean mixing

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  19. Near-inertial waves and deep ocean mixing

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  20. Inertial electro-magnetostatic plasma neutron sources

    Barnes, D.C.; Nebel, R.A.; Schauer, M.M.; Pickrel, M.M.

    1997-01-01

    Two types of systems are being studied experimentally as D-T plasma neutron sources. In both concepts, spherical convergence of either electrons or ions or both is used to produce a dense central focus within which D-T fusion reactions produce 14 MeV neutrons. One concept uses nonneutral plasma confinement principles in a Penning type trap. In this approach, combined electrostatic and magnetic fields provide a vacuum potential well within which electrons are confined and focused. A small (6 mm radius) spherical machine has demonstrated a focus of 30 microm radius, with a central density of up to 35 times the Brillouin density limit of a static trap. The resulting electron plasma of up to several 10 13 cm -3 provides a multi-kV electrostatic well for confining thermonuclear ions as a neutron source. The second concept (Inertial Electrostatic Confinement, or IEC) uses a high-transparence grid to form a global well for acceleration and confinement of ions. Such a system has demonstrated steady neutron output of 2 x 10 10 s -1 . The present experiment will scale this to >10 11 s -1 . Advanced designs based on each concept have been developed recently. In these proposed approaches, a uniform-density electron sphere forms an electrostatic well for ions. Ions so trapped may be focused by spherical convergence to produce a dense core. An alternative approach produces large amplitude spherical oscillations of a confined ion cloud by a small, resonant modulation of the background electrons. In both the advanced Penning trap approach and the advanced IEC approach, the electrons are magnetically insulated from a large (up to 100 kV) applied electrostatic field. The physics of these devices is discussed, experimental design details are given, present observations are analyzed theoretically, and the performance of future advanced systems are predicted

  1. Polarization beam smoothing for inertial confinement fusion

    Rothenberg, Joshua E.

    2000-01-01

    For both direct and indirect drive approaches to inertial confinement fusion (ICF) it is imperative to obtain the best possible drive beam uniformity. The approach chosen for the National Ignition Facility uses a random-phase plate to generate a speckle pattern with a precisely controlled envelope on target. A number of temporal smoothing techniques can then be employed to utilize bandwidth to rapidly change the speckle pattern, and thus average out the small-scale speckle structure. One technique which generally can supplement other smoothing methods is polarization smoothing (PS): the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently, and the rms nonuniformity can be reduced by a factor of (√2). A number of PS schemes are described and compared on the basis of the aggregate rms and the spatial spectrum of the focused illumination distribution. The (√2) rms nonuniformity reduction of PS is present on an instantaneous basis and is, therefore, of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. When combining PS and temporal methods, such as smoothing by spectral dispersion (SSD), PS can reduce the rms of the temporally smoothed illumination by an additional factor of (√2). However, it has generally been thought that in order to achieve this reduction of (√2), the increased divergence of the beam from PS must exceed the divergence of SSD. It is also shown here that, over the time scales of interest to direct or indirect drive ICF, under some conditions PS can reduce the smoothed illumination rms by nearly (√2) even when the PS divergence is much smaller than that of SSD. (c) 2000 American Institute of Physics

  2. Antiproton fast ignition for inertial confinement fusion

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  3. Summary of the status of lasers for inertial confinement fusion

    Holzrichter, J.F.

    1979-01-01

    Laser systems designed for plasma research are operating in many laboratories throughout the world. The laser performance itself has become reasonably consistant from laboratory to laboratory and the focusing properties of the laser beams are understood. The plasma physics data, obtained with these systems, also appears to be reasonably self-consistant and is of great interest for inertial fusion applications. These lasers are commonly providing output powers of 0.5 > 2 TW, and power densities on target of 10 13 -10- 16 W/cm 2 , pulse durations on the order of 100 psec to 3 nsec, wavelengths between 0.5 μ and 10 μ, and focal spot sizes of 100 μ or larger where focal spot edge effects are becoming less dominant. In addition, spurious target responses due to such behavior as pre-pulses, self-focusing, or imprecise focal spot measurement are being observed less often. The technical problems of large multi-beam systems, performing at the 10 TW level, have been overcome and these systems (e.g. the Shiva and Helios lasers) are providing high density compression data with ablative targets. The next step in laser design, the 100 to 300 kJ systems, are under construction and 1 MJ lasers are being contemplated

  4. High strain-rate soft material characterization via inertial cavitation

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  5. Determine the Foot Strike Pattern Using Inertial Sensors

    Tzyy-Yuang Shiang

    2016-01-01

    Full Text Available From biomechanical point of view, strike pattern plays an important role in preventing potential injury risk in running. Traditionally, strike pattern determination was conducted by using 3D motion analysis system with cameras. However, the procedure is costly and not convenient. With the rapid development of technology, sensors have been applied in sport science field lately. Therefore, this study was designed to determine the algorithm that can identify landing strategies with a wearable sensor. Six healthy male participants were recruited to perform heel and forefoot strike strategies at 7, 10, and 13 km/h speeds. The kinematic data were collected by Vicon 3D motion analysis system and 2 inertial measurement units (IMU attached on the dorsal side of both shoes. The data of each foot strike were gathered for pitch angle and strike index analysis. Comparing the strike index from IMU with the pitch angle from Vicon system, our results showed that both signals exhibited highly correlated changes between different strike patterns in the sagittal plane (r=0.98. Based on the findings, the IMU sensors showed potential capabilities and could be extended beyond the context of sport science to other fields, including clinical applications.

