WorldWideScience

Sample records for rogadinae braconidae phylogeny

  1. Revision of the western Palaearctic species of Aleiodes Wesmael (Hymenoptera, Braconidae, Rogadinae. Part 1: Introduction, key to species groups, outlying distinctive species, and revisionary notes on some further species

    Directory of Open Access Journals (Sweden)

    Cornelis van Achterberg

    2016-12-01

    Full Text Available Seven new species of the genus Aleiodes Wesmael, 1838 (Braconidae: Rogadinae are described and illustrated: A. abraxanae sp. n., A. angustipterus sp. n., A. artesiariae sp. n., A. carminatus sp. n., A. diarsianae sp. n., A. leptofemur sp. n., and A. ryrholmi sp. n. A neotype is designated for each of Aleiodes circumscriptus (Nees, 1834 and A. pictus (Herrich-Schäffer, 1838, and both species are redescribed and illustrated. Aleiodes ochraceus Hellén, 1927 (not A. ochraceus (Curtis, 1834 is renamed as A. curticornis nom. n. & stat. rev., and redescribed and illustrated. Aleiodes bistrigatus Roman, 1917, A. nigriceps Wesmael, 1838, and A. reticulatus (Noskiewicz, 1956, are re-instated as valid species. A lectotype is designated for Aleiodes bistrigatus Roman. An illustrated key is given to some distinctive species and the residual species groups along which further parts of an entire revision of western Palaearctic species of Aleiodes and Heterogamus will be organised. Biology, host associations and phenology are discussed for the keyed species (in addition to the above, A. albitibia (Herrich-Schäffer, 1838, A. apiculatus (Fahringer, 1932, A. arcticus (Thomson, 1892, A. cantherius (Lyle, 1919, A. esenbeckii (Hartig, 1834, A. jakowlewi (Kokujev, 1898, A. modestus (Reinhard, 1863, A. nigricornis Wesmael, 1838, A. pallidator (Thunberg, 1822, A. praetor (Reinhard, 1863, A. seriatus (Herrich- Schäffer, 1838 sensu lato, A. testaceus (Telenga, 1941, A. ungularis (Thomson, 1892, and A. varius (Herrich-Schäffer, 1838 which are dealt with in full here (with the exception of A. seriatus s.l. which is, however, included in the key. The experimental methodology covering the revision as a whole, which involves some behavioural investigation, is outlined.

  2. Colastomion Baker (Braconidae, Rogadinae): nine new species from Papua New Guinea reared from Crambidae

    Czech Academy of Sciences Publication Activity Database

    Quicke, D. L. J.; Smith, M. A.; Miller, S. E.; Hrček, Jan; Butcher, B.

    2012-01-01

    Roč. 28, 28 AUG (2012), s. 85-121 ISSN 1070-9428 R&D Projects: GA ČR GD206/08/H044; GA ČR GAP505/10/0673; GA MŠk LC06073; GA MŠk ME09082 Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/20.0064; US National Science Foundation(US) DEB 0841885; US National Science Foundation(US) DEB 0816749; US National Science Foundation(US) DEB 0515678 Institutional support: RVO:60077344 Keywords : cytochrome oxidase I * DNA barcoding * Lepidoptera Subject RIV: EG - Zoology Impact factor: 0.524, year: 2012 http://www.pensoft.net/J_FILES/10/articles/3484/3484-G-3- layout .pdf

  3. Diversity of Braconidae (Insecta, Hymenoptera of the Parque Natural Municipal de Porto Velho, Rondonia, Brazil

    Directory of Open Access Journals (Sweden)

    Sian de Souza Gadelha

    2012-12-01

    Full Text Available Braconidae is a highly diversified family of Hymenoptera and usually known by their role in biological control both in agricultural and natural ecosystems. Despite of that, little is known about its diversity in the Amazon region. The present work inventoried the braconid fauna of an Open Ombrophylous Forest with Palm Trees of the Parque Natural Municipal de Porto Velho, RO. Insects were collect from June/2008 to May/2009 using six Malaise traps in different parts of the reserve. A total of 377 wasps were captured, 17 subfamilies and 56 genera identified. Braconinae, Microgastrinae, Doryctinae and Rogadinae subfamilies were very abundant, and also the genera Aleiodes, Bracon, Capitonius, Compsobracon, Heterospilus, Hymenochaonia, Opius, Pedinotus, Rogas and Stantonia. The calculated Shannon diversity index was 2.15 and 3.3 for subfamily and genera, respectively, which were, generally, higher than the values found for other regions in Brazil. Generally, parasitoids were more abundant during the rainy season. The present work contributes with new genera records and faunistic data of Braconidae in Rondonia State, western Amazon.

  4. Cystomastacoides van Achterberg (Braconidae, Rogadinae): first host record and descriptions of three new species from Thailand and Papua New Guinea

    Czech Academy of Sciences Publication Activity Database

    Quicke, D. L. J.; Smith, M. A.; Hrček, Jan; Butcher, B. A.

    2013-01-01

    Roč. 31, 20 JUNE (2013), s. 65-78 ISSN 1070-9428 R&D Projects: GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673; GA MŠk LC06073; GA MŠk ME09082 Grant - others:US National Science Foundation(US) DEB 0841885; US National Science Foundation(US) DEB 0816749; US National Science Foundation(US) DEB 0515678 Institutional support: RVO:60077344 Keywords : cytochrome oxidase I * DNA barcording * Lepidoptera Subject RIV: EG - Zoology Impact factor: 0.966, year: 2013 http://www.pensoft.net/J_FILES/10/ articles /3385/3385-G-3-layout.pdf

  5. A new genus and three new species of parasitoid wasp from Papua New Guinea and redescription of Trigonophatnus Cameron (Hymenoptera, Braconidae, Rogadinae)

    Czech Academy of Sciences Publication Activity Database

    Quicke, D. L. J.; Smith, M. A.; van Achterberg, C.; Miller, S. E.; Hrček, Jan

    2012-01-01

    Roč. 46, 21-22 (2012), s. 1369-1385 ISSN 0022-2933 R&D Projects: GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673; GA MŠk LC06073; GA MŠk ME09082 Grant - others:Grant Agency of the University od South Bohemia(CZ) GAJU 136/2010/P; US National Science Foundation(US) DEB 0841885; US National Science Foundation(US) DEB 0816749; US National Science Foundation(US) DEB 0515678 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : cytochrome oxidase I * DNA barcoding * Lepidoptera Subject RIV: EG - Zoology Impact factor: 0.778, year: 2012

  6. New faunistic data on the family Braconidae (Hymenoptera from Korea

    Directory of Open Access Journals (Sweden)

    Tae-Ho An

    2014-12-01

    Full Text Available Twenty-one species of the four genera in the family Braconidae (Hymenoptera are reported for the first time in Korea. These species belong to the subfamily Euphorinae (Braconidae. Faunistic and distribution data are included.

  7. Additions to the fauna of Braconidae from Madeira and Selvagens Islands, with the description of five new species (Hymenoptera: Braconidae: Homolobinae, Alysiinae, Opiinae)

    NARCIS (Netherlands)

    Achterberg, van C.; Aguiar, Franquinho A.M.

    2009-01-01

    Twenty-one species of the family Braconidae (Hymenoptera) are added to the checklist of Braconidae from Madeira, resulting in 113 species, of which 17 species are endemic to Madeira Islands and 4 species are only known from Madeira and Canary Islands. Five species are reported new for the Selvagens

  8. A revision of the genus Microtypus Ratzeburg (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Čapek, M.; Achterberg, van C.

    1992-01-01

    The genus Microtypus Ratzeburg, 1848 (Braconidae: Microtypinae) is revised, its species are keyed, and a new species, M. petiolatus van Achterberg spec. nov. is described. The type species is redescribed and fully illustrated. The genus Similearinus Glowacki & Karpinski, 1967 is a new junior synonym

  9. Six new genera of Braconidae (Hymenoptera) from China

    NARCIS (Netherlands)

    Achterberg, van C.; Chen, X.

    2004-01-01

    Six new genera of the family Braconidae (Hymenoptera) from China are described and illustrated: two genera of the subfamily Agathidinae: Facilagathis gen. nov. (type species: F. spinulata spec. nov.) and Cremnoptoides gen. nov. (type species: Cremnops pappi Sharkey, 1994); one genus of the subfamily

  10. Revision of the Haliday collection of Braconidae (Hymenoptera)

    NARCIS (Netherlands)

    Achterberg, van C.

    1997-01-01

    The type-series of the taxa of the family Braconidae described by A.H. Haliday (1806-1870) are reviewed, 99 lectotypes are designated, 24 new synonyms and 22 new combinations are given. Lectotypes are designated for the following nominal species: Alysia (Dacnusa) abdita Haliday, 1839; Opius (Opius)

  11. Four newly recorded species of the genus Meteorus Haliday (Hymenoptera: Braconidae: Euphorinae) from Korea

    OpenAIRE

    Hye-Rin Lee; Tae-Ho An; Deok-Seo Ku; Bong-Kyu Byun

    2017-01-01

    Four species of the genus Meteorus (Hymenoptera: Braconidae: Euphorinae) are reported for the first time from Korea: Meteorus brevicauda Thomson, 1895, Meteorus colon Haliday, 1835, Meteorus kunashiricus Belokobylskij, 1995, and Meteorus vexator Haliday, 1835. Diagnosis, distribution, and host information are provided for each species. Keywords: Braconidae, Hymenoptera, Korea, Meteorus, New record

  12. Four newly recorded species of the genus Meteorus Haliday (Hymenoptera: Braconidae: Euphorinae from Korea

    Directory of Open Access Journals (Sweden)

    Hye-Rin Lee

    2017-12-01

    Full Text Available Four species of the genus Meteorus (Hymenoptera: Braconidae: Euphorinae are reported for the first time from Korea: Meteorus brevicauda Thomson, 1895, Meteorus colon Haliday, 1835, Meteorus kunashiricus Belokobylskij, 1995, and Meteorus vexator Haliday, 1835. Diagnosis, distribution, and host information are provided for each species. Keywords: Braconidae, Hymenoptera, Korea, Meteorus, New record

  13. Parasitoid wasps new to Britain (Hymenoptera: Platygastridae, Eurytomidae, Braconidae & Bethylidae

    Directory of Open Access Journals (Sweden)

    David G. Notton

    2014-10-01

    Full Text Available One genus and five species are recorded as new to Britain: Fidiobia, Fidiobia hispanica, Macroteleia bicolora (Platygastridae; Sycophila binotata (Eurytomidae; Schizoprymnus collaris (Braconidae; and Laelius pedatus (Bethylidae. Keys to British Macroteleia and Laelius are provided. Provisional synonymy is proposed between Macroteleia minor and M. brevigaster, and synonymy is proposed between Laelius femoralis, L. microneurus and L. nigricrus. The possible mode of introduction of Sycophila binotata is discussed. A lectotype is designated for Schizoprymnus collaris.

  14. A new species of Chelonus (Areselonus) (Hymenoptera, Braconidae) from India reared from Acrocercops lysibathra (Meyrick) on Cordia latifolia Roxb.

    OpenAIRE

    Ahmad, Zubair; Ghramh, Hamed A.

    2018-01-01

    Chelonus (Areselonus) spinigaster sp. n., (Hymenoptera: Braconidae: Cheloninae) is described from India. The new species was reared from the moth species Acrocercops lysibathra (Meyr.) on Cordia latifolia Roxb.

  15. A new species of Chelonus (Areselonus) (Hymenoptera, Braconidae) from India reared from Acrocercops lysibathra (Meyrick) on Cordia latifolia Roxb.

    Science.gov (United States)

    Ahmad, Zubair; Ghramh, Hamed A

    2018-01-01

    Chelonus (Areselonus) spinigaster sp. n. , (Hymenoptera: Braconidae: Cheloninae) is described from India. The new species was reared from the moth species Acrocercops lysibathra (Meyr.) on Cordia latifolia Roxb.

  16. The braconid parasitoids (Hymenoptera: Braconidae) of Kermania pistaciella Amsel (Lepidoptera: Tineidae: Hieroxestinae) in Iran

    NARCIS (Netherlands)

    Achterberg, van C.; Mehrnejad, M.R.

    2002-01-01

    Two species of Braconidae (Chelonus kermakiae (Tobias, 2001) (Cheloninae) and Centistidea pistaciella spec. nov. (Miracinae)) have been reared from the pistachio twig borer moth (Kermania pistaciella Amsel) (Tineidae). Both species are described and illustrated; Centistidea pistaciella spec. nov. is

  17. Two new species of the genus Peristenus Foerster (Hymenoptera: Braconidae: Euphorinae) from the Canary Islands

    NARCIS (Netherlands)

    Achterberg, van C.; Guerrero, E.R.

    2003-01-01

    Two new species of the genus Peristenus Foerster (Hymenoptera: Braconidae: Euphorinae) from the Canary Islands are described and illustrated: Peristenus angifemoralis spec. nov. from Tenerife, and P. gloriae spec. nov. from Gran Canaria and Tenerife.

  18. Annotated catalogue of the types of Braconidae (Hymenoptera) in the Oxford University Museum

    NARCIS (Netherlands)

    Achterberg, van C.; O'Toole, C.

    1993-01-01

    An annotated catalogue of the types of Braconidae in the Hope Entomological Collections, University Museum, Oxford, is given. The following new combinations are proposed: Aleiodes rothneyi (Shenefelt, 1975); Aniphiaulax agraensis (Cameron, 1897); Balcemena ruficollis (Cameron, 1899); Bicarinibracon

  19. The phylogeny of Arthrotardigrada

    DEFF Research Database (Denmark)

    Hansen, Jesper Guldberg

    2011-01-01

    The order Arthrotardigrada, or water bears, constitutes a small group of 160 species of marine, microscopical invertebrates, within the phylum Tardigrada. Although the position of tardigrades in the Animal Kingdom has received much attention focusing on the metazoan phylogeny, the phylogenetic...

  20. Fossils and decapod phylogeny

    NARCIS (Netherlands)

    Schram, Frederick R.; Dixon, Christopher

    2003-01-01

    An expanded series of morphological characters developed for a cladistic analysis of extant decapods has yielded a new hypothesis for the phylogeny of the group. Application of this database to selected fossil genera produces some interesting results and demonstrates the feasibility of treating

  1. Building a Twig Phylogeny

    Science.gov (United States)

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  2. Effect of Maruca vitrata (Lepidoptera: Crambidae) host plants on life-history parameters of the parasitoid Apanteles taragamae (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Dannon, A.E.; Tamo, M.; Agboton, C.; Huis, van A.; Dicke, M.

    2012-01-01

    The effect of four host plant species of the herbivore Maruca vitrata Fabricius (Lepidoptera: Crambidae) on development time, longevity, fecundity and sex ratio of the parasitoid Apanteles taragamae Viereck (Hymenoptera: Braconidae) was investigated under laboratory conditions. The larvae were

  3. The valid name for the genus Loxocephalus Foerster, 1862 (Insecta, Hymenoptera: Braconidae), preoccupied by Loxocephalus Eberhard, 1862 (Protozoa: Ciliophora)

    NARCIS (Netherlands)

    Foissner, W.; Achterberg, van C.

    1997-01-01

    Loxocephalus Foerster, 1862 (Insecta: Braconidae) is preoccupied by Loxocephalus Eberhard, 1862 (Protozoa: Ciliophora). The name previously used for Loxocephalus Foerster, Myiocephalus Marshall, 1897, becomes the valid name for the genus.

  4. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature

    Science.gov (United States)

    Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive pest of serious concern in North America. To complement ongoing biological control efforts, Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently-described specialist parasitoid of ...

  5. First report of the genus Coeliniaspis Fischer (Hymenoptera, Braconidae, Alysiinae) from China and Russia

    NARCIS (Netherlands)

    Zheng, M.-L.; Chen, J.-H.; Achterberg, van C.

    2017-01-01

    Coeliniaspis Fischer, 2010 (Braconidae, Alysiinae, Dacnusini) is recorded from China and Russia for the first time. Coeliniaspis insularis (Tobias, 1998) is reported from China (Fujian), redescribed and illustrated. A key to the species of the genus Coeliniaspis Fischer is added. Coeliniaspis

  6. Revison of the Euagathis species (Hymenoptera: Braconidae: Agathidinae) from Wallacea and Papua

    NARCIS (Netherlands)

    Achterberg, van C.

    2004-01-01

    The species of the genus Euagathis Szépligeti, 1900 (Braconidae: Agathidinae) from Wallacea and Papua (including Northeast Australia and Solomon Islands) are revised and keyed. Thirty-three species are recognized, of which 11 are new: Euagathis brevitibialis spec. nov. from Papua New Guinea; E.

  7. Revision of the Euagathis species (Hymenoptera: Braconidae: Bassinae) from the Sunda Islands

    NARCIS (Netherlands)

    Simbolotti, G.; Achterberg, van C.

    1994-01-01

    The species of the genus Euagathis Szépligeti, 1900 (Braconidae: Bassinae (= Agathidinae)) from the Greater and Lesser Sunda Islands (including West Malaysia) are revised and keyed. The subfamily name Bassinae Nees, 1812, is used because it is senior to the commonly used subfamily name Agathidinae

  8. Revision of the Euagathis species (Hymenoptera: Braconidae: Agathidinae) from China and northern Vietnam

    NARCIS (Netherlands)

    Achterberg, van C.; Chen, X.

    2002-01-01

    The species of the genus Euagathis Szépligeti, 1900 (including Balcemena Cameron, 1903; Braconidae: Agathidinae) from China and northern Vietnam are revised and keyed. Twelve species are recognised, of which six are new: Euagathis argentosa spec. nov. and E. gracilitarsis spec. nov. from Yunnan

  9. Revision of the West Palaearctic species of the genus Agathis Latreille (Hymenoptera: Braconidae: Agathidinae)

    NARCIS (Netherlands)

    Simbolotti, G.; Achterberg, van C.

    1999-01-01

    The West Palaearctic species of the genus Agathis Latreille, 1804 (Braconidae: Agathidinae) are revised and keyed. Forty-six species of Agathis are treated as valid, of which 29 occur in Europe; three species of the former Agathis mediator group (Bassus brevicaudus (Reinhard, 1867) comb. nov., B.

  10. Revision of the subfamily Euphorinae (excluding the tribe Meteorini Cresson) (Hymenoptera: Braconidae) from China

    NARCIS (Netherlands)

    Chen, X.; Achterberg, van C.

    1997-01-01

    The subfamily Euphorinae (excluding the tribe Meteorini Cresson) (Hymenoptera: Braconidae) from China is revised. In total 150 species, belonging to 24 genera, are treated and keyed. One genus (Heia gen. nov.; type species: Heia robustipes spec. nov.) and 69 species are described as new to science.

  11. Revisionary notes on Bentonia van Achterberg, 1992 (Hymenoptera: Braconidae: Orgilinae) with description of two new species

    NARCIS (Netherlands)

    Braet, Y.; Tignon, M.

    1998-01-01

    Two new species of the genus Bentonia van Achterberg, 1992 (Braconidae: Orgilinae) (B. inca from Peru and B. xochiquetzalis from Mexico) are described and partly illustrated. A third undescribed species was found for which some characters are listed. The distribution of B. scutellaris van

  12. First record of Aleiodes laphygmae (Hymenoptera: Braconidae) for Argentina and its association with larvae of Spodoptera eridania (Lepidoptera: Noctuidae)

    OpenAIRE

    Valverde, Liliana; Berta, D. Carolina; Gomez, Marcelo Geronimo

    2012-01-01

    Se reporta por primera vez para Argentina Aleiodes laphygmae (Viereck) (Hymenoptera: Braconidae) y como parasitoide de larvas de Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae), en plantaciones de soja en la provincia de Tucumán (Argentina). Se provee información biológica como hábitos, hospedadores y distribución.Aleiodes laphygmae (Viereck) (Hymenoptera: Braconidae), is reported for the first time for Argentina. It is also reported parasitizing larvae of Spodoptera eridania (Stoll) (Le...

  13. The effectiveness of 28S and 16S molecular regions in resolving phylogeny of Malaysian microgastrinae (Hymenoptera: Braconidae)

    Science.gov (United States)

    Zuki, Ameyra Aman; Mohammed, Muhamad Azmi; Md-Zain, Badrul Munir; Yaakop, Salmah

    2018-04-01

    The phylogenetic relationships of Microgastrinae remains unclear though some studies have been conducted to resolve it. The function of Microgastrinae as endoparasitoids of Lepidopteran larvae makes this subfamily an ideal and potential species to be applied as biological control agent of infesting crops. In this study, a total of 13 microgastrine samples under 13 genera were collected from nine localities throughout Peninsular Malaysia. Two molecular regions, 28S nuclear marker and 16S mitochondrial marker were utilized in this study to examine the effectiveness of those regions in resolving the relationships within Microgastrinae. Total of 36 sequences were implemented in the analyses of NJ, MP and Bayesian for both markers. Results obtained from this study were supported by morphological and biological characters. Henceforth, the outcome from this study provides a proof of effectiveness of 28S and 16S molecular markers in studying the phylogenetic relationships of Microgastrinae from Malaysia exclusively and Oriental generally.

  14. Meteorus arizonensis Muesebeck, 1923 (Hymenoptera: Braconidae): nuevo registro para México

    OpenAIRE

    Gutiérrez-Ramírez, A.; Robles-Bermúdez, A.; Cambero-Campos, J.; Coronado-Blanco, J. M.

    2015-01-01

    Braconidae is one of the more diverse families of Hymenoptera with almost 20,000 species worldwide. Meteorus has 316 species and is almost cosmopolitan. Previously, seven species of this genus have been recorded from Mexico. In this note, Meteorus arizo-nensis Muesebeck is recorded for the first time for the country, obtained from the fall armyworm, Spodoptera frugiperda (J.E. Smith), with material from Santa Maria del Oro, locality in the State of Nayarit.

  15. Siete especies nuevas de Allorhogas (Hymenoptera: Braconidae: Doryctinae) de México

    OpenAIRE

    Martínez, Juan José; Zaldívar-Riverón, Alejandro

    2013-01-01

    Se describen, ilustran y caracterizan molecularmente 7 especies nuevas del género gallícola Allorhogas (Braconidae: Doryctinae): A. amuzgo sp. nov., A. coccolobae sp. nov., A. crassifemur sp. nov., A. jaliscoensis sp. nov., A. marshi sp. nov., A. parvus sp. nov. y A. scotti sp. nov. Estas especies fueron recolectadas en bosques tropicales caducifolios de la costa del Pacífico mexicano en Jalisco, Oaxaca y Guerrero. Allorhogas coccolobae fue criada de agallas foliares en Coccoloba barbadensis ...

  16. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  17. Effects of feeding frequency and sugar concentration on behavior and longevity of the adult aphid parasitoid: Aphidius ervi (Haliday) (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Azzouz, H.; Giordanengo, P.; Wäckers, F.L.; Kaiser, L.

    2004-01-01

    Aphidius ervi (Haliday) (Hymenoptera: Braconidae) is a solitary aphid endoparasitoid. Adults feed on honeydew and possibly on other sugar sources such as nectar. Sugar sources can vary qualitatively and quantitatively according to biotic factors and environmental conditions. Experiments were

  18. High-Performance Phylogeny Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tiffani L. Williams

    2004-11-10

    Under the Alfred P. Sloan Fellowship in Computational Biology, I have been afforded the opportunity to study phylogenetics--one of the most important and exciting disciplines in computational biology. A phylogeny depicts an evolutionary relationship among a set of organisms (or taxa). Typically, a phylogeny is represented by a binary tree, where modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with the edges of the tree denoting evolutionary relationships. The task of phylogenetics is to infer this tree from observations upon present-day organisms. Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine, but it is enormously expensive. The most commonly used techniques attempt to solve NP-hard problems such as maximum likelihood and maximum parsimony, typically by bounded searches through an exponentially-sized tree-space. For example, there are over 13 billion possible trees for 13 organisms. Phylogenetic heuristics that quickly analyze large amounts of data accurately will revolutionize the biological field. This final report highlights my activities in phylogenetics during the two-year postdoctoral period at the University of New Mexico under Prof. Bernard Moret. Specifically, this report reports my scientific, community and professional activities as an Alfred P. Sloan Postdoctoral Fellow in Computational Biology.

  19. Biological parameters and thermal requirements of the parasitoid Praon volucre (Hymenoptera: Braconidae) with Macrosiphum euphorbiae (Hemiptera: Aphididae) as host

    NARCIS (Netherlands)

    Conti, De B.F.; Bueno, V.H.P.; Sampaio, M.V.; Lenteren, van J.C.

    2011-01-01

    The effect of temperature on the biology of Praon volucre (Haliday, 1833) (Hymenoptera: Braconidae) in Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera: Aphididae) hosts was studied and the thermal requirements of the parasitoid were determined. Experiments were carried out at 16, 19, 22, 25, and 28

  20. The parasites of cereal stem borers (Lepidoptera: Cossidae, Crambidae, Noctuidae, Pyralidae) in Africa, belonging to the family Braconidae (Hymenoptera: Ichneumonoidea)

    NARCIS (Netherlands)

    Achterberg, van C.; Polaszek, A.

    1996-01-01

    A review is given of the parasites (parasitoids) of the African cereal stem borers (including introduced species) belonging to the family Braconidae (Hymenoptera); 38 species belonging to 19 genera are keyed and treated. Three new species are described: Macrocentrus sesamivorus spec. nov. from

  1. Five new species of Meteorus Haliday (Hymenoptera: Braconidae: Euphorinae) from Brazil.

    Science.gov (United States)

    De Almeida, Luis Felipe Ventura; Dias, Angélica Maria Penteado

    2015-12-10

    Meteorus Haliday, 1835 (Hymenoptera: Braconidae) is a cosmopolitan genus with around 340 species described, all koinobiont endoparasitoids of Coleoptera or Lepidoptera larvae, and several of its hosts are pest insects. Previously to this work only two species were described from Brazil, M. eaclidis Muesebeck and M. townsendi Muesebeck. Five new species of Meteorus are here described: M. atlanticus n. sp., M. ferruginosus n. sp., M. itatiaiensis n. sp., M. monoceros n. sp., and M. strigatus n. sp. Three species are recorded for the first time from Brazil: M. jerodi Aguirre & Shaw, M. laphygmae Viereck and M. megalops Zitani.

  2. Phylogeny and subgeneric taxonomy of Aspergillus

    DEFF Research Database (Denmark)

    Peterson, S.W.; Varga, Janos; Frisvad, Jens Christian

    2008-01-01

    The phylogeny of the genus Aspergillus and its teleomorphs is discussed based on multilocus sequence data. DNA sequence analysis was used to formulate a nucleotide sequence framework of the genus and to analyze character changes in relationship to the phylogeny hypothesized from the DNA sequence...

  3. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  4. A new species of solitary Meteorus (Hymenoptera: Braconidae) reared from caterpillars of toxic butterflies (Lepidoptera: Nymphalidae) in Ecuador.

    Science.gov (United States)

    Shaw, Scott R; Jones, Guinevere Z

    2009-01-01

    A new species of parasitoid wasp, Meteorus rugonasus Shaw and Jones (Hymenoptera: Braconidae), is described from the Yanayacu Biological Station, Napo Province, Ecuador. The new species is diagnosed and compared to other species in the genus. It was reared from larvae of Pteronymia zerlina (Hewitson, 1855) (Lepidoptera: Nymphalidae, Ithomiinae) found feeding on leaves of Solanum (Solanaceae). The parasitoid is solitary. This is the first record of a Meteorus species attacking ithomiine Nymphalidae. A new species of parasitoid wasp, Meteorus rugonasus Shaw and Jones (Hymenoptera: Braconidae), is described from the Yanayacu Biological Station, Napo Province, Ecuador. The new species is diagnosed and compared to other species in the genus. It was reared from larvae of Pteronymia zerlina (Hewitson, 1855) (Lepidoptera: Nymphalidae, Ithomiinae) found feeding on leaves of Solanum (Solanaceae). The parasitoid is solitary. This is the first record of a Meteorus species attacking ithomiine Nymphalidae.

  5. The discovery of the genus Spasskia Belokobylskij, 1989 (Hymenoptera: Braconidae) in China, with description of a new species.

    Science.gov (United States)

    Yan, Cheng-jin; He, Jun-hua; Chen, Xue-xin

    2014-01-01

    The genus Spasskia Belokobylskij, 1989 (Hymenoptera: Braconidae: Helconinae) is reported for the first time from China. Two species, namely Spasskia brevicarinata Yan et Chen sp. n.and Spasskia indica Singh, Belokobylskij et Chauhan, 2005 are described and illustrated. A key to the species of this genus is updated to include the new species. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  6. Catalogue of Danish Alysiinae (Hymenoptera: Braconidae, with the description of two new species of Aspilota Foerster, 1863

    Directory of Open Access Journals (Sweden)

    Francisco Javier Peris-Felipo

    2016-12-01

    Full Text Available In the present study, a total of 153 species of Alysiinae (Hymenoptera: Braconidae from Denmark are catalogued. Two species are described as new for science: Aspilota leptoarticulata Munk & Peris-Felipo sp. nov. and A. grandis Munk & Peris-Felipo sp. nov. Additionally, 38 alysiine species are recorded for the first time for the Danish fauna. A faunistic list with distribution data and host records is provided.

  7. PARASITISASI DAN KAPASITAS REPRODUKSI COTESIA FLAVIPES CAMERON (HYMENOPTERA: BRACONIDAE) PADA INANG DAN INSTAR YANG BERBEDA DI LABORATORIUM

    OpenAIRE

    Purnomo .

    2012-01-01

    Parasitization and reproductive capacity of Cotesia flavipes Cameron (Hymenoptaera: Braconidae) on different hosts and instar in laboratory. C. flavipes is an important parasitoid on sugar cane spotted borer, Chilo sacchariphagus Bojer.  The biology informations of C. flavipes is needed in order to make more effective as acontroling agent. The objectives of this research were to investigate the effect of host species (C. sacchariphagus, C. auricilius, Scirpophaga nivella) and different instar...

  8. Parasitisasi Dan Kapasitas Reproduksi Cotesia Flavipes Cameron (Hymenoptera: Braconidae) Pada Inang Dan Instar Yang Berbeda Di Laboratorium

    OpenAIRE

    Purnomo

    2006-01-01

    Parasitization and reproductive capacity of Cotesia flavipes Cameron (Hymenoptaera: Braconidae) on different hosts and instar in laboratory. C. flavipes is an important parasitoid on sugar cane spotted borer, Chilo sacchariphagus Bojer. The biology informations of C. flavipes is needed in order to make more effective as acontroling agent. The objectives of this research were to investigate the effect of host species (C. sacchariphagus, C. auricilius, Scirpophaga nivella) and different instar...

  9. Natural history of interaction between Meteorus sp. Haliday, 1835 (Hymenoptera: Braconidae) and its hyperparasitoid Toxeumella albipes Girault, 1913 (Hymenoptera: Pteromalidae).

    Science.gov (United States)

    Sobczak, J F; Maia, D P; Moura, J C M S; Costa, V A; Vasconcellos-Neto, J

    2012-02-01

    Some parasitoids build a cocoon mass that hangs in the host body until the adults emergence, which is an advantage against attack by predators who troll the vegetation in search of prey. However, such behaviour is not effective against the hyperparasitoid attacks. This study reports the interaction between the caterpillar Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae) parasitised by Meteorus sp. (Hymenoptera, Braconidae) larvae and its hyperparasitoid Toxeumella albipes (Hymenoptera, Pteromalidae). This is the first description of the attack and oviposition of T. albipes.

  10. Characteristics of the cocoon and natural history of the gregarious Meteorus restionis sp. n. (Hymenoptera, Braconidae, Meteorinae) from Costa Rica

    OpenAIRE

    Barrantes,Gilbert; Triana,Emilia; Shaw,Scot; Jones,Guinevere

    2011-01-01

    A new species of a gregarious Meteorus wasp (Braconidae) constructs an unusual cocoon mass. Meteorus restionis sp. n. is described and distinguished from similar species. Cocoons of M. restionis are dark-brown, ovoid, and they are attached perpendicularly by their posterior end along a long, suspended cable. The cable is formed by intertwined, independent threads which are glued together at irregular intervals along its length, suggesting a certain degree of cooperation or at least tolerance ...

  11. A New Species of Solitary Meteorus (Hymenoptera: Braconidae) Reared from Caterpillars of Toxic Butterflies (Lepidoptera: Nymphalidae) in Ecuador

    OpenAIRE

    Shaw, Scott R.; Jones, Guinevere Z.

    2009-01-01

    A new species of parasitoid wasp, Meteorus rugonasus Shaw and Jones (Hymenoptera: Braconidae), is described from the Yanayacu Biological Station, Napo Province, Ecuador. The new species is diagnosed and compared to other species in the genus. It was reared from larvae of Pteronymia zerlina (Hewitson, 1855) (Lepidoptera: Nymphalidae, Ithomiinae) found feeding on leaves of Solanum (Solanaceae). The parasitoid is solitary. This is the first record of a Meteorus species attacking ithomiine Nympha...

  12. Ten unique and charismatic new species of Microgastrinae wasps (Hymenoptera, Braconidae from North America

    Directory of Open Access Journals (Sweden)

    Jose Fernandez-Triana

    2018-01-01

    Full Text Available Ten new species within four genera of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae are described from Canada and United States: Diolcogaster ichiroi, Diolcogaster miamensis, Glyptapanteles pseudotsugae, Microgaster archboldensis, Microgaster syntopic, Microplitis altissimus, Microplitis jorgeluisi, Microplitis juanmanueli, Microplitis julioalbertoi, and Microplitis mariamargaritae. The new taxa are significant because they represent the first North American records of a tropical group (species of the basimacula group in Diolcogaster, exemplify interesting ecological cases (niche-based host selection in Glyptapanteles, syntopic species in Microgaster, and showcase unique morphological features and/or altitudinal records (Microplitis. Most of the new species were collected in protected areas or areas with strong research programs (Archbold Biological Station and hammock forests near Miami, Florida; Great Sand Dunes National Park and Preserve, and Mount Evans Wilderness Area, Colorado; Sapelo Island, Georgia; Tonto National Forest, Arizona, and thus are also of value and interest for conservation and research efforts.

  13. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... evidence regarding the systematic classification of Ranunculaceae plants, we used molecular ... Ranunculaceae is a family of flowering plants known as ... and in the analysis of the evolutionary rate for lower level phylogeny ...

  14. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    Science.gov (United States)

    2010-01-01

    Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the

  15. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    Directory of Open Access Journals (Sweden)

    Shi Min

    2010-06-01

    Full Text Available Abstract Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders

  16. Molecular phylogeny of Duvenhage virus

    Directory of Open Access Journals (Sweden)

    Louis H. Nel

    2011-11-01

    Full Text Available The Duvenhage virus (DUVV constitutes one of the 11 species in the Lyssavirus genus and causes fatal rabies encephalitis. The virus is associated with insectivorous bat species and three human cases have been reported, all of which were linked to contact with bats. Few of these isolates have been studied and thus little is known about the phylogeny and epidemiology of this lyssavirus. Until 2007, when an isolate was made from the East African country of Kenya, all isolations of this virus had been from southern Africa. This discovery led to many questions regarding the spread and diversity of this lyssavirus. Phylogenetic analysis indicated that the DUVV isolates constitute two different lineages, in which the southern African isolates group together to form one lineage and the more recent isolate from Kenya constitutes a new, second lineage. We found that the new isolate has a genetic variation that has not yet been seen for DUVV. Not only is our lack of knowledge regarding the geographical distribution of this uniquely African virus emphasised, but we have also demonstrated the potential diversity within this genotype.

  17. Juvenile morphology in baleen whale phylogeny.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  18. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  19. Molecular data and phylogeny of family

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Shinwari, S.

    2010-01-01

    Family Smilacaceae's higher order taxonomy remained disputed for many years. It was treated as an order 'Smilacales' and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family's higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. (author)

  20. The phylogeny of Orussidae (Insecta: Hymenoptera) revisited

    DEFF Research Database (Denmark)

    Vilhelmsen, Lars

    2007-01-01

    The phylogeny of the parasitic wasp family Orussidae is analyzed with a slightly expanded version of a previously published data set. The basal splitting events in the family between two fossil taxa and the extant members are not unambiguously resolved. Intergeneric relationships in general...... are poorly supported and change under different analytical conditions. This corroborates earlier fi ndings regarding the phylogeny of the family. A resumé of the evolutionary history of the Orussidae is provided. Leptorussus madagascarensis sp.n. is described. Udgivelsesdato: 7/12...