  6. Antares facility for inertial-fusion experiments: status and plans

    Goldstone, P.D.; Allen, G.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    1982-01-01

    Antares is a large, 30 to 40 kJ CO 2 laser system which will provide a base for experiments to determine the efficiency with which 10 μm light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, we expect to perform a series of measurements to determine the energy scaling of hot electron temperature and target coupling efficiency in selected set of targets including simple spheres. We also expect to continue experiments, now planned for Helios, to determine whether CO 2 -produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions). Details of these experiments, as well as plans for further experiments, are still being defined

  7. Addressing Common Technical challenges in Inertial Confinement Fusion

    Haynes, Donald A.

    2016-01-01

    The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosion phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to ''determine the efficacy of ignition'', it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.

  8. Review on Recent Developments in Laser Driven Inertial Fusion

    M. Ghoranneviss

    2014-01-01

    Full Text Available Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE, parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF, by burning deuterium-tritium (DT in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS laser pulses of around terawatt (TW power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996 as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.

  9. Addressing Common Technical challenges in Inertial Confinement Fusion

    Haynes, Donald A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosion phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.

  10. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    Jiayu Zhang

    2018-05-01

    Full Text Available The Semi-Strapdown Inertial Navigation System (SSINS provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS inertial measurement unit (MIMU outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  11. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  12. Sea ice inertial oscillations in the Arctic Basin

    F. Gimbert

    2012-10-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  13. Particle energization by inertial Alfven wave in auroral ionosphere

    Kumar, S.

    2017-12-01

    The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.

  14. Modular finger and hand motion capturing system based on inertial and magnetic sensors

    Valtin Markus

    2017-03-01

    Full Text Available The assessment of hand posture and kinematics is increasingly important in various fields. This includes the rehabilitation of stroke survivors with restricted hand function. This paper presents a modular, ambulatory measurement system for the assement of the remaining hand function and for closed-loop controlled therapy. The device is based on inertial sensors and utilizes up to five interchangeable sensor strips to achieve modularity and to simplify the sensor attachment. We introduce the modular hardware design and describe algorithms used to calculate the joint angles. Measurements with two experimental setups demonstrate the feasibility and the potential of such a tracking device.

  15. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  16. Generalisation of the test theory of special relativity to non-inertial frames

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1989-01-01

    We present a generalised test theory of special relativity, using a non-inertial frame. Within the framework of the special theory of relativity the transport and Einstein synchronisations are equivalent on a rigidly rotating disc. But in any theory with a preferred frame, such an equivalence does not hold. The time difference resulting from the two synchronisation procedures is a measurable quantity within the reach of existing clock systems on the Earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of special relativity. (Author)

  17. Inertial Confinement Fusion Annual Report 1997

    Correll, D

    1998-01-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  18. Theory of gravitational-inertial field of universe. 1

    Davtyan, O.K.

    1978-01-01

    A generalization of the real world tensor by the introduction of a inertial field tensor is proposed. On the basis of variational equations a system of more general covariant equations of the gravitational-inertial field is obtained. In the Einstein approximation these equations reduce to the field equations of Einstein. The solution of fundamental problems in the general theory of relativity by means of the new equations gives the same results as the solution by means of Einstein's equations. However, application of these equations to the cosmologic problem gives a result different from that obtained by Friedmann's theory. In particular, the solution gives the Hubble law as the law of motion of a free body in the inertial field - in contrast to Galileo-Newton's law. (author)

  19. Active Vibration Isolation Devices with Inertial Servo Actuators

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  20. Decoherence and Multipartite Entanglement of Non-Inertial Observers

    Ramzan, M.

    2012-01-01

    The decoherence effect on multipartite entanglement in non-inertial frames is investigated. The GHZ state is considered to be shared between partners with one partner in the inertial frame whereas the other two are in accelerated frames. One-tangle and π-tangles are used to quantify the entanglement of the multipartite system influenced by phase damping and phase flip channels. It is seen that for the phase damping channel, entanglement sudden death (ESD) occurs for p > 0.5 in the infinite acceleration limit. On the other hand, in the case of the phase flip channel, ESD behavior occurs at p = 0.5. It is also seen that entanglement sudden birth (ESB) occurs in the case of phase flip channel just after ESD, i.e. p > 0.5. Furthermore, it is seen that the effect of the environment on multipartite entanglement is much stronger than that of the acceleration of non-inertial frames. (general)

  1. Historic overview of inertial confinement fusion: What have we learned

    Glass, A.J.

    1986-01-01

    Although laser fusion has been the subject of research since the early 1960s, it has only been intensively studied for about 14 years. During that time, substantive advances have been made in our understanding of the complex physics of laser-heated plasmas, in the development of sophisticated diagnostic instrumentation, and in the technology of fusion targets and inertial fusion drivers. These advances will be reviewed. Of equal importance are the lessons learned in the economic and political arenas. These lessons may be of greater significance for scientific endeavors in other fields of research. The economic and political issues surrounding inertial fusion research will be discussed. Possible future directions for inertial fusion development will be presented

  2. Inertial motion capture system for biomechanical analysis in pressure suits

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  3. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Youssef Tawk

    2014-02-01

    Full Text Available The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS based on low-cost micro-electro-mechanical systems (MEMS inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

  4. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André

    2014-01-01

    The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773

  5. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed

  6. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.

    Rose, Michael; Curtze, Carolin; O'Sullivan, Joseph; El-Gohary, Mahmoud; Crawford, Dennis; Friess, Darin; Brady, Jacqueline M

    2017-12-01

    To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents. Copyright © 2017

  7. Near-Inertial Surface Currents and their influence on Surface Dispersion in the Northeastern Gulf of Mexico near the Deepwater Horizon Oil Spill

    Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.

    2014-12-01

    The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.

  8. Properties of gravi-inertial systems of reference

    Dozmorov, I.M.

    1977-01-01

    A number of papers of the author have been summarized devoted to gravi-inertial systems of reference in which the following problems are solved: a) analogs of inertial systems of reference (ISR), gravi-ISR, have been introduced into the general relativity the ory (GRT); b) using transformations between such ISR as symmetry transformation, obtained by variational methods are values with clear physical sense; c) using the gravi-ISR basis as the zero level of the deformation reading, the theory of elasticity in GRT has been constructed and someof its applications considered. The results are compared with those of other authors

  9. Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media

    Bang, Ole; Edmundson, Darran; Królikowski, Wieslaw

    1999-01-01

    We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics of the...... of the walk-off modes is illustrated for collapsing and diffracting partially coherent beams.......We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics...

  10. Inertial fusion energy; L'energie de fusion inertielle

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  11. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion

    Nolen, R.L. Jr.; Kool, L.B.

    1981-01-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used

  12. Galileo spacecraft inertial sensors in-flight calibration design

    Jahanshahi, M. H.; Lai, J. Y.

    1983-01-01

    The successful navigation of Galileo depends on accurate trajectory correction maneuvers (TCM's) performed during the mission. A set of Inertial Sensor (INS) units, comprised of gyros and accelerometers, mounted on the spacecraft, are utilized to control and monitor the performance of the TCM's. To provide the optimum performance, in-flight calibrations of INS are planned. These calibrations will take place on a regular basis. In this paper, a mathematical description is given of the data reduction technique used in analyzing a typical set of calibration data. The design of the calibration and the inertial sensor error models, necessary for the above analysis, are delineated in detail.

  13. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  14. Motion sickness and tilts of the inertial force environment : Active suspension systems vs. active passengers

    Golding, J. F.; van der Bles, W.; Bos, J. E.; Haynes, T.; Gresty, M. A.

    2003-01-01

    Background: Maneuvering in vehicles exposes occupants to low frequency forces (<1 Hz) which can provoke motion sickness. Hypothesis: Aligning with the tilting inertial resultant (gravity + imposed horizontal acceleration: gravito-inertial force (GIF)) may reduce motion sickness when tilting is

  15. Tanscranial Threshold of Inertial Cavitation Induced by Diagnosticc Ultrasound and Microbubbles

    Liu, J.; Gao, S.; Porter, T.R.; Everbach, C; Shi, W.; Vignon, F.; Powers, J.; Lof, J.; Turner, J.; Xie, F.

    2011-01-01

    Background: Inertial cavitation may cause hazardous bioeffects whileusing ultrasound and microbubble mediated thrombolysis. The purposeof this study was to investigate the influence of ultrasound pulselength and temporal bone on inertial cavitation thresholds within the brain utilizing transtemporal

  16. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation.

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2013-02-04

    In this paper measurements from a monocular vision system are fused with inertial/magnetic measurements from an Inertial Measurement Unit (IMU) rigidly connected to the camera. Two Extended Kalman filters (EKFs) were developed to estimate the pose of the IMU/camera sensor moving relative to a rigid scene (ego-motion), based on a set of fiducials. The two filters were identical as for the state equation and the measurement equations of the inertial/magnetic sensors. The DLT-based EKF exploited visual estimates of the ego-motion using a variant of the Direct Linear Transformation (DLT) method; the error-driven EKF exploited pseudo-measurements based on the projection errors from measured two-dimensional point features to the corresponding three-dimensional fiducials. The two filters were off-line analyzed in different experimental conditions and compared to a purely IMU-based EKF used for estimating the orientation of the IMU/camera sensor. The DLT-based EKF was more accurate than the error-driven EKF, less robust against loss of visual features, and equivalent in terms of computational complexity. Orientation root mean square errors (RMSEs) of 1° (1.5°), and position RMSEs of 3.5 mm (10 mm) were achieved in our experiments by the DLT-based EKF (error-driven EKF); by contrast, orientation RMSEs of 1.6° were achieved by the purely IMU-based EKF.

  17. Inertial fusion sciences and applications 99: state of the art 1999

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  18. A study of redundancy management strategy for tetrad strap-down inertial systems. [error detection codes

    Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.

    1979-01-01

    Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.

  19. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    Lindl, J. D.; Hammel, B. A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S. A.; Sethian, John D.

    2003-12-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5 10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  20. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    Lindl, J D; Hammel, B A; Logan, B Grant; Meyerhofer, David D; Payne, S A; Sethian, John D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  1. Inertial confinement fusion at the Los Alamos National Laboratory

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  2. Magnetic suspension of a rotating system. Application to inertial flywheels

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  3. The sensitivity theory for inertial confinement pellet fusion system

    Cai, Shaohui; Zhang, Yuquan.

    1986-01-01

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  4. Compression of magnetized target in the magneto-inertial fusion

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  5. The zero-point field in non-inertial frames

    Hacyan, S.

    1985-01-01

    The energy spectrum of the zero-point field as seen in non-inertial frames is investigated. Uniformly accelerated frames and black holes are considered. It is suggested that the radiation produced by black holes or acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)

  6. Eulerian derivations of non-inertial Navier-Stokes equations

    Combrinck, MA

    2014-09-01

    Full Text Available The paper presents an Eulerian derivation of the non-inertial Navier-Stokes equations as an alternative to the Lagrangian fluid parcel approach. This work expands on the work of Kageyama and Hyodo [1] who derived the incompressible momentum equation...