  1. Effect of Parasitoid: Host Ratio and Parasitoid and Host Group Size on Fitness of Spathius galinae (Hymenoptera: Braconidae), a Parasitoid of Emerald Ash Borer (Coleoptera: Buprestidae): Implications for Mass-Rearing

    Science.gov (United States)

    Producing insect natural enemies in laboratories or insectaries for biological pest control is often expensive, and developing cost-effective rearing techniques is a goal of many biological control programs. Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently described...

  2. Two genera Foersteria Szépligeti, 1896 and Polydegmon Foerster, 1862 (Hymenoptera, Braconidae, Brachistinae) from China, with description of a new species.

    Science.gov (United States)

    Yan, Cheng-Jin; He, Jun-Hua; Chen, Xue-Xin

    2013-01-01

    The genera Foersteria Szépligeti, 1896 and Polydegmon Foerster, 1862 (Hymenoptera, Braconidae, Brachistinae) are recorded for the first time from China. A new species, Foersteria xinjiangensis Yan & Chen, sp. nov., is described and illustrated. A key to the Palaearctic species of Foersteria is given. In addition, Polydegmon sinuatus Foerster, 1862 is illustrated in detail for the first time.

  3. Primera cita de Aleiodes laphygmae (Hymenoptera: Braconidae para Argentina y de su asociación con larvas de Spodoptera eridania (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Liliana VALVERDE

    2012-01-01

    Full Text Available Se reporta por primera vez para Argentina Aleiodes laphygmae (Viereck (Hymenoptera: Braconidae y como parasitoide de larvas de Spodoptera eridania (Stoll (Lepidoptera: Noctuidae, en plantaciones de soja en la provincia de Tucumán (Argentina. Se provee información biológica como hábitos, hospedadores y distribución.

  4. Primera cita de Aleiodes laphygmae (Hymenoptera: Braconidae) para Argentina y de su asociación con larvas de Spodoptera eridania (Lepidoptera: Noctuidae)

    OpenAIRE

    Liliana VALVERDE; D. Carolina BERTA; Marcelo GERONIMO GOMEZ

    2012-01-01

    Se reporta por primera vez para Argentina Aleiodes laphygmae (Viereck) (Hymenoptera: Braconidae) y como parasitoide de larvas de Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae), en plantaciones de soja en la provincia de Tucumán (Argentina). Se provee información biológica como hábitos, hospedadores y distribución.

  5. New species of the family Triozidae (Homoptera: Psylloidea) from China, and the first record of Psylloidea as host of Braconidae (Hymenoptera)

    NARCIS (Netherlands)

    Li, F.; Achterberg, van C.; He, J.

    2000-01-01

    Two new species of Triozidae (Psylloidea) from China producing sphere-shaped leaf galls on Ficus hainanensis Merr. & Shun., are illustrated and described. For the first time Psylloidea are reported as host of a species of Braconidae. The parasitoid belonging to the genus Bracon Fabricius, 1804, is

  6. A new species and key for Acanthocaudus Smith (Braconidae: Aphidiinae), with new host and distribution records for aphidiines associated with Silphium perfoliatum L. (Asterales: Asteraceae)

    Science.gov (United States)

    A new species, Acanthocaudus bicolor Kula (Braconidae: Aphidiinae), from the Nearctic Region is described and differ- entiated from all other species of Acanthocaudus Smith. Acanthocaudus schlingeri Muesebeck, 1958 is synonymized with Acanthocaudus tissoti (Smith, 1944). A key to the species of Acan...

  7. Review of the genus Craspedolcus Enderlein sensu lato in China, with the description of a new genus and four new species (Hymenoptera, Braconidae, Braconinae)

    NARCIS (Netherlands)

    Li, Y.; Achterberg, van C.; Chen, X.-x.

    2017-01-01

    A new genus is split off the genus Craspedolcus Enderlein, 1920 (Hymenoptera, Braconidae, Braconinae): Maculibracon gen. n. with type species Maculibracon abruptus sp. n. The genus Craspedolcus Enderlein sensu stricto is redefined, a key to both genera and to their species in China, Thailand and

  8. Natural history of interaction between Meteorus sp. Haliday, 1835 (Hymenoptera: Braconidae and its hyperparasitoid Toxeumella albipes Girault, 1913 (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    JF Sobczak

    Full Text Available Some parasitoids build a cocoon mass that hangs in the host body until the adults emergence, which is an advantage against attack by predators who troll the vegetation in search of prey. However, such behaviour is not effective against the hyperparasitoid attacks. This study reports the interaction between the caterpillar Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae parasitised by Meteorus sp. (Hymenoptera, Braconidae larvae and its hyperparasitoid Toxeumella albipes (Hymenoptera, Pteromalidae. This is the first description of the attack and oviposition of T. albipes.

  9. Diversity and distibution of Braconidae, a family of parasitoid wasps in the Central European peatbogs of South Bohemia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lozan, Aurel; Belokobylskij, S.; van Achterberg, C.; Monaghan, M. T.

    2010-01-01

    Roč. 10, č. 16 (2010), s. 1-21 ISSN 1536-2442 R&D Projects: GA AV ČR 1QS500070505; GA AV ČR IAA600070501 Grant - others:European Science Foundation(BE) 1667; Russian Foundation for Basic Research(RU) 07-04-00454; EU Synthesys(GB) GB-TAF-2063; EU Synthesys(PL) PL-TAF-3266 Institutional research plan: CEZ:AV0Z50070508 Keywords : Central Europe * Hymenoptera * Braconidae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.014, year: 2010

  10. Lack of behavioural evidence for kin avoidance in mate choice in a hymenopteran parasitoid (Hymenoptera: Braconidae).

    Science.gov (United States)

    Bourdais, D; Hance, T

    2009-05-01

    Mechanisms for inbreeding avoidance should be prevalent in insects that reproduce by arrhenotokous haplodiploidy because of the higher potential production of unviable diploid males in inbred matings. Few studies have focused on mating strategies in insect parasitoids and even less on kinship relationships during mate choice. In this study we tested avoidance of kin as mate in the parasitic wasp Aphidius matricariae (Hymenoptera: Braconidae) using an ethological approach. Key mating parameters, such as male wing fanning, latent period before genitalia contact and duration of copulation were measured. No evidence for kin avoidance in mate choice in both A. matricariae males and females was observed in our behaviour (no choice or choice tests) tests. This lack of ethological sib mating avoidance could be due to different factors such as sex determination rule different than the single locus complementary sex determination, making lower the proportion of diploid males in case of sib matings and thus its negative consequence. The existence of other inbreeding avoidance strategies and mechanisms that reduce the probability of 2 receptive relatives meeting in nature may be common, for example, inbred mating may be rare through differential dispersal, delayed maturation, or protandry.

  11. Skeletal Morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a Discussion of Terminology

    Science.gov (United States)

    Karlsson, Dave; Ronquist, Fredrik

    2012-01-01

    The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study. PMID:22558068

  12. The foraging behavior of Diaeretiella rapae (Hymenoptera: Braconidae on Diuraphis noxia (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Tazerouni Zahra

    2011-01-01

    Full Text Available Host stage preference, functional response and mutual interference of Diaeretiella rapae (McIntosh (Hymenoptera: Braconidae: Aphidiinae on Diuraphis noxia (Mordvilko (Hemiptera: Aphididae were investigated under defined laboratory conditions (20±1°C; 60±5% relative humidity; 16 h light/8 h dark photoperiod. Nicholson’s model and linear regression were used to determine per capita search-efficiency and the interference coefficient, respectively. There was a significant difference between the rates of parasitism on different stages of D. noxia. The highest parasitism percentage was observed on the third instar nymphs of D. noxia in both choice and no-choice preference tests. Results of logistic regression revealed a type II functional response. The estimated values of search-efficiency (a and handling time (Th were 0.072 h-1 and 0.723 h, respectively. The maximum attack rate was calculated to be 33.22. The per capita search-efficiency decreased from 0.011 to 0.004 (h-1 as parasitoid densities increased from 1 to 8. Therefore, different host-parasitoid ratios can affect the efficacy of D. rapae.

  13. A survey of Euphorinae (Hymenoptera: Braconidae) of southern Iran, with description of a new species.

    Science.gov (United States)

    Ameri, Ali; Talebi, Ali Asghar; Rakhshani, Ehsan; Beyarslan, Ahmet; Kamali, Karim

    2014-12-23

    A faunistic survey of Euphorinae (Hym., Braconidae) in southern Iran, as well as an updated checklist of the genera and species in Iran, are presented. Sampling was performed using Malaise traps at different locations of Hormozgan province and Qeshm Island in Persian Gulf during 2011-2013. In total, 38 species belonging to 10 genera are listed from Iran. The recorded species belong to the following genera: Allurus Forster, 1862 (two species), Chrysopophthorus Goidanich 1948 (one species), Dinocampus Forster, 1862 (one species), Ecclitura Kokujev, 1902 (one species), Leiophron Nees von Esenbeck, 1819 (10 species), Meteorus Haliday, 1835 (12 species), Perilitus Nees von Esenbeck, 1819 (five species), Syntretus Forster 1862 (three species), Wesmaelia Foerster, 1862 (one species) and Zele Curtis, 1832 (two species). Allurus lituratus (Haliday 1835), Dinocampus coccinellae (Schrank, 1802), Leiophron (Peristenus) grandiceps (Thomson 1892), Meteorus rubens (Nees, 1811) and Wesmaelia petiolata (Wollaston, 1858) are new records for Hormozgan province and Leiophron (Peristenus) grandiceps (Thomson 1892) is recorded for the first time from Iran. In addition, Meteorus breviterebratus Ameri, Talebi & Beyarslan sp. n. is newly described and illustrated. 

  14. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic analysis of 92 ...

  15. Book review: Insect morphology and phylogeny

    Directory of Open Access Journals (Sweden)

    Susanne Randolf

    2014-05-01

    Full Text Available Beutel RG, Friedrich F, Ge S-Q, Yang X-K (2014 Insect Morphology and Phylogeny: A textbook for students of entomology. De Gruyter, Berlin/Boston, 516 pp., softcover. ISBN 978-3-11-026263-6.

  16. Plastome phylogeny and early diversification of Brassicaceae.

    Science.gov (United States)

    Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A

    2017-02-16

    The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.

  17. Bayesian inference of the metazoan phylogeny

    DEFF Research Database (Denmark)

    Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V

    2004-01-01

    Metazoan phylogeny remains one of evolutionary biology's major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has...

  18. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Revision of the world Monoctonia Starý, parasitoids of gall aphids: taxonomy, distribution, host range and phylogeny (Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Rakhshani, E.; Starý, Petr; Pérez Hidalgo, N.; Čkrkić, J.; Ghafouri Moghaddam, M.; Tomanović, S.; Petrović, A.; Tomanović, Ž.

    2015-01-01

    Roč. 3905, č. 4 (2015), s. 474-488 ISSN 1175-5326 Grant - others:Ministry of Education and Science of the Republic of Serbia(RS) III43001; Ministry of Education and Science of the Republic of Serbia(RS) ON173006; University of Zabol(IR) 89-9198 Institutional support: RVO:60077344 Keywords : Monoctonia japonica * Eriosomatinae * COI Subject RIV: EH - Ecology, Behaviour Impact factor: 0.994, year: 2015

  20. Análise da riqueza da fauna de Braconidae (Hymenoptera, Ichneumonoidea em remanescentes naturais da Área de Proteção Ambiental (APA de Descalvado, SP

    Directory of Open Access Journals (Sweden)

    Cirelli Kátia Resende Netto

    2003-01-01

    Full Text Available Analysis of the Braconidae (Hymenoptera: Ichneumonoidea fauna richness in natural remnants of the Área de Proteção Ambiental (APA of Descalvado, SP. A survey of the Braconidae fauna on fragmentary natural environments at northeast São Paulo State was conducted using Malaise traps installed in five sites of Área de Proteção Ambiental of Descalvado. A total of 2,262 specimens, representing 22 subfamilies and 94 genera, was sampled throughout a period of sixteen months (from May, 1999 to August, 2000. Biological data were obtained from current literature and behavior patterns of host utilization for the studied fauna, mainly Braconidae which have been successful in control of agricultural insect pests. Statistical analyses indicated that the asymptote of the genera richness has been approached using this sampling method. This is the most complete survey yet available from natural fragmentary areas of the Descalvado Braconidae fauna. Patterns of distribution and richness of the Braconidae genera were established. Cluster Analysis was adopted taking as attribute the number of Braconidae genera.

  1. Primera cita de Aleiodes laphygmae (Hymenoptera: Braconidae para Argentina y de su asociación con larvas de Spodoptera eridania (Lepidoptera: Noctuidae First record of Aleiodes laphygmae (Hymenoptera: Braconidae for Argentina and its association with larvae of Spodoptera eridania (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Liliana Valverde

    2012-06-01

    Full Text Available Se reporta por primera vez para Argentina Aleiodes laphygmae (Viereck (Hymenoptera: Braconidae y como parasitoide de larvas de Spodoptera eridania (Stoll (Lepidoptera: Noctuidae, en plantaciones de soja en la provincia de Tucumán (Argentina. Se provee información biológica como hábitos, hospedadores y distribución.Aleiodes laphygmae (Viereck (Hymenoptera: Braconidae, is reported for the first time for Argentina. It is also reported parasitizing larvae of Spodoptera eridania (Stoll (Lepidoptera: Noctuidae in soybeans crops in Tucumán province (Argentina. Biological information on habits, hosts and distribution is provided.

  2. A molecular phylogeny of living primates.

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E; Roos, Christian; Seuánez, Hector N; Horvath, Julie E; Moreira, Miguel A M; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C; Silva, Artur; O'Brien, Stephen J; Pecon-Slattery, Jill

    2011-03-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  3. A Molecular Phylogeny of Living Primates

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  4. A molecular phylogeny of living primates.

    Directory of Open Access Journals (Sweden)

    Polina Perelman

    2011-03-01

    Full Text Available Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb from 186 primates representing 61 (~90% of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  5. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  6. Braconidae (Hymenoptera fauna in native, degraded and restoration areas of the Vale do Paraíba, São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    CA Barbieri Junior

    Full Text Available This study sampled the diversity of Braconidae (Hymenoptera in three different ecosystems: a degraded pasture, a secondary forest and an area in recovery process using native tree seedlings. The objective was to verify the use of those insects as a tool to check the local conservation by examining Shannon's diversity index. Ten subfamilies were identified, and Microgastrinae was predominant in a number of individuals. The diversity index calculated varies among the sampled areas, thus showing a correlation with vegetation cover with the number of individuals collected and number of subfamilies found. The results showed changes in the community of Braconidae, in the recovery area between the first and second year of study, thereby leading to the conclusion that they are indicators of environmental quality.

  7. Morphological and molecular characterization of common European species Adialytus (Hymenoptera: Braconidae: Aphidiinae) based on mtCOI barcoding gene and geometric morphometrics of the forewings

    Czech Academy of Sciences Publication Activity Database

    Stanković, S. S.; Petrović, A.; Milošević, M.I.; Starý, Petr; Kavallieratos, N. G.; Žikić, V.; Tomanović, Ž.

    2015-01-01

    Roč. 112, č. 1 (2015), s. 165-174 ISSN 1210-5759 Grant - others:Ministry of Education, Science and Technology Development of the Republic of Serbia(RS) III43001 Institutional support: RVO:60077344 Keywords : Hymenoptera * Braconidae * Adialytus Subject RIV: EG - Zoology Impact factor: 0.975, year: 2014 http://www.eje.cz/pdfs/eje/2015/01/21.pdf

  8. História natural da interação entre Meteorus sp. Haliday, 1835 (Hymenoptera: Braconidae) e seu hiperparasitoide Toxeumella albipes Girault, 1913 (Hymenoptera: Pteromalidae)

    OpenAIRE

    Sobczak, JF; Maia, DP; Moura, JCMS; Costa, VA; Vasconcellos-Neto, J

    2012-01-01

    Some parasitoids build a cocoon mass that hangs in the host body until the adults emergence, which is an advantage against attack by predators who troll the vegetation in search of prey. However, such behaviour is not effective against the hyperparasitoid attacks. This study reports the interaction between the caterpillar Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae) parasitised by Meteorus sp. (Hymenoptera, Braconidae) larvae and its hyperparasitoid Toxeumella albipes (Hymenoptera, ...

  9. Description and natural history of the first micropterous Meteorus species: M. orocrambivorus sp. n. (Hymenoptera, Braconidae, Euphorinae), endemic to New Zealand

    OpenAIRE

    Aguirre,Helmuth; Shaw,Scott; Berry,Jocelyn; de Sassi,Claudio

    2014-01-01

    Wing reduction is well known in the cyclostome lineage of Braconidae, but very unusual in non-cyclostome groups. A new species from New Zealand, Meteorus orocrambivorus, the first micropterous species of the non-cyclostome and cosmopolitan genus Meteorus, is described. Phylogenetic analysis places it close to M. versicolor, a macropterous parasitoid of macrolepidoptera. Details about its host relationships, plant associations and habitat suggest that the necessity of succeeding in cryptic env...

  10. Studies in Phylogeny. I. On the relation of Taxonomy, Phylogeny and Biogeography

    NARCIS (Netherlands)

    Lam, H.J.

    1938-01-01

    Taxonomy is static, its symbols are therefore two-dimensional, representing 1. differences or resemblances and 2. diversity (eventually are also area). Phylogeny is dynamic and its symbols are three-dimensional, representing 1. Time, 2. differences or resemblances and 3. diversity (eventually also

  11. PARASITISASI DAN KAPASITAS REPRODUKSI COTESIA FLAVIPES CAMERON (HYMENOPTERA: BRACONIDAE PADA INANG DAN INSTAR YANG BERBEDA DI LABORATORIUM

    Directory of Open Access Journals (Sweden)

    Purnomo .

    2012-02-01

    Full Text Available Parasitization and reproductive capacity of Cotesia flavipes Cameron (Hymenoptaera: Braconidae on different hosts and instar in laboratory. C. flavipes is an important parasitoid on sugar cane spotted borer, Chilo sacchariphagus Bojer.  The biology informations of C. flavipes is needed in order to make more effective as acontroling agent. The objectives of this research were to investigate the effect of host species (C. sacchariphagus, C. auricilius, Scirpophaga nivella and different instar on parasitization and reproductive capacity of C. flavipes. The results showed that the best host for                    C.  flavipes is  C. sacchariphagus and at fifth instar of  C. sacchariphagus.

  12. Characteristics of the cocoon and natural history of the gregarious Meteorus restionis sp. n. (Hymenoptera, Braconidae, Meteorinae from Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilbert Barrantes

    2011-02-01

    Full Text Available A new species of a gregarious Meteorus wasp (Braconidae constructs an unusual cocoon mass. Meteorus restionis sp. n. is described and distinguished from similar species. Cocoons of M. restionis are dark-brown, ovoid, and they are attached perpendicularly by their posterior end along a long, suspended cable. The cable is formed by intertwined, independent threads which are glued together at irregular intervals along its length, suggesting a certain degree of cooperation or at least tolerance among larvae during the construction of the cable. Intertwining and gluing the individual threads in a single cable presumably gives it a greater resistance against wind and other environmental stress. Prior to emergence the wasp cuts a neat, circular cap at the anterior end of its cocoon, and the cap remains attached by some threads to the rest of the cocoon.

  13. A review of insect parasitoids associated with Lobesia botrana (Denis & Schiffermüller, 1775) in Italy. 1. DipteraTachinidae and HymenopteraBraconidae (Lepidoptera, Tortricidae).

    Science.gov (United States)

    Scaramozzino, Pier Luigi; Loni, Augusto; Lucchi, Andrea

    2017-01-01

    This paper is aimed to summarize the information available on the parasitoid complex of the European Grapevine Moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera Tortricidae) in Italy. The list is the result of the consultation of a vast bibliography published in Italy for almost two hundred years, from 1828 to date. This allowed the clarification and correction of misunderstandings and mistakes on the taxonomic position of each species listed. In Italy the complex of parasitoids detected on EGVM includes approximately 90 species belonging to ten families of Hymenoptera (Braconidae, Ichneumonidae, Chalcididae, Eulophidae, Eupelmidae, Eurytomidae, Pteromalidae, Torymidae, Trichogrammatidae, and Bethylidae) and one family of Diptera (Tachinidae). This paper deals with EGVM parasitoids of the families Tachinidae (Diptera) and Braconidae (Hymenoptera). Only two species of Tachinidae are associated to EGVM larvae in Italy, Actia pilipennis (Fallen) and Phytomyptera nigrina (Meigen), whereas the record of Eurysthaea scutellaris (Robineau-Desvoidy) is doubtful. Moreover, 21 species of Braconidae are reported to live on EGVM, but, unfortunately, eight of them were identified only at generic level. Bracon mellitor Say has been incorrectly listed among the parasitoids of Lobesia botrana . Records concerning Ascogaster rufidens Wesmael, Meteorus sp., Microgaster rufipes Nees, and Microplitis tuberculifer (Wesmael) are uncertain.

  14. A review of insect parasitoids associated with Lobesia botrana (Denis & Schiffermüller, 1775 in Italy. 1. Diptera Tachinidae and Hymenoptera Braconidae (Lepidoptera, Tortricidae

    Directory of Open Access Journals (Sweden)

    Pier Luigi Scaramozzino

    2017-01-01

    Full Text Available This paper is aimed to summarize the information available on the parasitoid complex of the European Grapevine Moth (EGVM, Lobesia botrana (Denis & Schiffermüller, 1775 (Lepidoptera Tortricidae in Italy. The list is the result of the consultation of a vast bibliography published in Italy for almost two hundred years, from 1828 to date. This allowed the clarification and correction of misunderstandings and mistakes on the taxonomic position of each species listed. In Italy the complex of parasitoids detected on EGVM includes approximately 90 species belonging to ten families of Hymenoptera (Braconidae, Ichneumonidae, Chalcididae, Eulophidae, Eupelmidae, Eurytomidae, Pteromalidae, Torymidae, Trichogrammatidae, and Bethylidae and one family of Diptera (Tachinidae. This paper deals with EGVM parasitoids of the families Tachinidae (Diptera and Braconidae (Hymenoptera. Only two species of Tachinidae are associated to EGVM larvae in Italy, Actia pilipennis (Fallen and Phytomyptera nigrina (Meigen, whereas the record of Eurysthaea scutellaris (Robineau-Desvoidy is doubtful. Moreover, 21 species of Braconidae are reported to live on EGVM, but, unfortunately, eight of them were identified only at generic level. Bracon mellitor Say has been incorrectly listed among the parasitoids of L. botrana. Records concerning Ascogaster rufidens Wesmael, Meteorus sp., Microgaster rufipes Nees, and Microplitis tuberculifer (Wesmael are uncertain.

  15. Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    NARCIS (Netherlands)

    Lenzini, Gabriele; Marianelli, Silvia

    1997-01-01

    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information

  16. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  17. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  18. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  19. Phylogeny and species traits predict bird detectability

    Science.gov (United States)

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  20. A supertree approach to shorebird phylogeny

    Directory of Open Access Journals (Sweden)

    Thomas Gavin H

    2004-08-01

    Full Text Available Abstract Background Order Charadriiformes (shorebirds is an ideal model group in which to study a wide range of behavioural, ecological and macroevolutionary processes across species. However, comparative studies depend on phylogeny to control for the effects of shared evolutionary history. Although numerous hypotheses have been presented for subsets of the Charadriiformes none to date include all recognised species. Here we use the matrix representation with parsimony method to produce the first fully inclusive supertree of Charadriiformes. We also provide preliminary estimates of ages for all nodes in the tree. Results Three main lineages are revealed: i the plovers and allies; ii the gulls and allies; and iii the sandpipers and allies. The relative position of these clades is unresolved in the strict consensus tree but a 50% majority-rule consensus tree indicates that the sandpiper clade is sister group to the gulls and allies whilst the plover group is placed at the base of the tree. The overall topology is highly consistent with recent molecular hypotheses of shorebird phylogeny. Conclusion The supertree hypothesis presented herein is (to our knowledge the only complete phylogenetic hypothesis of all extant shorebirds. Despite concerns over the robustness of supertrees (see Discussion, we believe that it provides a valuable framework for testing numerous evolutionary hypotheses relating to the diversity of behaviour, ecology and life-history of the Charadriiformes.

  1. Asian horses deepen the MSY phylogeny.

    Science.gov (United States)

    Felkel, S; Vogl, C; Rigler, D; Jagannathan, V; Leeb, T; Fries, R; Neuditschko, M; Rieder, S; Velie, B; Lindgren, G; Rubin, C-J; Schlötterer, C; Rattei, T; Brem, G; Wallner, B

    2018-02-01

    Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y-chromosomal phylogeny of modern horses based on 1.46 Mb of the male-specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages. © 2018 Stichting International Foundation for Animal Genetics.

  2. Phylogeny mandalas for illustrating the Tree of Life.

    Science.gov (United States)

    Hasegawa, Masami

    2017-12-01

    A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Coloration mechanisms and phylogeny of Morpho butterflies.

    Science.gov (United States)

    Giraldo, M A; Yoshioka, S; Liu, C; Stavenga, D G

    2016-12-15

    Morpho butterflies are universally admired for their iridescent blue coloration, which is due to nanostructured wing scales. We performed a comparative study on the coloration of 16 Morpho species, investigating the morphological, spectral and spatial scattering properties of the differently organized wing scales. In numerous previous studies, the bright blue Morpho coloration has been fully attributed to the multi-layered ridges of the cover scales' upper laminae, but we found that the lower laminae of the cover and ground scales play an important additional role, by acting as optical thin film reflectors. We conclude that Morpho coloration is a subtle combination of overlapping pigmented and/or unpigmented scales, multilayer systems, optical thin films and sometimes undulated scale surfaces. Based on the scales' architecture and their organization, five main groups can be distinguished within the genus Morpho, largely agreeing with the accepted phylogeny. © 2016. Published by The Company of Biologists Ltd.

  4. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  5. Towards improving searches for optimal phylogenies.

    Science.gov (United States)

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    Science.gov (United States)

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  7. Archaebacterial phylogeny: perspectives on the urkingdoms

    Science.gov (United States)

    Woese, C. R.; Olsen, G. J.

    1986-01-01

    Comparisons of complete 16S ribosomal RNA sequences have been used to confirm, refine and extend earlier concepts of archaebacterial phylogeny. The archaebacteria fall naturally into two major branches or divisions, I--the sulfur-dependent thermophilic archaebacteria, and II--the methanogenic archaebacteria and their relatives. Division I comprises a relatively closely related and phenotypically homogeneous collection of thermophilic sulfur-dependent species--encompassing the genera Sulfolobus, Thermoproteus, Pyrodictium and Desulfurococcus. The organisms of Division II, however, form a less compact grouping phylogenetically, and are also more diverse in phenotype. All three of the (major) methanogen groups are found in Division II, as are the extreme halophiles and two types of thermoacidophiles, Thermoplasma acidophilum and Thermococcus celer. This last species branches sufficiently deeply in the Division II line that it might be considered to represent a separate, third Division. However, both the extreme halophiles and Tp. acidophilum branch within the cluster of methanogens. The extreme halophiles are specifically related to the Methanomicrobiales, to the exclusion of both the Methanococcales and the Methanobacteriales. Tp. acidophilum is peripherally related to the halophile-Methanomicrobiales group. By 16S rRNA sequence measure the archaebacteria constitute a phylogenetically coherent grouping (clade), which excludes both the eubacteria and the eukaryotes--a conclusion that is supported by other sequence evidence as well. Alternative proposals for archaebacterial phylogeny, not based upon sequence evidence, are discussed and evaluated. In particular, proposals to rename (reclassify) various subgroups of the archaebacteria as new kingdoms are found wanting, for both their lack of proper experimental support and the taxonomic confusion they introduce.

  8. Phylogeny and taxonomy of the Inonotus linteus complex

    Czech Academy of Sciences Publication Activity Database

    Tian, X.-M.; Yu, H.-Y.; Zhou, L.-W.; Decock, C.; Vlasák, Josef; Dai, Y.C.

    2013-01-01

    Roč. 58, č. 1 (2013), s. 159-169 ISSN 1560-2745 Institutional support: RVO:60077344 Keywords : Hymenochaetaceae * Phellinus * Phylogeny * ITS Subject RIV: EF - Botanics Impact factor: 6.938, year: 2013

  9. Phylogeny and Species Diversity of Gulf of California Oysters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset of DNA sequence data from two mitochondrial loci (COI and 16S) used to infer the phylogeny of oysters in the genus Ostrea along the Pacific coast of North...

  10. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    Gene structure, phylogeny and expression profile of the sucrose synthase gene family in .... 24, 701–713. Bate N. and Twell D. 1998 Functional architecture of a late pollen .... Manzara T. and Gruissem W. 1988 Organization and expression.

  11. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming

    2009-01-01

    in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method

  12. Molecular phylogeny and morphological change in the Psittacula parakeets

    OpenAIRE

    Groombridge, Jim J.; Jones, Carl G.; Nichols, Richard A.; Carlton, Mark; Bruford, Michael W.

    2004-01-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800 bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that ext...

  13. Direct maximum parsimony phylogeny reconstruction from genotype data.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2007-12-05

    Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  14. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    Science.gov (United States)

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  16. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  17. Description and natural history of the first micropterous Meteorus species: M. orocrambivorus sp. n. (Hymenoptera, Braconidae, Euphorinae, endemic to New Zealand

    Directory of Open Access Journals (Sweden)

    Helmuth Aguirre

    2014-06-01

    Full Text Available Wing reduction is well known in the cyclostome lineage of Braconidae, but very unusual in non-cyclostome groups. A new species from New Zealand, Meteorus orocrambivorus, the first micropterous species of the non-cyclostome and cosmopolitan genus Meteorus, is described. Phylogenetic analysis places it close to M. versicolor, a macropterous parasitoid of macrolepidoptera. Details about its host relationships, plant associations and habitat suggest that the necessity of succeeding in cryptic environments may explain the wing modification. A possible case of Batesian mimicry with ants could explain the extreme sexual dimorphism.

  18. Determination of Opiinae parasitoids (Hymenoptera: Braconidae) associated with crop infesting Bactrocera spp. (Diptera: Tephritidae) using COI and Cyt b sequences

    Science.gov (United States)

    Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.

    2013-11-01

    Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.

  19. Review of the East Palaearctic and North Oriental Psyttalia Walker, with the description of three new species (Hymenoptera, Braconidae, Opiinae).

    Science.gov (United States)

    Wu, Qiong; van Achterberg, Cornelis; Tan, Jiang-Li; Chen, Xue-Xin

    2016-01-01

    The East Palaearctic and North Oriental species of the genus Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) are reviewed. Three new species are described and illustrated: Psyttalia latinervis Wu & van Achterberg, sp. n . and Psyttalia majocellata Wu & van Achterberg, sp. n . from China, and Psyttalia spectabilis van Achterberg, sp. n. from Japan. Coeloreuteus formosanus Watanabe, 1934, Opius (Lissosema) proclivis Papp, 1981, Opius (Psyttalia) subcyclogaster Tobias, 1998, Opius (Psyttalia) darasunicus Tobias, 1998, Opius (Psyttalia) cyclogastroides Tobias, 1998, Psyttalia extensa Weng & Chen, 2001, and Rhogadopsis longicaudifera Li & van Achterberg, 2013, are new synonyms of Psyttalia cyclogaster (Thomson, 1895); Opius (Psyttalia) ophthalmicus Tobias, 1977, and Opius (Psyttalia) brevitemporalis Tobias, 1998, of Psyttalia carinata (Thomson, 1895) and both Opius (Psyttalia) vacuus Tobias, 1998, and Opius (Lissosema) longurius Chen & Weng, 1995, of Rhogadopsis mediocarinata (Fischer, 1963). Phaedrotoma daghestanicum (Telenga, 1950), Rhogadopsis mediocarinata (Fischer, 1963) and Rhogadopsis mystica (Fischer, 1963) are new combinations. New records are Psyttalia carinata (Thomson, 1895) from The Netherlands and Norway, and Psyttalia cyclogaster (Thomson, 1895) from Japan. A lectotype is designated for Psyttalia carinata (Thomson, 1895) and Psyttalia cyclogaster (Thomson, 1895). A key to the East Palaearctic and North Oriental species of the genus Psyttalia Walker is included.

  20. Review of the East Palaearctic and North Oriental Psyttalia Walker, with the description of three new species (Hymenoptera, Braconidae, Opiinae

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2016-11-01

    Full Text Available The East Palaearctic and North Oriental species of the genus Psyttalia Walker (Hymenoptera, Braconidae, Opiinae are reviewed. Three new species are described and illustrated: P. latinervis Wu & van Achterberg, sp. n. and P. majocellata Wu & van Achterberg, sp. n. from China, and P. spectabilis van Achterberg, sp. n. from Japan. Coeloreuteus formosanus Watanabe, 1934, Opius (Lissosema proclivis Papp, 1981, O. (Psyttalia subcyclogaster Tobias, 1998, O. (P. darasunicus Tobias, 1998, O. (P. cyclogastroides Tobias, 1998, Psyttalia extensa Weng & Chen, 2001, and Rhogadopsis longicaudifera Li & van Achterberg, 2013, are new synonyms of Psyttalia cyclogaster (Thomson, 1895; Opius (Psyttalia ophthalmicus Tobias, 1977, and O. (P. brevitemporalis Tobias, 1998, of Psyttalia carinata (Thomson, 1895 and both O. (P. vacuus Tobias, 1998, and O. (Lissosema longurius Chen & Weng, 1995, of Rhogadopsis mediocarinata (Fischer, 1963. Phaedrotoma daghestanicum (Telenga, 1950, Rhogadopsis mediocarinata (Fischer, 1963 and R. mystica (Fischer, 1963 are new combinations. New records are Psyttalia carinata (Thomson, 1895 from The Netherlands and Norway, and P. cyclogaster (Thomson, 1895 from Japan. A lectotype is designated for Psyttalia carinata (Thomson, 1895 and P. cyclogaster (Thomson, 1895. A key to the East Palaearctic and North Oriental species of the genus Psyttalia Walker is included.

  1. A Framework for Studying Emotions Across Phylogeny

    Science.gov (United States)

    Anderson, David J.; Adolphs, Ralph

    2014-01-01

    Since the 19th century, there has been disagreement over the fundamental question of whether “emotions” are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have “emotions,” since emotions are typically defined with reference to human behavior and neuroanatomy. Here we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as “emotion primitives”, can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases, and tests of their causal relationships to behavior. More generally, our approach aims not only at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry. PMID:24679535

  2. Phylogeny and evolutionary history of the silkworm.

    Science.gov (United States)

    Sun, Wei; Yu, Hongsong; Shen, Yihong; Banno, Yutaka; Xiang, Zhonghuai; Zhang, Ze

    2012-06-01

    The silkworm, Bombyx mori, played an important role in the old Silk Road that connected ancient Asia and Europe. However, to date, there have been few studies of the origins and domestication of this species using molecular methods. In this study, DNA sequences of mitochondrial and nuclear loci were used to infer the phylogeny and evolutionary history of the domesticated silkworm and its relatives. All of the phylogenetic analyses indicated a close relationship between the domesticated silkworm and the Chinese wild silkworm. Domestication was estimated to have occurred about 4100 years ago (ya), and the radiation of the different geographic strains of B. mori about 2000 ya. The Chinese wild silkworm and the Japanese wild silkworm split about 23600 ya. These estimates are in good agreement with the fossil evidence and historical records. In addition, we show that the domesticated silkworm experienced a population expansion around 1000 ya. The divergence times and the population dynamics of silkworms presented in this study will be useful for studies of lepidopteran phylogenetics, in the genetic analysis of domestic animals, and for understanding the spread of human civilizations.

  3. Bacterial phylogeny structures soil resistomes across habitats

    Science.gov (United States)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  4. A transcriptome approach to ecdysozoan phylogeny.