  7. Pulsed power ion accelerators for inertially confined fusion

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  8. Conservation laws in baroclinic inertial-symmetric instabilities

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  9. Clock transport synchronisation and the dragging of inertial frames

    Rosenblum, Arnold

    1987-01-01

    It is shown that it is possible, by using the lack of synchronisation of clocks by clock transport synchronisation in circular orbits, to test for the dragging of inertial frames in Einstein's theory of general relativity. Possible experiments are discussed. (author)

  10. A 6 D.O.F. opto-inertial tracker for virtual reality experiments in microgravity

    Zaoui, Mohamed; Wormell, Dean; Altshuler, Yury; Foxlin, Eric; McIntyre, Joseph

    2001-08-01

    Gravity plays a role in many different levels of human motor behavior. It dictates the laws of motion of our body and limbs, as well as of the objects in the external world with which we wish to interact. The dynamic interaction of our body with the world is molded within gravity's constraints. The role played by gravity in the perception of visual stimuli and the elaboration of human movement is an active research theme in the field of Neurophysiology. Conditions of microgravity, coupled with techniques from the world of virtual reality, provide a unique opportunity to address these questions concerning the function of the human sensorimotor system [1]. The ability to measure movements of the head and to update in real time the visual scene presented to the subject based on these measurements is a key element in producing a realistic virtual environment. A variety of head-tracking hardware exists on the market today [2-4], but none seem particularly well suited to the constraints of working with a space station environment. Nor can any of the existing commercial systems meet the more stringent requirements for physiological experimentation (high accuracy, high resolution, low jitter, low lag) in a wireless configuration. To this end, we have developed and tested a hybrid opto-inertial 6 degree-of-freedom tracker based on existing inertial technology [5-8]. To confirm that the inertial components and algorithms will function properly, this system was tested in the microgravity conditions of parabolic flight. Here we present the design goals of this tracker, the system configuration and the results of 0g and 1g testing.

  11. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  12. Inertial fusion results from Nova and implication for the future of ICF

    Kilkenny, J.D.; Cable, M.D.; Campbell, E.M.

    1988-10-01

    A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-μm laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good agreement is obtained with one-dimensional simulations. Maximum compressions of between 20--30 in radius are measured with a variety of diagnostics. Improvements in the driver technology are demonstrated; we anticipate operation of Nova at the 50-kJ level at 3ω. 18 refs., 6 figs., 1 tab

  13. Local inertial oscillations in the surface ocean generated by time-varying winds

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  14. Inertial Gait Phase Detection for control of a drop foot stimulator: Inertial sensing for gait phase detection

    Kotiadis, D.; Hermens, Hermanus J.; Veltink, Petrus H.

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are

  15. Lower limb spasticity assessment using an inertial sensor: a reliability study

    Sterpi, I; Colombo, R; Caroli, A; Meazza, E; Maggioni, G; Pistarini, C

    2013-01-01

    Spasticity is a common motor impairment in patients with neurological disorders that can prevent functional recovery after rehabilitation. In the clinical setting, its assessment is carried out using standardized clinical scales. The aim of this study was to verify the applicability of inertial sensors for an objective measurement of quadriceps spasticity and evaluate its test–retest and inter-rater reliability during the implementation of the Wartenberg pendulum test. Ten healthy subjects and 11 patients in vegetative state with severe brain damage were enrolled in this study. Subjects were evaluated three times on three consecutive days. The test–retest reliability of measurement was assessed in the first two days. The third day was devoted to inter-rater reliability assessment. In addition, the lower limb muscle tone was bilaterally evaluated at the knee joint by the modified Ashworth scale. The factorial ANOVA analysis showed that the implemented method allowed us to discriminate between healthy and pathological conditions. The fairly low SEM and high ICC values obtained for the pendulum parameters indicated a good test–retest and inter-rater reliability of measurement. This study shows that an inertial sensor can be reliably used to characterize leg kinematics during the Wartenberg pendulum test and provide quantitative evaluation of quadriceps spasticity. (paper)

  16. Stores, Weight and Inertial System Facility

    Federal Laboratory Consortium — This facility provides stores weight, center of gravity, and inertia measurements in support of weapon/aircraft compatibility testing. System provides store weight...

  17. Methodology for Assessment of Inertial Response from Wind Power Plants

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    High wind power penetration levels result in additional requirements from wind power in order to improve frequency stability. Replacement of conventional power plants with wind power plants reduces the power system inertia due to the wind turbine technology. Consequently, the rate of change...... of frequency and the maximum frequency deviation increase after a disturbance such as generation loss, load increase, etc. Having no inherent inertial response, wind power plants need additional control concepts in order to provide an additional active power following a disturbance. Several control concepts...... have been implemented in the literature, but the assessment of these control concepts with respect to power system requirements has not been specified. In this paper, a methodology to assess the inertial response from wind power plants is proposed. Accordingly, the proposed methodology is applied...

  18. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  19. Inertial Effects on Finite Length Pipe Seismic Response

    Virginia Corrado

    2012-01-01

    Full Text Available A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-structure interaction. The approach is focused on axial strains, since bending strains in a buried pipe due to the wave propagation are typically a second-order effect. Unlike many works, the inertial terms are considered in solving equations. Accurate numerical simulations are carried out to show the influence of pipe length and constraint conditions on the pipe seismic strain. The obtained results are compared with results inferred from other models present in the literature. For free-end pipelines, inertial effects have significant influence only for short length. On the contrary, their influence is always important for pinned pipes. Numerical simulations show that a simple rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models.

  20. Heavy-ion accelerator research for inertial fusion

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  1. Inertial Fusion Driven By Intense Heavy-Ion Beams

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  2. Overview of safety and environmental issues for inertial fusion energy

    Piet, S.J.; Brereton, S.J.; Tanaka, S.

    1996-01-01

    This paper summarizes safety and environmental issues of Inertial Fusion Energy (IFE): inventories, effluents, maintenance, accident safety, waste management, and recycling. The fusion confinement approach among inertial and magnetic options affects how the fusion reaction is maintained and which materials surround the reaction chamber. The target fill technology has a major impact on the target factory tritium inventory. IFE fusion reaction chambers usually employ some means to protect the first structural wall from fusion pulses. This protective fluid or granular bed also moderates and absorbs most neutrons before they reach the first structural wall. Although the protective fluid activates, most candidate fluids have low activation hazard. Hands-on maintenance seems practical for the driver, target factory, and secondary coolant systems; remote maintenance is likely required for the reaction chamber, primary coolant, and vacuum exhaust cleanup systems. The driver and fuel target facility are well separated from the main reaction chamber

  3. An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator

    Tian Tixian

    2015-04-01

    Full Text Available A new simple and effective inertial parameter identification method based on sinusoidal vibrations of a six-degree-of-freedom parallel manipulator is proposed. Compared with previously known identification algorithms, the advantages of the new approach are there is no need to design the excitation trajectory to consider the condition number of the observation matrix and the inertial matrix can be accurately defined regardless of the effect of viscous friction. In addition, the use of a sinusoidal exciting trajectory allows calculation of the velocities and accelerations from the measured position response. Simulations show that the new approach has acceptable tolerance of dry friction when using a simple coupling parameter modified formula. The experimental application to the hydraulically driven Stewart platform demonstrates the capability and efficiency of the proposed identification method.

  4. A Complete Design Flow of a General Purpose Wireless GPS/Inertial Platform for Motion Data Monitoring

    Gianluca Borgese

    2015-07-01

    Full Text Available This work illustrates a complete design flow of an electronic system developed to support applications in which there are the need to measure motion parameters and transmit them to a remote unit for real-time teleprocessing. In order to be useful in many operative contexts, the system is flexible, compact, and lightweight. It integrates a tri-axial inertial sensor, a GPS module, a wireless transceiver and can drive a pocket camera. Data acquisition and packetization are handled in order to increase data throughput on Radio Bridge and to minimize power consumption. A trajectory reconstruction algorithm, implementing the Kalman-filter technique, allows obtaining real-time body tracking using only inertial sensors. Thanks to a graphical user interface it is possible to remotely control the system operations and to display the motion data.

  5. Osiris and SOMBRERO inertial confinement fusion power plant designs

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  6. Energy production by means of inertially confined plasmas

    Hoernqvist, N.; Witalis, E.

    1984-01-01

    An account is given, about the general but rather intricate physical principles which are fundamental for the ignition, propagation and burning of some listed energy-producing nuclear fusion reactions. Further, the theory is extended to describe the necessary but high performance combination studied or proposed to be achieved by the radiation sources (drivers) in order to bring about, in particular, the increase density of the nuclear fuel by means of a radiation-driven ablative compression. The analysis is extended by conditions and limitations also for technical and economic reasons. This leads to the identification followed by discussions of five critical parameters, each of which is a necessary condition to obtain inertial fusion. In the sequel, components and assemblies for inertial fusion are described, i.e. drivers (lasers, light ions, x-radiation, heavy ions), the structure and properties of fuel pellets and reactor proposals. Special regard is given to known or anticipated limitations of technical, physical or economic nature. A brief description is given about progress and present situation for magnetic confinement fusion. This provides a background of an attempt for a comparison with inertial fusion. It is then claimed that none of these two main-line techiques of fusion research can at present be regarded or expected to be more likely to succeed in providing economic fusion energy production. In the summary recommendations are given about theoretical studies in combination with close observations of the general and international progress of research. An experimental effort, however, is considered as too much of an expensive venture, in particular with regard to present uncertainties in judging techniques involving accelerator-generated heavy ions and x-ray generation methods for driving the implosion processes of inertial fusion. (Author)

  7. Upgrade of the LLNL Nova laser for inertial confinement fusion

    Murray, J.R.; Trenholme, J.B.; Hunt, J.T.; Frank, D.N.; Lowdermilk, W.H.; Storm, E.

    1991-01-01

    The Lawrence Livermore National Laboratory has proposed to construct an upgrade to the Nova glass laser facility to give an output energy of 1.5-2 megajoules at 350 nanometers wavelength in a nominally 3--5 nanosecond shaped pulse. The Nova Upgrade will be suitable for driving inertial fusion targets to ignition. This paper reviews the design proposed for the laser. 14 refs., 10 figs., 1 tab

  8. Transport of heavy ions in inertial confinement fusion

    Parvazian, A.; Shahbandari Gouchani, A.

    2007-01-01

    In this article we have investigated the interaction of heavy ions (U) with a target (Au). In inertial confinement fusion method Interaction between heavy ion beam and target was simulated, Numerical analysis of the Boltzmann Fokker Planck equation used in order to optimize the material of the target and Energy deposition of ion beam to electrons and ions of target and The thickness of the target were calculated.

  9. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each

  10. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  11. Secret high-temperature reactor concept for inertial fusion

    Monsler, M.J.; Meier, W.R.

    1983-01-01

    The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850 0 C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release

  12. Superfluid compressibility and the inertial mass of a moving singularity

    Duan, J.

    1993-01-01

    The concept of finite compressibility of a Fermi superfluid is used to reconsider the problem of inertial mass of vortex lines in both neutral and charged superfluids at T=0. For the charged case, in contrast to previous works where perfect screening was assumed, we take proper account of electromagnetic screening and solve the bulk charge distribution caused by a moving vortex line. A similar problem for a superconducting thin film is also considered

  13. Inertial confinement fusion systems using heavy ion accelerators as drivers

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-03-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators

  14. Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping

    Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca

    2017-11-01

    Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  15. Wearable inertial sensors in swimming motion analysis: a systematic review.

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  16. Inertial Pocket Navigation System: Unaided 3D Positioning

    Estefania Munoz Diaz

    2015-04-01

    Full Text Available Inertial navigation systems use dead-reckoning to estimate the pedestrian’s position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care.

  17. Inertial Pocket Navigation System: Unaided 3D Positioning

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  18. Non-LTE effects in inertial confinement fusion target chambers

    MacFarlane, J.J.; Moses, G.A.; Peterson, R.R.