    Science.gov (United States)

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  6. Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny

    Directory of Open Access Journals (Sweden)

    Tracey A. Bodo Slotta

    2012-10-01

    Full Text Available Weedy invasive Cirsium spp. are widespread in temperate regions of North America and some of their biological control agents have attacked native Cirsium spp. A phylogenetic tree was developed from DNA sequences for the internal transcribed spacer and external transcribed spacer regions from native and non-native Great Plains Cirsium spp. and other thistles to determine if host specificity follows phylogeny. The monophyly of Cirsium spp. and Carduus within the tribe Cardinae was confirmed with native North American and European lineages of the Cirsium spp. examined. We did not detect interspecific hybridization between the introduced invasive and the native North American Cirsium spp. Selected host-biological control agent interactions were mapped onto the phylogenic tree derived by maximum likelihood analysis to examine the co-occurrence of known hosts with biological control agents. Within Cirsium-Cardueae, the insect biological control agents do not associate with host phylogenetic lines. Thus, more comprehensive testing of species in host-specificity trials, rather than relying on a single representative of a given clade may be necessary; because the assumption that host-specificity follows phylogeny does not necessarily hold. Since the assumption does not always hold, it will also be important to evaluate ecological factors to provide better cues for host specificity.

  7. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    Science.gov (United States)

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. The reticulating phylogeny of island biogeography theory.

    Science.gov (United States)

    Lomolino, Mark V; Brown, James H

    2009-12-01

    Biogeographers study all patterns in the geographic variation of life, from the spatial variation in genetic and physiological characteristics of cells and individuals, to the diversity and dynamics of biological communities among continental biotas or across oceanic archipelagoes. The field of island biogeography, in particular, has provided some genuinely transformative insights for the biological sciences, especially ecology and evolutionary biology. Our purpose here is to review the historical development of island biogeography theory during the 20th century by identifying the common threads that run through four sets of contributions made during this period, including those by Eugene Gordon Munroe (1948, 1953), Edward O. Wilson (1959, 1961), Frank W. Preston (1962a,b), and the seminal collaborations between Wilson and Robert H. MacArthur (1963, 1967), which revolutionized the field and served as its paradigm for nearly four decades. This epistemological account not only reviews the intriguing history of island theory, but it also includes fundamental lessons for advancing science through transformative integrations. Indeed, as is likely the case with many disciplines, island theory advanced not as a simple accumulation of facts and an orderly succession of theories and paradigms, but rather in fits and starts through a reticulating phylogeny of ideas and alternating periods of specialization and reintegration. We conclude this review with a summary of the salient features of this scientific revolution in the contest of Kuhn's structure, which strongly influenced theoretical advances during this period, and we then describe some of the fundamental assumptions and tenets of an emerging reintegration of island biogeography theory.

  10. A Mitogenomic Phylogeny of Living Primates

    Science.gov (United States)

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  11. Parasitóides (Braconidae associados à Anastrepha (Tephritidae em frutos hospedeiros do litoral sul da Bahia Parasitoids (Braconidae associated with Anastrepha (Tephritidae in host fruits on the southern coast of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Leão Bittencourt

    2012-12-01

    Full Text Available Dentre os organismos que atuam no controle biológico natural dos tefritídeos, os representantes da família Braconidae constituem-se no mecanismo de parasitismo natural mais atuante, e na região Neotropical, representantes de Opiinae são os principais agentes de controle de Anastrepha. Este trabalho teve por objetivo conhecer a percentagem de parasitismo e as espécies de braconídeos associados às fruteiras cultivadas em municípios da região Litoral Sul da Bahia. No período de agosto de 2005 a março de 2008, coletaram-se frutos hospedeiros de moscas-das-frutas de diversas espécies botânicas, e dos frutos foram obtidas as seguintes espécies de Anastrepha: A. fraterculus, A. obliqua, A. bahiensis, A serpentina, A. sororcula e A. zenildae. Do total de 838 exemplares de braconídeos, 21,36% foram da espécie Utetes anastrephae (Viereck, provenientes de cajá, carambola, goiaba, manga e pitanga; 4,42% da espécie Asobara anastrephae (Muesebeck obtidos dos frutos de cajá, carambola e goiaba, e apenas um exemplar da espécie Opius bellus Gahan (0,12% que emergiu da amostra de goiaba. A espécie Doryctobracon areolatus (Szépligeti (74,10% foi predominante e emergiu dos pupários provenientes de todos os frutos hospedeiros coletados, provavelmente pela maior eficiência desta espécie em localizar as larvas dos tefritídeos. A percentagem média de parasitismo de Anastrepha spp. foi de 4,45%.Among the organisms acting in the natural biological control of tephritids, members of the family Braconidae are the most active form of natural parasite, and in Neotropical regions, members of Opiinae are the main control agents of Anastrepha. The objective of this work was to discover the percentage of parasitism and the species of braconid associated with fruit trees growing in cities on the southern coast of Bahia. During the period of August, 2005 to March, 2008, hosts fruits of fruit flies from several plant species were collected and from the

  12. Inference of Large Phylogenies Using Neighbour-Joining

    DEFF Research Database (Denmark)

    Simonsen, Martin; Mailund, Thomas; Pedersen, Christian Nørgaard Storm

    2011-01-01

    The neighbour-joining method is a widely used method for phylogenetic reconstruction which scales to thousands of taxa. However, advances in sequencing technology have made data sets with more than 10,000 related taxa widely available. Inference of such large phylogenies takes hours or days using...... the Neighbour-Joining method on a normal desktop computer because of the O(n^3) running time. RapidNJ is a search heuristic which reduce the running time of the Neighbour-Joining method significantly but at the cost of an increased memory consumption making inference of large phylogenies infeasible. We present...... two extensions for RapidNJ which reduce the memory requirements and \\makebox{allows} phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop computer. Furthermore, an improved version of the search heuristic is presented which reduces the running time of RapidNJ on many data...

  13. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  14. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae).

    Science.gov (United States)

    Huang, Zuhao; Tu, Feiyun

    2017-07-01

    The avian genera Calidris and Tringa are the largest of the widespread family of Scolopacidae. The phylogeny of members of the two genera is still a matter of controversial. Mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification and phylogeny of animal species. In this study, we analyzed the COI barcodes of thirty-one species of the two genera. All the species had distinct COI sequences. Two hundred and twenty-one variable sites were identified. Kimura two-parameter distances were calculated between barcodes. Neighbor-joining and maximum likelihood methods were used to construct phylogenetic trees. All the species could be discriminated by their distinct clades in the phylogenetic trees. The phylogenetic trees grouped all the species of Calidris and Tringa into different monophyletic clade, respectively. COI data showed a well-supported phylogeny for Calidris and Tringa species.

  15. Direct maximum parsimony phylogeny reconstruction from genotype data

    Directory of Open Access Journals (Sweden)

    Ravi R

    2007-12-01

    Full Text Available Abstract Background Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. Results In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Conclusion Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  16. Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae)

    International Nuclear Information System (INIS)

    Silva, Robson Jose da; Bueno, Vanda Helena Paes; Silva, Diego Bastos; Sampaio, Marcus Vinicius

    2008-01-01

    Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae). The evaluation of the growth potential of Lysiphlebus testaceipes (Cresson) is important for its use in biological control programs of aphids. This work aimed to evaluate the fertility life table of L. testaceipes in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover. To determine the immature mortality, development and the sex ratio of the parasitoid, 12 females parasitoid, and 480 nymphs of each aphids were used. To evaluate the longevity and fertility 15 female parasitoid were used. Nymphs of each aphid (3 day old) were offered for each parasitoid female daily, until the female died, being 300 (first day); 250 (second day); 200 (third day); 150 (fourth day) and 50 nymphs in the other days. L. testaceipes showed immature mortality rates of 5.6 % in R. maidis and 9.2 % in A. gossypii. The development time of L. testaceipes in R. maidis and A. gossypii was 10.2 and 10.1 days, and the sex ratio of 0.71 and 0.66, respectively. The female of L. testaceipes had a fecundity of 498.8 eggs in R. maidis and 327.8 eggs in A. gossypii. The growth parameters the L. testaceipes in R. maidis and A. gossypii were, respectively R o = 205.38 and 164.08 females; r m = 0.449 and 0.431 females/females/day; λ= 1.57 and 1.54 females/day; T= 11.86 and 11.83 days and TD= 10.78 and 11.27 days. L. testaceipes showed great growth potential on both aphid hosts. R. maidis could be a suitable host for proposals of mass-rearing and open rearing system using L. testaceipes. (author)

  17. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  18. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  19. Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.

    Science.gov (United States)

    Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao

    2017-12-26

    In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.

  20. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes)

    Czech Academy of Sciences Publication Activity Database

    Mendoza-Palmero, Carlos Alonso; Blasco-Costa, I.; Scholz, Tomáš

    2015-01-01

    Roč. 8, MAR 18 2015 (2015), s. 164 ISSN 1756-3305 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Phylogeny * Monogenea * Dactylogyridae * Neotropical region * Diversity * Siluriformes * 28S rRNA Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  1. A molecular phylogeny of selected species of genus Prunus L ...

    African Journals Online (AJOL)

    (Syn. Prunus amygdalus) and Prunus cornuta (Wall. ex. Royle) Steudel. These are indigenous to Pakistan. In the ITS strict consensus results for example, the clade consisting of Laurocerasus, Padus and Cerasus subgenera are sister to the rest of the clades in the phylogenetic tree. Key words: Phylogeny, Prunus, Pakistan, ...

  2. Incorporating indel information into phylogeny estimation for rapidly emerging pathogens

    Directory of Open Access Journals (Sweden)

    Suchard Marc A

    2007-03-01

    Full Text Available Abstract Background Phylogenies of rapidly evolving pathogens can be difficult to resolve because of the small number of substitutions that accumulate in the short times since divergence. To improve resolution of such phylogenies we propose using insertion and deletion (indel information in addition to substitution information. We accomplish this through joint estimation of alignment and phylogeny in a Bayesian framework, drawing inference using Markov chain Monte Carlo. Joint estimation of alignment and phylogeny sidesteps biases that stem from conditioning on a single alignment by taking into account the ensemble of near-optimal alignments. Results We introduce a novel Markov chain transition kernel that improves computational efficiency by proposing non-local topology rearrangements and by block sampling alignment and topology parameters. In addition, we extend our previous indel model to increase biological realism by placing indels preferentially on longer branches. We demonstrate the ability of indel information to increase phylogenetic resolution in examples drawn from within-host viral sequence samples. We also demonstrate the importance of taking alignment uncertainty into account when using such information. Finally, we show that codon-based substitution models can significantly affect alignment quality and phylogenetic inference by unrealistically forcing indels to begin and end between codons. Conclusion These results indicate that indel information can improve phylogenetic resolution of recently diverged pathogens and that alignment uncertainty should be considered in such analyses.

  3. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  4. Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats

    DEFF Research Database (Denmark)

    Fabre, Pierre-Henri; Upham, Nathan S.; Emmons, Louise H.

    2017-01-01

    Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorina...... Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes....

  5. The genus Gloriosa (Colchicaceae) : ethnobotany, phylogeny and taxonomy

    NARCIS (Netherlands)

    Maroyi, A.

    2012-01-01

    This thesis focuses on the ethnobotany, phylogeny and taxonomy of the genus Gloriosa L. over its distributional range. Some Gloriosa species are known to have economic and commercial value, but the genus is also well known for its complex alpha taxonomy. An appropriate taxonomy for this group is of

  6. Ethnobotany, Phylogeny, and 'Omics' for Human Health and Food Security.

    Science.gov (United States)

    Garnatje, Teresa; Peñuelas, Josep; Vallès, Joan

    2017-03-01

    Here, we propose a new term, 'ethnobotanical convergence', to refer to the similar uses for plants included in the same node of a phylogeny. This phylogenetic approach, together with the 'omics' revolution, shows how combining modern technologies with traditional ethnobotanical knowledge could be used to identify potential new applications of plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides).

    Science.gov (United States)

    Jønsson, Knud Andreas; Fabre, Pierre-Henri; Kennedy, Jonathan D; Holt, Ben G; Borregaard, Michael K; Rahbek, Carsten; Fjeldså, Jon

    2016-01-01

    The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Phylogeny and adaptation shape the teeth of insular mice.

    Science.gov (United States)

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  9. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Science.gov (United States)

    D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori

    2013-01-01

    Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...

  10. Phylogeny of not-yet-cultured spirochetes from termite guts

    DEFF Research Database (Denmark)

    Paster, B.J.; Dewhirst, F.E.; Cooke, S.M.

    1996-01-01

    Comparisons of 16S rDNA sequences were used to determine the phylogeny of not-yet-cultured spirochetes from hindguts of the African higher termite, Nasutitermes lujae (Wasmann). The 16S rRNA genes were amplified directly from spirochete-rich hindguts by using universal primers, and the amplified...

  11. A molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada)

    DEFF Research Database (Denmark)

    Fujimoto, Shinta; Jørgensen, Aslak; Hansen, Jesper Guldberg

    2017-01-01

    The marine order Arthrotardigrada (class Heterotardigrada, phylum Tardigrada) is known for its conspicuously high morphological diversity and has been traditionally recognized as the most ancestral group within the phylum. Despite its potential importance in understanding the evolution of the phy...... of the inferred phylogeny....

  12. A new species of Megalommum Szépligeti (Hymenoptera, Braconidae, Braconinae); a parasitoid of the pistachio longhorn beetle (Calchaenesthes pistacivora Holzschuh; Coleoptera, Cerambycidae) in Iran

    Science.gov (United States)

    van Achterberg, C.; Mehrnejad, M.R.

    2011-01-01

    Abstract A new species of the genus Megalommum Szépligeti (Hymenoptera: Braconidae: Braconinae), reared from the pistachio longhorn beetle (Calchaenesthes pistacivora Holzschuh; Coleoptera: Cerambycidae), is described and illustrated. The genera Curreia Ashmead, 1900 and Endovipio Turner, 1922 are new synonyms of Megalommum Szépligeti, 1900. Notes on the biology of Megalommum pistacivorae sp. n. and a key to the West Palaearctic and Oriental species are added. The following new combinations are given: Megalommum xanthoceps (Fahringer, 1928), comb. n., Megalommum jacobsoni (Tobias, 1968), comb. n., Megalommum ayyari (Watanabe, 1950), comb. n., Megalommum philippinense (Baker, 1917), comb. n., Megalommum dodecanesi(Ferrière, 1922), comb. n., Megalommum ceresense (Turner, 1922), comb. n., Megalommum inareatum (Granger, 1949), comb. n., Megalommum antefurcale (Szépligeti, 1915) comb. n. and Megalommum tibiale (Ashmead, 1906), comb. n. PMID:21976987

  13. Asociaciones áfido-parasitoide (Hemiptera: Aphididae; Hymenoptera: Braconidae, Aphidiinae en cultivos hortícolas orgánicos en Los Cardales, Buenos Aires, Argentina Aphid-parasitoid associations (Hemiptera: Aphididae; Hymenoptera: Braconidae, Aphidiinae on organic vegetable crops in Los Cardales, Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Andrea V. Andorno

    2007-07-01

    Full Text Available Diez especies de áfidos (Hemiptera: Aphididae se hallaron parasitados por siete especies de parasitoides (Hymenoptera: Braconidae, Aphidiinae en cultivos hortícolas orgánicos. Myzus persicae (Sulzer fue el áfido más frecuentemente encontrado sobre una amplia variedad de cultivos, y con mayor diversidad de parasitoides asociados. Aphidius colemani Viereck fue el afidiino más usual, que ataca varias especies de áfidos. Ocho asociaciones tritróficas, involucrando Aphidius matricariae Haliday, han sido registradas por primera vez para la Argentina.Ten aphid species (Hemiptera: Aphididae were found parasitized by seven aphid parasitoid species (Hymenoptera: Braconidae, Aphidiinae on organic vegetable crops. Myzus persicae (Sulzer was the most frequent aphid found on a wide variety of crops, with the largest parasitoid diversity associated. Aphidius colemani Viereck was the most frequent aphidiine attacking several species of aphids. Eight tritrophic associations involving Aphidius matricariae Haliday are reported for the first time for Argentina.

  14. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers.

    Science.gov (United States)

    Muirhead, Kate A; Murphy, Nicholas P; Sallam, Nader; Donnellan, Stephen C; Austin, Andrew D

    2012-06-01

    The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The

  15. Effects of rearing conditions on reproduction of Spathius agrili (Hymenoptera: Braconidae), a parasitoid of the emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Gould, Juli R; Ayer, Tracy; Fraser, Ivich

    2011-04-01

    Spathius agrili Yang (Hymenoptera: Braconidae) can be successfully reared on emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), larvae feeding in chambers drilled in small ash twigs that are wrapped with floral tape. Females maintained in groups with males for one week can receive enough sperm for production of female progeny throughout their lives. Volatiles released by emerald ash borer adults feeding on ash foliage increased parasitoid fecundity over ash foliage alone or no stimulus. The temperature at which the parasitoids were reared ranged from 20 to 25 degrees C in a daily cycle; however, raising the daily maximum temperature to 28 degrees C did not affect parasitoid longevity or fecundity. Adult females lived between 12 and 127 d, with an average of 60.8 +/- 4.5 d. Males lived slightly longer, with an average of 66 +/- 4.5 d. The first clutch of eggs was laid when the female was between 2 and 42 d old, with the average preoviposition period lasting 11.4 +/- 1.4 or 19.5 +/- 2.0 d in 2007 and 2009 trials, respectively. A higher proportion of the emerald ash borer larvae were feeding and thus attractive to parasitoids in the 2009 trial, and female S. agrili laid an average of 9.5 +/- 1.0 clutches containing 5.4 +/- 0.2 eggs, for an average of 51.2 eggs per female. Approximately three quarters of the progeny were female. The number of eggs per clutch was significantly greater when deposited on larger emerald ash borer larvae, further highlighting the need for quality larvae in rearing. Chilling S. agrili pupae at 10 degrees C to stockpile them for summer release was not successful; chilling resulted in lower survival and lower fecundity of emerging progeny. Female S. agrili proved capable of attacking emerald ash borer larvae through even the thickest bark of an ash tree that was 30-cm diameter at breast height. Even emerald ash borer larvae that were creating overwintering chambers in the outer sapwood of the tree were successfully

  16. Phylogeny with introgression in Habronattus jumping spiders (Araneae: Salticidae).

    Science.gov (United States)

    Leduc-Robert, Geneviève; Maddison, Wayne P

    2018-02-22

    Habronattus is a diverse clade of jumping spiders with complex courtship displays and repeated evolution of Y chromosomes. A well-resolved species phylogeny would provide an important framework to study these traits, but has not yet been achieved, in part because the few genes available in past studies gave conflicting signals. Such discordant gene trees could be the result of incomplete lineage sorting (ILS) in recently diverged parts of the phylogeny, but there are indications that introgression could be a source of conflict. To infer Habronattus phylogeny and investigate the cause of gene tree discordance, we assembled transcriptomes for 34 Habronattus species and 2 outgroups. The concatenated 2.41 Mb of nuclear data (1877 loci) resolved phylogeny by Maximum Likelihood (ML) with high bootstrap support (95-100%) at most nodes, with some uncertainty surrounding the relationships of H. icenoglei, H. cambridgei, H. oregonensis, and Pellenes canadensis. Species tree analyses by ASTRAL and SVDQuartets gave almost completely congruent results. Several nodes in the ML phylogeny from 12.33 kb of mitochondrial data are incongruent with the nuclear phylogeny and indicate possible mitochondrial introgression: the internal relationships of the americanus and the coecatus groups, the relationship between the altanus, decorus, banksi, and americanus group, and between H. clypeatus and the coecatus group. To determine the relative contributions of ILS and introgression, we analyzed gene tree discordance for nuclear loci longer than 1 kb using Bayesian Concordance Analysis (BCA) for the americanus group (679 loci) and the VCCR clade (viridipes/clypeatus/coecatus/roberti groups) (517 loci) and found signals of introgression in both. Finally, we tested specifically for introgression in the concatenated nuclear matrix with Patterson's D statistics and D FOIL . We found nuclear introgression resulting in substantial admixture between americanus group species, between H. roberti

  17. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  18. Whole genome association mapping by incompatibilities and local perfect phylogenies

    DEFF Research Database (Denmark)

    Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide

    2006-01-01

    around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should...... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region...... provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny...

  19. Live phylogeny with polytomies: Finding the most compact parsimonious trees.

    Science.gov (United States)

    Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G

    2017-08-01

    Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular phylogeny and morphological change in the Psittacula parakeets.

    Science.gov (United States)

    Groombridge, Jim J; Jones, Carl G; Nichols, Richard A; Carlton, Mark; Bruford, Michael W

    2004-04-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that extends from the chin to the cheek. We examine the extent of sexual dimorphism in tail length across the phylogeny and reveal large differences between closely related forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. An ancestral Psittacula form appears to have evolved during the late Miocene-early Pliocene (3.4-9.7MYA), a time when regional geological processes on the Asian continent may have promoted subsequent diversity at the species level, and many forms diverged relatively early on in the evolutionary history of Psittacula (between 2.5 and 7.7MYA). However, others, such as the derbyan and moustached parakeets, diverged as recently as 0.2MYA. Our phylogeny also suggests that the echo parakeet from Mauritius diverged from the Indian ringneck parakeet as opposed to the African ringneck, and may have done so relatively recently. The molecular results indicate support for a southwards radiation from India across the Indian Ocean to Mauritius, where the arrival-date of the echo parakeet appears consistent with the island's volcanic formation.

  1. Shortest triplet clustering: reconstructing large phylogenies using representative sets

    Directory of Open Access Journals (Sweden)

    Sy Vinh Le

    2005-04-01

    Full Text Available Abstract Background Understanding the evolutionary relationships among species based on their genetic information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies for large data sets is still a challenging task in Bioinformatics. Results We propose a new distance-based clustering method, the shortest triplet clustering algorithm (STC, to reconstruct phylogenies. The main idea is the introduction of a natural definition of so-called k-representative sets. Based on k-representative sets, shortest triplets are reconstructed and serve as building blocks for the STC algorithm to agglomerate sequences for tree reconstruction in O(n2 time for n sequences. Simulations show that STC gives better topological accuracy than other tested methods that also build a first starting tree. STC appears as a very good method to start the tree reconstruction. However, all tested methods give similar results if balanced nearest neighbor interchange (BNNI is applied as a post-processing step. BNNI leads to an improvement in all instances. The program is available at http://www.bi.uni-duesseldorf.de/software/stc/. Conclusion The results demonstrate that the new approach efficiently reconstructs phylogenies for large data sets. We found that BNNI boosts the topological accuracy of all methods including STC, therefore, one should use BNNI as a post-processing step to get better topological accuracy.

  2. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  3. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  4. Phylogeny, diet, and cranial integration in australodelphian marsupials.

    Directory of Open Access Journals (Sweden)

    Anjali Goswami

    2007-10-01

    Full Text Available Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.

  5. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae).

    Science.gov (United States)

    Kim, Young-Dong; Kim, Sung-Hee; Landrum, Leslie R

    2004-06-01

    A phylogeny based on the internal transcribed spacer (ITS) sequences from 79 taxa representing much of the diversity of Berberis L. (four major groups and 22 sections) was constructed for the first time. The phylogeny was basically congruent with the previous classification schemes at higher taxonomic levels, such as groups and subgroups. A notable exception is the non-monophyly of the group Occidentales of compound-leaved Berberis (previously separated as Mahonia). At lower levels, however, most of previous sections and subsections were not evident especially in simple-leaved Berberis. Possible relationship between section Horridae (group Occidentales) and the simple-leaved Berberis clade implies paraphyly of the compound-leaved Berberis. A well-known South America-Old World (mainly Asia) disjunctive distribution pattern of the simple-leaved Berberis is explained by a vicariance event occurring in the Cretaceous period. The ITS phylogeny also suggests that a possible connection between the Asian and South American groups through the North American species ( Berberis canadensis or B. fendleri) is highly unlikely.

  6. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  7. Mitochondrial phylogeny of the Chrysisignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction.

    Science.gov (United States)

    Soon, Villu; Saarma, Urmas

    2011-07-01

    The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute

  8. Revision of the subfamily Opiinae (Hymenoptera, Braconidae from Hunan (China, including thirty-six new species and two new genera

    Directory of Open Access Journals (Sweden)

    Li Xi-Ying

    2013-02-01

    Full Text Available The species of the subfamily Opiinae (Hymenoptera: Braconidae from Hunan (Oriental China are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., A. melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., A. striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., C. postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., O. brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., O. malarator Li, van Achterberg & Tan, sp. n., O. monilipalpis Li & van Achterberg, sp. n., O. pachymerus Li & van Achterberg, sp. n., O. songi Li & van Achterberg, sp. n., O. youi Li & van Achterberg, sp. n., O. zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., P.angiclypeata Li & van Achterberg, sp. n., P. antenervalis Li & van Achterberg, sp. n., P. depressiclypealis Li & van Achterberg, sp. n., P. flavisoma Li & van Achterberg, sp. n., P. nigrisoma Li & van Achterberg, sp. n., P. protuberator Li & van Achterberg, sp. n., P. rugulifera Li & van Achterberg, sp. n., Li & van Achterberg, P. striatinota Li & van Achterberg, sp. n., P. vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., R. longicaudifera Li & van Achterberg, sp. n., R. maculosa Li, van Achterberg & Tan, sp. n., R. obliqua Li & van Achterberg, sp. n., R. sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n. and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides

  9. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Directory of Open Access Journals (Sweden)

    Beaulieu Jeremy M

    2009-02-01

    Full Text Available Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously

  10. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches.

    Science.gov (United States)

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-02-11

    Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations

  11. Recapitulating phylogenies using k-mers: from trees to networks.

    Science.gov (United States)

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  12. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Gibby, Mary; Jansen, Robert K

    2012-09-01

    The phylogeny of 58 Pelargonium species was estimated using five plastid markers (rbcL, matK, ndhF, rpoC1, trnL-F) and one mitochondrial gene (nad5). The results confirmed the monophyly of three major clades and four subclades within Pelargonium but also indicate the need to revise some sectional classifications. This phylogeny was used to examine karyotype evolution in the genus: plotting chromosome sizes, numbers and 2C-values indicates that genome size is significantly correlated with chromosome size but not number. Accelerated rates of nucleotide substitution have been previously detected in both plastid and mitochondrial genes in Pelargonium, but sparse taxon sampling did not enable identification of the phylogenetic distribution of these elevated rates. Using the multigene phylogeny as a constraint, we investigated lineage- and locus-specific heterogeneity of substitution rates in Pelargonium for an expanded number of taxa and demonstrated that both plastid and mitochondrial genes have had accelerated substitution rates but with markedly disparate patterns. In the plastid, the exons of rpoC1 have significantly accelerated substitution rates compared to its intron and the acceleration was mainly due to nonsynonymous substitutions. In contrast, the mitochondrial gene, nad5, experienced substantial acceleration of synonymous substitution rates in three internal branches of Pelargonium, but this acceleration ceased in all terminal branches. Several lineages also have dN/dS ratios significantly greater than one for rpoC1, indicating that positive selection is acting on this gene, whereas the accelerated synonymous substitutions in the mitochondrial gene are the result of elevated mutation rates. Published by Elsevier Inc.

  13. Phylogeny of Selaginellaceae: There is value in morphology after all!

    Science.gov (United States)

    Weststrand, Stina; Korall, Petra

    2016-12-01

    The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).

  14. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  15. The co phylogeny reconstruction problem is NP-complete.

    Science.gov (United States)

    Ovadia, Y; Fielder, D; Conow, C; Libeskind-Hadas, R

    2011-01-01

    The co phylogeny reconstruction problem is that of finding minimum cost explanations of differences between historical associations. The problem arises in parasitology, molecular systematics, and biogeography. Existing software tools for this problem either have worst-case exponential time or use heuristics that do not guarantee optimal solutions. To date, no polynomial time optimal algorithms have been found for this problem. In this article, we prove that the problem is NP-complete, suggesting that future research on algorithms for this problem should seek better polynomial-time approximation algorithms and heuristics rather than optimal solutions.

  16. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wells, J D; Sperling, F A

    1999-05-01

    Mitochondrial DNA was used to infer the phylogeny and genetic divergences of Chrysomya albiceps (Wiedemann) and C. rufifacies (Maquart) specimens from widely separated localities in the Old and New World. Analyses based on a 2.3-kb region including the genes for cytochrome oxidase subunits I and II indicated that the 2 species were separate monophyletic lineages that have been separated for > 1 million years. Analysis of DNA, in the form of either sequence or restriction fragment-length polymorphism (RFLP) data, will permit the identification of problematic specimens.

  17. Adipokinetic hormones provide inference for the phylogeny of Odonata

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Fescemyer, H. W.

    2011-01-01

    Roč. 57, č. 1 (2011), s. 174-178 ISSN 0022-1910 R&D Projects: GA ČR GA203/09/2014 Grant - others:University of Cape Town for a Block grant(ZA) IFR 2008071500048; National Research Foundation, Pretoria(ZA) FA 2007021300002; USDA, ARS Specific Cooperative Agreement(US) 58-6402-5-066; US National Science Foundation(US) EF-0412651 Institutional research plan: CEZ:AV0Z50070508 Keywords : phylogeny of Odonata * Libellulidae * Corduliidae Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  18. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an Africa...... the genus. In this talk, we provide preliminary results of our molecular phylogenetic analysis of the genus aiming to i) assess the biogeographic origin, ii) explore phylogenetic origins of submerged species, and iii) address the evolutionary role of polyploids.......Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an African...... origin for Eriocaulon as a sister relationship between the genus and an African endemic one was recovered. The species of Eriocaulon primarily grow in wetlands while some inhabit shallow rivers and streams with an apparent adaptive morphology of elongated submerged stems. Polyploidy is known from...

  19. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  20. Phylogeny of the Gondwanan beetle family Ulodidae (Tenebrionoidea).

    Science.gov (United States)

    Leschen, Richard A B; Escalona, Hermes E; Elgueta, Mario

    2016-07-18

    Ulodidae is a small family of saproxylic and fungus feeding beetles restricted to New Zealand, Australia, Chile and New Caledonia. The phylogeny of this family is presented for the first time, based on a cladistic analysis of 53 adult characters from 16 ulodid genera, rooted with Parahelops Waterhouse (Promecheilidae). The topology shows Arthopus Sharp at the base of the tree and confirms the placement of Meryx Latreille as a member of Ulodidae and closely related to the Chilean genus Trachyderas Philippi & Philippi. The extinct New Zealand genus Waitomophylax Leschen & Rhode was placed among a clade consisting of Brouniphylax Strand, Exohadrus Broun, and Pteroderes Germain. Two new genera and two new species are described: Ulobostrichus gen. n. (type species: Ulobostrichus monteithi sp. n.) and Ulocyphaleus gen. n. (type species: Cyphaleus valdivianus Philippi & Philippi, 1864, now U. valdivianus (Philippi & Philippi) n. comb.; U. laetus sp. n.). Dipsaconia pyritosa Pascoe is designated as the type species of Dipsaconia Pascoe and a lectotype was designated for C. valdivianus. A fully illustrated key to the genera and a checklist of the 16 genera and 42 species is included. Based on the phylogeny, the following characters are derived in the family: tuberculate body surface and the presence of scales and /or encrustations. The presence of pore-fields in the abdominal cuticle has evolved at least three times in Meryx Latreille (Australia), Syrphetodes Pascoe (New Zealand) and Trachyderastes Kaszab (New Caledonia).

  1. Phylogeny and Evolution of Bracts and Bracteoles in Tacca (Dioscoreaceae)

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Hong-Tao Li; Lian-Ming Gao; Jun-Bo Yang; De-Zhu Li; Charles H. Cannon; Jin Chen; Qing-Jun Li

    2011-01-01

    Most species in the genus Tacca (Dioscoreaceae) feature green to black purple,conspicuous inflorescence involucral bracts with variable shapes,motile filiform appendages (bracteoles),and diverse types of inflorescence morphology.To infer the evolution of these inflorescence traits,we reconstructed the molecular phylogeny of the genus,using DNA sequences from one nuclear,one mitochondrial,and three plastid loci (Internal Transcribed Spacer (ITS),atpA,rbcL,trnL-F,and trnH-psbA).Involucres and bracteoles characters were mapped onto the phylogeny to analyze the sequence of inflorescence trait evolution.In all analyses,species with showy involucres and bracteoles formed the most derived clade,while ancestral Tacca had small and plain involucres and short bracteoles,namely less conspicuous inflorescence structures.Two of the species with the most elaborate inflorescence morphologies (T.chantrieri in southeast China and T.integrifolia in Tibet),are predominantly self-pollinated,indicating that these conspicuous floral displays have other functions rather than pollinator attraction.We hypothesize that the motile bracteoles and involucres may facilitate selfing; display photosynthesis in the dim understory,and protect flowers from herbivory.

  2. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  3. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  4. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  5. A synthetic phylogeny of freshwater crayfish: insights for conservation

    Science.gov (United States)

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  6. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).

    Science.gov (United States)

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2017-04-01

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of

  8. Residual toxicity of insecticides used in Tunisian citrus orchards on the imported parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae: Implications for IPM program of Ceratitis capitata (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Ahlem Harbi

    2017-12-01

    Full Text Available Citrus agro-industry is globally harshened mainly by Ceratitis capitata (Wiedemann, the most worldwide destructive tephritid fruit fly species. Citrus agro-industry is one of the pillars of Tunisia economy, and by hence, harshened by this species. Tunisia has established an Integrated Pest Management (IPM programme against citrus pests, including C. capitata, that rely on the structured use of pesticides, on the application several trapping protocols, along with pilot-scale sterile insect technique program and, since 2013, with pilot-scale releases of the braconid parasitoid Diachasmimorpha longicaudata Ashmed (Hymenoptera: Braconidae. Insecticide side-effects on parasitoids and other natural enemies are being requested for a successful implementation of biological control within any IPM programme. However, these data are almost scarce for the braconid species D. longicaudata. To this end, we have determined the side-effects of malathion, methidathion, acetamiprid, azadiractin, abamectin, deltametrin+thiacloprid and spinosad, as the most popular insecticides used in Tunisia either as fresh residues or at several aged time points, on the parasitoid D. longicaudata according the IOBC pesticide harm-classification. IOBC classification evolution of residues over time had allowed determining the best combination of pesticide applications in a structured fashion with the viable releases of D. longicaudata for the control of C. capitata in Tunisian citrus agro-ecosystems.

  9. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae infected with Nosema sp. (Microsporidia: Nosematidae: implications in integrated pest management strategy.

    Directory of Open Access Journals (Sweden)

    Nadia Kermani

    Full Text Available The diamondback moth (DBM Plutella xylostella (L. has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday (Hym., Braconidae can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1 and their progeny (F2 had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.

  10. Parasitoid diversity (Hymenoptera: Braconidae and Figitidae on frugivorous larvae (Diptera: Tephritidae and Lonchaeidae at Adolpho Ducke Forest Reserve, Central Amazon Region, Manaus, Brazil

    Directory of Open Access Journals (Sweden)

    SGM. Costa

    Full Text Available This study aimed to identify parasitoid species of frugivorous larvae and to describe the tritrophic interactions involving wild fruits, frugivorous insects and their natural enemies at Adolpho Ducke Forest Reserve (RFAD (Manaus, AM, Brazil. Collections were performed in four 1 km² quadrants in the corners of the RFAD. The wild fruits were collected inside the forest in access trails leading to each collection area and in trails that surrounded the quadrants, up to five metres from the trail on each side. The fruits were placed in plastic containers covered with thin fabric, with a vermiculite layer on the base to allow the emergence of flies or parasitoids. Seven Braconidae species were collected, distributed among Opiinae: Doryctobracon areolatus (Szépligeti, 1911, Utetes anastrephae (Viereck, 1913, and Opius sp., and Alysiinae: Asobara anastrephae (Muesebeck, 1958, Phaenocarpa pericarpa Wharton and Carrejo, 1999, Idiasta delicata Papp, 1969, and Asobara sp. Parasitism rates by braconids and figitids are presented. Doryctobracon areolatus was the most frequent, parasitizing the highest number of fly species, and showing the highest parasitism percentage in larvae feeding on Micropholis williamii fruits. The collected figitids belong to Aganaspis nordlanderi Wharton, 1998 and A. pelleranoi (Brethes, 1924. All 15 tritrophic associations are new records for the Brazilian Amazon region. The RFAD is an important natural reservoir of frugivorous larvae parasitoids.