    1989-01-01

    In previous studies of transport processes in inertial confinement fusion target chambers, the radiative properties of the background plasma were calculated under the assumption of local thermodynamic equilibrium (LTE). In this paper, the authors present a study of the equation of state and the radiative properties of high temperature, low-to-moderate density ( 21 cm -3 ) plasmas for the determination of the conditions under which non-LTE effects become important and for an assessment of the importance of non-LTE processes in target chambers during high yield inertial fusion target explosions. For this purpose, two-body (radiative and dielectronic) and three-body (collisional) recombination and de-excitation processes are considered in calculating the steady state ionization and excitation populations. The results of this study indicate that non-LTE processes generally become important at temperatures of > or approx. 1, 10 and 100 eV for plasma densities of 10 18 , 10 19 and 10 21 cm -3 , respectively. Radiation hydrodynamic simulations utilizing the equation of state and the opacities for a non-LTE argon plasma were performed to study the response of a background gas to an inertial fusion target explosion. These calculations indicate that non-LTE processes are often the dominant atomic processes in the background plasma and that they can strongly affect the radiative and shock properties as energy is transported away from the point of the target explosion. (author). 22 refs, 10 figs, 1 tab

  19. Magnetic and inertial fusion status and development plans

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  20. Present status of inertial confinement fusion in Japan

    Yamanaka, Chiyoe

    1984-01-01

    The Japanese inertial fusion program has made important progress towards implosion fusion process and the technical development required for realizing the breakeven of inertial fusion energy. The key issues for the ICF research are the development of a high power driver, the pertinent pellet design for implosion by a super computer code, and the diagnostics of implosion process with high space and time resolution. The Institute of Laser Engineering (ILE), Osaka University, is the central laboratory for ICF research in Japan. The ILE Osaka has advanced the Kongo Project aiming at the breakeven of inertial fusion since 1980, and as the first phase, the Gekko 12 Nd glass laser of 20 kJ having 12 beams was constructed. The ILE has also the Lekko 8 CO 2 laser and the Reiden 4 light ion beam machine. In the second phase, a 100 kJ class driver will be provided. At the ILE, rare gas halide lasers such as KrF and ArF have been investigated. Laser plasma coupling, the scaling law for implosion pressure, the invention of a new type target ''Cannonball'', and the development of computer codes are described. Also the activities in universities, government laboratories and industrial companies are reported. (Kako, I.)

  1. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  2. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot

    He, Shibei; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Miao, Wenyong; Zhang, Xing; Tu, Shaoyong; Yuan, Yongteng; Pu, Yudong; Yan, Ji; Wei, Minxi; Yin, Chuansheng [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-07-15

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.

  3. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot

    He, Shibei; Ding, Yongkun; Miao, Wenyong; Zhang, Xing; Tu, Shaoyong; Yuan, Yongteng; Pu, Yudong; Yan, Ji; Wei, Minxi; Yin, Chuansheng

    2016-01-01

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.

  4. Dynamic Accuracy of Inertial Magnetic Sensor Modules

    2016-12-01

    xiii LIST OF ACRONYMS AND ABBREVIATIONS AHRS attitude and heading reference system AKF adaptive Kalman filter AUV autonomous underwater vehicle CF...attitude and heading reference system (AHRS) estimation filter (EF) microprocessor with an adaptive Kalman filter (AKF). The 3DM-GX4-25 houses a...separate processor in which temperature compensated measurements are processed through a complementary filter (CF) in order to maintain backwards

  5. Zero velocity interval detection based on a continuous hidden Markov model in micro inertial pedestrian navigation

    Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli

    2018-06-01

    Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.

  6. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  7. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  8. Typhoon Rammasun-Induced Near-Inertial Oscillations Observed in the Tropical Northwestern Pacific Ocean

    Eung Kim

    2013-01-01

    Full Text Available Wind-induced near-inertial oscillations (NIOs have been known to propagate their energy downward and equatorward, yet few observations have confirmed this in tropical regions. Using measurements from a moored ADCP in the tropical northwestern Pacific, we report an energetic NIO event associated with Typhoon Rammasun in May 2008, when an anti-cyclonic warm eddy existed around the mooring site. Our analyses reveal that the anti-cyclonic eddy traps the NIO energy at two layers around 120 and 210 m where the buoyancy frequency show high values. The NIO energy continuously decays at layers below its maximum at 210 m, and disappears at depths below the thermocline. During their propagation from 137 to 649 stretched-meter depths (equivalent to 100 - 430 m, NIOs shift their frequencies from 0.92f to 1.05f probably due to the effective f, which changes its magnitude from smaller to larger than local inertial frequency f in the anti-cyclonic eddy. In addition, their vertical energy propagation becomes faster from 0.17 to 0.64 mm s-1. Decomposition of downward and upward NIO energy propagation shows that the typhoon-induced NIOs remain 29% of their energy in the upper layer, and transfer 71% to the subsurface layers. Our results suggest that typhoon-induced NIOs interacting with meso-scale eddies can play an important role in providing the energy source available for ocean mixing in the tropical regions.

  9. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    Butement, Jonathan T; Rowe, David J; Sessions, Neil P; Hua, Ping; Murugan, G Senthil; Wilkinson, James S; Clark, Owain; Chad, John E; Hunt, Hamish C

    2016-01-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µ m fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated. (paper)

  10. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  11. Inertial and GPS data integration for positioning and tracking of GPR

    Chicarella, Simone; D'Alvano, Alessandro; Ferrara, Vincenzo; Frezza, Fabrizio; Pajewski, Lara

    2015-04-01

    Nowadays many applications and studies use a Global Positioning System (GPS) to integrate Ground-Penetrating Radar (GPR) data [1-2]. The aim is the production of detailed detection maps that are geo-referenced and superimposable on geographic maps themes. GPS provides data to determine static positioning, and to track the mobile detection system path on the land. A low-cost standard GPS, like GPS-622R by RF Solutions Ltd, allows accuracy around 2.5 m CEP (Circular Error Probability), and a maximum update rate of 10 Hz. These accuracy and update rate are satisfying values when we evaluate positioning datum, but they are unsuitable for precision tracking of a speedy-mobile GPR system. In order to determine the relative displacements with respect to an initial position on the territory, an Inertial Measurement Unit (IMU) can be used. Some inertial-system applications for GPR tracking have been presented in recent studies [3-4]. The integration of both GPS and IMU systems is the aim of our work, in order to increase GPR applicability, e.g. the case of a GPR mounted on an unmanned aerial vehicle for the detection of people buried under avalanches [5]. In this work, we will present the design, realization and experimental characterization of our electronic board that includes GPS-622R and AltIMU-10 v3 by Pololu. The latter comprises an inertial-measurement unit and an altimeter. In particular, the IMU adopts L3GD20 gyro and LSM303D accelerometer and magnetometer; the digital barometer LPS331AP provides data for altitude evaluation. The prototype of our system for GPR positioning and tracking is based on an Arduino microcontroller board. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar. ' References [1] M. Solla, X. Núñez-Nieto, M. Varela-González, J. Martínez-Sánchez, and P. Arias, 'GPR for Road Inspection: georeferencing and efficient

  12. Inertial particle focusing in serpentine channels on a centrifugal platform

    Shamloo, Amir; Mashhadian, Ali

    2018-01-01

    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated accurately through implementation of 3D Direct Numerical Solution (DNS) method. The particle focusing in three serpentine channels with different corner angles of 75°, 85°, and 90° is investigated for three polystyrene particles with diameters of 8 μm, 9.9 μm, and 13 μm. To show the simulation reliability, the results obtained from the simulations of two examples, namely, particle focusing and centrifugal platform, are verified against experimental counterparts. The effects of angular velocity of disk on the fluid velocity and on the focusing parameters are studied. Fluid velocity in a channel with corner angle of 75° is greater than two other channels. Furthermore, the particle equilibrium positions at the cross section of channel are obtained at the outlet. There are two equilibrium positions located at the centers of the long walls. Finally, the effect of particle density on the focusing length is investigated. A particle with a higher density and larger diameter is focused in a shorter length of the channel compared to its counterpart with a lower density and shorter diameter. The channel with a corner angle of 90° has better focusing efficiency compared to other channels. This design focuses particles without using any pump or sheath flow. Inertial particle focusing

  13. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang

    2017-10-18

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  14. A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions

    Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang

    2017-10-01

    Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.

  15. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  16. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  17. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    MacGowan, B.J.; Kotowski, M.; Schleich, D. [eds.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; the role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.

  18. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.

    Tezel, Ahmet; Mitragotri, Samir

    2003-12-01

    Interactions of acoustic cavitation bubbles with biological tissues play an important role in biomedical applications of ultrasound. Acoustic cavitation plays a particularly important role in enhancing transdermal transport of macromolecules, thereby offering a noninvasive mode of drug delivery (sonophoresis). Ultrasound-enhanced transdermal transport is mediated by inertial cavitation, where collapses of cavitation bubbles microscopically disrupt the lipid bilayers of the stratum corneum. In this study, we describe a theoretical analysis of the interactions of cavitation bubbles with the stratum corneum lipid bilayers. Three modes of bubble-stratum corneum interactions including shock wave emission, microjet penetration into the stratum corneum, and impact of microjet on the stratum corneum are considered. By relating the mechanical effects of these events on the stratum corneum structure, the relationship between the number of cavitation events and collapse pressures with experimentally measured increase in skin permeability was established. Theoretical predictions were compared to experimentally measured parameters of cavitation events.

  19. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  20. PhD Dissertation Proposal - Introduction to Dark Mix Concept: Gamma Measurements of Capsule Mixture

    Meaney, Kevin Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    Presentation slides: Intro to Inertial Confinement Fusion; Types of Mixture in ICF capsules; Previous mixture experiments; Dark Mix Concept; Measuring Dark Mix with Gamma Cherenkov Detector; Dissertation Outline.

  1. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  2. Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review.

    O'Reilly, Martin; Caulfield, Brian; Ward, Tomas; Johnston, William; Doherty, Cailbhe

    2018-05-01

    Analysis of lower limb exercises is traditionally completed with four distinct methods: (1) 3D motion capture; (2) depth-camera-based systems; (3) visual analysis from a qualified exercise professional; and (4) self-assessment. Each method is associated with a number of limitations. The aim of this systematic review is to synthesise and evaluate studies which have investigated the capacity for inertial measurement unit (IMU) technologies to assess movement quality in lower limb exercises. A systematic review of studies identified through the databases of PubMed, ScienceDirect and Scopus was conducted. Articles written in English and published in the last 10 years which investigated an IMU system for the analysis of repetition-based targeted lower limb exercises were included. The quality of included studies was measured using an adapted version of the STROBE assessment criteria for cross-sectional studies. The studies were categorised into three groupings: exercise detection, movement classification or measurement validation. Each study was then qualitatively summarised. From the 2452 articles that were identified with the search strategies, 47 papers are included in this review. Twenty-six of the 47 included studies were deemed as being of high quality. Wearable inertial sensor systems for analysing lower limb exercises is a rapidly growing field of research. Research over the past 10 years has predominantly focused on validating measurements that the systems produce and classifying users' exercise quality. There have been very few user evaluation studies and no clinical trials in this field to date.