  11. Review of the genus Craspedolcus Enderlein sensu lato in China, with the description of a new genus and four new species (Hymenoptera, Braconidae, Braconinae).

    Science.gov (United States)

    Li, Yang; van Achterberg, Cornelis; Chen, Xue-Xin

    2017-01-01

    A new genus is split off the genus Craspedolcus Enderlein, 1920 (Hymenoptera, Braconidae, Braconinae): Maculibracon gen. n. with type species Maculibracon abruptus sp. n. The genus Craspedolcus Enderlein sensu stricto is redefined, a key to both genera and to their species in China, Thailand and Vietnam is included. Craspedolcus obscuriventris Enderlein, 1920, ( syn. n. ) is a new synonym of Craspedolcus vagatus (Smith, 1858), as Ipobracon maculicosta Enderlein, 1920 and Iphiaulax bhotanensis Cameron, 1907 of Maculibracon simlaensis (Cameron, 1899), comb. n . The genus Craspedolcus is recorded from China for the first time with two species: Craspedolcus fraternus Enderlein, 1920, and Craspedolcus politus sp. n. The genus Maculibracon is represented by three species in China: Maculibracon simlaensis (Cameron, 1899), comb. n. (also present in Vietnam), Maculibracon hei sp. n. and Maculibracon luteonervis sp. n. and a fourth species is described from Thailand: Maculibracon abruptus sp. n. Hybogaster zebripterae Wang & Chen, 2008, from China (Fujian) is transferred to Iphiaulax Foerster, 1863, ( comb. n. ) and the following names are new combinations in Maculibracon gen. n. : Bracon lepcha Cameron, 1899; Bracon phaedo Cameron, 1899; Bracon simlaensis Cameron, 1899; Iphiaulax bhotanensis Cameron, 1907; Iphiaulax laertius Cameron, 1903; Iphiaulax leptopterus Cameron, 1903; Iphiaulax lineaticarinatus Cameron, 1907; Ipobracon lissotomus Roman, 1914; Ipobracon maculicosta Enderlein, 1920 and Iphiaulax pallidicornis Roman, 1914. Craspedolcus montezuma (Cameron, 1887) is provisionally transferred to the genus Digonogastra Viereck, 1912.

  12. Residual toxicity of insecticides used in Tunisian citrus orchards on the imported parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae): Implications for IPM program of Ceratitis capitata (Diptera: Tephritidae)

    Energy Technology Data Exchange (ETDEWEB)

    Harbi, A.; Abbes, K.; Sabater-Muñoz, B.; Beitia, F.; Chermiti, B.

    2017-07-01

    Citrus agro-industry is globally harshened mainly by Ceratitis capitata (Wiedemann), the most worldwide destructive tephritid fruit fly species. Citrus agro-industry is one of the pillars of Tunisia economy, and by hence, harshened by this species. Tunisia has established an Integrated Pest Management (IPM) programme against citrus pests, including C. capitata, that rely on the structured use of pesticides, on the application several trapping protocols, along with pilot-scale sterile insect technique program and, since 2013, with pilot-scale releases of the braconid parasitoid Diachasmimorpha longicaudata Ashmed (Hymenoptera: Braconidae). Insecticide side-effects on parasitoids and other natural enemies are being requested for a successful implementation of biological control within any IPM programme. However, these data are almost scarce for the braconid species D. longicaudata. To this end, we have determined the side-effects of malathion, methidathion, acetamiprid, azadiractin, abamectin, deltametrin+thiacloprid and spinosad, as the most popular insecticides used in Tunisia either as fresh residues or at several aged time points, on the parasitoid D. longicaudata according the IOBC pesticide harm-classification. IOBC classification evolution of residues over time had allowed determining the best combination of pesticide applications in a structured fashion with the viable releases of D. longicaudata for the control of C. capitata in Tunisian citrus agro-ecosystems.

  13. Patch time allocation and oviposition behavior in response to patch quality and the presence of a generalist predator in Meteorus pulchricornis (Hymenoptera: Braconidae).

    Science.gov (United States)

    Sheng, Sheng; Ling, Meng; Fu-An, Wu; Baoping, Li

    2015-01-01

    Foraging parasitoids often must estimate local risk of predation just as they must estimate local patch value. Here, we investigate the effects a generalist predator Chlaenius bioculatus (Coleoptera: Carabidae), has on the oviposition behavior and the patch residence decisions of a solitary parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) in response to the varying host quality of Spodoptera litura (Lepidoptera: Noctuidae) larvae (L2 and L4). M. pulchricornis attacked more L4 than on L2 hosts, with the difference in attack rate varying depending on predation treatments, greater in the presence (either actively feeding or not) of the predator than in the absence of it. The parasitoid attacked fewer L2 and L4 hosts when the predator was actively feeding than when it was not feeding or not present in the patch. M. pulchricornis decreased the patch leaving tendency with increasing rejections of hosts, but increased the tendency in response to the presence of the predator as compared with the absence of it, and furthermore, increased the patch leaving tendency when the predator was actively feeding as compared with when it was not. Our study suggests that M. pulchricornis can exploit high quality patches while minimizing predation risk, by attacking more hosts in high quality patches while reducing total patch time in response to risk of predation. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Revision of the subfamily Opiinae (Hymenoptera, Braconidae) from Hunan (China), including thirty-six new species and two new genera

    Science.gov (United States)

    Li, Xi-Ying; van Achterberg, Cornelis; Tan, Ji-Cai

    2013-01-01

    Abstract The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes

  15. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects

    Directory of Open Access Journals (Sweden)

    Ferla Matteo P

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Eumalacostraca (Crustacea remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders has either combined evidence from multiple loci, or combined molecular and morphological evidence. Results We combined evidence from four nuclear ribosomal and mitochondrial loci (18S rRNA, 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I with a newly synthesized morphological dataset. We tested the homogeneity of data partitions, both in terms of character congruence and the topological congruence of inferred trees. We also performed Bayesian and parsimony analyses on separate and combined partitions, and tested the contribution of each partition. We tested for potential long-branch attraction (LBA using taxon deletion experiments, and with relative rate tests. Additionally we searched for molecular polytomies (spurious clades. Lastly, we investigated the phylogenetic stability of taxa, and assessed their impact on inferred relationships over the whole tree. We detected significant conflict between data partitions, especially between morphology and molecules. We found significant rate heterogeneity between species for both the 18S rRNA and combined datasets, introducing the possibility of LBA. As a test case, we showed that LBA probably affected the position of Spelaeogriphacea in the combined molecular evidence analysis. We also demonstrated that several clades, including the previously reported and surprising clade of Amphipoda plus Spelaeogriphacea, are 'supported' by zero length branches. Furthermore we showed

  16. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  17. Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Francisco Perfectti

    2017-10-01

    Full Text Available Background The phylogeny of tribe Brassiceae (Brassicaceae has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Methods Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trnT-trnF region. We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca. Results The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia. The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis. Discussion We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic

  18. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    Science.gov (United States)

    Hasegawa, Masami; Kuroda, Sayako

    2017-12-01

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Linguistic Phylogenies Support Back-Migration from Beringia to Asia

    Science.gov (United States)

    Sicoli, Mark A.; Holton, Gary

    2014-01-01

    Recent arguments connecting Na-Dene languages of North America with Yeniseian languages of Siberia have been used to assert proof for the origin of Native Americans in central or western Asia. We apply phylogenetic methods to test support for this hypothesis against an alternative hypothesis that Yeniseian represents a back-migration to Asia from a Beringian ancestral population. We coded a linguistic dataset of typological features and used neighbor-joining network algorithms and Bayesian model comparison based on Bayes factors to test the fit between the data and the linguistic phylogenies modeling two dispersal hypotheses. Our results support that a Dene-Yeniseian connection more likely represents radiation out of Beringia with back-migration into central Asia than a migration from central or western Asia to North America. PMID:24621925

  20. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh

    2013-01-01

    Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK\\'s Unified Genotyper, the state of the art multisample SNV caller. © 2013 Springer-Verlag.

  1. Future trypanosomatid phylogenies: refined homologies, supertrees and networks

    Directory of Open Access Journals (Sweden)

    Stothard JR

    2000-01-01

    Full Text Available There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

  2. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  3. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    Science.gov (United States)

    Spielman, Stephanie J; Wilke, Claus O

    2015-01-01

    We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  4. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    Directory of Open Access Journals (Sweden)

    Stephanie J Spielman

    Full Text Available We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  5. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    Science.gov (United States)

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An alu-based phylogeny of lemurs (infraorder: Lemuriformes.

    Directory of Open Access Journals (Sweden)

    Adam T McLain

    Full Text Available LEMURS (INFRAORDER: Lemuriformes are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya. Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs, to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the

  7. A reassessment of the phylogeny and circumscription of Zaluzianskya (Scrophulariaceae).

    Science.gov (United States)

    Archibald, Jenny K; Cook, Jacqueline; Anderson, Bruce; Johnson, Steven D; Mort, Mark E

    2017-07-01

    The genus Zaluzianskya (Scrophulariaceae s.s.) encompasses a diversity of floral and ecological traits. However, this diversity, as described by the current taxonomic circumscription of Zaluzianskya, is an underestimate. We present molecular data suggesting that this genus requires expansion via incorporation of species from other genera and recognition of unnamed cryptic species. This study advances prior molecular phylogenies of the southern African genus through the addition of DNA regions and 51 populations that had not previously been sampled in a published phylogeny. A total of 82 species of Zaluzianskya and related genera are included, adding 48 to those previously sampled. Results are presented from analyses of five DNA regions, including nuclear ITS and four rapidly evolving chloroplast regions (trnL-trnF, rpl16, rps16, and trnS-trnfM). Our primary finding is that the genus Phyllopodium is polyphyletic as currently circumscribed, with some species placed within Zaluzianskya and others grouping with Polycarena, indicating the need for further phylogenetic work on these genera. Preliminary support for the incorporation of Reyemia into Zaluzianskya is reinforced here by the first molecular analysis to include both species of Reyemia and a strong sampling of species across Zaluzianskya and major clades of tribe Limoselleae. The two disjunct, tropical African species of Zaluzianskya are also confirmed as members of this genus. Finally, a broad sampling of 21 populations of Z. microsiphon establishes their phylogenetic division into two to five separate lineages. Hybridization, coevolution, and cryptic speciation may each play a role in the evolution of Z. microsiphon. Further resolution within a clade comprising sections Nycterinia and Macrocalyx is needed to better understand their relationships. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Phylogeny of Gobioidei and the origin of European gobies

    Directory of Open Access Journals (Sweden)

    Ainhoa Agorreta

    2015-11-01

    Full Text Available The percomorph order Gobioidei comprises over 2200 species worldwide distributed that occupy most freshwater, brackish and marine environments, and show a spectacular variety in morphology, ecology, and behaviour. However, phylogenetic relationships among many gobioid groups still remain poorly understood. Such is the case of Gobiidae, a rapidly radiating lineage that encompass an unusually high diversity of species (nearly 2000, including the largely endemic European species whose origin and ancestry remain uncertain. The resolution and accuracy of previous molecular phylogenetic studies has been limited due to the use of only a few (generally mitochondrial molecular markers and/or the absence of representatives of several key lineages. Our study (built on Agorreta et al. 2013 is the first to include multiple nuclear and mitochondrial genes for nearly 300 terminal taxa representing the vast diversity of gobioid lineages. We have used this information to reconstruct a robust phylogeny of Gobioidei, and we are now investigating the historical biogeography and diversification times of European gobies with a time-calibrated molecular phylogeny. Robustness of the inferred phylogenetic trees is significantly higher than that of previous studies, hence providing the most compelling molecular phylogenetic hypotheses for Gobioidei thus far. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae + Odontobutidae clade followed by the Butidae as the sister-group of the Gobiidae. Several monophyletic groups are identified within the two major Gobiidae subclades, the gobionelline-like and the gobiine-like gobiids. The European gobies cluster in three distinct lineages (Pomatoschistus-, Aphia-, and Gobius-lineages, each with different affinities with gobiids from the Indo-Pacific and perhaps the New World. Our ongoing more-detailed study on European gobies will reveal whether their origin is related to vicariant events linked to the

  9. Nuclear and original DNA application in Oryza taxonomy and phylogeny

    International Nuclear Information System (INIS)

    Romero, Gabriel O.

    1998-01-01

    Conventional taxonomy and phylogeny of germplasm are based on the tedious characterization of morphological variation. The ability to assay DNA variation that underlies morphological variation offers great promise as a convenient alternative for the genetic characterization of germplasm. Restriction fragment length polymorphism (RFLP) was used to survey DNA variation in 22 species of the genus Oryza. At the ribosomal DNA (rDNA) multigene family, 15 rDNA spacer length (sl) variants were identified using restriction enzyme Sst1 and wheatrDNA unit as probe. Particular sl variants predominated in certain isozyme groups of O. sativa, indicating a potential of sl ploymorphism in varietal classification. The distribution of sl variants supports the origin of O. sativa and O. nivara from O. rufipogon, and that O. spontanea arose from introgressions among O. sativa, O. nivara, and O. rufipogon. The distribution also suggests that the CCgenome, of all the genomes in the Officinalis complex, may be closest to the Sativa complex genomes, and it affirms the genetic position of the Officinalis complex intermediate between the Sativa and Ridleyi complexes. Variation at the Oryza organelle genomes was probed with a maize mitochondrial gene, atpA, a wheat chloroplast inverted repeat segment, p6. Results indicated that the complexes can be differentiated by their mitochondrial genome, but not their chloroplast genome when digested by Sst1 or BamH1. Therefore, the natural DNA variation in the nuclear and mitochondrial genomes has demonstrated great potential in complementing the conventional basis of taxa classification and phylogeny in the genus Oryza. (Author)

  10. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Dí az-Arce, Natalia; Arrizabalaga, Haritz; Murua, Hilario; Irigoien, Xabier; Rodrí guez-Ezpeleta, Naiara

    2016-01-01

    conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough

  11. Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction

    Czech Academy of Sciences Publication Activity Database

    Pečnerová, P.; Martínková, Natália

    2012-01-01

    Roč. 41, č. 3 (2012), s. 211-219 ISSN 0300-3256 Institutional research plan: CEZ:AV0Z60930519 Keywords : phylogeny * Sciurus * biogeography * colonisation Subject RIV: EG - Zoology Impact factor: 2.793, year: 2012

  12. Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada)

    DEFF Research Database (Denmark)

    Guil, Noemi; Jørgensen, Aslak; Giribet, Gonzalo

    2013-01-01

    Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ...

  13. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    NARCIS (Netherlands)

    Vitale, R.G.; Hoog, G.S. de; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; Sande, W.W. van de; Dolatabadi, S.; Meis, J.F.G.M.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  14. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales

    NARCIS (Netherlands)

    R.G. Vitale (Roxana); G.S. de Hoog; P. Schwarz (Peter); E. Dannaoui (Eric); S. Deng (Shuwen); M. Machouart (Marie); K. Voigt (Kerstin); W.W.J. van de Sande (Wendy); S. Dolatabadi (Somayeh); J.F. Meis; G. Walther

    2012-01-01

    textabstractThe in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the

  15. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    NARCIS (Netherlands)

    Vitale, R.G.; de Hoog, G.S.; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; de Sande, W.W.J.v.; Dolatabadi, S.; Meis, J.F.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  16. Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera

    Czech Academy of Sciences Publication Activity Database

    Han, M.L.; Chen, Y.-Y.; Shen, L.-L.; Song, J.; Vlasák, Josef; Dai, Y.-C.; Cui, B.-K.

    2016-01-01

    Roč. 80, č. 1 (2016), s. 343-373 ISSN 1560-2745 Institutional support: RVO:60077344 Keywords : Fomitopsidaceae * Multi-marker analysis * Phylogeny Subject RIV: EF - Botanics Impact factor: 13.465, year: 2016

  17. Effects of methodology and analysis strategy on robustness of pestivirus phylogeny.

    Science.gov (United States)

    Liu, Lihong; Xia, Hongyan; Baule, Claudia; Belák, Sándor; Wahlberg, Niklas

    2010-01-01

    Phylogenetic analysis of pestiviruses is a useful tool for classifying novel pestiviruses and for revealing their phylogenetic relationships. In this study, robustness of pestivirus phylogenies has been compared by analyses of the 5'UTR, and complete N(pro) and E2 gene regions separately and combined, performed by four methods: neighbour-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). The strategy of analysing the combined sequence dataset by BI, ML, and MP methods resulted in a single, well-supported tree topology, indicating a reliable and robust pestivirus phylogeny. By contrast, the single-gene analysis strategy resulted in 12 trees of different topologies, revealing different relationships among pestiviruses. These results indicate that the strategies and methodologies are two vital aspects affecting the robustness of the pestivirus phylogeny. The strategy and methodologies outlined in this paper may have a broader application in inferring phylogeny of other RNA viruses.

  18. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  19. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Directory of Open Access Journals (Sweden)

    David Lee Erickson

    2014-11-01

    Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for

  20. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    OpenAIRE

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-01-01

    Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylog...

  1. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  2. Influence of host age on critical fitness parameters of Spathius galinae (Hymenoptera: Braconidae), a new parasitoid of the emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Watt, Timothy J; Duan, Jian J

    2014-08-01

    Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae) is a recently discovered gregarious idiobiont larval ectoparasitoid currently being evaluated for biological control against the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in the United States. To aid in the development of laboratory rearing protocols, we assessed the influence of various emerald ash borer stages on critical fitness parameters of S. galinae. We exposed gravid S. galinae females to emerald ash borer host larvae of various ages (3.5, 5, 7, and 10 wk post egg oviposition) that were reared naturally in tropical (evergreen) ash (Fraxinus uhdei (Wenzig) Lingelsh) logs, or to field-collected, late-stage emerald ash borers (nonfeeding J-shaped larvae termed "J-larvae," prepupae, and pupae) that were artificially inserted into green ash logs. When exposed to larvae in tropical ash logs, S. galinae attacked 5 and 7 wk hosts more frequently (68-76%) than 3.5 wk (23%) and 10 wk (12%) hosts. Subsample dissections of the these logs revealed that 3.5, 5, 7 and 10 wk host logs contained mostly second, third, fourth, and J-larvae, respectively, that had already bored into the sapwood for diapause. No J-larvae were attacked by S. galinae when naturally reared in tropical ash logs. When parasitized by S. galinae, 7 and 10 wk hosts produced the largest broods (approximately 6.7 offspring per parasitized host), and the progenies that emerged from these logs had larger anatomical measurements and more female-biased sex ratios. When exposed to emerald ash borer J-larvae, prepupae, or pupae artificially inserted into green ash logs, S. galinae attacked 53% ofJ-larvae, but did not attack any prepupae or pupae. We conclude that large (fourth instar) emerald ash borer larvae should be used to rear S. galinae.

  3. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia.

    Science.gov (United States)

    Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi

    2007-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.

  4. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  5. Phylogeny of the Acanthocephala based on morphological characters.

    Science.gov (United States)

    Monks, S

    2001-02-01

    Only four previous studies of relationships among acanthocephalans have included cladistic analyses, and knowledge of the phylogeny of the group has not kept pace with that of other taxa. The purpose of this study is to provide a more comprehensive analysis of the phylogenetic relationships among members of the phylum Acanthocephala using morphological characters. The most appropriate outgroups are those that share a common early cell-cleavage pattern (polar placement of centrioles), such as the Rotifera, rather than the Priapulida (meridional placement of centrioles) to provide character polarity based on common ancestry rather than a general similarity likely due to convergence of body shapes. The phylogeny of 22 species of the Acanthocephala was evaluated based on 138 binary and multistate characters derived from comparative morphological and ontogenetic studies. Three assumptions of cement gland structure were tested: (i) the plesiomorphic type of cement glands in the Rotifera, as the sister group, is undetermined; (ii) non-syncytial cement glands are plesiomorphic; and (iii) syncytial cement glands are plesiomorphic. The results were used to test an early move of Tegorhynchus pectinarius to Koronacantha and to evaluate the relationship between Tegorhynchus and Illiosentis. Analysis of the data-set for each of these assumptions of cement gland structure produced the same single most parsimonious tree topology. Using Assumptions i and ii for the cement glands, the trees were the same length (length = 404 steps, CI = 0.545, CIX = 0.517, HI = 0.455, HIX = 0.483, RI = 0.670, RC = 0.365). Using Assumption iii, the tree was three steps longer (length = 408 steps, CI = 0.539, CIX = 0.512, HI = 0.461, HIX = 0.488, RI = 0.665, RC = 0.359). The tree indicates that the Palaeacanthocephala and Eoacanthocephala both are monophyletic and are sister taxa. The members of the Archiacanthocephala are basal to the other two clades, but do not themselves form a clade. The results

  6. The current status of the New World monkey phylogeny

    Directory of Open Access Journals (Sweden)

    SCHNEIDER HORACIO

    2000-01-01

    Full Text Available Four DNA datasets were combined in tandem (6700 bp and Maximum parsimony and Neighbor-Joining analyses were performed. The results suggest three groups emerging almost at the same time: Atelidae, Pitheciidae and Cebidae. The total analysis strongly supports the monophyly of the Cebidae family, grouping Aotus, Cebus and Saimiri with the small callitrichines. In the callitrichines, the data link Cebuela to Callithrix, place Callimico as a sister group of Callithrix/Cebuella, and show Saguinus to be the earliest offshoot of the callitrichines. In the family Pithecidae, Callicebus is the basal genus. Finally, combined molecular data showed congruent branching in the atelid clade, setting up Alouatta as the basal lineage and Brachyteles-Lagothrix as a sister group and the most derived branch. Two major points remain to be clarified in the platyrrhine phylogeny: (i what is the exact branching pattern of Aotus, Cebus, Saimiri and the small callitrichines, and (ii, which two of these three lineages, pitheciines, atelines or cebids, are more closely related?

  7. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-02-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  8. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2013-11-01

    Full Text Available Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.

  9. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins

    Science.gov (United States)

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins. PMID:24189276

  10. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    Science.gov (United States)

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  11. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  12. The phylogeny and evolutionary history of tyrannosauroid dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Carr, Thomas D

    2016-02-02

    Tyrannosauroids--the group of carnivores including Tyrannosaurs rex--are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  13. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae).

    Science.gov (United States)

    Khoshravesh, Roxana; Hossein, Akhani; Sage, Tammy L; Nordenstam, Bertil; Sage, Rowan F

    2012-09-01

    C(4) photosynthesis independently evolved >62 times, with the majority of origins within 16 dicot families. One origin occurs in the poorly studied genus Anticharis Endl. (Scrophulariaceae), which consists of ~10 species from arid regions of Africa and southwest Asia. Here, the photosynthetic pathway of 10 Anticharis species and one species from each of the sister genera Aptosimum and Peliostomum was identified using carbon isotope ratios (δ(13)C). The photosynthetic pathway was then mapped onto an internal transcribed spacer (ITS) phylogeny of Anticharis and its sister genera. Leaf anatomy was examined for nine Anticharis species and plants from Aptosimum and Peliostomum. Leaf ultrastructure, gas exchange, and enzyme distributions were assessed in Anticharis glandulosa collected in SE Iran. The results demonstrate that C(3) photosynthesis is the ancestral condition, with C(4) photosynthesis occurring in one clade containing four species. C(4) Anticharis species exhibit the atriplicoid type of C(4) leaf anatomy and the NAD-malic enzyme biochemical subtype. Six Anticharis species had C(3) or C(3)-C(4) δ(13)C values and branched at phylogenetic nodes that were sister to the C(4) clade. The rest of Anticharis species had enlarged bundle sheath cells, close vein spacing, and clusters of chloroplasts along the centripetal (inner) bundle sheath walls. These traits indicate that basal-branching Anticharis species are evolutionary intermediates between the C(3) and C(4) conditions. Anticharis appears to be an important new group in which to study the dynamics of C(4) evolution.

  14. Genome rearrangements and phylogeny reconstruction in Yersinia pestis.

    Science.gov (United States)

    Bochkareva, Olga O; Dranenko, Natalia O; Ocheredko, Elena S; Kanevsky, German M; Lozinsky, Yaroslav N; Khalaycheva, Vera A; Artamonova, Irena I; Gelfand, Mikhail S

    2018-01-01

    Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis . Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements may resolve topological ambiguities in a phylogenetic tree. We reconstructed phylogenetic trees based on genome rearrangements using several popular approaches such as Maximum likelihood for Gene Order and the Bayesian model of genome rearrangements by inversions. We also reconciled phylogenetic trees for each of the three CRISPR loci to obtain an integrated scenario of the CRISPR cassette evolution. Analysis of contradictions between the obtained evolutionary trees yielded numerous parallel inversions and gain/loss events. Our data indicate that an integrated analysis of sequence-based and inversion-based trees enhances the resolution of phylogenetic reconstruction. In contrast, reconstructions of strain relationships based on solely CRISPR loci may not be reliable, as the history is obscured by large deletions, obliterating the order of spacer gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on gene content.

  15. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ectocranial suture fusion in primates: pattern and phylogeny.

    Science.gov (United States)

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2014-03-01

    Patterns of ectocranial suture fusion among Primates are subject to species-specific variation. In this study, we used Guttman Scaling to compare modal progression of ectocranial suture fusion among Hominidae (Homo, Pan, Gorilla, and Pongo), Hylobates, and Cercopithecidae (Macaca and Papio) groups. Our hypothesis is that suture fusion patterns should reflect their evolutionary relationship. For the lateral-anterior suture sites there appear to be three major patterns of fusion, one shared by Homo-Pan-Gorilla, anterior to posterior; one shared by Pongo and Hylobates, superior to inferior; and one shared by Cercopithecidae, posterior to anterior. For the vault suture pattern, the Hominidae groups reflect the known phylogeny. The data for Hylobates and Cercopithecidae groups is less clear. The vault suture site termination pattern of Papio is similar to that reported for Gorilla and Pongo. Thus, it may be that some suture sites are under larger genetic influence for patterns of fusion, while others are influenced by environmental/biomechanic influences. Copyright © 2013 Wiley Periodicals, Inc.

  17. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Directory of Open Access Journals (Sweden)

    Aitor Blanco-Míguez

    2016-12-01

    Full Text Available Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  18. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Science.gov (United States)

    Blanco-Míguez, Aitor; Meier-Kolthoff, Jan P; Gutiérrez-Jácome, Alberto; Göker, Markus; Fdez-Riverola, Florentino; Sánchez, Borja; Lourenço, Anália

    2016-12-01

    Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  19. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    Science.gov (United States)

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  20. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  1. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  2. The rRNA evolution and procaryotic phylogeny

    Science.gov (United States)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  3. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    Science.gov (United States)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  4. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

    Directory of Open Access Journals (Sweden)

    Rønsted Nina

    2012-09-01

    Full Text Available Abstract Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE and binding to the serotonin reuptake transporter (SERT are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.

  5. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  6. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae).

    Science.gov (United States)

    Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N

    2012-11-01

    The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence.

    Science.gov (United States)

    Kropáčková, Lucie; Těšický, Martin; Albrecht, Tomáš; Kubovčiak, Jan; Čížková, Dagmar; Tomášek, Oldřich; Martin, Jean-François; Bobek, Lukáš; Králová, Tereza; Procházka, Petr; Kreisinger, Jakub

    2017-10-01

    Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM. © 2017 John Wiley & Sons Ltd.

  8. Blastocystis phylogeny among various isolates from humans to insects.

    Science.gov (United States)

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Skipper genome sheds light on unique phenotypic traits and phylogeny.

    Science.gov (United States)

    Cong, Qian; Borek, Dominika; Otwinowski, Zbyszek; Grishin, Nick V

    2015-08-27

    Butterflies and moths are emerging as model organisms in genetics and evolutionary studies. The family Hesperiidae (skippers) was traditionally viewed as a sister to other butterflies based on its moth-like morphology and darting flight habits with fast wing beats. However, DNA studies suggest that the family Papilionidae (swallowtails) may be the sister to other butterflies including skippers. The moth-like features and the controversial position of skippers in Lepidoptera phylogeny make them valuable targets for comparative genomics. We obtained the 310 Mb draft genome of the Clouded Skipper (Lerema accius) from a wild-caught specimen using a cost-effective strategy that overcomes the high (1.6 %) heterozygosity problem. Comparative analysis of Lerema accius and the highly heterozygous genome of Papilio glaucus revealed differences in patterns of SNP distribution, but similarities in functions of genes that are enriched in non-synonymous SNPs. Comparison of Lepidoptera genomes revealed possible molecular bases for unique traits of skippers: a duplication of electron transport chain components could result in efficient energy supply for their rapid flight; a diversified family of predicted cellulases might allow them to feed on cellulose-enriched grasses; an expansion of pheromone-binding proteins and enzymes for pheromone synthesis implies a more efficient mate-recognition system, which compensates for the lack of clear visual cues due to the similarities in wing colors and patterns of many species of skippers. Phylogenetic analysis of several Lepidoptera genomes suggested that the position of Hesperiidae remains uncertain as the tree topology varied depending on the evolutionary model. Completion of the first genome from the family Hesperiidae allowed comparative analyses with other Lepidoptera that revealed potential genetic bases for the unique phenotypic traits of skippers. This work lays the foundation for future experimental studies of skippers and

  10. Do orthologous gene phylogenies really support tree-thinking?

    Directory of Open Access Journals (Sweden)

    Leigh J

    2005-05-01

    Full Text Available Abstract Background Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes. Results Heat map analyses were used to investigate the congruence of orthologues in four datasets (archaeal, bacterial, eukaryotic and alpha-proteobacterial. We conclude that we simply cannot determine if a large portion of the genes have a common history. In addition, none of these datasets can be considered free of lateral gene transfer. Conclusion Our phylogenetic analyses do not support tree-thinking. These results have important conceptual and practical implications. We argue that representations other than a tree should be investigated in this case because a non-critical concatenation of markers could be highly misleading.

  11. [Phylogeny and divergence time estimation of Schizothoracinae fishes in Xinjiang].

    Science.gov (United States)

    Ayelhan, Haysa; Guo, Yan; Meng, Wei; Yang, Tianyan; Ma, Yanwu

    2014-10-01

    Based on combined data of mitochondrial COI, ND4 and 16S RNA genes, molecular phylogeny of 4 genera, 10 species or subspecies of Schizothoracinae fishes distributed in Xinjiang were analyzed. The molecular clock was calibrated by divergence time of Cyprininae and geological segregation event between the upper Yellow River and Qinghai Lake. Divergence time of Schizothoracinae fishes was calculated, and its relationship with the major geological events and the climate changes in surrounding areas of Tarim Basin was discussed. The results showed that genus Aspiorhynchus did not form an independent clade, but clustered with Schizothorax biddulphi and S. irregularis. Kimura 2-parameter model was used to calculate the genetic distance of COI gene, the genetic distance between genus Aspiorhynchus and Schizothorax did not reach genus level, and Aspiorhynchus laticeps might be a specialized species of genus Schizothorax. Cluster analysis showed a different result with morphological classification method, and it did not support the subgenus division of Schizothorax fishes. Divergence of two groups of primitive Schizothoracinae (8.18Ma) and divergence of Gymnodiptychus dybowskii and Diptychus maculates (7.67Ma) occurred in late Miocene, which might be related with the separation of Kunlun Mountain and north Tianshan Mountain River system that was caused by the uplift of Qinghai-Tibet Plateau and Tianshan Mountain, and the aridification of Tarim Basin. The terrain of Tarim Basin that was affected by Quaternary Himalayan movement was high in west but low in east, as a result, Lop Nor became the center of surrounding mountain rivers in Tarim Basin, which shaped the distribution pattern of genus Schizothorax.

  12. Global diversity and phylogeny of the Asteroidea (Echinodermata.

    Directory of Open Access Journals (Sweden)

    Christopher L Mah

    Full Text Available Members of the Asteroidea (phylum Echinodermata, popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/ present important new springboards for understanding the global biodiversity and evolution of asteroids.

  13. Mitogenomic phylogeny of cone snails endemic to Senegal.

    Science.gov (United States)

    Abalde, Samuel; Tenorio, Manuel J; Afonso, Carlos M L; Zardoya, Rafael

    2017-07-01

    Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The discovery of Halictivirus resolves the Sinaivirus phylogeny.

    Science.gov (United States)

    Bigot, Diane; Dalmon, Anne; Roy, Bronwen; Hou, Chunsheng; Germain, Michèle; Romary, Manon; Deng, Shuai; Diao, Qingyun; Weinert, Lucy A; Cook, James M; Herniou, Elisabeth A; Gayral, Philippe

    2017-11-01

    By providing pollination services, bees are among the most important insects, both in ecological and economical terms. Combined next-generation and classical sequencing approaches were applied to discover and study new insect viruses potentially harmful to bees. A bioinformatics virus discovery pipeline was used on individual Illumina transcriptomes of 13 wild bees from three species from the genus Halictus and 30 ants from six species of the genera Messor and Aphaenogaster. This allowed the discovery and description of three sequences of a new virus termed Halictus scabiosae Adlikon virus (HsAV). Phylogenetic analyses of ORF1, RNA-dependent RNA-polymerase (RdRp) and capsid genes showed that HsAV is closely related to (+)ssRNA viruses of the unassigned Sinaivirus genus but distant enough to belong to a different new genus we called Halictivirus. In addition, our study of ant transcriptomes revealed the first four sinaivirus sequences from ants (Messor barbarus, M. capitatus and M. concolor). Maximum likelihood phylogenetic analyses were performed on a 594 nt fragment of the ORF1/RdRp region from 84 sinaivirus sequences, including 31 new Lake Sinai viruses (LSVs) from honey bees collected in five countries across the globe and the four ant viral sequences. The phylogeny revealed four main clades potentially representing different viral species infecting honey bees. Moreover, the ant viruses belonged to the LSV4 clade, suggesting a possible cross-species transmission between bees and ants. Lastly, wide honey bee screening showed that all four LSV clades have worldwide distributions with no obvious geographical segregation.

  15. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny

    Directory of Open Access Journals (Sweden)

    Selwood Lynne

    2007-10-01

    Full Text Available Abstract Background Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this

  16. Mutational, Phylogeny and Evolution Analyses of Salvia Copalyl Diphosphate Synthase

    International Nuclear Information System (INIS)

    Hao, D. C.; Thimmappa, R. B.; Xiao, P. G.

    2016-01-01

    The cyclization of geranylgeranyl diphosphate (GGPP) is catalyzed by copalyl diphosphate synthase (CPS), a class II diterpene synthase (diTPS), to form copalyl diphosphate (CPP), which is an essential substrate of a variety of diterpenes in secondary metabolism of angiosperm including Salvia medicinal plants. The protein environment of the N-terminal class II active site stabilizes the carbocation intermediates and maintains the catalytic activity of angiosperm class II diTPS. The virtual modeling and mutagenesis of the class II diTPS of Salvia miltiorrhiza (SmCPS) were accomplished to illuminate the catalytic activity of SmCPS. Terminal truncations and point mutations established the role of the Beta-Gamma domain and Alpha domain, i.e., they facilitate the flexible conformational change of the class II active site after substrate binding. E203 and K238 in the N-ter Gamma domain of SmCPS1 are functional in the substrate binding and conformational transition and might be essential in catalysis. Similar to other CPSs, the ensuing protonation of the GGPP substrate and coordination of the diphosphate group are governed by highly conserved residues in the DxDD motif of SmCPS, e.g., D372 of CPS1. Moreover, F256 and Y505 stabilize the carbocation and control the enzymatic activity during CPP formation. The amino acids of the predicted active sites, despite under purifying selection, vary greatly, corresponding to the functional flexibility of angiosperm CPSs. Molecular phylogeny and evolution analyses suggest early and ongoing evolution of labdane-related diterpenoid metabolism in angiosperm. (author)

  17. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  18. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Díaz-Arce, Natalia

    2016-06-07

    Although species from the genus Thunnus include some of the most commercially important and most severely overexploited fishes, the phylogeny of this genus is still unresolved, hampering evolutionary and traceability studies that could help improve conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough phylogenetically informative markers. Here we infer the first genome-wide nuclear marker-based phylogeny of tunas using restriction site associated DNA sequencing (RAD-seq) data. Our results, derived from phylogenomic inferences obtained from 128 nucleotide matrices constructed using alternative data assembly procedures, support a single Thunnus evolutionary history that challenges previous assumptions based on morphological and molecular data.

  19. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity

    OpenAIRE

    Marx, Felix G.; Fordyce, R. Ewan

    2015-01-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36?30?Ma), a shift towards bulk filter-feeding (30?23?Ma) and a climate-driven diversity loss around 3?Ma. Evolutionary rates and...

  20. Seletividade de inseticidas a Doru luteipes (Scudder, 1876 (Dermaptera: Forficulidae e Cotesia sp. (Hymenoptera: Braconidae inimigos naturais de Ascia monuste orseis (Godart, 1818 (Lepdoptera: Pieridae Selectivity of insecticides to Doru luteipes (Scudder, 1876 (Dermaptera: Forficulidae and Cotesia sp. (Hymenoptera: Braconidae natural enemies of Ascia monuste orseis (Godart, 1818 (Lepdoptera: Pieridae

    Directory of Open Access Journals (Sweden)

    Marcelo Coutitnho Picanço

    2003-04-01

    Full Text Available Este trabalho objetivou estudar a seletividade dos inseticidas carbaril, deltametrina, paratiom metílico, permetrina e triclorfom em favor do predador Doru luteipes (Scudder (Dermaptera: Forficulidae e do parasitóide Cotesia sp. (Hymenoptera: Braconidae, em relação ao controle do curuquerê Ascia monuste orseis (Godart (Lepidoptera: Pieridae. Foram determinadas as CL90 para A. monuste orseis e estas foram utilizadas como doses discriminatórias para se avaliar o grau de seletividade dos inseticidas. Deltametrina e permetrina foram altamente seletivos em favor de D. luteipes. Deltametrina foi medianamente seletiva em favor de Cotesia sp. e a permetrina não apresentou seletividade em favor deste parasitóide. Triclorfom foi altamente seletivo em favor de ninfas de quarto estádio e adultos de D. luteipes e mediamente seletivo em favor de Cotesia sp. e de ninfas de primeiro estádio do predador. Carbaril foi medianamente seletivo em favor de Cotesia sp. mas não apresentou seletividade em favor de D. luteipes. Paratiom metílico não foi seletivo em favor de Cotesia sp. e D. luteipes. Adultos de D. luteipes foram menos sensíveis a deltametrina, permetrina e triclorfom do que adultos de Cotesia sp., sendo que o inverso ocorreu com o carbaril. Esses inimigos naturais apresentaram alta sensibilidade ao paratiom metílico. Ninfas de quarto estádio e adultos de D. luteipes foram mais sensíveis ao paratiom metílico e triclorfom que ninfas de primeiro estádio. Ninfas e adultos de D. luteipes apresentaram semelhante sensibilidade ao carbaril, deltametrina e permetrina.This work aimed to study the selectivity of the insecticides carbaryl, deltamethrin, methyl parathion, permethrin and trichlorfon in favor of the predator Doru luteipes (Scudder (Dermaptera: Forficulidae and of the parasitoid Cotesia sp. (Hymenoptera; Braconidae in relation to the control of the kale leafworm Ascia monuste orseis (Godart (Lepidoptera: Pieridae. LC90 were determined

  1. Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae); Tabela de vida de fertilidade de Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) em Rhopalosiphum maidis (Fitch) e Aphis gossypii Glover (Hemiptera, Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson Jose da; Bueno, Vanda Helena Paes; Silva, Diego Bastos [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Entomologia. Lab. de Controle Biologico], e-mail: ecosbio@yahoo.com.br, e-mail: vhpbueno@ufla.br; Sampaio, Marcus Vinicius [Universidade Federal de Uberlandia, Umuarama, MG (Brazil). Inst. de Ciencias Agrarias], e-mail: mvsampaio@iciag.ufu.br

    2008-07-01

    Fertility life table of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Braconidae, Aphidiinae) in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover (Hemiptera, Aphididae). The evaluation of the growth potential of Lysiphlebus testaceipes (Cresson) is important for its use in biological control programs of aphids. This work aimed to evaluate the fertility life table of L. testaceipes in Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover. To determine the immature mortality, development and the sex ratio of the parasitoid, 12 females parasitoid, and 480 nymphs of each aphids were used. To evaluate the longevity and fertility 15 female parasitoid were used. Nymphs of each aphid (3 day old) were offered for each parasitoid female daily, until the female died, being 300 (first day); 250 (second day); 200 (third day); 150 (fourth day) and 50 nymphs in the other days. L. testaceipes showed immature mortality rates of 5.6 % in R. maidis and 9.2 % in A. gossypii. The development time of L. testaceipes in R. maidis and A. gossypii was 10.2 and 10.1 days, and the sex ratio of 0.71 and 0.66, respectively. The female of L. testaceipes had a fecundity of 498.8 eggs in R. maidis and 327.8 eggs in A. gossypii. The growth parameters the L. testaceipes in R. maidis and A. gossypii were, respectively R{sub o}= 205.38 and 164.08 females; r{sub m}= 0.449 and 0.431 females/females/day; {lambda}= 1.57 and 1.54 females/day; T= 11.86 and 11.83 days and TD= 10.78 and 11.27 days. L. testaceipes showed great growth potential on both aphid hosts. R. maidis could be a suitable host for proposals of mass-rearing and open rearing system using L. testaceipes. (author)

  2. Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae)

    Science.gov (United States)

    Steffen, Simone; Ball, Peter; Mucina, Ladislav; Kadereit, Gudrun

    2015-01-01

    Background and Aims Sarcocornia comprises about 28 species of perennial succulent halophytes distributed worldwide, mainly in saline environments of warm-temperate and subtropical regions. The genus is characterized by strongly reduced leaves and flowers, which cause taxonomic difficulties; however, species in the genus show high diversity in growth form, with a mat-forming habit found in coastal salt marshes of all continents. Sarcocornia forms a monophyletic lineage with Salicornia whose species are all annual, yet the relationship between the two genera is poorly understood. This study is aimed at clarifying the phylogenetic relationship between Sarcocornia and Salicornia, interpreting biogeographical and ecological patterns in Sarcocornia, and gaining insights into putative parallel evolution of habit as an adaptation to environmental factors. Methods A comprehensively sampled and dated phylogeny of Sarcocornia is presented based on nuclear ribosomal DNA (external transcribed spacer) and chloroplast DNA (atpB-rbcL, rpl32-trnL) sequences; representative samples of Salicornia were also included in the analyses. To infer biogeographical patterns, an ancestral area reconstruction was conducted. Key Results The Sarcocornia/Salicornia lineage arose during the Mid-Miocene from Eurasian ancestors and diversified into four subclades: the Salicornia clade, the American Sarcocornia clade, the Eurasian Sarcocornia clade and the South African/Australian Sarcocornia clade. Sarcocornia is supported as paraphyletic, with Salicornia nested within Sarcocornia being sister to the American/Eurasian Sarcocornia clade. The American and the South African/Australian Sarcocornia clade as well as the Salicornia clade were reconstructed to be of Eurasian origin. The prostrate, mat-forming habit arose multiple times in Sarcocornia. Conclusions Sarcocornia diversified in salt-laden environments worldwide, repeatedly evolving superficially similar prostrate, mat-forming habits that seem

  3. Birth-death prior on phylogeny and speed dating

    Directory of Open Access Journals (Sweden)

    Sennblad Bengt

    2008-03-01

    Full Text Available Abstract Background In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC framework, an approach requiring computation times of hours or days when applied to large phylogenies. Results We demonstrate that a hill-climbing maximum a posteriori (MAP adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes

  4. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.

    Science.gov (United States)

    Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J

    2008-10-01

    The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.

  5. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  6. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  7. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process,

  8. Phylogeny and biogeography of North-American wild rice (Zizania L.Poaceae)

    Science.gov (United States)

    The wild-rice genus Zizania includes four species disjunctly distributed in eastern Asia and North America, with three species (Z. aquatica, Z. palustris, and Z. texana) in North America and one (Z. latifolia) in eastern Asia. The phylogeny and biogeography of Zizania were explored using sequences o...

  9. Resolution of ray-finned fish phylogeny and timing of diversification.

    Science.gov (United States)

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  10. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...... anticipate that it will also be useful for phylogeny and bar-coding studies....

  11. What do we know about the phylogeny of the semi-aquatic bugs (Hemiptera: Heteroptera: Gerromorpha)?

    DEFF Research Database (Denmark)

    Damgaard, Jakob

    2012-01-01

    The present study summarizes knowledge about phylogenetic relationships of the heteropteran infraorder Gerromorpha. A phylogeny for all families and subfamilies, and for all genera but those assigned to the two most diverse families, Veliidae and Gerridae, is compiled from the many studies by the...

  12. A multi gene sequence-based phylogeny of the Musaceae (banana) family

    Czech Academy of Sciences Publication Activity Database

    Christelová, Pavla; Valárik, Miroslav; Hřibová, Eva; De Langhe, E.; Doležel, Jaroslav

    2011-01-01

    Roč. 11, č. 103 (2011), s. 1-13 ISSN 1471-2148 R&D Projects: GA AV ČR IAA600380703 Institutional research plan: CEZ:AV0Z50380511 Keywords : MOLECULAR PHYLOGENY * FLOWERING PLANTS * RIBOSOMAL DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.521, year: 2011

  13. New insights in Russula subsect. Rubrinae: phylogeny and the quest for synapomorphic characters

    Czech Academy of Sciences Publication Activity Database

    Caboň, M.; Eberhardt, U.; Looney, B.; Hampe, F.; Kolařík, Miroslav; Jančovičová, S.; Verbeken, A.; Adamčík, S.

    2017-01-01

    Roč. 16, č. 9 (2017), s. 877-892 ISSN 1617-416X Grant - others:AV ČR(CZ) SAV-16-06 Program:Bilaterální spolupráce Institutional support: RVO:61388971 Keywords : Sulphovanillin * Incrustations * Multi-locus phylogeny Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.616, year: 2016

  14. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions

    Directory of Open Access Journals (Sweden)

    Ó'Fágáin Ciarán

    2008-03-01

    Full Text Available Abstract Background The mammalian heme peroxidases (MHPs are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. Results Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. Conclusion Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii, we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.

  15. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea)

    Czech Academy of Sciences Publication Activity Database

    Tkach, V.V.; Kudlai, Olena; Kostadinova, Aneta

    2016-01-01

    Roč. 46, č. 3 (2016), s. 171-185 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Echinostomatoidea * Molecular phylogeny * Systematics * Echinostomatidae (sensu stricto) * Caballerotrematidae n. fam. * Himasthlidae * Echinochasmidae * Host associations Subject RIV: EG - Zoology Impact factor: 3.730, year: 2016

  16. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    NARCIS (Netherlands)

    Ros, V.I.D.; Breeuwer, J.A.J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All

  17. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Fehrer, Judith; Gemeinholzer, B.; Chrtek, Jindřich; Bräutigam, S.

    2007-01-01

    Roč. 42, - (2007), s. 347-361 ISSN 1055-7903 R&D Projects: GA MŽP SE/610/3/00 Institutional research plan: CEZ:AV0Z60050516 Keywords : molecular phylogeny * Hieracium * chloroplast capture Subject RIV: EF - Botanics Impact factor: 3.994, year: 2007

  18. Phylogeny, Morphology, and Metabolic and Invasive Capabilities of Epicellular Fish Coccidium Goussia janae

    Czech Academy of Sciences Publication Activity Database

    Dogga, S.K.; Bartošová-Sojková, Pavla; Lukeš, Julius; Soldati-Favre, D.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 659-676 ISSN 1434-4610 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Apicomplexa * Coccidia * Goussia janae * phylogeny * ultrastructure * invasion * central carbon metabolism. Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  19. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data

    Czech Academy of Sciences Publication Activity Database

    Ogden, T. H.; Gattolliat, J. L.; Sartori, M.; Staniczek, A. H.; Soldán, Tomáš; Whiting, M. F.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 616-634 ISSN 0307-6970 R&D Projects: GA AV ČR 1QS500070505 Institutional research plan: CEZ:AV0Z50070508 Keywords : Ephemeroptera * phylogeny * morfological a molecular data Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.467, year: 2009

  20. A mitochondrial DNA phylogeny of the endangered vipers of the Vipera ursinii complex

    Czech Academy of Sciences Publication Activity Database

    Gvoždík, Václav; Jandzik, D.; Cordos, B.; Řehák, I.; Kotlík, Petr

    2012-01-01

    Roč. 62, č. 3 (2012), s. 1019-1024 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : Conservation * Meadow viper * Phylogeny * Steppe viper * Systematics * Vipera ursinii complex Subject RIV: EH - Ecology, Behaviour Impact factor: 4.066, year: 2012

  1. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes

    NARCIS (Netherlands)

    Megens, H.J.W.C.; Nes, Van W.J.; Moorsel, van C.H.M.; Pierce, N.E.; Jong, de R.

    2004-01-01

    We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393-bp fragment of the nuclear wingless gene for a total of 42

  2. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain.

    Science.gov (United States)

    Vázquez-Moron, Sonia; Juste, Javier; Ibáñez, Carlos; Berciano, José M; Echevarria, Juan E

    2011-03-01

    To better understand the epidemiology of European bat lyssavirus 1 (EBLV-1) in Europe, we phylogenetically characterized Lyssavirus from Eptesicus isabellinus bats in Spain. An independent cluster of EBLV-1 possibly resulted from geographic isolation and association with a different reservoir from other European strains. EBLV-1 phylogeny is complex and probably associated with host evolutionary history.

  3. Phylogeny of European Bat Lyssavirus 1 in Eptesicus isabellinus Bats, Spain

    OpenAIRE

    Vázquez-Morón, Sonia; Juste, Javier; Ibáñez, Carlos; Berciano, José M.; Echevarría, Juan E.

    2011-01-01

    To better understand the epidemiology of European bat lyssavirus 1 (EBLV-1) in Europe, we phylogenetically characterized Lyssavirus from Eptesicus isabellinus bats in Spain. An independent cluster of EBLV-1 possibly resulted from geographic isolation and association with a different reservoir from other European strains. EBLV-1 phylogeny is complex and probably associated with host evolutionary history.

  4. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed

    Czech Academy of Sciences Publication Activity Database

    Maslov, D. A.; Votýpka, Jan; Yurchenko, V.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 1 (2013), s. 43-52 ISSN 1471-4922 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : biodiversity * Kinetoplastea * insect trypanosomatids * monoxenous parasites * phylogeny * taxonomy * Trypanosomatidae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013

  5. Relationships of Reproductive Traits with the Phylogeny of the African Noctuid Stem Borers

    Directory of Open Access Journals (Sweden)

    Paul-André Calatayud

    2016-01-01

    Full Text Available The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B . sp. nr. segeta, Manga melanodonta, M . sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis , and S. nonagrioides . For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA, Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA, showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed.

  6. Genetic diversity and phylogeny of the Christmas Island flying fox (Pteropus melanotus natalis)

    Czech Academy of Sciences Publication Activity Database

    Phalen, D. N.; Hall, J.; Ganesh, G.; Hartigan, Ashlie; Smith, C.; De Jong, C.; Field, H.; Rose, K.

    2017-01-01

    Roč. 98, č. 2 (2017), s. 428-437 ISSN 0022-2372 Institutional support: RVO:60077344 Keywords : diversity * flying fox * mitochondrial DNA * phylogeny * Pteropus melanotus natalis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.630, year: 2016

  7. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (Cerambycidae)

    Czech Academy of Sciences Publication Activity Database

    Haddad, S.; Shin, S.; Lemmon, A. R.; Lemmon, E. M.; Švácha, Petr; Farrell, B.; Ślipiński, A.; Windsor, D.; McKenna, D. D.

    2018-01-01

    Roč. 43, č. 1 (2018), s. 68-89 ISSN 0307-6970 Institutional support: RVO:60077344 Keywords : Chrysomeloidea * Cerambycidae * molecular phylogeny Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 4.474, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/syen.12257/abstract

  8. High-resolution phylogeny providing insights towards the epidemiology, zoonotic aspects and taxonomy of sapoviruses

    NARCIS (Netherlands)

    Barry, A.F.; Durães-Carvalho, R.; Oliveira-Filho, Edmilson F.; Alfieri, A.; Poel, Van der W.H.M.

    2017-01-01

    The evolution, epidemiology and zoonotic aspects of Sapoviruses (SaV) are still not well explored. In this study, we applied high-resolution phylogeny to investigate the epidemiological and zoonotic origins as well as taxonomic classification of animal and human SaV. Bayesian framework analyses

  9. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, Peter; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, M.; Lukeš, J.; Scholz, T.; Modrý, D.

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA ČR GA524/06/0264; GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  10. Phylogeny and resistance profiles of HIV-1 POL sequences from rectal biopsies and blood

    DEFF Research Database (Denmark)

    Katzenstein, Terese Lea; Petersen, A B; Storgaard, M

    2010-01-01

    The phylogeny and resistance profiles of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) sequences were compared among six patients with HIV-1 who had received numerous treatments. RNA and DNA fractions were obtained from concurrent blood and rectal biopsy...

  11. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  12. A six-gene phylogeny provides new insights into choanoflagellate evolution.

    Science.gov (United States)

    Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank

    2017-02-01

    Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    Science.gov (United States)

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular phylogeny of Acerentomidae (Protura), with description of Acerentuloides bernardi sp. nov. from North America

    Czech Academy of Sciences Publication Activity Database

    Shrubovych, J.; Starý, Josef; D'Haese, C.A.

    2017-01-01

    Roč. 100, č. 2 (2017), s. 433-443 ISSN 0015-4040 R&D Projects: GA MŠk ME08019 Institutional support: RVO:60077344 Keywords : Acerentulus * DNA barcoding * Indiana * phylogeny * Podolinella * USA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 0.964, year: 2016

  15. Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales)

    Science.gov (United States)

    Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten. Lumbsch; NO-VALUE

    2014-01-01

    We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...

  16. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  17. Phantoms of Gondwana?-phylogeny of the spider subfamily Mynogleninae (Araneae: Linyphiidae)

    DEFF Research Database (Denmark)

    Frick, Holger; Scharff, Nikolaj

    2014-01-01

    This is the first genus-level phylogeny of the subfamily Mynogleninae. It is based on 190 morphological characters scored for 44 taxa: 37 mynoglenine taxa (ingroup) representing 15 of the 17 known genera and seven outgroup taxa representing the subfamilies Stemonyphantinae, Linyphiinae (Linyphiin...

  18. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    Directory of Open Access Journals (Sweden)

    Stajich Jason E

    2006-11-01

    Full Text Available Abstract Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD, and their close

  19. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    Science.gov (United States)

    Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John

    2014-01-01

    The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean

  20. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    Science.gov (United States)

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  1. Phylogeny of species and cytotypes of mole rats (Spalacidae) in Turkey inferred from mitochondrial cytochrome b gene sequencees

    Czech Academy of Sciences Publication Activity Database

    Kandemir, I.; Sozen, M.; Matur, F.; Kankilic, T.; Martínková, Natália; Colak, F.; Ozkurt, S. O.; Colak, E.

    2012-01-01

    Roč. 61, č. 1 (2012), s. 25-33 ISSN 0139-7893 Institutional support: RVO:68081766 Keywords : Nannospalax * molecular phylogeny * chromosomal form * Anatolia * Thrace Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  2. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    Science.gov (United States)

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  3. PHY∙FI: fast and easy online creation and manipulation of phylogeny color figures

    DEFF Research Database (Denmark)

    Fredslund, Jakob

    2006-01-01

    the phylogeny figure in some other general-purpose graphics program. PHY·FI is versatile, easy-to-use and fast, and supports comprehensive graphical control, several download image formats, and the possibility of dynamically collapsing groups of nodes into named subtrees (e.g. "Primates"). The user can create...... types of analysis, and hence they are available only for download and installing. Some online tools exist, too. Results This paper presents an online tool, PHY·FI, which encompasses all the qualities of existing online programs and adds functionality to hopefully eliminate the need for post-processing...... a color figure from any phylogeny, or other kind of tree, represented in the widely used parenthesized Newick format. Conclusion PHY·FI is fast and easy to use, yet still offers full color control, tree manipulation, and several image formats. It does not require any downloading and installing, and thus...

  4. Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.

    Science.gov (United States)

    Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong

    2014-04-01

    Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.

  5. KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.

    Science.gov (United States)

    Wang, Dapeng; Xu, Jiayue; Yu, Jun

    2015-09-16

    The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.

  6. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  7. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae)

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Říčan, Oldřich; Janko, Karel; Novák, J.

    2008-01-01

    Roč. 46, - (2008), s. 659-672 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Grant - others:GA UK(CZ) 182/2004/B-BIO; GA UK(CZ) 139407 Institutional research plan: CEZ:AV0Z50450515 Keywords : molecular phylogeny * Cichlids * south America Subject RIV: EG - Zoology Impact factor: 3.871, year: 2008

  8. The phylogeny of Goussia and Choleoeimeria (Apicomplexa; Eimeriorina) and the evolution of excystation structures in coccidia

    Czech Academy of Sciences Publication Activity Database

    Jirků, Milan; Modrý, David; Šlapeta, Jan Roger; Koudela, Břetislav; Lukeš, Julius

    2002-01-01

    Roč. 153, č. 4 (2002), s. 379-390 ISSN 1434-4610 R&D Projects: GA AV ČR KSK6005114; GA ČR GA524/00/P015 Institutional research plan: CEZ:AV0Z6022909 Keywords : SSU rDNA * coccidia * phylogeny Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.617, year: 2002

  9. Morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania

    OpenAIRE

    Špakaitė, Ina

    2014-01-01

    The aim of the study was to investigate the morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania. The detailed research of freshwater and terrestrial Nostoc and Desmonostoc species provided new data on taxonomy, biology and ecology of these cyanobacteria and the overall diversity of algae in Lithuania. 20 Nostoc species and two intraspecific taxa, and 18 taxa to the Nostoc genus level were identified. Twelve Nostoc species and intraspecifi...

  10. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis

    Czech Academy of Sciences Publication Activity Database

    Fiala, Ivan

    2006-01-01

    Roč. 36, č. 14 (2006), s. 1521-1534 ISSN 0020-7519 R&D Projects: GA MŠk LC522 Grant - others:Grantová agentura Jihočeské univerzity(CZ) 58/2002//P-BF Institutional research plan: CEZ:AV0Z60220518 Keywords : Myxosporea * SSU rDNA * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.337, year: 2006

  11. Phylogeny and sequence variability of the Sarcocystis singaporensis Zaman and Colley, (1975) 1976 ssrDNA

    Czech Academy of Sciences Publication Activity Database

    Šlapeta, Jan Roger; Kyselová, Iveta; Richardson, A. O.; Modrý, David; Lukeš, Julius

    2002-01-01

    Roč. 88, č. 9 (2002), s. 810-815 ISSN 0932-0113 R&D Projects: GA ČR GA524/00/P015; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6022909 Keywords : Sarcocystis * phylogeny * ssrDNA Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.046, year: 2002

  12. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers

    OpenAIRE

    Khan, Haseeb A.; Arif, Ibrahim A.; Bahkali, Ali H.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.

    2008-01-01

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to B...

  13. PHY·FI: fast and easy online creation and manipulation of phylogeny color figures

    Directory of Open Access Journals (Sweden)

    Fredslund Jakob

    2006-06-01

    Full Text Available Abstract Background The need to depict a phylogeny, or some other kind of abstract tree, is very frequently experienced by researchers from a broad range of biological and computational disciplines. Thousands of papers and talks include phylogeny figures, and often during everyday work, one would like to quickly get a graphical display of, e.g., the phylogenetic relationship between a set of sequences as calculated by an alignment program such as ClustalW or the phylogenetic package Phylip. A wealth of software tools capable of tree drawing exists; most are comprehensive packages that also perform various types of analysis, and hence they are available only for download and installing. Some online tools exist, too. Results This paper presents an online tool, PHY·FI, which encompasses all the qualities of existing online programs and adds functionality to hopefully eliminate the need for post-processing the phylogeny figure in some other general-purpose graphics program. PHY·FI is versatile, easy-to-use and fast, and supports comprehensive graphical control, several download image formats, and the possibility of dynamically collapsing groups of nodes into named subtrees (e.g. "Primates". The user can create a color figure from any phylogeny, or other kind of tree, represented in the widely used parenthesized Newick format. Conclusion PHY·FI is fast and easy to use, yet still offers full color control, tree manipulation, and several image formats. It does not require any downloading and installing, and thus any internet user regardless of computer skills, and computer platform, can benefit from it. PHY·FI is free for all and is available from this web address: http://cgi-www.daimi.au.dk/cgi-chili/phyfi/go

  14. Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels

    Czech Academy of Sciences Publication Activity Database

    Liu, H.-Z.; Zhu, Y.-R.; Smith, C.; Reichard, Martin

    2006-01-01

    Roč. 45, č. 3 (2006), s. 428-434 ISSN 1021-5506 Grant - others:NSFC(CN) 30470237; NSFC(CN) 40432003; Innovation Program of the Chinese Academy of Sciences(CN) KZCX3-SW-126 Institutional research plan: CEZ:AV0Z60930519 Keywords : bitterling * host specificity * coevolution * phylogeny Subject RIV: EG - Zoology Impact factor: 0.943, year: 2006 http://zoolstud.sinica.edu.tw/Journals/45.3/428.pdf

  15. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, P.; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, Milan; Lukeš, Julius; Scholz, Tomáš; Modrý, David

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  16. Phylogeny of the Southeast Asian freshwater fish genus Pangio (Cypriniformes, Cobitidae)

    Czech Academy of Sciences Publication Activity Database

    Bohlen, Jörg; Šlechtová, Vendula; Tan, H. H.; Britz, R.

    2011-01-01

    Roč. 61, č. 3 (2011), s. 854-865 ISSN 1055-7903 R&D Projects: GA ČR GA206/05/2556; GA ČR GA206/08/0637; GA AV ČR IAA600450508; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : pangio * eel loaches * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.609, year: 2011

  17. From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Lerat

    2003-10-01

    Full Text Available The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205 of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.

  18. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

    Science.gov (United States)

    2013-01-01

    Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680

  19. Identification and phylogeny of the tomato receptor-like proteins family

    OpenAIRE

    Ermis Yanes-Paz; Gioser María Ramos-Echazábal; Glay Chinea; Yanelis Capdesuñer Ruiz; Ramón Santos Bermúdez

    2017-01-01

    The receptor-like proteins (RLPs) play multiple roles in development and defense. In the current work 75 RLPs were identified in tomato (Solanum lycopersicum L.) using iterative BLAST searches and domain prediction. A phylogenetic tree including all the identified RLPs from tomato and some functionally characterized RLPs from other species was built to identify their putative homologues in tomato. We first tested whether C3-F-based phylogeny was a good indicator of functional relation between...

  20. Multilocus resolution of Mugilidae phylogeny (Teleostei: Mugiliformes): Implications for the family's taxonomy.

    Science.gov (United States)

    Xia, Rong; Durand, Jean-Dominique; Fu, Cuizhang

    2016-03-01

    The interrelationships among mugilids (Mugiliformes: Mugilidae) remain highly debated. Using a mitochondrial gene-based phylogeny as criterion, a revised classification with 25 genera in the Mugilidae has recently been proposed. However, phylogenetic relationships of major mitochondrial lineages remain unresolved and to gain a general acceptance the classification requires confirmation based on multilocus evidence and diagnostic morphological characters. Here, we construct a species-tree using twelve nuclear and three mitochondrial loci and infer the evolution of 71 morphological characters. Our multilocus phylogeny does not agree with previous morphology-based hypotheses for the relationships within Mugilidae, confirms the revised classification with 25 genera and further resolves their phylogenetic relationships. Using the well-resolved multilocus phylogeny as the criterion, we reclassify Mugilidae genera into three new subfamilies (Myxinae, Rhinomugilinae, and Cheloninae) and one new, recombined, subfamily (Mugilinae). The Rhinomugilinae subfamily is further divided into four tribes. The revised classification of Mugilidae is supported by morpho-anatomical synapomorphies or a combination of characters. These characters are used to erect a key to the subfamilies and genera. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity.

    Science.gov (United States)

    Milla, Liz; van Nieukerken, Erik J; Vijverberg, Ruben; Doorenweerd, Camiel; Wilcox, Stephen A; Halsey, Mike; Young, David A; Jones, Therésa M; Kallies, Axel; Hilton, Douglas J

    2018-03-01

    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Synthesis of phylogeny and taxonomy into a comprehensive tree of life

    Science.gov (United States)

    Hinchliff, Cody E.; Smith, Stephen A.; Allman, James F.; Burleigh, J. Gordon; Chaudhary, Ruchi; Coghill, Lyndon M.; Crandall, Keith A.; Deng, Jiabin; Drew, Bryan T.; Gazis, Romina; Gude, Karl; Hibbett, David S.; Katz, Laura A.; Laughinghouse, H. Dail; McTavish, Emily Jane; Midford, Peter E.; Owen, Christopher L.; Ree, Richard H.; Rees, Jonathan A.; Soltis, Douglas E.; Williams, Tiffani; Cranston, Karen A.

    2015-01-01

    Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips—the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics. PMID:26385966

  3. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  4. Using genomic data to unravel the root of the placental mammal phylogeny.

    Science.gov (United States)

    Murphy, William J; Pringle, Thomas H; Crider, Tess A; Springer, Mark S; Miller, Webb

    2007-04-01

    The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.

  5. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  6. Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification.

    Science.gov (United States)

    Covain, Raphaël; Fisch-Muller, Sonia; Oliveira, Claudio; Mol, Jan H; Montoya-Burgos, Juan I; Dray, Stéphane

    2016-01-01

    The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfish family. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncle and the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehensive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molecular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial and nuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed into two sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes a paraphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella. Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina, the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. Within Loricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, and given the lack of clear morphological diagnostic features, we propose here to synonymize several genera (Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria; Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria, and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and to revalidate the genus Proloricaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species.

    Science.gov (United States)

    Hale, Vanessa L; Tan, Chia L; Niu, Kefeng; Yang, Yeqin; Knight, Rob; Zhang, Qikun; Cui, Duoying; Amato, Katherine R

    2018-02-01

    Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity-often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa-including microbes within the Ruminococcaceae and Lachnospiraceae families-that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.

  8. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    Science.gov (United States)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  9. Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny.

    Science.gov (United States)

    Zhang, Junxia; Maddison, Wayne P

    2015-03-27

    Morphological traits of euophryine jumping spiders were studied to clarify generic limits in the Euophryinae and to permit phylogenetic classification of genera lacking molecular data. One hundred and eight genera are recognized within the subfamily. Euophryine generic groups and the delimitation of some genera are reviewed in detail. In order to explore the effect of adding formal morphological data to previous molecular phylogenetic studies, and to find morphological synapomorphies, eighty-two morphological characters were scored for 203 euophryine species and seven outgroup species. The morphological dataset does not perform as well as the molecular dataset (genes 28S, Actin 5C; 16S-ND1, COI) in resolving the phylogeny of Euophryinae, probably because of frequent convergence and reversal. The formal morphological data were mapped on the phylogeny in order to seek synapomorphies, in hopes of extending the phylogeny to include taxa for which molecular data are not available. Because of homoplasy, few globally-applicable morphological synapomorphies for euophryine clades were found. However, synapomorphies that are unique locally in subclades still help to delimit euophryine generic groups and genera. The following synonyms of euophryine genera are proposed: Maeotella with Anasaitis; Dinattus with Corythalia; Paradecta with Compsodecta; Cobanus, Chloridusa and Wallaba with Sidusa; Tariona with Mopiopia; Nebridia with Amphidraus; Asaphobelis and Siloca with Coryphasia; Ocnotelus with Semnolius; Palpelius with Pristobaeus; Junxattus with Laufeia; Donoessus with Colyttus; Nicylla, Pselcis and Thianitara with Thiania. The new genus Saphrys is erected for misplaced species from southern South America.

  10. Complex phylogenetic placement of ilex species (aquifoliaceae): a case study of molecular phylogeny

    International Nuclear Information System (INIS)

    Yi, F.; Sun, L.; Xiao, P.G.; Hao, D.C.

    2017-01-01

    To investigate the phylogenetic relationships among Ilex species distributed in China, we analyzed two alignments including 4,698 characters corresponding to six plastid sequences (matK, rbcL, atpB-rbcL, trnL-F, psbA-trnH, and rpl32-trnL) and 1,748 characters corresponding to two nuclear sequences (ITS and nepGS). Using different partitioning strategies and approaches (i.e., Bayesian inference, maximum likelihood, and maximum parsimony) for phylogeny reconstruction, different topologies and clade supports were determined. A total of 18 Ilex species was divided into two major groups (group I and II) in both plastid and nuclear phylogenies with some incongruences. Potential hybridization events may account, in part, for those phylogenetic uncertainties. The analyses, together with previously identified sequences, indicated that all 18 species were recovered within Eurasia or Asia/North America groups based on plastid data. Meanwhile, the species in group II in the nuclear phylogeny were placed in the Aquifolium clade, as inferred from traditional classification, whereas the species in group I belonged to several other clades. The divergence time of most of the 18 Ilex species was estimated to be not more than 10 million years ago. Based on the results of this study, we concluded that paleogeographical events and past climate changes during the same period might have played important roles in these diversifications. (author)

  11. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

    Science.gov (United States)

    Bernhardt, Nadine; Brassac, Jonathan; Kilian, Benjamin; Blattner, Frank R

    2017-06-16

    Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

  12. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes).

    Science.gov (United States)

    Marki, Petter Z; Jønsson, Knud A; Irestedt, Martin; Nguyen, Jacqueline M T; Rahbek, Carsten; Fjeldså, Jon

    2017-02-01

    With nearly 300 species, the infraorder Meliphagides represents one of the largest and most conspicuous Australasian bird radiations. Although the group has been the focus of a number of recent phylogenetic studies, a comprehensive species-level phylogenetic hypothesis is still lacking. This has impeded the assessment of broad-scale evolutionary, biogeographic and ecological hypotheses. In the present study, we use a supermatrix approach including five mitochondrial and four nuclear markers to infer a time-calibrated phylogeny of the Meliphagides. Our phylogeny, which includes 286 of the 289 (99%) currently recognized species, is largely congruent with previous estimates. However, the addition of 60 newly sequenced species reveals some novel relationships. Our biogeographic analyses suggest an Australian origin for the group in the early Oligocene (31.3Mya, 95% HPD 25.2-38.2Mya). In addition, we find that dispersal events out of Australia have been numerous and frequent, particularly to New Guinea, which has also been the source of multiple back-colonizations to the Australian mainland. The phylogeny provides an important framework for studying a wide variety of macroecological and macroevolutionary themes, including character evolution, origin and timing of diversification, biogeographic patterns and species responses to climate change. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Why do morphological phylogenies vary in quality? An investigation based on the comparative history of lizard clades.

    Science.gov (United States)

    Arnold, E N

    1990-05-22

    Phylogenies based on morphology vary considerably in their quality: some are robust and explicit with little conflict in the data set, whereas others are far more tenuous, with much conflict and many possible alternatives. The main primary reasons for untrue or inexplicit morphological phylogenies are: not enough characters developed between branching points, uncertain character polarity, poorly differentiated character states, homoplasy caused by parallelism or reversal, and extinction, which may remove species entirely from consideration and can make originally conflicting data sets misleadingly compatible, increasing congruence at the expense of truth. Extinction differs from other confounding factors in not being apparent either in the data set or in subsequent analysis. One possibility is that variation in the quality of morphological phylogenies has resulted from exposure to different ecological situations. To investigate this, it is necessary to compare the histories of the clades concerned. In the case of explicit morphological phylogenies, ecological and behavioural data can be integrated with them and it may then be possible to decide whether morphological characters are likely to have been elicited by the environments through which the clade has passed. The credibility of such results depends not only on the phylogeny being robust but also on its detailed topology: a pectinate phylogeny will often allow more certain and more explicit statements to be made about historical events. In the case of poor phylogenies, it is not possible to produce detailed histories, but they can be compared with robust phylogenies in the range of ecological situations occupied, and whether they occupy novel situations in comparison with their outgroups. LeQuesne testing can give information about niche homoplasy, and it may also be possible to see if morphological features are functionally associated with ecological parameters, even if the direction of change is unknown

  14. First report of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) on larvae of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in maize (Zea mays L.) under different cropping systems.

    Science.gov (United States)

    Silva, R B; Cruz, I; Penteado-Dias, A M

    2014-08-01

    In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea mays L.). However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) in Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106). In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  15. First report of Dolichozele koebeleiViereck, 1911 (Hymenoptera: Braconidae on larvae of Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae in maize (Zea maysL. under different cropping systems

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea maysL.. However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae in Spodoptera frugiperda(J. E. Smith, 1797 (Lepidoptera: Noctuidae larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106. In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  16. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  17. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Directory of Open Access Journals (Sweden)

    Holland Barbara R

    2006-07-01

    Full Text Available Abstract Background Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. Results Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. Conclusion Using the most treelike distance matrices, as

  18. Revision of the Agathidinae (Hymenoptera, Braconidae) of Vietnam, with the description of forty-two new species and three new genera

    Science.gov (United States)

    van Achterberg, Cornelis; Long, Khuat Dang

    2010-01-01

    Abstract The species of seventeen genera of Agathidinae (Braconidae) from Vietnam are revised: Agathis Latreille, 1804, Bassus Fabricius, 1804; Biroia Szépligeti, 1900; Braunsia Kriechbaumer, 1894; Camptothlipsis Enderlein, 1920; Coccygidium de Saussure, 1892; Coronagathis gen. n. (type species: Coronagathis cornifera sp. n.); Cremnops Foerster, 1862; Disophrys Foerster, 1862; Earinus Wesmael, 1837; Euagathis Szépligeti, 1900; Gyragathis gen. n. (type species: Gyragathis quyi sp. n.), Gyrochus Enderlein, 1920; Lytopylus Foerster, 1862; Therophilus Wesmael, 1837; Troticus Brullé, 1846, and Zelodia gen. n. (type species: Zelomorpha varipes van Achterberg & Maetô, 1990). Keys to the Vietnamese species are given. Sixty-five species are recognised, of which twelve species are newly recorded for Vietnam: Bassus albifasciatus (Watanabe, 1934), Coccygidium angostura (Bhat & Gupta, 1977), Cremnops atricornis (Smith, 1874), stat. n., Disophrys erythrocephala Cameron, 1900, Gyrochus yunnanensis Wang, 1984, Lytopylus romani (Shestakov, 1940), comb. n., Therophilus festivus (Muesebeck, 1953), comb. n., Therophilus javanus (Bhat & Gupta, 1977), comb. n., Therophilus lienhuachihensis (Chou & Sharkey, 1989), comb. n., Therophilus marshi (Bhat & Gupta, 1977), comb. n., Zelodia absoluta (Chen & Yang, 1998), comb. n. and Zelodia longidorsata (Bhat & Gupta, 1977), comb. n. Forty-two species are new to science: Agathis citrinisoma sp. n., Bassus albobasalis sp. n., Bassus albozonatus sp. n., Biroia soror sp. n., Braunsia bicolorata sp. n., Braunsia devriesi sp. n., Braunsia maculifera sp. n., Braunsia nigrapiculata sp. n., Braunsia pumatica sp. n., Camptothlipsis hanoiensis sp. n., Coronagathis cornifera sp. n., Earinus aurantius sp. n., Earinus brevistigmus sp. n., Euagathis flavosoma sp. n., Disophrys maculifera sp. n., Disophrys quymanhi sp. n., Disophrys rhinoides sp. n., Gyragathis quyi sp. n., Therophilus annuliferus sp. n., Therophilus cattienensis sp. n., Therophilus

  19. Review of Apanteles sensu stricto (Hymenoptera, Braconidae, Microgastrinae from Area de Conservación Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica

    Directory of Open Access Journals (Sweden)

    Jose Fernandez-Triana

    2014-02-01

    Full Text Available More than half a million specimens of wild-caught Lepidoptera caterpillars have been reared for their parasitoids, identified, and DNA barcoded over a period of 34 years (and ongoing from Area de Conservación de Guanacaste (ACG, northwestern Costa Rica. This provides the world’s best location-based dataset for studying the taxonomy and host relationships of caterpillar parasitoids. Among Hymenoptera, Microgastrinae (Braconidae is the most diverse and commonly encountered parasitoid subfamily, with many hundreds of species delineated to date, almost all undescribed. Here, we reassess the limits of the genus Apanteles sensu stricto, describe 186 new species from 3,200+ parasitized caterpillars of hundreds of ACG Lepidoptera species, and provide keys to all 205 described Apanteles from Mesoamerica –including 19 previously described species in addition to the new species. The Mesoamerican Apanteles are assigned to 32 species-groups, all but two of which are newly defined. Taxonomic keys are presented in two formats: traditional dichotomous print versions and links to electronic interactive versions (software Lucid 3.5. Numerous illustrations, computer-generated descriptions, distributional information, wasp biology, and DNA barcodes (where available are presented for every species. All morphological terms are detailed and linked to the Hymenoptera Anatomy Ontology website. DNA barcodes (a standard fragment of the cytochrome c oxidase I (COI mitochondrial gene, information on wasp biology (host records, solitary/gregariousness of wasp larvae, ratios of morphological features, and wasp microecological distributions were used to help clarify boundaries between morphologically cryptic species within species-complexes. Because of the high accuracy of host identification for about 80% of the wasp species studied, it was possible to analyze host relationships at a regional level. The ACG species of Apanteles attack mainly species of Hesperiidae

  20. A core phylogeny of Dictyostelia inferred from genomes representative of the eight major and minor taxonomic divisions of the group.

    Science.gov (United States)

    Singh, Reema; Schilde, Christina; Schaap, Pauline

    2016-11-17

    Dictyostelia are a well-studied group of organisms with colonial multicellularity, which are members of the mostly unicellular Amoebozoa. A phylogeny based on SSU rDNA data subdivided all Dictyostelia into four major groups, but left the position of the root and of six group-intermediate taxa unresolved. Recent phylogenies inferred from 30 or 213 proteins from sequenced genomes, positioned the root between two branches, each containing two major groups, but lacked data to position the group-intermediate taxa. Since the positions of these early diverging taxa are crucial for understanding the evolution of phenotypic complexity in Dictyostelia, we sequenced six representative genomes of early diverging taxa. We retrieved orthologs of 47 housekeeping proteins with an average size of 890 amino acids from six newly sequenced and eight published genomes of Dictyostelia and unicellular Amoebozoa and inferred phylogenies from single and concatenated protein sequence alignments. Concatenated alignments of all 47 proteins, and four out of five subsets of nine concatenated proteins all produced the same consensus phylogeny with 100% statistical support. Trees inferred from just two out of the 47 proteins, individually reproduced the consensus phylogeny, highlighting that single gene phylogenies will rarely reflect correct species relationships. However, sets of two or three concatenated proteins again reproduced the consensus phylogeny, indicating that a small selection of genes suffices for low cost classification of as yet unincorporated or newly discovered dictyostelid and amoebozoan taxa by gene amplification. The multi-locus consensus phylogeny shows that groups 1 and 2 are sister clades in branch I, with the group-intermediate taxon D. polycarpum positioned as outgroup to group 2. Branch II consists of groups 3 and 4, with the group-intermediate taxon Polysphondylium violaceum positioned as sister to group 4, and the group-intermediate taxon Dictyostelium polycephalum

  1. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage.

    Science.gov (United States)

    Teske, Peter R; Hamilton, Healy; Matthee, Conrad A; Barker, Nigel P

    2007-08-15

    The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns. Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to diverge. This suggests that their

  2. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage

    Directory of Open Access Journals (Sweden)

    Matthee Conrad A

    2007-08-01

    Full Text Available Abstract Background The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses, as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns. Results Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to

  3. DISTRIBUTION, MORPHOLOGY, AND PHYLOGENY OF KLEBSORMIDIUM (KLEBSORMIDIALES, CHAROPHYCEAE) IN URBAN ENVIRONMENTS IN EUROPE(1).

    Science.gov (United States)

    Rindi, Fabio; Guiry, Michael D; López-Bautista, Juan M

    2008-12-01

    Klebsormidium is a cosmopolitan genus of green algae, widespread in terrestrial and freshwater habitats. The classification of Klebsormidium is entirely based on morphological characters, and very little is understood about its phylogeny at the species level. We investigated the diversity and phylogenetic relationships of Klebsormidium in urban habitats in Europe by a combination of approaches including examination of field-collected material, culture experiments conducted in many different combinations of factors, and phylogenetic analyses of the rbcL gene. Klebsormidium in European cities mainly occurs at the base of old walls, where it may produce green belts up to several meters in extent. Specimens from different cities showed a great morphological uniformity, consisting of long filaments 6-9 μm in width, with thin-walled cylindrical cells and smooth wall, devoid of false branches, H-shaped pieces, and biseriate parts. Conversely, the rbcL phylogeny showed a higher genetic diversity than expected from morphology. The strains were separated in four different clades supported by high bootstrap values and posterior probabilities. In culture, these clades differed in several characters, such as production of a superficial hydro-repellent layer, tendency to break into short fragments, and inducibility of zoosporulation. On the basis of the taxonomic information available in the literature, most strains could not be identified unambiguously at the species level. The rbcL phylogeny showed no correspondence with classification based on morphology and suggested that the identity of many species, in particular the type species K. flaccidum (kütz.) P.C. Silva, Mattox et W. H. Blackw., needs critical reassessment. © 2008 Phycological Society of America.

  4. Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia).

    Science.gov (United States)

    Goodheart, Jessica A; Bazinet, Adam L; Valdés, Ángel; Collins, Allen G; Cummings, Michael P

    2017-10-26

    The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA-Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia). Ancestral state reconstruction analyses supported a cladobranchian ancestor with a preference for Hydrozoa and show that the few transitions identified only occur from lineages that prey on Hydrozoa to those that feed on other types of prey. There is strong phylogenetic correlation with prey preference within Cladobranchia, suggesting that prey type specialization within this group has inertia. Shifts between different types of prey have occurred rarely throughout the evolution of

  5. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).

    Science.gov (United States)

    Tkach, Vasyl V; Kudlai, Olena; Kostadinova, Aneta

    2016-03-01

    The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae

  6. Freud e a filogenia anímica Freud and the animic phylogeny

    Directory of Open Access Journals (Sweden)

    Monah Winograd

    2007-01-01

    Full Text Available Este ensaio investiga a presença, na obra de Freud, da idéia de uma filogenia anímica paralela, concomitante e dependente da filogenia somática descrita pelos teóricos da evolução. Objetivamos mostrar como se forma esta vizinhança da psicanálise com a biologia evolutiva, sublinhando que na filogenia esboçada por Freud, formas psíquicas típicas se sucedem na história da espécie humana, sendo repetidas por cada indivíduo em sua ontogenia singular. Tal como ocorre no plano somático, tempo e forma se associam intimamente na espécie e nos indivíduos. A presença desta idéia no pensamento freudiano abriu um debate sobre sua filiação lamarckista ou darwinista.This essay investigates the presence, in Freud´s work, of the idea of an animic phylogeny parallel, concomitant and dependent of the somatic phylogeny that the theoreticians of evolution describe. Our objective is to show how this neighborhood between psychoanalysis and evolutionary theory is formed. To do so, we stress that, in the phylogeny theory that Freud sketches, typical psychic forms occurs in the history of the human kind in a way that each individual repeats it in its singular ontogeny. As it happens in the somatic level, time and form are intimately associated in the species and in the individuals. The presence of that idea in Freud´s work has opened a debate about his Darwinist or Lamarckist inspiration.

  7. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae.

    Science.gov (United States)

    Chen, Ling-Yun; Chen, Jin-Ming; Gituru, Robert Wahiti; Wang, Qing-Feng

    2012-03-10

    Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Our study has shed light on the previously controversial

  8. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    Science.gov (United States)

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Science.gov (United States)

    Qiu, Dajun; Huang, Liangmin; Liu, Sheng; Zhang, Huan; Lin, Senjie

    2013-01-01

    Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  10. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Directory of Open Access Journals (Sweden)

    Dajun Qiu

    Full Text Available Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium. Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  11. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    Science.gov (United States)

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  12. Rooting phylogenies using gene duplications: an empirical example from the bees (Apoidea).

    Science.gov (United States)

    Brady, Seán G; Litman, Jessica R; Danforth, Bryan N

    2011-09-01

    The placement of the root node in a phylogeny is fundamental to characterizing evolutionary relationships. The root node of bee phylogeny remains unclear despite considerable previous attention. In order to test alternative hypotheses for the location of the root node in bees, we used the F1 and F2 paralogs of elongation factor 1-alpha (EF-1α) to compare the tree topologies that result when using outgroup versus paralogous rooting. Fifty-two taxa representing each of the seven bee families were sequenced for both copies of EF-1α. Two datasets were analyzed. In the first (the "concatenated" dataset), the F1 and F2 copies for each species were concatenated and the tree was rooted using appropriate outgroups (sphecid and crabronid wasps). In the second dataset (the "duplicated" dataset), the F1 and F2 copies were aligned to each another and each copy for all taxa were treated as separate terminals. In this dataset, the root was placed between the F1 and F2 copies (e.g., paralog rooting). Bayesian analyses demonstrate that the outgroup rooting approach outperforms paralog rooting, recovering deeper clades and showing stronger support for groups well established by both morphological and other molecular data. Sequence characteristics of the two copies were compared at the amino acid level, but little evidence was found to suggest that one copy is more functionally conserved. Although neither approach yields an unambiguous root to the tree, both approaches strongly indicate that the root of bee phylogeny does not fall near Colletidae, as has been previously proposed. We discuss paralog rooting as a general strategy and why this approach performs relatively poorly with our particular dataset. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: From fundamental knowledge to health ecology.

    Science.gov (United States)

    Knapp, Jenny; Gottstein, Bruno; Saarma, Urmas; Millon, Laurence

    2015-10-30

    Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  15. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  16. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2017-08-01

    The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.

    Science.gov (United States)

    Fang, Yuan; Shi, Wen-Qi; Zhang, Yi

    2017-05-08

    The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay

  18. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae).

    Science.gov (United States)

    Dabert, Miroslawa; Proctor, Heather; Dabert, Jacek

    2016-08-01

    With nearly 6000 named species, water mites (Hydrachnidiae) represent the largest group of arachnids to have invaded and extensively diversified in freshwater habitats. Water mites together with three other lineages (the terrestrial Erythraiae and Trombidiae, and aquatic Stygothrombiae), make up the hyporder Parasitengonina, which is characterized by having parasitic larvae and predatory nymphs and adults. Relationships between the Hydrachnidiae and other members of the Parasitengonina are unclear, as are relationships among the major lineages of water mites. Monophyly of water mites has been asserted, with the possible exception of the morphologically distinctive Hydrovolzioidea. Here we infer the phylogeny of water mites using multiple molecular markers and including representatives of all superfamilies of Hydrachnidiae and of almost all other Parasitengonina. Our results support a monophyletic Parasitengonina including Trombidiae, Stygothrombiae, and Hydrachnidiae. A monophyletic Hydrachnidiae, including Hydrovolzioidea, is strongly supported. Terrestrial Parasitengonina do not form a monophyletic sister group to water mites. Stygothrombiae is close to water mites but is not nested within this clade. Water mites appear to be derived from ancestors close to Stygothrombiae or the erythraoid group Calyptostomatoidea; however, this relationship is not clear because of extremely short branches in this part of the parasitengonine tree. We recovered with strong support all commonly accepted water mite superfamilies except for Hydryphantoidea, which is clearly paraphyletic. Our data support the previously proposed clades Protohydrachnidia (Hydrovolzioidea and Eylaoidea), Euhydrachnidia (all remaining superfamilies), and the euhydrachnid subclade Neohydrachnidia (Lebertioidea, Hydrachnoidea, Hygrobatoidea, and Arrenuroidea). We found that larval leg structure and locomotory behavior are strongly congruent with the molecular phylogeny. Other morphological and behavioral

  19. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  20. Canine distemper virus infection in a lesser grison (Galictis cuja: first report and virus phylogeny

    Directory of Open Access Journals (Sweden)

    Jane Megid

    2013-02-01

    Full Text Available Infectious diseases in wild animals have been increasing as a result of their habitat alterations and closer contact with domestic animals. Canine distemper virus (CDV has been reported in several species of wild carnivores, presenting a threat to wildlife conservation. We described the first case of canine distemper virus infection in lesser grison (Galictis cuja. A free-ranging individual, with no visible clinical sigs, presented sudden death after one day in captivity. Molecular diagnosis for CDV infection was performed using whole blood collected by postmortem intracardiac puncture, which resulted positive. The virus phylogeny indicated that domestic dogs were the probable source of infection.

  1. Estimating Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies.

    Science.gov (United States)

    Hagen, Oskar; Andermann, Tobias; Quental, Tiago B; Antonelli, Alexandre; Silvestro, Daniele

    2018-05-01

    The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level. Here, we present a Bayesian framework to estimate extinction rates from the fossil record accounting for age-dependent extinction (ADE). Our approach, unlike previous implementations, explicitly models unobserved species and accounts for the effects of fossil preservation on the observed longevity of sampled lineages. We assess the performance and robustness of our method through extensive simulations and apply it to a fossil data set of terrestrial Carnivora spanning the past 40 myr. We find strong evidence of ADE, as we detect the extinction rate to be highest in young species and declining with increasing species age. For comparison, we apply a recently developed analogous ADE model to a dated phylogeny of extant Carnivora. Although the phylogeny-based analysis also infers ADE, it indicates that the extinction rate, instead, increases with increasing taxon age. The estimated mean species longevity also differs substantially, with the fossil-based analyses estimating 2.0 myr, in contrast to 9.8 myr derived from the phylogeny-based inference. Scrutinizing these discrepancies, we find that both fossil and phylogeny-based ADE models are prone to high error rates when speciation and extinction rates increase or decrease through time. However, analyses of simulated and empirical data show that fossil-based inferences are more

  2. DNA variation within Juncaceae: Comparison of impact of organelle regions on phylogeny

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Vlček, Čestmír

    2009-01-01

    Roč. 278, č. 3 (2009), s. 169-186 ISSN 0378-2697 R&D Projects: GA ČR GP206/07/P147; GA MŠk(CZ) 1M0520 Grant - others:EU(XE) SYNTHESYS DK-TAF 1295; EU(XE) SYNTHESYS GB-TAF 2052 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50520514 Keywords : molecular phylogeny * Juncaceae * mtDNA Subject RIV: EF - Botanics Impact factor: 1.410, year: 2009

  3. Biogeography and Phylogeny of Wood-feeding Cockroaches in the Genus Cryptocercus

    Directory of Open Access Journals (Sweden)

    Kiyoto Maekawa

    2011-07-01

    Full Text Available Subsocial, xylophagous cockroaches of the genus Cryptocercus exhibit a disjunct distribution, with representatives in mature montane forests of North America, China, Korea and the Russian Far East. All described species are wingless and dependent on rotting wood for food and shelter at all stages of their life cycle; consequently, their distribution is tied to that of forests and strongly influenced by palaeogeographical events. Asian and American lineages form distinct monophyletic groups, comprised of populations with complex geographic substructuring. We review the phylogeny and distribution of Cryptocercus, and discuss splitting events inferred from molecular data.

  4. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies.

    Science.gov (United States)

    Carranza, S; Littlewood, D T; Clough, K A; Ruiz-Trillo, I; Baguñà, J; Riutort, M

    1998-01-01

    The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola. PMID:9881470

  5. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China: Phylogeny and ecological factors.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available The flavonoids in bryophytes may have great significance in phylogeny and metabolism research. However, to date there has been little research on bryophyte metabolites, especially flavonoids. To redress this somewhat, we determined flavonoid concentrations of bryophytes from Tianmu Mountain through a colorimetric assay and considered the factors influencing the results. This is the first time that the flavonoid contents of bryophytes have been examined in detail. The results revealed a range of total flavonoid concentrations in 90 samples collected from Tianmu Mountain from 1.8 to 22.3 mg/g (w/w. The total flavonoid contents of liverworts were generally higher than those of mosses; acrocarpous mosses had generally higher values than that of pleurocarpous mosses. The total flavonoid contents of bryophytes growing at lower light levels were general higher than those growing in full-sun. The total flavonoid contents of epiphytic bryophytes were highest, while those of aquatic bryophytes were the lowest. Total flavonoid contents of species growing at low-latitudes were much higher than those at high-latitude individuals. In conclusion, total flavonoid contents of bryophytes have some connection with plant phylogeny; more flavonoids might be contained in relatively primitive bryophytes. Meanwhile, the effects of ecological factors on total flavonoid contents of bryophytes exist; light and habitat (especially tree habitat and river habitat might be representative factor.

  6. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa.

    Directory of Open Access Journals (Sweden)

    Anna Maria Fiore-Donno

    Full Text Available The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  7. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Directory of Open Access Journals (Sweden)

    Zhonglou Sun

    Full Text Available The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes. Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma. Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma. Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  8. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    Science.gov (United States)

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  10. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    2009-11-01

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  11. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, Hengwu; Wang, Hui; Zhang, Chenling; Jin, Hong; Chang, Qing; Kan, Xianzhao; Zhang, Baowei

    2017-01-01

    The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  12. Mammals on the EDGE: conservation priorities based on threat and phylogeny.

    Directory of Open Access Journals (Sweden)

    Nick J B Isaac

    2007-03-01

    Full Text Available Conservation priority setting based on phylogenetic diversity has frequently been proposed but rarely implemented. Here, we define a simple index that measures the contribution made by different species to phylogenetic diversity and show how the index might contribute towards species-based conservation priorities. We describe procedures to control for missing species, incomplete phylogenetic resolution and uncertainty in node ages that make it possible to apply the method in poorly known clades. We also show that the index is independent of clade size in phylogenies of more than 100 species, indicating that scores from unrelated taxonomic groups are likely to be comparable. Similar scores are returned under two different species concepts, suggesting that the index is robust to taxonomic changes. The approach is applied to a near-complete species-level phylogeny of the Mammalia to generate a global priority list incorporating both phylogenetic diversity and extinction risk. The 100 highest-ranking species represent a high proportion of total mammalian diversity and include many species not usually recognised as conservation priorities. Many species that are both evolutionarily distinct and globally endangered (EDGE species do not benefit from existing conservation projects or protected areas. The results suggest that global conservation priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history becoming extinct in the near future.

  13. Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes.

    Science.gov (United States)

    Höhna, Sebastian

    2013-06-01

    Diversification rates and patterns may be inferred from reconstructed phylogenies. Both the time-dependent and the diversity-dependent birth-death process can produce the same observed patterns of diversity over time. To develop and test new models describing the macro-evolutionary process of diversification, generic and fast algorithms to simulate under these models are necessary. Simulations are not only important for testing and developing models but play an influential role in the assessment of model fit. In the present article, I consider as the model a global time-dependent birth-death process where each species has the same rates but rates may vary over time. For this model, I derive the likelihood of the speciation times from a reconstructed phylogenetic tree and show that each speciation event is independent and identically distributed. This fact can be used to simulate efficiently reconstructed phylogenetic trees when conditioning on the number of species, the time of the process or both. I show the usability of the simulation by approximating the posterior predictive distribution of a birth-death process with decreasing diversification rates applied on a published bird phylogeny (family Cettiidae). The methods described in this manuscript are implemented in the R package TESS, available from the repository CRAN (http://cran.r-project.org/web/packages/TESS/). Supplementary data are available at Bioinformatics online.

  14. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera

    Science.gov (United States)

    Watson, Linda E; Bates, Paul L; Evans, Timothy M; Unwin, Matthew M; Estes, James R

    2002-01-01

    Background Subtribe Artemisiinae of Tribe Anthemideae (Asteraceae) is composed of 18 largely Asian genera that include the sagebrushes and mugworts. The subtribe includes the large cosmopolitan, wind-pollinated genus Artemisia, as well as several smaller genera and Seriphidium, that altogether comprise the Artemisia-group. Circumscription and taxonomic boundaries of Artemisia and the placements of these small segregate genera is currently unresolved. Results We constructed a molecular phylogeny for the subtribe using the internal transcribed spacers (ITS) of nuclear ribosomal DNA analyzed with parsimony, likelihood, and Bayesian criteria. The resulting tree is comprised of three major clades that correspond to the radiate genera (e.g., Arctanthemum and Dendranthema), and two clades of Artemisia species. All three clades have allied and segregate genera embedded within each. Conclusions The data support a broad concept of Artemisia s.l. that includes Neopallasia, Crossostephium, Filifolium, Seriphidium, and Sphaeromeria. However, the phylogeny excludes Elachanthemum, Kaschgaria, and Stilnolepis from the Artemisia-group. Additionally, the monophyly of the four subgenera of Artemisia is also not supported, with the exception of subg. Dracunculus. Homogamous, discoid capitula appear to have arisen in parallel four to seven times, with the loss of ray florets. Thus capitular morphology is not a reliable taxonomic character, which traditionally has been one of the defining characters. PMID:12350234

  15. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2016-09-01

    Full Text Available This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43, Margalef index D′ (6.1351, Shannon–Wiener index H′ (3.2743, Simpson diversity index Ds (0.9476, PIE index (0.9486, and evenness Pielou index J (0.8705 but a low dominant index λ (0.0524. Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  16. When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Russell J S Orr

    Full Text Available The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.

  17. When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates

    Science.gov (United States)

    Orr, Russell J. S.; Murray, Shauna A.; Stüken, Anke; Rhodes, Lesley; Jakobsen, Kjetill S.

    2012-01-01

    The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium. PMID:23185516

  18. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    Science.gov (United States)

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae. © 2015 Phycological Society of America.

  19. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  20. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  1. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity.

    Science.gov (United States)

    Marx, Felix G; Fordyce, R Ewan

    2015-04-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36-30 Ma), a shift towards bulk filter-feeding (30-23 Ma) and a climate-driven diversity loss around 3 Ma. Evolutionary rates and disparity were high following the origin of mysticetes around 38 Ma, coincident with global cooling, abrupt Southern Ocean eutrophication and the development of the Antarctic Circumpolar Current (ACC). Subsequently, evolutionary rates and disparity fell, becoming nearly constant after approximately 23 Ma as the ACC reached its full strength. By contrast, species diversity rose until 15 Ma and then remained stable, before dropping sharply with the onset of Northern Hemisphere glaciation. This decline coincided with the final establishment of modern mysticete gigantism and may be linked to glacially driven variability in the distribution of shallow habitats or an increased need for long-distance migration related to iron-mediated changes in glacial marine productivity.

  2. RNA-dependent RNA polymerase: Addressing Zika outbreak by a phylogeny-based drug target study.

    Science.gov (United States)

    Stephen, Preyesh; Lin, Sheng-Xiang

    2018-01-01

    Since the first major outbreak of Zika virus (ZIKV) in 2007, ZIKV is spreading explosively through South and Central America, and recent reports in highly populated developing countries alarm the possibility of a more catastrophic outbreak. ZIKV infection in pregnant women leads to embryonic microcephaly and Guillain-Barré syndrome in adults. At present, there is limited understanding of the infectious mechanism, and no approved therapy has been reported. Despite the withdrawal of public health emergency, the WHO still considers the ZIKV as a highly significant and long-term public health challenge that the situation has to be addressed rapidly. Non-structural protein 5 is essential for capping and replication of viral RNA and comprises a methyltransferase and RNA-dependent RNA polymerase (RdRp) domain. We used molecular modeling to obtain the structure of ZIKV RdRp, and by molecular docking and phylogeny analysis, we here demonstrate the potential sites for drug screening. Two metal binding sites and an NS3-interacting region in ZIKV RdRp are demonstrated as potential drug screening sites. The docked structures reveal a remarkable degree of conservation at the substrate binding site and the potential drug screening sites. A phylogeny-based approach is provided for an emergency preparedness, where similar class of ligands could target phylogenetically related proteins. © 2017 John Wiley & Sons A/S.

  3. Slowdowns in diversification rates from real phylogenies may not be real.

    Science.gov (United States)

    Cusimano, Natalie; Renner, Susanne S

    2010-07-01

    Studies of diversification patterns often find a slowing in lineage accumulation toward the present. This seemingly pervasive pattern of rate downturns has been taken as evidence for adaptive radiations, density-dependent regulation, and metacommunity species interactions. The significance of rate downturns is evaluated with statistical tests (the gamma statistic and Monte Carlo constant rates (MCCR) test; birth-death likelihood models and Akaike Information Criterion [AIC] scores) that rely on null distributions, which assume that the included species are a random sample of the entire clade. Sampling in real phylogenies, however, often is nonrandom because systematists try to include early-diverging species or representatives of previous intrataxon classifications. We studied the effects of biased sampling, structured sampling, and random sampling by experimentally pruning simulated trees (60 and 150 species) as well as a completely sampled empirical tree (58 species) and then applying the gamma statistic/MCCR test and birth-death likelihood models/AIC scores to assess rate changes. For trees with random species sampling, the true model (i.e., the one fitting the complete phylogenies) could be inferred in most cases. Oversampling deep nodes, however, strongly biases inferences toward downturns, with simulations of structured and biased sampling suggesting that this occurs when sampling percentages drop below 80%. The magnitude of the effect and the sensitivity of diversification rate models is such that a useful rule of thumb may be not to infer rate downturns from real trees unless they have >80% species sampling.

  4. A Molecular Phylogeny of the Lichen Genus Lecidella Focusing on Species from Mainland China.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups-Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens. Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.

  5. Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia.

    Science.gov (United States)

    Reck-Kortmann, Maikel; Silva-Arias, Gustavo Adolfo; Segatto, Ana Lúcia Anversa; Mäder, Geraldo; Bonatto, Sandro Luis; de Freitas, Loreta Brandão

    2014-12-01

    The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A mitogenomic re-evaluation of the bdelloid phylogeny and relationships among the Syndermata.

    Directory of Open Access Journals (Sweden)

    Erica Lasek-Nesselquist

    Full Text Available Molecular and morphological data regarding the relationships among the three classes of Rotifera (Bdelloidea, Seisonidea, and Monogononta and the phylum Acanthocephala are inconclusive. In particular, Bdelloidea lacks molecular-based phylogenetic appraisal. I obtained coding sequences from the mitochondrial genomes of twelve bdelloids and two monogononts to explore the molecular phylogeny of Bdelloidea and provide insight into the relationships among lineages of Syndermata (Rotifera + Acanthocephala. With additional sequences taken from previously published mitochondrial genomes, the total dataset included nine species of bdelloids, three species of monogononts, and two species of acanthocephalans. A supermatrix of these 10-12 mitochondrial proteins consistently recovered a bdelloid phylogeny that questions the validity of a generally accepted classification scheme despite different methods of inference and various parameter adjustments. Specifically, results showed that neither the family Philodinidae nor the order Philodinida are monophyletic as currently defined. The application of a similar analytical strategy to assess syndermate relationships recovered either a tree with Bdelloidea and Monogononta as sister taxa (Eurotatoria or Bdelloidea and Acanthocephala as sister taxa (Lemniscea. Both outgroup choice and method of inference affected the topological outcome emphasizing the need for sequences from more closely related outgroups and more sophisticated methods of analysis that can account for the complexity of the data.

  7. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora.

    Science.gov (United States)

    Calvente, Alice; Zappi, Daniela C; Forest, Félix; Lohmann, Lúcia G

    2011-03-01

    Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A molecular phylogeny of Amazona: implications for Neotropical parrot biogeography, taxonomy, and conservation.

    Science.gov (United States)

    Russello, Michael A; Amato, George

    2004-02-01

    Amazon parrots (Genus Amazona) are among the most recognizable and imperiled of all birds. Several hypotheses regarding the evolutionary history of Amazona are investigated using a combined phylogenetic analysis of DNA sequence data from six partitions including mitochondrial (COI, 12S, and 16S) and nuclear (beta-fibint7, RP40, and TROP) regions. The results demonstrate that Amazona is not monophyletic with respect to the placement of the Yellow-faced parrot (Amazona xanthops), as first implied by. In addition, the analysis corroborates previous studies suggesting a Neotropical short-tailed parrot genus as sister to Amazona. At a finer level, the phylogeny resolves the Greater Antillean endemic species as constituting a monophyletic group, including the Central American Amazona albifrons, while further revealing a paraphyletic history for the extant Amazon species of the Lesser Antilles. The reconstructed phylogeny provides further insights into the mainland sources of the Antillean Amazona, reveals areas of taxonomic uncertainty within the genus, and presents historical information that may be included in conservation priority-setting for Amazon parrots.

  9. Phylogeny of Elatinaceae and the Tropical Gondwanan Origin of the Centroplacaceae(Malpighiaceae, Elatinaceae Clade.

    Directory of Open Access Journals (Sweden)

    Liming Cai

    Full Text Available The flowering plant family Elatinaceae is a widespread aquatic lineage inhabiting temperate and tropical latitudes, including ∼35(-50 species. Its phylogeny remains largely unknown, compromising our understanding of its systematics. Moreover, this group is particularly in need of attention because the biogeography of most aquatic plant clades has yet to be investigated, resulting in uncertainty about whether aquatic plants show histories that deviate from terrestrial plants. We inferred the phylogeny of Elatinaceae from four DNA regions spanning 59 accessions across the family. An expanded sampling was used for molecular divergence time estimation and ancestral area reconstruction to infer the biogeography of Elatinaceae and their closest terrestrial relatives, Malpighiaceae and Centroplacaceae. The two genera of Elatinaceae, Bergia and Elatine, are monophyletic, but several traditionally recognized groups within the family are non-monophyletic. Our results suggest two ancient biogeographic events in the Centroplacaceae(Malpighiaceae, Elatinaceae clade involving western Gondwana, while Elatinaceae shows a more complicated biogeographic history with a high degree of continental endemicity. Our results indicate the need for further taxonomic investigation of Elatinaceae. Further, our study is one of few to implicate ancient Gondwanan biogeography in extant angiosperms, especially significant given the Centroplacaceae(Malpighiaceae, Elatinaceae clade's largely tropical distribution. Finally, Elatinaceae demonstrates long-term continental in situ diversification, which argues against recent dispersal as a universal explanation commonly invoked for aquatic plant distributions.

  10. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae).

    Science.gov (United States)

    Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M

    2017-02-01

    Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Identification and phylogeny of the tomato receptor-like proteins family

    Directory of Open Access Journals (Sweden)

    Ermis Yanes-Paz

    2017-03-01

    Full Text Available The receptor-like proteins (RLPs play multiple roles in development and defense. In the current work 75 RLPs were identified in tomato (Solanum lycopersicum L. using iterative BLAST searches and domain prediction. A phylogenetic tree including all the identified RLPs from tomato and some functionally characterized RLPs from other species was built to identify their putative homologues in tomato. We first tested whether C3-F-based phylogeny was a good indicator of functional relation between related proteins of different species. Indeed, the functionally characterized CLAVATA2 (CLV2, the maize ortholog FASCIATED EAR2 (FEA2 and a putative tomato CLV2 described in Uniprot clustered together, which validates the approach. Using this approach Solyc12g042760.1.1 was identified as the putative tomato homologue of TOO MANY MOUTHS (TMM. It was shown that proteins in the same cluster of the phylogenetic tree share functional relations since several clusters of functionally related proteins i.e. the Ve cluster, the Cf cluster, and the Eix clade were formed.   Keywords: phylogeny, receptors, RLP, tomato

  13. Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) - testing the hypothesis of a Dinophysioid radiation

    DEFF Research Database (Denmark)

    Jensen, Maria Hastrup; Daugbjerg, Niels

    2009-01-01

    additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear-encoded LSU rDNA sequences including domains D1-D6 from 27...

  14. Multi-locus phylogeny reveals instances of mitochondrial introgression and unrecognized diversity in Kenyan barbs (Cyprininae: Smiliogastrini).

    Science.gov (United States)

    Schmidt, Ray C; Bart, Henry L; Nyingi, Wanja Dorothy

    2017-06-01

    The phylogenetics and taxonomic status of small African barbs (Cyprininae: Smiliogastrini) remains unresolved despite the recent decision to elevate the genus name Enteromius for the group. The main barrier to understanding the origin of African small barbs and evolutionary relationships within the group is the poor resolution of phylogenies published to date. These phylogenies usually rely on mitochondrial markers and have limited taxon sampling. Here we investigate the phylogenetic relationships of small barbs of Kenya utilizing cytochrome b, Growth Hormone (GH) intron 2, and RAG1 markers from multiple populations of many species in the region. This multi-locus study produced well-supported phylogenies and revealed additional issues that complicate understanding the relationships among East African barbs. We observed widespread mtDNA introgression within the Kenyan barbs, highlighting the need to include nuclear markers in phylogenetic studies of the group. The GH intron 2 resolved heterospecific individuals and aided in inferring the species level phylogeny. The study reveals unrecognized diversity within the group, including within species reported to occur throughout East Africa, and it provides the groundwork for future taxonomic work in the region and across Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters

    Directory of Open Access Journals (Sweden)

    Strassmann Joan E

    2004-03-01

    Full Text Available Abstract Background Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera using 69 species. Results Our phylogeny is largely concordant with previous phylogenies at higher levels, and is more resolved at the species level. Our results support the monophyly of the New World subgenera of Polistini, while the Old World subgenera are a paraphyletic group. All genera for which we had more than one exemplar were supported as monophyletic except Polybia which is not resolved, and may be paraphyletic. Conclusion The combination of DNA sequences from flanks of microsatellite repeats with mtCOI sequences and morphological characters proved to be useful characters establishing relationships among the different subgenera and species of the Polistini. This is the first detailed hypothesis for the species of this important group.

  16. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences

    Science.gov (United States)

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...

  17. Microsporidian genus Berwaldia (Opisthosporidia, Microsporidia), infecting daphnids (Crustacea, Branchiopoda): Biology, structure, molecular phylogeny and description of two new species

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Fiala, Ivan; Sacherová, V.; Vossbrinck, C. R.

    2017-01-01

    Roč. 61, October (2017), s. 1-12 ISSN 0932-4739 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Daphnia * fungi * Microsporidia * parasite * SSU rDNA phylogeny * transmission Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.581, year: 2016

  18. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives.

    Science.gov (United States)

    Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph

    2009-12-15

    Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.

  19. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  20. Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes

    Directory of Open Access Journals (Sweden)

    Tellier Laurent C

    2010-03-01

    Full Text Available Abstract Background Mitochondria are a valuable resource for studying the evolutionary process and deducing phylogeny. A few mitochondria genomes have been sequenced, but a comprehensive picture of the domestication event for silkworm mitochondria remains to be established. In this study, we integrate the extant data, and perform a whole genome resequencing of Japanese wild silkworm to obtain breakthrough results in silkworm mitochondrial (mt population, and finally use these to deduce a more comprehensive phylogeny of the Bombycidae. Results We identified 347 single nucleotide polymorphisms (SNPs in the mt genome, but found no past recombination event to have occurred in the silkworm progenitor. A phylogeny inferred from these whole genome SNPs resulted in a well-classified tree, confirming that the domesticated silkworm, Bombyx mori, most recently diverged from the Chinese wild silkworm, rather than from the Japanese wild silkworm. We showed that the population sizes of the domesticated and Chinese wild silkworms both experience neither expansion nor contraction. We also discovered that one mt gene, named cytochrome b, shows a strong signal of positive selection in the domesticated clade. This gene is related to energy metabolism, and may have played an important role during silkworm domestication. Conclusions We present a comparative analysis on 41 mt genomes of B. mori and B. mandarina from China and Japan. With these, we obtain a much clearer picture of the evolution history of the silkworm. The data and analyses presented here aid our understanding of the silkworm in general, and provide a crucial insight into silkworm phylogeny.

  1. Phylogeny of the cycads based on multiple single copy nuclear genes: congruence of concatenation and species tree inference methods

    Science.gov (United States)

    Despite a recent new classification, a stable tree of life for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study we apply five single copy nuclear genes (SCNGs) to the phylogeny of the order Cycadales. We specifically aim to evaluate seve...

  2. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Mikula, Ondřej; Šumbera, R.; Meheretu, Y.; Aghová, Tatiana; Lavrenchenko, L. A.; Mazoch, Vladimír; Oguge, N.; Mbau, J. S.; Welegerima, K.; Amundala, N.; Colyn, M.; Leirs, H.; Verheyen, E.

    2014-01-01

    Roč. 14, č. 256 (2014), s. 256 ISSN 1471-2148 R&D Projects: GA ČR GAP506/10/0983 Institutional support: RVO:68081766 Keywords : Biogeography * Tropical Africa * Molecular phylogeny * Pygmy mice * Plio-Pleistocene climatic fluctuations * Divergence timing * Muridae (Murinae) * Mus minutoides * Phylogeography * DNA barcoding Subject RIV: EG - Zoology Impact factor: 3.368, year: 2014

  3. Molecular characterization and phylogeny of four new species of the genus trichonympha (Parabasalia, trichonymphea) from lower termite hindguts

    Czech Academy of Sciences Publication Activity Database

    Boscaro, V.; James, E. R.; Fiorito, R.; Hehenberger, E.; Karnkowska, A.; del Campo, J.; Kolísko, Martin; Irwin, N. A.T.; Mathur, V.; Scheffrahn, R. H.; Keeling, P. J.

    2017-01-01

    Roč. 67, č. 9 (2017), s. 3570-3575, č. článku 002169. ISSN 1466-5026 Institutional support: RVO:60077344 Keywords : parabasalids * SSU rRNA phylogeny * termite symbionts * trichonympha Subject RIV: EB - Gene tics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.134, year: 2016

  4. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa

    Czech Academy of Sciences Publication Activity Database

    Bryja, J.; Mikula, Ondřej; Šumbera, R.; Meheretu, Y.; Aghová, T.; Lavrenchenko, L. A.; Mazoch, V.; Oguge, N.; Mbau, J. S.; Welegerima, K.; Amundala, N.; Colyn, M.; Leirs, H.; Verheyen, E.

    2014-01-01

    Roč. 14, č. 256 (2014) ISSN 1471-2148 R&D Projects: GA ČR GAP506/10/0983 Institutional support: RVO:67985904 Keywords : biogeography * tropical Africa * molecular phylogeny Subject RIV: EG - Zoology Impact factor: 3.368, year: 2014

  5. New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriales

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina

    2011-01-01

    Roč. 49, č. 1 (2011), s. 167-198 ISSN 1560-2745 R&D Projects: GA ČR GA206/09/0547 Institutional research plan: CEZ:AV0Z60050516 Keywords : Wegelina * Calosphaeria * phylogeny Subject RIV: EF - Botanics Impact factor: 4.769, year: 2011

  6. Phylogeny of Neoparamoeba strains isolated from marine fish and invertebrates as inferred from SSU rDNA sequences

    Czech Academy of Sciences Publication Activity Database

    Dyková, Iva; Nowak, B.; Pecková, Hana; Fiala, Ivan; Crosbie, P.; Dvořáková, Helena

    2007-01-01

    Roč. 74, č. 1 (2007), s. 57-65 ISSN 0177-5103 R&D Projects: GA ČR GA206/05/2384; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Neoparamoeba strains * Paramoeba eilhardi * phylogeny * invertebrate infections Subject RIV: EA - Cell Biology Impact factor: 1.598, year: 2007

  7. The first ITS phylogeny of the genus Cantharocybe (Agaricales, Hygrophoraceae) with a new record of C. virosa from Bangladesh

    Science.gov (United States)

    Md. Iqbal Hosen; Tai-Hui Li; D. Jean Lodge; Alan Rockefeller

    2016-01-01

    This is the first internal transcribed spacer (ITS) phylogeny of the enigmatic genus Cantharocybe and includes ITS sequences from two out of the three holotype collections. Two species are reported from the Americas and only a single species from Asia. Additionally, a collection of Cantharocybe virosa collected from tropical...

  8. New higher taxa in the lichen family Graphidaceae (lichenized Ascomycota: Ostropales) based on a three-gene skeleton phylogeny

    Science.gov (United States)

    H. Thorsten Lumbsch; Ekaphan Kraichak; Sittiporn Parnmen; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Shirley Cunha Feuerstein; Joel A. Mercado-Diaz; Bettina Staiger; Dries Van den Broeck; Robert. Lücking

    2014-01-01

    We provide an updated skeleton phylogeny of the lichenized family Graphidaceae (excluding subfamily Gomphilloideae), based on three loci (mtSSU, nuLSU, RPB2), to elucidate the position of four new genera, Aggregatorygma, Borinquenotrema, Corticorygma, and Paratopeliopsis, as well as the placement of the enigmatic species Diorygma erythrellum, Fissurina monilifera, and...

  9. A complete plastid phylogeny of Daucus – concordance to nuclear results, and markers necessary for phylogenetic resolution

    Science.gov (United States)

    Premise of study: Our purposes were to (1) obtain a well-resolved plastid counterpart to the 94 gene nuclear ortholog gene phylogeny of Arbizu et al. (2014, Amer. J. Bot. 101:1666-1685; and Syst. Bot., in press), and (2) to investigate various classes and numbers of plastid markers necessary for a c...

  10. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny

    Science.gov (United States)

    Kasey K. Pham; Andrew L. Hipp; Paul S. Manos; Richard C. Cronn

    2017-01-01

    Owing to high rates of introgressive hybridization, the plastid genome is poorly suited to fine-scale DNA barcoding and phylogenetic studies of the oak genus (Quercus, Fagaceae). At the tips of the oak plastome phylogeny, recent gene migration and reticulation generally cause topology to reflect geographic structure, while deeper branches reflect...

  11. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pienaar, 1962

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, N.; Čepička, I.; Qablan, M. A.; Gibson, W.; Blažek, Radim; Široký, P.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 599-608 ISSN 1434-4610 Institutional support: RVO:68081766 Keywords : Trypanosoma * turtle * Pelusios * polymorphism * phylogeny * SSU rRNA gene Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  13. Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).

    Science.gov (United States)

    Maddison, David R

    2012-06-01

    The phylogeny of the large genus Bembidion and related genera is inferred from four nuclear protein-coding genes (CAD, wingless, arginine kinase, and topoisomerase I), ribosomal DNA (28S and 18S), and the mitochondrial gene cytochrome oxidase I (COI). 230 of the more than 1200 species of Bembidion are sampled, as well as 26 species of five related genera, and 14 outgroups. Nuclear copies (numts) of COI were found sparsely scattered through sampled species. The resulting phylogeny, based upon individual gene analyses and combined analyses using maximum likelihood and parsimony, is very well supported at most nodes. Additional analyses explored the evidence, and corroborate the phylogeny. Seven analyses, each with one of the seven genes removed from the combined matrix, were also conducted, and yielded maximum likelihood bootstrap trees sharing over 92% of their nodes with the original, well-resolved bootstrap trees based on the complete set of seven genes. All key nodes were present in all seven analyses missing a single gene, indicating that support for these nodes comes from at least two genes. In addition, the inferred maximum likelihood tree based on the combined matrix is well-behaved and self-predicting, in that simulated evolution of sequences on the inferred tree under the inferred model of evolution yields a matrix from which all but one of the model tree's clades are recovered with bootstrap value >50, suggesting that internal branches in the tree may be of a length to yield sequences sufficient to allow their inference. All likelihood analyses were conducted under both a proportion-invariable plus gamma site-to-site rate variation model, as well as a simpler gamma model. The choice of model did not have a major effect on inferred phylogenies or their bootstrap values. The inferred phylogeny shows that Bembidarenas is not closely related to Bembidiina, and Phrypeus is likely distant as well; the remaining genera of Bembidiina form a monophyletic group

  14. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion

    Science.gov (United States)

    2013-01-01

    Background Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. Results In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove

  15. Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods.

    Science.gov (United States)

    Ahrenfeldt, Johanne; Skaarup, Carina; Hasman, Henrik; Pedersen, Anders Gorm; Aarestrup, Frank Møller; Lund, Ole

    2017-01-05

    Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for epidemiological data, and also present an analysis where we use the data to compare the performance of some current methods. Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining 50 correspond to leaves. We also used the newly created data set to compare three different online available methods that infer phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication when comparing the output of these methods with the known phylogeny is that phylogenetic methods typically build trees where all observed sequences are placed as leafs, even though some of them are in fact ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches (thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes into account the identity of both internal and leaf nodes. Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the best performance, correctly identifying 73% of all branches in the

  16. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization

    Directory of Open Access Journals (Sweden)

    Blanc Michel

    2007-01-01

    Full Text Available Abstract Background The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar. Although shell-breeding arose several times in the evolutionary history of the lamprologines, all obligatory and most facultative shell-breeders belong to the so called "ossified group", a monophyletic lineage within the lamprologine cichlids. Since their distinctive life style enables these species to live and breed in closest vicinity, we hypothesized that these cichlids might be particularly prone to accidental hybridization, and that introgression might have affected the evolutionary history of this cichlid lineage. Results Our analyses revealed discrepancies between phylogenetic hypotheses based on mitochondrial and nuclear (AFLP data. While the nuclear phylogeny was congruent with morphological, behavioral and ecological characteristics, several species – usually highly specialized shell-breeders – were placed at contradicting positions in the mitochondrial phylogeny. The discordant phylogenies strongly suggest repeated incidents of introgressive hybridization between several distantly related shell-breeding species, which reticulated the phylogeny of this group of cichlids. Long interior branches and high bootstrap support for many interior nodes in the mitochondrial phylogeny argue against a major effect of ancient incomplete lineage sorting on the phylogenetic reconstruction. Moreover, we provide morphological and genetic (mtDNA and microsatellites evidence for ongoing hybridization among distantly related shell-breeders. In these cases, the territorial males of the inferred paternal species are too large to enter the shells of their mate, such that they have to release their sperm over the entrance of the shell to fertilize the eggs. With sperm

  17. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae

    Directory of Open Access Journals (Sweden)

    Chen Ling-Yun

    2012-03-01

    Full Text Available Abstract Background Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Results Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite and divergence time estimates (BEAST resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma. Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Conclusions

  18. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  19. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit.

    Science.gov (United States)

    Gardner, Elliot M; Sarraf, Paya; Williams, Evelyn W; Zerega, Nyree J C

    2017-12-01

    Maclura (ca. 12spp., Moraceae) is a widespread genus of trees and woody climbers found on five continents. Maclura pomifera, the Osage orange, is considered a classic example of an anachronistic fruit. Native to the central USA, the grapefruit-sized Osage oranges are unpalatable and have no known extant native dispersers, leading to speculation that the fruits were adapted to extinct megafauna. Our aim was to reconstruct the phylogeny, estimate divergence dates, and infer ancestral ranges of Maclura in order to test the monophyly of subgeneric classifications and to understand evolution and dispersal patterns in this globally distributed group. Employing Bayesian and maximum-likelihood methods, we reconstructed the Maclura phylogeny using two nuclear and five chloroplast loci from all Maclura species and outgroups representing all Moraceae tribes. We reconstructed ancestral ranges and syncarp sizes using a family level dated tree, and used Ornstein-Uhlenbeck models to test for significant changes in syncarp size in the Osage orange lineage. Our analyses support a monophyletic Maclura with a Paleocene crown. Subgeneric sections were monophyletic except for the geographically-disjunct Cardiogyne. There was strong support for current species delineations except in the widespread M. cochinchinensis. South America was reconstructed as the ancestral range for Maclura with subsequent colonization of Africa and the northern hemisphere. The clade containing M. pomifera likely diverged in the Oligocene, closely coinciding with crown divergence dates of the mammoth/mastodon and sloth clades that contain possible extinct dispersers. The best fitting model for syncarp size evolution indicated an increase in both syncarp size and the rate of syncarp size evolution in the Osage orange lineage. We conclude that our findings are consistent with the hypothesis that M. pomifera was adapted to dispersal by extinct megafauna. In addition, we consider dispersal rather than vicariance to

  20. Pulling the sting out of nettle systematics - A comprehensive phylogeny of the genus Urtica L. (Urticaceae).

    Science.gov (United States)

    Grosse-Veldmann, Bernadette; Nürk, Nicolai M; Smissen, Rob; Breitwieser, Ilse; Quandt, Dietmar; Weigend, Maximilian

    2016-09-01

    The genus Urtica L. is subcosmopolitan, found on all continents (except Antarctica) and most extratropical islands and ranges from Alaska to Patagonia, Spitzbergen to the Cape and Camtschatka to the subantarctic islands. However, throughout its geographical range morphologically nearly indistinguishable species are found alongside morphologically quite disparate species, with the overall diversity of morphological characters extremely limited. The systematics of Urtica have puzzled scientists for the past 200years and no single comprehensive attempt at understanding infrageneric relationships has been published in the past, nor are species delimitations unequivocally established. We here provide the first comprehensive phylogeny of the genus including 61 of the 63 species recognized, represented by 144 ingroup accessions and 14 outgroup taxa. The markers ITS1-5.8S-ITS2, psbA-trnH intergenic spacer, trnL-trnF and trnS-trnG are used. The phylogeny is well resolved. The eastern Asian Zhengyia shennongensis T. Deng, D.G. Zhang & H. Sun is retrieved as sister to Urtica. Within Urtica, a clade comprising the western Eurasian species U. pilulifera L. and U. neubaueri Chrtek is sister to all other species of the genus. The phylogenetic analyses retrieve numerous well-supported clades, suggesting previously unsuspected relationships and implying that classically used taxonomic characters such as leaf morphology and growth habit are highly homoplasious. Species delimitation is problematical, and several accessions assigned to Urtica dioica L. (as subspecies) are retrieved in widely different places in the phylogeny. The genus seems to have undergone numerous dispersal-establishment events both between continents and onto different islands. Three recent species radiations are inferred, one in America centered in the Andes, one in New Zealand, and one in northern Eurasia which includes Urtica dioica s.str. sensu Henning et al. (2014). The present study provides the basis of a

  1. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  2. Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae).

    Science.gov (United States)

    Williams, Evelyn W; Gardner, Elliot M; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T; Zerega, Nyree J C

    2017-03-01

    The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric

  3. Novel intron markers to study the phylogeny of closely related mammalian species

    Directory of Open Access Journals (Sweden)

    Castresana Jose

    2010-11-01

    Full Text Available Abstract Background Multilocus phylogenies can be used to infer the species tree of a group of closely related species. In species trees, the nodes represent the actual separation between species, thus providing essential information about their evolutionary history. In addition, multilocus phylogenies can help in analyses of species delimitation, gene flow and genetic differentiation within species. However, few adequate markers are available for such studies. Results In order to develop nuclear markers that can be useful in multilocus studies of mammals, we analyzed the mammalian genomes of human, chimpanzee, macaque, dog and cow. Rodents were excluded due to their unusual genomic features. Introns were extracted from the mammalian genomes because of their greater genetic variability and ease of amplification from the flanking exons. To an initial set of more than 10,000 one-to-one orthologous introns we applied several filters to select introns that belong to single-copy genes, show neutral evolutionary rates and have an adequate length for their amplification. This analysis led to a final list of 224 intron markers randomly distributed along the genome. To experimentally test their validity, we amplified twelve of these introns in a panel of six mammalian species. The result was that seven of these introns gave rise to a PCR band of the expected size in all species. In addition, we sequenced these bands and analyzed the accumulation of substitutions in these introns in five pairs of closely related species. The results showed that the estimated genetic distances in the five species pairs was quite variable among introns and that this divergence cannot be directly predicted from the overall intron divergence in mammals. Conclusions We have designed a new set of 224 nuclear introns with optimal features for the phylogeny of closely related mammalian species. A large proportion of the introns tested experimentally showed a perfect amplification

  4. Phylogeny and species delineation in European species of the genus Steganacarus (Acari, Oribatida) using mitochondrial and nuclear markers.

    Science.gov (United States)

    Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2015-06-01

    Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.

  5. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia:Thoracica)

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A.

    2012-01-01

    surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution......The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution...... of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8¿6¿4) from an ancestral state with eight wall plates...

  6. Delineation of the species Haemophilus influenzae by phenotype, multilocus sequence phylogeny, and detection of marker genes

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Overballe, MD; Kilian, Mogens

    2009-01-01

    To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospec......To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic...... genospecies biotype IV, and the never formally validated species "Haemophilus intermedius". Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene...

  7. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  8. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.

    Science.gov (United States)

    Martins, Marta; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2010-08-01

    Previous studies have shown that Eumycetes fungi can acylate arylamine thanks to arylamine N-acetyltransferases, xenobiotic-metabolizing enzymes also found in animals and bacteria. In this article, we present the results of mining 96 available fungal genome sequences for arylamine N-acetyltransferase genes and propose their phylogeny. The filamentous Pezizomycotina are shown to possess many putative N-acetyltransferases, whilst these are often lacking in other fungal groups. The evolution of the N-acetyltransferases is best explained by the presence of at least one gene in the opisthokont ancestor of the fungi and animal kingdoms, followed by recurrent gene losses and gene duplications. A possible horizontal gene transfer event may have occurred from bacteria to the basidiomycetous yeast Malassezia globosa.

  9. Phylogeny and resistance profiles of HIV-1 POL sequences from rectal biopsies and blood

    DEFF Research Database (Denmark)

    Katzenstein, T L; Petersen, A B; Storgaard, M

    2010-01-01

    The phylogeny and resistance profiles of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) sequences were compared among six patients with HIV-1 who had received numerous treatments. RNA and DNA fractions were obtained from concurrent blood and rectal biopsy...... samples. Phylogenetic trees and resistance profiles showed that the rectal mucosa and the peripheral blood mononuclear cells (PBMCs) harbored different HIV-1 strains. The resistance-associated mutations found in each strain corresponded to the treatment history of the patients. The resistance mutations...... acquired during earlier treatment regimens were detected in the sequences obtained from the rectal samples and in the PBMCs in several of the patients. Also, differences in the resistance profiles were observed between anatomical sites and between RNA and DNA fractions. Thus, a single sample probably...

  10. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    Background Escherichia coli exists in commensal and pathogenic forms. By measuring the variation of individual genes across more than a hundred sequenced genomes, gene variation can be studied in detail, including the number of mutations found for any given gene. This knowledge will be useful...... for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps...... more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...

  11. A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota: new species, new combination and infrageneric classification

    Directory of Open Access Journals (Sweden)

    Zai-Wei Ge

    2018-03-01

    Full Text Available Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal transcribed spacer (ITS, the partial large subunit nuclear ribosomal DNA (nrLSU, the second largest subunit of RNA polymerase II (rpb2 and translation elongation factor 1-α (tef1 sequences, six well-supported clades and 17 phylogenetic species are recognised. Within this phylogenetic framework and considering the diagnostic morphological characters, two new species, C. africanum and C. palaeotropicum, are described. In addition, a new infrageneric classification of Chlorophyllum is proposed, in which the genus is divided into six sections. One new combination is also made. This study provides a robust basis for a more detailed investigation of diversity and biogeography of Chlorophyllum.

  12. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  13. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; Schöning, Caspar; Vilhelmsen, Lars

    2007-01-01

    in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants). Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions...... in foraging niche and associated morphological adaptations. RESULTS: Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants) and a reversal to subterranean foraging (a clade with most......BACKGROUND: Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma) forage...

  14. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  15. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew R. E.; Birkholm, Trine

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis......Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...... for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated...

  16. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    Science.gov (United States)

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation

  17. Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders.

    Science.gov (United States)

    Tanikawa, Akio; Shinkai, Akira; Miyashita, Tadashi

    2014-11-01

    The evolutionary process of the unique web architectures of spiders of the sub-family Cyrtarachninae, which includes the triangular web weaver, bolas spider, and webless spider, is thought to be derived from reduction of orbicular 'spanning-thread webs' resembling ordinal orb webs. A molecular phylogenetic analysis was conducted to explore this hypothesis using orbicular web spiders Cyrtarachne, Paraplectana, Poecilopachys, triangular web spider Pasilobus, bolas spiders Ordgarius and Mastophora, and webless spider Celaenia. The phylogeny inferred from partial sequences of mt-COI, nuclear 18S-rRNA and 28S-rRNA showed that the common ancestor of these spiders diverged into two clades: a spanning-thread web clade and a bolas or webless clade. This finding suggests that the triangular web evolved by reduction of an orbicular spanning web, but that bolas spiders evolved in the early stage, which does not support the gradual web reduction hypothesis.

  18. Phylogeny and new species of the Neotropical bee genus Paroxystoglossa Moure (Hymenoptera, Apoidea

    Directory of Open Access Journals (Sweden)

    Rodrigo Barbosa Gonçalves

    Full Text Available ABSTRACT Paroxystoglossa is a solitary, ground-nesting bee genus. It was revised in 1960 and currently includes nine species from Argentina, Brazil and Paraguay. The objectives of this contribution are to provide a morphological phylogeny for the group and to describe two new species: P. levigata n.sp. and P. mourella n.sp. Paroxystoglossa is monophyletic and three species groups are recognized, jocasta species group: (P. mourella n.sp., (P. brachycera, (P. jocasta, P. barbata, transversa species group: (P. transversa, P. levigata n.sp., and crossotos species group: (P. mimetica, (P. crossotos, P. seabrai, (P. andromache, P. spiloptera. The crossotos and transversa species groups were considered as sister groups. Interestingly Paroxystoglossa species have very similar male genital capsules an uncommon pattern among Augochlorini genera. The species groups have a widely redundant distribution indicating replication events in southeastern South America. An updated, illustrated key for species identification is also presented.

  19. Morphology and phylogeny of Triadinium polyedricum (Pouchet) Dodge (Dinophyceae) from Korean coastal waters

    Science.gov (United States)

    Shin, Hyeon Ho; Li, Zhun; Kim, Eun Song; Youn, Joo Yeon; Jeon, Seul Gi; Oh, Seok Jin; Lim, Weol-Ae

    2016-12-01

    To identify features that can be used to differentiate Triadinium polyedricum from other related species, such as Fukuyoa paulensis and Alexandrium species, the detailed morphology and phylogeny of T. polyedricum collected from Korean coastal waters were investigated. The cells had a plate formula of Po, 3', 7″, 5‴, 1p and 2″″, which is consistent with morphological descriptions in previous reports. Large subunit ribosomal DNA sequences also revealed that T. polyedricum from Korean coastal waters is identical to previously recorded isolates. T. polyedricum is morphologically characterized by a ventral pore in the 1″ plate that is comparable to F. paulensis and Alexandrium species. This result indicates that the location and presence of this ventral pore seems suitable for differentiating T. polyedricum from other related species.

  20. The effects of plant traits and phylogeny on soil-to-plant transfer of 99Tc

    International Nuclear Information System (INIS)

    Willey, N.J.; Tang, S.; McEwen, A.; Hicks, S.

    2010-01-01

    Assessments of the behaviour of 99 Tc in terrestrial environments necessitate predicting soil-to-plant transfer. An experiment with 116 plant taxa showed that 99 Tc transfer to plants was positively related to plant dry weight but negatively related to % dry matter and age at exposure. Activities of 99 Tc analysed by hierarchical ANOVA coded with an angiosperm phylogeny revealed significant effects, with 55% of the variance between species explained at the Ordinal level and above. Monocots had significantly lower transfer of 99 Tc than Eudicots, within which Caryophyllales > Solanales > Malvales > Brassicales > Asterales > Fabales. There was a significant phylogenetic signal in soil-to-plant transfer of 99 Tc. This phylogenetic signal is used to suggest that, for example, a nominal Tc Transfer Factor of 5 could be adjusted to 2.3 for Monocots and 5.3 for Eudicots.

  1. Molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Giri, P.R.; O'Brien, J.O.

    1987-01-01

    A molecular phylogeny for the hominoid primates was constructed by using genetic distances from a survey of 383 radiolabeled fibroblast polypeptides resolved by two-dimensional electrophoresis (2DE). An internally consistent matrix of Nei genetic distances was generated on the basis of variants in electrophoretic position. The derived phylogenetic tree indicated a branching sequence, from oldest to most recent, of cercopithecoids (Macaca fascicularis), gibbon-siamang, orangutan, gorilla, and human-chimpanzee. A cladistic analysis of 240 electrophoretic characters that varied between ape species produced an identical tree. Genetic distance measures obtained by 2DE are largely consistent with those generated by other molecular procedures. In addition, the 2DE data set appears to resolve the human-chimpanzee-gorilla trichotomy in favor of a more recent association of chimpanzees and humans

  2. Phylogeny and evolution of the auks (subfamily Alcinae) based on mitochondrial DNA sequences

    Science.gov (United States)

    Moum, Truls; Johansen, Steinar; Erikstad, Kjell Einar; Piatt, John F.

    1994-01-01

    The genetic divergence and phylogeny of the auks was assessed by mitochondrial DNA sequence comparisons in a study using 19 of the 22 auk species and two outgroup representatives. We compared more than 500 nucleotides from each of two mitochondrial genes encoding 12S rRNA and the NADH dehydrogenase subunit 6. Divergence times were estimated from transversional substitutions. The dovekie (Alle alle) is related to the razorbill (Alca torda) and the murres (Uria spp). Furthermore, the Xantus's murrelet (Synthliboramphus hypoleucus) and the ancient (Synthliboramphus antiquus) and Japanese murrelets (Synthliboramphus wumizusume) are genetically distinct members of the same main lineage, whereas brachyramphine and synthliboramphine murrelets are not closely related. An early adaptive radiation of six main species groups of auks seems to trace back to Middle Miocene. Later speciation probably involved ecological differentiations and geographical isolations.

  3. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    Science.gov (United States)

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  4. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae: evidence from five nuclear genes.

    Directory of Open Access Journals (Sweden)

    Akito Y Kawahara

    2009-05-01

    Full Text Available The 1400 species of hawkmoths (Lepidoptera: Sphingidae comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes.The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations.Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths

  5. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species.

    Science.gov (United States)

    Seglias, Alexandra E; Williams, Evelyn; Bilge, Arman; Kramer, Andrea T

    2018-01-01

    For many species and seed sources used in restoration activities, specific seed germination requirements are often unknown. Because seed dormancy and germination traits can be constrained by phylogenetic history, related species are often assumed to have similar traits. However, significant variation in these traits is also present within species as a result of adaptation to local climatic conditions. A growing number of studies have attempted to disentangle how phylogeny and climate influence seed dormancy and germination traits, but they have focused primarily on species-level effects, ignoring potential population-level variation. We examined the relationships between phylogeny, climate, and seed dormancy and germination traits for 24 populations of eight native, restoration-relevant forb species found in a wide range of climatic conditions in the Southwest United States. The seeds were exposed to eight temperature and stratification length regimes designed to mimic regional climatic conditions. Phylogenetic relatedness, overall climatic conditions, and temperature conditions at the site were all significantly correlated with final germination response, with significant among-population variation in germination response across incubation treatments for seven of our eight study species. Notably, germination during stratification was significantly predicted by precipitation seasonality and differed significantly among populations for seven species. While previous studies have not examined germination during stratification as a potential trait influencing overall germination response, our results suggest that this trait should be included in germination studies as well as seed sourcing decisions. Results of this study deepen our understanding of the relationships between source climate, species identity, and germination, leading to improved seed sourcing decisions for restorations.

  6. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles.

    Science.gov (United States)

    Pereira, Anieli G; Sterli, Juliana; Moreira, Filipe R R; Schrago, Carlos G

    2017-08-01

    Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses. Copyright © 2017 Elsevier Inc. All rights

  7. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    Science.gov (United States)

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic Region.

    Directory of Open Access Journals (Sweden)

    Vera Hoffmann

    Full Text Available In the context of molecularly-dated phylogenies, inferences informed by ancestral habitat reconstruction can yield valuable insights into the origins of biomes, palaeoenvironments and landforms. In this paper, we use dated phylogenies of 12 plant clades from the Cape Floristic Region (CFR in southern Africa to test hypotheses of Neogene climatic and geomorphic evolution. Our combined dataset for the CFR strengthens and refines previous palaeoenvironmental reconstructions based on a sparse, mostly offshore fossil record. Our reconstructions show remarkable consistency across all 12 clades with regard to both the types of environments identified as ancestral, and the timing of shifts to alternative conditions. They reveal that Early Miocene land surfaces of the CFR were wetter than at present and were dominated by quartzitic substrata. These conditions continue to characterize the higher-elevation settings of the Cape Fold Belt, where they have fostered the persistence of ancient fynbos lineages. The Middle Miocene (13-17 Ma saw the development of perennial to weakly-seasonal arid conditions, with the strongly seasonal rainfall regime of the west coast arising ~6.5-8 Ma. Although the Late Miocene may have seen some exposure of the underlying shale substrata, the present-day substrate diversity of the CFR lowlands was shaped by Pliocene-Pleistocene events. Particularly important was renewed erosion, following the post-African II uplift episode, and the reworking of sediments on the coastal platform as a consequence of marine transgressions and tectonic uplift. These changes facilitated adaptive radiations in some, but not all, lineages studied.

  9. Temperate Snake Community in South America: Is Diet Determined by Phylogeny or Ecology?

    Science.gov (United States)

    Etchepare, Eduardo G.

    2015-01-01

    Communities are complex and dynamic systems that change with time. The first attempts to explain how they were structured involve contemporary phenomena like ecological interactions between species (e.g., competition and predation) and led to the competition-predation hypothesis. Recently, the deep history hypothesis has emerged, which suggests that profound differences in the evolutionary history of organisms resulted in a number of ecological features that remain largely on species that are part of existing communities. Nevertheless, both phylogenetic structure and ecological interactions can act together to determine the structure of a community. Because diet is one of the main niche axes, in this study we evaluated, for the first time, the impact of ecological and phylogenetic factors on the diet of Neotropical snakes from the subtropical-temperate region of South America. Additionally, we studied their relationship with morphological and environmental aspects to understand the natural history and ecology of this community. A canonical phylogenetical ordination analysis showed that phylogeny explained most of the variation in diet, whereas ecological characters explained very little of this variation. Furthermore, some snakes that shared the habitat showed some degree of diet convergence, in accordance with the competition-predation hypothesis, although phylogeny remained the major determinant in structuring this community. The clade with the greatest variability was the subfamily Dipsadinae, whose members had a very different type of diet, based on soft-bodied invertebrates. Our results are consistent with the deep history hypothesis, and we suggest that the community under study has a deep phylogenetic effect that explains most of the variation in the diet. PMID:25945501

  10. Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data

    Directory of Open Access Journals (Sweden)

    Xing-Xing Shen

    2016-12-01

    Full Text Available Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence and two data matrices (amino acids or the first two codon positions yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.

  11. Genus-level taxonomic changes implied by the mitochondrial phylogeny of grey mullets (Teleostei: Mugilidae).

    Science.gov (United States)

    Durand, Jean-Dominique; Chen, Wei-Jen; Shen, Kang-Ning; Fu, Cuizhang; Borsa, Philippe

    2012-01-01

    A comprehensive mitochondrial phylogeny of the family Mugilidae (Durand et al., Mol. Phylogenet. Evol. 64 (2012) 73-92) demonstrated the polyphyly or paraphyly of a proportion of the 20 genera in the family. Based on these results, here we propose a revised classification with 25 genera, including 15 genera currently recognized as valid (Agonostomus, Aldrichetta, Cestraeus, Chaenomugil, Chelon, Crenimugil, Ellochelon, Joturus, Mugil, Myxus, Neomyxus, Oedalechilus, Rhinomugil, Sicamugil and Trachystoma), 7 resurrected genera [Dajaus (for Agonostomus monticola), Gracilimugil (for Liza argentea), Minimugil (for Sicamugil cascasia), Osteomugil (for several species currently under Moolgarda and Valamugil, including M. cunnesius, M. engeli, M. perusii, and V. robustus), Planiliza (for Indo-Pacific Chelon spp., Indo-Pacific Liza spp., and Paramugil parmatus), Plicomugil (for Oedalechilus labiosus), and Squalomugil (for Rhinomugil nasutus)] and 3 new genera: Neochelon gen. nov. (for Liza falcipinnis), Parachelon gen. nov. (for L. grandisquamis) and Pseudomyxus gen. nov. (for Myxus capensis). Genus Chelon was shown to include exclusively Chelon spp. and Liza spp. from the Atlantic and the Mediterranean, and Liza spp. species endemic to eastern southern Africa. Genus Crenimugil should now include C. crenilabis, Moolgarda seheli and V. buchanani. Genus names Liza, Moolgarda, Paramugil, Valamugil and Xenomugil should be abandoned because they are no longer valid. Further genetic evidence is required to confirm or infirm the validity of the genus Paracrenimugil Senou 1988. The mitochondrial phylogeny of the 25 genera from the present revision is the following: [(Sicamugil, (Minimugil, Rhinomugil)); Trachystoma; ((Myxus, Neomyxus), (Cestraeus, Chaenomugil, (Agonostomus, Dajaus, Joturus), Mugil)); (Aldrichetta, Gracilimugil); Neochelon gen. nov.; (Pseudomyxus gen. nov., (Chelon, Oedalechilus, Planiliza, Parachelon gen. nov.)); ((Squalomugil, (Ellochelon, Plicomugil)), (Crenimugil

  12. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Science.gov (United States)

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups

  13. Temperate snake community in South America: is diet determined by phylogeny or ecology?

    Directory of Open Access Journals (Sweden)

    Gisela P Bellini

    Full Text Available Communities are complex and dynamic systems that change with time. The first attempts to explain how they were structured involve contemporary phenomena like ecological interactions between species (e.g., competition and predation and led to the competition-predation hypothesis. Recently, the deep history hypothesis has emerged, which suggests that profound differences in the evolutionary history of organisms resulted in a number of ecological features that remain largely on species that are part of existing communities. Nevertheless, both phylogenetic structure and ecological interactions can act together to determine the structure of a community. Because diet is one of the main niche axes, in this study we evaluated, for the first time, the impact of ecological and phylogenetic factors on the diet of Neotropical snakes from the subtropical-temperate region of South America. Additionally, we studied their relationship with morphological and environmental aspects to understand the natural history and ecology of this community. A canonical phylogenetical ordination analysis showed that phylogeny explained most of the variation in diet, whereas ecological characters explained very little of this variation. Furthermore, some snakes that shared the habitat showed some degree of diet convergence, in accordance with the competition-predation hypothesis, although phylogeny remained the major determinant in structuring this community. The clade with the greatest variability was the subfamily Dipsadinae, whose members had a very different type of diet, based on soft-bodied invertebrates. Our results are consistent with the deep history hypothesis, and we suggest that the community under study has a deep phylogenetic effect that explains most of the variation in the diet.

  14. Bayesian, maximum parsimony and UPGMA models for inferring the phylogenies of antelopes using mitochondrial markers.

    Science.gov (United States)

    Khan, Haseeb A; Arif, Ibrahim A; Bahkali, Ali H; Al Farhan, Ahmad H; Al Homaidan, Ali A

    2008-10-06

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65%) followed by cyt-b (94.22%) and d-loop (87.29%). There were few transitions (2.35%) and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions) and d-loop (11.57% transitions and 1.14% transversions) while comparing the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx) to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella) with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers.

  15. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes).

    Science.gov (United States)

    Fan, X L; Barreto, R W; Groenewald, J Z; Bezerra, J D P; Pereira, O L; Cheewangkoon, R; Mostert, L; Tian, C M; Crous, P W

    2017-06-01

    Species of Elsinoë are phytopathogens causing scab and spot anthracnose on many plants, including some economically important crops such as avocado, citrus, grapevines, and ornamentals such as poinsettias, field crops and woody hosts. Disease symptoms are often easily recognisable, and referred to as signature-bearing diseases, for the cork-like appearance of older infected tissues with scab-like appearance. In some Elsinoë -host associations the resulting symptoms are better described as spot anthracnose. Additionally the infected plants may also show mild to severe distortions of infected organs. Isolation of Elsinoë in pure culture can be very challenging and examination of specimens collected in the field is often frustrating because of the lack of fertile structures. Current criteria for species recognition and host specificity in Elsinoë are unclear due to overlapping morphological characteristics, and the lack of molecular and pathogenicity data. In the present study we revised the taxonomy of Elsinoë based on DNA sequence and morphological data derived from 119 isolates, representing 67 host genera from 17 countries, including 64 ex-type cultures. Combined analyses of ITS, LSU, rpb2 and TEF1-α DNA sequence data were used to reconstruct the backbone phylogeny of the genus Elsinoë . Based on the single nomenclature for fungi, 26 new combinations are proposed in Elsinoë for species that were originally described in Sphaceloma . A total of 13 species are epitypified with notes on their taxonomy and phylogeny. A further eight new species are introduced, leading to a total of 75 Elsinoë species supported by molecular data in the present study. For the most part species of Elsinoë appear to be host specific, although the majority of the species treated are known only from a few isolates, and further collections and pathogenicity studies will be required to reconfirm this conclusion.

  16. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  17. A web-database of mammalian morphology and a reanalysis of placental phylogeny

    Directory of Open Access Journals (Sweden)

    Asher Robert J

    2007-07-01

    Full Text Available Abstract Background Recent publications concerning the interordinal phylogeny of placental mammals have converged on a common signal, consisting of four major radiations with some ambiguity regarding the placental root. The DNA data with which these relationships have been reconstructed are easily accessible from public databases; access to morphological characters is much more difficult. Here, I present a graphical web-database of morphological characters focusing on placental mammals, in tandem with a combined-data phylogenetic analysis of placental mammal phylogeny. Results The results reinforce the growing consensus regarding the extant placental mammal clades of Afrotheria, Xenarthra, Euarchontoglires, and Laurasiatheria. Unweighted parsimony applied to all DNA sequences and insertion-deletion (indel characters of extant taxa alone support a placental root at murid rodents; combined with morphology this shifts to Afrotheria. Bayesian analyses of morphology, indels, and DNA support both a basal position for Afrotheria and the position of Cretaceous eutherians outside of crown Placentalia. Depending on treatment of third codon positions, the affinity of several fossils (Leptictis,Paleoparadoxia, Plesiorycteropus and Zalambdalestes vary, highlighting the potential effect of sequence data on fossils for which such data are missing. Conclusion The combined dataset supports the location of the placental mammal root at Afrotheria or Xenarthra, not at Erinaceus or rodents. Even a small morphological dataset can have a marked influence on the location of the root in a combined-data analysis. Additional morphological data are desirable to better reconstruct the position of several fossil taxa; and the graphic-rich, web-based morphology data matrix presented here will make it easier to incorporate more taxa into a larger data matrix.

  18. Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Patrick Strutzenberger

    Full Text Available Eois is one of the best-investigated genera of tropical moths. Its close association with Piper plants has inspired numerous studies on life histories, phylogeny and evolutionary biology. This study provides an updated view on phylogeny, host plant use and temporal patterns of speciation in Eois. Using sequence data (2776 bp from one mitochondrial (COI and one nuclear gene (Ef1-alpha for 221 Eois species, we confirm and reinforce previous findings regarding temporal patterns of diversification. Deep diversification within Andean Eois took place in the Miocene followed by a sustained high rate of diversification until the Pleistocene when a pronounced slowdown of speciation is evident. In South America, Eois diversification is very likely to be primarily driven by the Andean uplift which occurred concurrently with the entire evolutionary history of Eois. A massively expanded dataset enabled an in-depth look into the phylogenetic signal contained in host plant usage. This revealed several independent shifts from Piper to other host plant genera and families. Seven shifts to Peperomia, the sister genus of Piper were detected, indicating that the shift to Peperomia was an easy one compared to the singular shifts to the Chloranthaceae, Siparunaceae and the Piperacean genus Manekia. The potential for close co-evolution of Eois with Piper host plants is therefore bound to be limited to smaller subsets within Neotropical Eois instead of a frequently proposed genus-wide co-evolutionary scenario. In regards to Eois systematics we confirm the monophyly of Neotropical Eois in relation to their Old World counterparts. A tentative biogeographical hypothesis is presented suggesting that Eois originated in tropical Asia and subsequently colonized the Neotropics and Africa. Within Neotropical Eois we were able to identify the existence of six clades not recognized in previous studies and confirm and reinforce the monophyly of all 9 previously delimited

  19. Molecular phylogeny of Oncaeidae (Copepoda using nuclear ribosomal internal transcribed spacer (ITS rDNA.

    Directory of Open Access Journals (Sweden)

    Iole Di Capua

    Full Text Available Copepods belonging to the Oncaeidae family are commonly and abundantly found in marine zooplankton. In the Mediterranean Sea, forty-seven oncaeid species occur, of which eleven in the Gulf of Naples. In this Gulf, several Oncaea species were morphologically analysed and described at the end of the XIX century by W. Giesbrecht. In the same area, oncaeids are being investigated over seasonal and inter-annual scales at the long-term coastal station LTER-MC. In the present work, we identified six oncaeid species using the nuclear ribosomal internal transcribed spacers (ITS rDNA and the mitochondrial cytochrome c oxidase subunit I (mtCOI. Phylogenetic analyses based on these two genomic regions validated the sisterhood of the genera Triconia and the Oncaea sensu stricto. ITS1 and ITS2 phylogenies produced incongruent results about the position of Oncaea curta, calling for further investigations on this species. We also characterised the ITS2 region by secondary structure predictions and found that all the sequences analysed presented the distinct eukaryotic hallmarks. A Compensatory Base Change search corroborated the close relationship between O. venusta and O. curta and between O. media and O. venusta already identified by ITS phylogenies. The present results, which stem from the integration of molecular and morphological taxonomy, represent an encouraging step towards an improved knowledge of copepod biodiversity: The two complementary approaches, when applied to long-term copepod monitoring, will also help to better understanding their genetic variations and ecological niches of co-occurring species.

  20. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes

    Directory of Open Access Journals (Sweden)

    X.L. Fan

    2017-06-01

    Full Text Available Species of Elsinoë are phytopathogens causing scab and spot anthracnose on many plants, including some economically important crops such as avocado, citrus, grapevines, and ornamentals such as poinsettias, field crops and woody hosts. Disease symptoms are often easily recognisable, and referred to as signature-bearing diseases, for the cork-like appearance of older infected tissues with scab-like appearance. In some Elsinoë-host associations the resulting symptoms are better described as spot anthracnose. Additionally the infected plants may also show mild to severe distortions of infected organs. Isolation of Elsinoë in pure culture can be very challenging and examination of specimens collected in the field is often frustrating because of the lack of fertile structures. Current criteria for species recognition and host specificity in Elsinoë are unclear due to overlapping morphological characteristics, and the lack of molecular and pathogenicity data. In the present study we revised the taxonomy of Elsinoë based on DNA sequence and morphological data derived from 119 isolates, representing 67 host genera from 17 countries, including 64 ex-type cultures. Combined analyses of ITS, LSU, rpb2 and TEF1-α DNA sequence data were used to reconstruct the backbone phylogeny of the genus Elsinoë. Based on the single nomenclature for fungi, 26 new combinations are proposed in Elsinoë for species that were originally described in Sphaceloma. A total of 13 species are epitypified with notes on their taxonomy and phylogeny. A further eight new species are introduced, leading to a total of 75 Elsinoë species supported by molecular data in the present study. For the most part species of Elsinoë appear to be host specific, although the majority of the species treated are known only from a few isolates, and further collections and pathogenicity studies will be required to reconfirm this conclusion.

  1. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    Science.gov (United States)

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  2. Molecular Phylogeny of the Small Ermine Moth Genus Yponomeuta (Lepidoptera, Yponomeutidae) in the Palaearctic

    Science.gov (United States)

    Turner, Hubert; Lieshout, Niek; Van Ginkel, Wil E.; Menken, Steph B. J.

    2010-01-01

    Background The small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) contains 76 species that are specialist feeders on hosts from Celastraceae, Rosaceae, Salicaceae, and several other plant families. The genus is a model for studies in the evolution of phytophagous insects and their host-plant associations. Here, we reconstruct the phylogeny to provide a solid framework for these studies, and to obtain insight into the history of host-plant use and the biogeography of the genus. Methodology/Principal Findings DNA sequences from an internal transcribed spacer region (ITS-1) and from the 16S rDNA (16S) and cytochrome oxidase (COII) mitochondrial genes were collected from 20–23 (depending on gene) species and two outgroup taxa to reconstruct the phylogeny of the Palaearctic members of this genus. Sequences were analysed using three different phylogenetic methods (parsimony, likelihood, and Bayesian inference). Conclusions/Significance Roughly the same patterns are retrieved irrespective of the method used, and they are similar among the three genes. Monophyly is well supported for a clade consisting of the Japanese (but not the Dutch) population of Yponomeuta sedellus and Y. yanagawanus, a Y. kanaiellus–polystictus clade, and a Rosaceae-feeding, western Palaearctic clade (Y. cagnagellus–irrorellus clade). Within these clades, relationships are less well supported, and the patterns between the different gene trees are not so similar. The position of the remaining taxa is also variable among the gene trees and rather weakly supported. The phylogenetic information was used to elucidate patterns of biogeography and resource use. In the Palaearctic, the genus most likely originated in the Far East, feeding on Celastraceae, dispersing to the West concomitant with a shift to Rosaceae and further to Salicaceae. The association of Y. cagnagellus with Euonymus europaeus (Celastraceae), however, is a reversal. The only oligophagous species, Y. padellus, belongs

  3. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae).

    Science.gov (United States)

    Musilová, Zuzana; Rícan, Oldrich; Janko, Karel; Novák, Jindrich

    2008-02-01

    We have conducted the first comprehensive molecular phylogeny of the tribe Cichlasomatini including all valid genera as well as important species of questionable generic status. To recover the relationships among cichlasomatine genera and to test their monophyly we analyzed sequences from two mitochondrial (16S rRNA, cytochrome b) and one nuclear marker (first intron of S7 ribosomal gene) totalling 2236 bp. Our data suggest that all genera except Aequidens are monophyletic, but we found important disagreements between the traditional morphological relationships and the phylogeny based on our molecular data. Our analyses support the following conclusions: (a) Aequidens sensu stricto is paraphyletic, including also Cichlasoma (CA clade); (b) Krobia is not closely related to Bujurquina and includes also the Guyanan Aequidens species A. potaroensis and probably A. paloemeuensis (KA clade). (c) Bujurquina and Tahuantinsuyoa are sister groups, closely related to an undescribed genus formed by the 'Aequidens'pulcher-'Aequidens'rivulatus groups (BTA clade). (d) Nannacara (plus Ivanacara) and Cleithracara are found as sister groups (NIC clade). Acaronia is most probably the sister group of the BTA clade, and Laetacara may be the sister group of this clade. Estimation of divergence times suggests that the divergence of Cichlasomatini started around 44Mya with the vicariance between coastal rivers of the Guyanas (KA and NIC clades) and remaining cis-andean South America, followed by evolution of the Acaronia-Laetacara-BTA clade in Western Amazon, and the CA clade in the Eastern Amazon. Vicariant divergence has played importantly in evolution of cichlasomatine genera, with dispersal limited to later range extension of species within genera.

  4. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  5. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  6. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae.

    Directory of Open Access Journals (Sweden)

    Jennifer M Zaspel

    Full Text Available The focus of this study was to reconstruct a phylogenetic hypothesis for the moth subfamily Arctiinae (tiger moths, woolly bears to investigate the evolution of larval and adult pharmacophagy of pyrrolizidine alkaloids (PAs and the pathway to PA chemical specialization in Arctiinae. Pharmacophagy, collection of chemicals for non-nutritive purposes, is well documented in many species, including the model species Utetheisa ornatrix L. A total of 86 exemplar ingroup species representing tiger moth tribes and subtribes (68 genera and nine outgroup species were selected. Ingroup species included the most species-rich generic groups to represent the diversity of host-plant associations and pharmacophagous behaviors found throughout Arctiinae. Up to nine genetic markers were sequenced: one mitochondrial (COI barcode region, one nuclear rRNA (D2 region, 28S rRNA, and seven nuclear protein-coding gene fragments: elongation factor 1-α protein, wingless, ribosomal protein subunit S5, carbamoylphosphate synthase domain regions, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and cytosolic malate dehydrogenase. A total of 6984 bp was obtained for most species. These data were analyzed using model-based phylogenetic methods: maximum likelihood (ML and Bayesian inference (BI. Ancestral pharmacophagous behaviors and obligate PA associations were reconstructed using the resulting Bayes topology and Reconstructing Ancestral States in Phylogenies (RASP software. Our results corroborate earlier studies on the evolution of adult pharmacophagous behaviors, suggesting that this behavior arose multiple times and is concentrated in the phaegopterine-euchromiine-ctenuchine clade (PEC. Our results suggest that PA specialization may have arisen early in the phylogeny of the subfamily and that facultative larval pharmacophagous behaviors are the derived condition.

  7. Environmental niche models for riverine desert fishes and their similarity according to phylogeny and functionality

    Science.gov (United States)

    Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.

    2017-01-01

    Environmental filtering and competitive exclusion are hypotheses frequently invoked in explaining species' environmental niches (i.e., geographic distributions). A key assumption in both hypotheses is that the functional niche (i.e., species traits) governs the environmental niche, but few studies have rigorously evaluated this assumption. Furthermore, phylogeny could be associated with these hypotheses if it is predictive of functional niche similarity via phylogenetic signal or convergent evolution, or of environmental niche similarity through phylogenetic attraction or repulsion. The objectives of this study were to investigate relationships between environmental niches, functional niches, and phylogenies of fishes of the Upper (UCRB) and Lower (LCRB) Colorado River Basins of southwestern North America. We predicted that functionally similar species would have similar environmental niches (i.e., environmental filtering) and that closely related species would be functionally similar (i.e., phylogenetic signal) and possess similar environmental niches (i.e., phylogenetic attraction). Environmental niches were quantified using environmental niche modeling, and functional similarity was determined using functional trait data. Nonnatives in the UCRB provided the only support for environmental filtering, which resulted from several warmwater nonnatives having dam number as a common predictor of their distributions, whereas several cool- and coldwater nonnatives shared mean annual air temperature as an important distributional predictor. Phylogenetic signal was supported for both natives and nonnatives in both basins. Lastly, phylogenetic attraction was only supported for native fishes in the LCRB and for nonnative fishes in the UCRB. Our results indicated that functional similarity was heavily influenced by evolutionary history, but that phylogenetic relationships and functional traits may not always predict the environmental distribution of species. However, the

  8. Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data

    Science.gov (United States)

    Shen, Xing-Xing; Zhou, Xiaofan; Kominek, Jacek; Kurtzman, Cletus P.; Hittinger, Chris Todd; Rokas, Antonis

    2016-01-01

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast. PMID:27672114

  9. Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): data release and new measure of taxonomic congruence

    Czech Academy of Sciences Publication Activity Database

    Quicke, D. L. J.; Smith, M. A.; Janzen, D. H.; Hallwachs, W.; Fernandez-Triana, J.; Laurenne, N. M.; Zaldívar-Riverón, A.; Shaw, M. R.; Broad, G. R.; Klopfstein, S.; Shaw, S. R.; Hrček, Jan; Hebert, P. D. N.; Miller, S. E.; Rodriguez, J. J.; Whitfield, J. B.; Sharkey, M. J.; Sharanowski, B. J.; Jussila, R.; Gauld, I. D.; Chesters, D.; Vogler, A. P.

    2012-01-01

    Roč. 12, č. 4 (2012), s. 676-685 ISSN 1755-098X R&D Projects : GA ČR GA206/09/0115 Grant - others:National Science Foundation(US) BSR 9024770; National Science Foundation(US) DEB 9306296; National Science Foundation(US) DEB 9400829; National Science Foundation(US) DEB 9705072; National Science Foundation(US) DEB 0072730; National Science Foundation(US) DEB 0515699; National Science Foundation(US) DEB 0841885; National Science Foundation(US) DEB 0542864; NERC grant(GB) NDC519583; NERC Case studentship(GB) NER/S/A/2006/14013 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : Braconidae * cytochrome oxidase 1 * Ichneumonidae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.432, year: 2012 http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0998.2012.03143.x/pdf

  10. Phylogeny of the 'orchid-like' bladderworts (gen. Utricularia sect. Orchidioides and Iperua: Lentibulariaceae) with remarks on the stolon-tuber system

    Czech Academy of Sciences Publication Activity Database

    Rodrigues, F. G.; Marulanda, N. F.; Silva, S. R.; Płachno, B.J.; Adamec, Lubomír; Miranda, V.F.O.

    2017-01-01

    Roč. 120, č. 5 (2017), s. 709-723 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : molecular phylogeny * anatomy * tubers Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  11. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: Revised Phylogeny Reveals Species Accumulation through Time Rather than Rapid Radiation.

    Science.gov (United States)

    Andriananjamanantsoa, Herinandrianina N; Engberg, Shannon; Louis, Edward E; Brouillet, Luc

    Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in

  12. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    Directory of Open Access Journals (Sweden)

    W John Kress

    2010-11-01

    Full Text Available Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  13. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae

    Directory of Open Access Journals (Sweden)

    Kingston Sarah E

    2009-10-01

    Full Text Available Abstract Background Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Results Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. Conclusion For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.

  14. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae based on mtDNA COI gene: a test of traditional classification

    Directory of Open Access Journals (Sweden)

    Mahir Budak

    2011-09-01

    Full Text Available Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.

  15. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data.

    Science.gov (United States)

    O'Reilly, Joseph E; Puttick, Mark N; Parry, Luke; Tanner, Alastair R; Tarver, James E; Fleming, James; Pisani, Davide; Donoghue, Philip C J

    2016-04-01

    Different analytical methods can yield competing interpretations of evolutionary history and, currently, there is no definitive method for phylogenetic reconstruction using morphological data. Parsimony has been the primary method for analysing morphological data, but there has been a resurgence of interest in the likelihood-based Mk-model. Here, we test the performance of the Bayesian implementation of the Mk-model relative to both equal and implied-weight implementations of parsimony. Using simulated morphological data, we demonstrate that the Mk-model outperforms equal-weights parsimony in terms of topological accuracy, and implied-weights performs the most poorly. However, the Mk-model produces phylogenies that have less resolution than parsimony methods. This difference in the accuracy and precision of parsimony and Bayesian approaches to topology estimation needs to be considered when selecting a method for phylogeny reconstruction. © 2016 The Authors.

  16. A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae)

    DEFF Research Database (Denmark)

    Roncal, Julissa; Overgaard, Anne Blach; Borchsenius, Finn

    2011-01-01

    pattern. To test for a time-for-diversification effect, we correlated four different species richness measures with the diversification time of the earliest large lineage that is characteristic of each cluster. In support of this hypothesis, we found that geographic areas with higher richness contained...... coherent floristic clusters. We then evaluated the extent to which the spatial variation in species composition reflects present-day environmental variation vs. nonenvironmental spatial effects, as expected if the pattern reflects historical biogeography. We also examined the degree of geographic structure...... in the Geonoma phylogeny. Finally, we used a dated phylogeny to assess whether species richness within the floristic clusters was constrained by a specific historical biogeographic driver, namely time-for-diversification. A cluster analysis identified six spatially coherent floristic clusters, four of which were...

  17. Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.

    Science.gov (United States)

    Graham Reynolds, R; Niemiller, Matthew L; Revell, Liam J

    2014-02-01

    Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers

  18. The higher phylogeny of Leptophlebiidae (Insecta: Ephemeroptera), with description of a new species of Calliarcys Eaton, 1881

    Czech Academy of Sciences Publication Activity Database

    Godunko, Roman J.; Sroka, Pavel; Soldán, Tomáš; Bojková, J.

    2015-01-01

    Roč. 73, č. 2 (2015), s. 259-280 ISSN 1863-7221 R&D Projects: GA ČR GA206/08/1389 Institutional support: RVO:60077344 Keywords : Calliarcyinae * systematics * phylogeny Subject RIV: EG - Zoology Impact factor: 1.655, year: 2015 http://www.senckenberg.de/files/content/forschung/publikationen/arthropodsystematics/asp_73_2/03_asp_73_2_godunko_259-279.pdf

  19. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity

    OpenAIRE

    Alström, Per; Barnes, Keith N.; Barker, F. Keith; Olsson, Urban; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G.

    2013-01-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although ...

  20. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2015-11-01

    Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Another Chloromyxid Lineage: Molecular Phylogeny and Redescription of Chloromyxum careni from the Asian Horned frog Megophrys nasuta

    Czech Academy of Sciences Publication Activity Database

    Jirků, Miloslav; Bartošová, Pavla; Kodádková, Alena; Mutschmann, F.

    2011-01-01

    Roč. 58, č. 1 (2011), s. 50-59 ISSN 1066-5234 R&D Projects: GA ČR GAP506/10/2330 Institutional research plan: CEZ:AV0Z60220518 Keywords : Amphibia * Anura * Chloromyxum careni * LSU rDNA * Megophrys nasuta * molecular phylogeny * Myxozoa * redescription * SSU rDNA * ultrastructure Subject RIV: EG - Zoology Impact factor: 2.659, year: 2011

  2. Data partitions, Bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Tamás Petkovits

    Full Text Available Although the fungal order Mortierellales constitutes one of the largest classical groups of Zygomycota, its phylogeny is poorly understood and no modern taxonomic revision is currently available. In the present study, 90 type and reference strains were used to infer a comprehensive phylogeny of Mortierellales from the sequence data of the complete ITS region and the LSU and SSU genes with a special attention to the monophyly of the genus Mortierella. Out of 15 alternative partitioning strategies compared on the basis of Bayes factors, the one with the highest number of partitions was found optimal (with mixture models yielding the best likelihood and tree length values, implying a higher complexity of evolutionary patterns in the ribosomal genes than generally recognized. Modeling the ITS1, 5.8S, and ITS2, loci separately improved model fit significantly as compared to treating all as one and the same partition. Further, within-partition mixture models suggests that not only the SSU, LSU and ITS regions evolve under qualitatively and/or quantitatively different constraints, but that significant heterogeneity can be found within these loci also. The phylogenetic analysis indicated that the genus Mortierella is paraphyletic with respect to the genera Dissophora, Gamsiella and Lobosporangium and the resulting phylogeny contradict previous, morphology-based sectional classification of Mortierella. Based on tree structure and phenotypic traits, we recognize 12 major clades, for which we attempt to summarize phenotypic similarities. M. longicollis is closely related to the outgroup taxon Rhizopus oryzae, suggesting that it belongs to the Mucorales. Our results demonstrate that traits used in previous classifications of the Mortierellales are highly homoplastic and that the Mortierellales is in a need of a reclassification, where new, phylogenetically informative phenotypic traits should be identified, with molecular phylogenies playing a decisive role.

  3. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria

    Directory of Open Access Journals (Sweden)

    Laura J. May-Collado

    2015-02-01

    Full Text Available Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well

  4. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data

    Science.gov (United States)

    Giribet, Gonzalo; Edgecombe, Gregory D.; Wheeler, Ward C.; Babbitt, Courtney

    2002-01-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. c2002 The Willi Hennig Society.

  5. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    Science.gov (United States)

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  6. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species

    Directory of Open Access Journals (Sweden)

    Elsa Desnoues

    2017-12-01

    Full Text Available Background Leaf out times of temperate forest trees are a prominent determinant of global carbon dynamics throughout the year. Abiotic cues of leaf emergence are well studied but investigation of the relative roles of shared evolutionary history (phylogeny and local adaptation to climate in determining the species-level responses to these cues is needed to better apprehend the effect of global change on leaf emergence. We explored the relative importance of phylogeny and climate in determining the innate leaf out phenology across the temperate biome. Methods We used an extensive dataset of leaf-out dates of 1126 temperate woody species grown in eight Northern Hemisphere common gardens. For these species, information on the native climate and phylogenetic position was collected. Using linear regression analyses, we examine the relative effect of climate variables and phylogeny on leaf out variation among species. Results Climate variables explained twice as much variation in leaf out timing as phylogenetic information, a process that was driven primarily by the complex interactive effects of multiple climate variables. Although the primary climate factors explaining species-level variation in leaf-out timing varied drastically across different families, our analyses reveal that local adaptation plays a stronger role than common evolutionary history in determining tree phenology across the temperate biome. Conclusions In the long-term, the direct effects of physiological adaptation to abiotic effects of climate change on forest phenology are likely to outweigh the indirect effects mediated through changes in tree species composition.

  7. Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae.

    Science.gov (United States)

    Panero, Jose L; Freire, Susana E; Ariza Espinar, Luis; Crozier, Bonnie S; Barboza, Gloria E; Cantero, Juan J

    2014-11-01

    A backbone phylogeny that fully resolves all subfamily and deeper nodes of Asteraceae was constructed using 14 chloroplast DNA loci. The recently named genus Famatinanthus was found to be sister to the Mutisioideae-Asteroideae clade that represents more than 99% of Asteraceae and was found to have the two chloroplast inversions present in all Asteraceae except the nine genera of Barnadesioideae. A monotypic subfamily Famatinanthoideae and tribe Famatinantheae are named herein as new. Relationships among the basal lineages of the family were resolved with strong support in the Bayesian analysis as (Barnadesioideae (Famatinanthoideae (Mutisioideae (Stifftioideae (Wunderlichioideae-Asteroideae))))). Ancestral state reconstruction of ten morphological characters at the root node of the Asteraceae showed that the ancestral sunflower would have had a woody habit, alternate leaves, solitary capitulescences, epaleate receptacles, smooth styles, smooth to microechinate pollen surface sculpturing, white to yellow corollas, and insect-mediated pollination. Herbaceous habit, echinate pollen surface, pubescent styles, and cymose capitulescences were reconstructed for backbone nodes of the phylogeny corresponding to clades that evolved shortly after Asteraceae dispersed out of South America. No support was found for discoid capitula, multiseriate involucres or bird pollination as the ancestral character condition for any node. Using this more resolved phylogenetic tree, the recently described Raiguenrayun cura+Mutisiapollis telleriae fossil should be associated to a more derived node than previously suggested when time calibrating phylogenies of Asteraceae. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae).

    Science.gov (United States)

    Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun

    2015-01-01

    Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).

  9. Evidence for a Higher Number of Species of Odontotermes (Isoptera) than Currently Known from Peninsular Malaysia from Mitochondrial DNA Phylogenies

    Science.gov (United States)

    Cheng, Shawn; Kirton, Laurence G.; Panandam, Jothi M.; Siraj, Siti S.; Ng, Kevin Kit-Siong; Tan, Soon-Guan

    2011-01-01

    Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa. PMID:21687629

  10. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets.

    Science.gov (United States)

    Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong

    2017-05-01

    Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence.

    Science.gov (United States)

    Zhang, Liang; Zhang, Li-Bing

    2018-01-01

    The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae

    Directory of Open Access Journals (Sweden)

    Dikow Rebecca B

    2011-05-01

    Full Text Available Abstract Background The explosion in availability of whole genome data provides the opportunity to build phylogenetic hypotheses based on these data as well as the ability to learn more about the genomes themselves. The biological history of genes and genomes can be investigated based on the taxomonic history provided by the phylogeny. A phylogenetic hypothesis based on complete genome data is presented for the genus Shewanella (Gammaproteobacteria: Alteromonadales: Shewanellaceae. Nineteen taxa from Shewanella (16 species and 3 additional strains of one species as well as three outgroup species representing the genera Aeromonas (Gammaproteobacteria: Aeromonadales: Aeromonadaceae, Alteromonas (Gammaproteobacteria: Alteromonadales: Alteromonadaceae and Colwellia (Gammaproteobacteria: Alteromonadales: Colwelliaceae are included for a total of 22 taxa. Results Putatively homologous regions were found across unannotated genomes and tested with a phylogenetic analysis. Two genome-wide data-sets are considered, one including only those genomic regions for which all taxa are represented, which included 3,361,015 aligned nucleotide base-pairs (bp and a second that additionally includes those regions present in only subsets of taxa, which totaled 12,456,624 aligned bp. Alignment columns in these large data-sets were then randomly sampled to create smaller data-sets. After the phylogenetic hypothesis was generated, genome annotations were projected onto the DNA sequence alignment to compare the historical hypothesis generated by the phylogeny with the functional hypothesis posited by annotation. Conclusions Individual phylogenetic analyses of the 243 locally co-linear genome regions all failed to recover the genome topology, but the smaller data-sets that were random samplings of the large concatenated alignments all produced the genome topology. It is shown that there is not a single orthologous copy of 16S rRNA across the taxon sampling included in this

  13. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  14. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    Science.gov (United States)

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further

  15. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits

    Directory of Open Access Journals (Sweden)

    Kiontke Karin C

    2011-11-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. Results Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp

  16. The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.

    Science.gov (United States)

    Iles, William J D; Sass, Chodon; Lagomarsino, Laura; Benson-Martin, Gracie; Driscoll, Heather; Specht, Chelsea D

    2017-12-01

    Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences

  17. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    Science.gov (United States)

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of

  18. Evolution of asynchronous motor activity in paired muscles: effects of ecology, morphology, and phylogeny.

    Science.gov (United States)

    Gerry, Shannon P; Ramsay, Jason B; Dean, Mason N; Wilga, Cheryl D

    2008-08-01

    Many studies of feeding behavior have implanted electrodes unilaterally (in muscles on only one side of the head) to determine the basic motor patterns of muscles controlling the jaws. However, bilateral implantation has the potential to achieve a more comprehensive understanding of modification of the motor activity that may be occurring between the left and right sides of the head. In particular, complex processing of prey is often characterized by bilaterally asynchronous and even unilateral activation of the jaw musculature. In this study, we bilaterally implant feeding muscles in species from four orders of elasmobranchs (Squaliformes, Orectolobiformes, Carcharhiniformes, Rajoidea) in order to characterize the effects of type of prey, feeding behavior, and phylogeny on the degree of asynchronous muscle activation. Electrodes were implanted in three of the jaw adductors, two divisions of the quadratomandibularis and the preorbitalis, as well as in a cranial elevator in sharks, the epaxialis. The asynchrony of feeding events (measured as the degree to which activity of members of a muscle pair is out of phase) was compared across species for capture versus processing and simple versus complex prey, then interpreted in the contexts of phylogeny, morphology, and ecology to clarify determinants of asynchronous activity. Whereas capture and processing of prey were characterized by statistically similar degrees of asynchrony for data pooled across species, events involving complex prey were more asynchronous than were those involving simple prey. The two trophic generalists, Squalus acanthias and Leucoraja erinacea, modulated the degree of asynchrony according to type of prey, whereas the two behavioral specialists, Chiloscyllium plagiosum and Mustelus canis, activated the cranial muscles synchronously regardless of type of prey. These differences in jaw muscle activity would not have been detected with unilateral implantation. Therefore, we advocate bilateral

  19. Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata: phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa

    Directory of Open Access Journals (Sweden)

    Jang Kuem

    2009-04-01

    Full Text Available Abstract Background The phylogenetic position of Bryozoa is one of the most controversial issues in metazoan phylogeny. In an attempt to address this issue, the first bryozoan mitochondrial genome from Flustrellidra hispida (Gymnolaemata, Ctenostomata was recently sequenced and characterized. Unfortunately, it has extensive gene translocation and extremely reduced size. In addition, the phylogenies obtained from the result were conflicting, so they failed to assign a reliable phylogenetic position to Bryozoa or to clarify lophophorate phylogeny. Thus, it is necessary to characterize further mitochondrial genomes from slowly-evolving bryozoans to obtain a more credible lophophorate phylogeny. Results The complete mitochondrial genome (15,433 bp of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata, one of the most widely distributed cheliostome bryozoans, is sequenced. This second bryozoan mitochondrial genome contains the set of 37 components generally observed in other metazoans, differing from that of F. hispida (Bryozoa, Gymnolaemata, Ctenostomata, which has only 36 components with loss of tRNAser(ucn genes. The B. neritina mitochondrial genome possesses 27 multiple noncoding regions. The gene order is more similar to those of the two remaining lophophorate phyla (Brachiopoda and Phoronida and a chiton Katharina tunicate than to that of F. hispida. Phylogenetic analyses based on the nucleotide sequences or amino acid residues of 12 protein-coding genes showed consistently that, within the Lophotrochozoa, the monophyly of the bryozoan class Gymnolaemata (B. neritina and F. hispida was strongly supported and the bryozoan clade was grouped with brachiopods. Echiura appeared as a subtaxon of Annelida, and Entoprocta as a sister taxon of Phoronida. The clade of Bryozoa + Brachiopoda was clustered with either the clade of Annelida-Echiura or that of Phoronida + Entoprocta. Conclusion This study presents the complete mitochondrial genome of a

  20. Phylogenetic analysis of pelecaniformes (aves based on osteological data: implications for waterbird phylogeny and fossil calibration studies.

    Directory of Open Access Journals (Sweden)

    Nathan D Smith

    2010-10-01

    Full Text Available Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group's fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving and temporal diversification (e.g., the origins of modern families. Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification.Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae, Prophaethon and Lithoptila (successive sister taxa to Phaethontidae, and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae. These relationships are invariant when 'backbone' constraints based on recent avian phylogenies are imposed.Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though