  3. Simple method for absolute calibration of geophones, seismometers, and other inertial vibration sensors

    Kann, Frank van; Winterflood, John

    2005-01-01

    A simple but powerful method is presented for calibrating geophones, seismometers, and other inertial vibration sensors, including passive accelerometers. The method requires no cumbersome or expensive fixtures such as shaker platforms and can be performed using a standard instrument commonly available in the field. An absolute calibration is obtained using the reciprocity property of the device, based on the standard mathematical model for such inertial sensors. It requires only simple electrical measurement of the impedance of the sensor as a function of frequency to determine the parameters of the model and hence the sensitivity function. The method is particularly convenient if one of these parameters, namely the suspended mass is known. In this case, no additional mechanical apparatus is required and only a single set of impedance measurements yields the desired calibration function. Moreover, this measurement can be made with the device in situ. However, the novel and most powerful aspect of the method is its ability to accurately determine the effective suspended mass. For this, the impedance measurement is made with the device hanging from a simple spring or flexible cord (depending on the orientation of its sensitive axis). To complete the calibration, the device is weighed to determine its total mass. All the required calibration parameters, including the suspended mass, are then determined from a least-squares fit to the impedance as a function of frequency. A demonstration using both a 4.5 Hz geophone and a 1 Hz seismometer shows that the method can yield accurate absolute calibrations with an error of 0.1% or better, assuming no a priori knowledge of any parameters

  4. DRG-Based CubeSat Inertial Reference Unit (DCIRU), Phase II

    National Aeronautics and Space Administration — CubeSats currently lack adequate inertial attitude knowledge and control required for future sophisticated science missions. Boeing's Disc Resonator Gyro (DRG)...

  5. Five years in the life of an inertial system operating in orbit

    Harris, R. A.; Denhard, W. G.

    1978-01-01

    The paper describes the in-orbit performance of the gyroscopes and strapdown attitude reference system for the OAO-C (Copernicus) satellite, launched on Aug. 21, 1972. In order to fulfill NASA requirements, the inertial system had to: (1) operate for at least one year in orbit without failure, (2) maintain an inertial reference with an uncertainty of 50 microradians or less for at least one hour, and (3) control attitude changes with an accuracy of at least 30 parts per million. During the orbit period, the inertial system has demonstrated a capability for maintaining an inertial reference that is significantly better than these performance goals.

  6. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  7. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    Frank J. Wouda

    2018-03-01

    Full Text Available Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration of three inertial sensors (placed at the lower legs and pelvis to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99 with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant

  8. A Personal Inertial Navigation System Based on Multiple Distributed, Nine-Degrees-Of-Freedom, Inertial Measurement Units

    2016-12-01

    the gyroscope to calculate position changes during the swing phase, it is important to identify and take steps to mitigate these major error types [11...holding a constant bias, flicker noise causes the error bias to randomly wander within a bounded area. For example, if the gyroscope was stationary and...39]. Flicker noise is the cause of error bias stability issues and is dominant at low frequencies where the power of its degrading effects can be

  9. Inertial Confinement Fusion R and D and Nuclear Proliferation

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  10. In-situ high resolution particle sampling by large time sequence inertial spectrometry

    Prodi, V.; Belosi, F.

    1990-09-01

    In situ sampling is always preferred, when possible, because of the artifacts that can arise when the aerosol has to flow through long sampling lines. On the other hand, the amount of possible losses can be calculated with some confidence only when the size distribution can be measured with a sufficient precision and the losses are not too large. This makes it desirable to sample directly in the vicinity of the aerosol source or containment. High temperature sampling devices with a detailed aerodynamic separation are extremely useful to this purpose. Several measurements are possible with the inertial spectrometer (INSPEC), but not with cascade impactors or cyclones. INSPEC - INertial SPECtrometer - has been conceived to measure the size distribution of aerosols by separating the particles while airborne according to their size and collecting them on a filter. It consists of a channel of rectangular cross-section with a 90 degree bend. Clean air is drawn through the channel, with a thin aerosol sheath injected close to the inner wall. Due to the bend, the particles are separated according to their size, leaving the original streamline by a distance which is a function of particle inertia and resistance, i.e. of aerodynamic diameter. The filter collects all the particles of the same aerodynamic size at the same distance from the inlet, in a continuous distribution. INSPEC particle separation at high temperature (up to 800 C) has been tested with Zirconia particles as calibration aerosols. The feasibility study has been concerned with resolution and time sequence sampling capabilities under high temperature (700 C)

  11. Wellbore inertial navigation system (WINS) software development and test results

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  12. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    Perkins, R.B.

    1981-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO 2 laser light on target. (author)

  13. The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)

    Velarde, Guillermo

    2016-10-01

    In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...

  14. Accelerator aspects of heavy ion induced inertial fusion

    Boehme, D

    1983-01-01

    Besides the possibilities of the magnetic fusion those of inertial fusion have increasingly found interest. Bundled photon and corpuscular beams shall be symetrically focussed from the outside on a pellet with the fusion fuel being compressed far beyond the density of the ordinary solids. Laser, light ion and heavy ion beams can be used as driver beams. The GSI took over the project leadership for a five years' research programme with formulated questions on heavy ion fusion. The project is promoted by the BMFT. During the international symposium the opportunity of intensive discussions on research work in this field in different countries was made use of.

  15. Virtual cathode in a spherical inertial electrostatic confinement

    Momota, Hiromu; Miley, G.H.

    1999-01-01

    Spherical inertial electrostatic confinement (SIEC) was proposed as a fusion device. Its best feature is that confinement scheme does not need any magnetic field. Ion orbits pass through the center of the device, and thus the resulting ion density profile shows strong peaking. On the other hand, electron orbits are sensitive to the electrostatic self-field. Complete solution of particle orbits and of self-field is difficult to obtain. In the present paper steady-state solutions are obtained for two extreme cases. The first case assumes no electron collision, and the second case frequent electron collisions, and thus electrons are described by the Boltzmann law. (M. Tanaka)

  16. Inertial confinement fusion systems using heavy ion accelerators as drivers

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-01-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators. (orig.) [de

  17. Progress in heavy-ion drivers for inertial fusion

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  18. Prospects for inertial fusion as an energy source

    Hogan, W.J.

    1989-01-01

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs

  19. Conceptual design of inertial confinement fusion power plant

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  20. Diode-pumped solid state laser for inertial fusion energy

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness