WorldWideScience

Sample records for rodgers creek faults

  1. Missing link between the Hayward and Rodgers Creek faults.

    Science.gov (United States)

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-10-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface-a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake ( M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  2. Shipborne Magnetic Survey of San Pablo Bay and Implications on the Hayward-Rodgers Creek Fault Junction

    Science.gov (United States)

    Ponce, D. A.; Athens, N. D.; Denton, K.

    2012-12-01

    central part of San Pablo Bay. These magnetic anomalies appear to represent two separate features, one on either side of the Hayward Fault. Likely sources for these anomalies are probably mafic, ultramafic, or volcanic rocks along the fault. Indeed, the more prominent, higher amplitude anomaly, which occurs on the west side of the Hayward Fault, could reflect an offset counterpart to the San Leandro gabbro body in the central part of the onshore portion of the Hayward Fault (Jachens et al., 2002). If so, the apparent offset is about 43 km. Although a magnetic ridge of possible volcanic rock origin (Wright and Smith, 1992) occurs between the Hayward and Rodgers Creek Faults, the Rodgers Creek Fault itself may be expressed by a steep gradient in the shipborne magnetic data. Analysis of these high-resolution shipborne magnetic data afford us the opportunity to image the detailed structure beneath San Pablo Bay and its implications on earthquake hazards.

  3. Detailed mapping and rupture implications of the 1 km releasing bend in the Rodgers Creek Fault at Santa Rosa, northern California

    Science.gov (United States)

    Hecker, Suzanne; Langenheim, Victoria; Williams, Robert; Hitchcock, Christopher S.; DeLong, Stephen B.

    2016-01-01

    Airborne light detection and ranging (lidar) topography reveals for the first time the trace of the Rodgers Creek fault (RCF) through the center of Santa Rosa, the largest city in the northern San Francisco Bay area. Vertical deformation of the Santa Rosa Creek floodplain expresses a composite pull‐apart basin beneath the urban cover that is part of a broader 1‐km‐wide right‐releasing bend in the fault. High‐resolution geophysical data illuminate subsurface conditions that may be responsible for the complex pattern of surface faulting, as well as for the distribution of seismicity and possibly for creep behavior. We identify a dense, magnetic basement body bounded by the RCF beneath Santa Rosa that we interpret as a strong asperity, likely part of a larger locked patch of the fault to the south. A local increase in frictional resistance associated with the basement body appears to explain (1) distributed fault‐normal extension above where the RCF intersects the body; (2) earthquake activity around the northern end of the body, notably the 1969 ML 5.6 and 5.7 events and aftershocks; and (3) creep rates on the RCF that are higher to the north of Santa Rosa than to the south. There is a significant probability of a major earthquake on the RCF in the coming decades, and earthquakes associated with the proposed asperity have the potential to release seismic energy into the Cotati basin beneath Santa Rosa, already known from damaging historical earthquakes to produce amplified ground shaking.

  4. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  5. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  6. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  7. Obituary: Rodger Doxsey (1947-2009)

    Science.gov (United States)

    Livio, Mario

    2009-12-01

    Rodger Doxsey, an astronomer at the Space Telescope Science Institute, passed away on October 13, 2009, after a prolonged illness. For the past 20 years, Rodger has been known to be truly the go-to guy for making the Hubble Space Telescope perform as it has. I have always argued that no person is truly irreplaceable. I still believe that to be true. However, my colleague and friend Rodger Doxsey came probably as close as anyone ever could to being irreplaceable. I know of no one who had a deeper and more thorough understanding of the workings of HST than Rodger had. In fact, there used to be a joke around the Institute, that when Rodger goes on vacation, the telescope experiences some malfunction. Usually when we retire a computer, we make sure that all the information on it is stored elsewhere. Unfortunately we cannot do the same with the human brain. Rodger was always driven by one passion - the desire to make the Hubble Space Telescope the most productive scientific instrument ever. He has been involved with, and often led, every effort to prolong the life of the telescope, and to make it operate more efficiently. Here is a description by another Hubble pioneer, astronomer John Bahcall, of the birth of the "Hubble Space Telescope Snapshot Program," a wonderful example of one of Rodger's many brainchildren: "The Snapshot program originated in a lunchtime conversation between Rodger Doxsey and myself in the STScI cafeteria sometime in the spring of 1989. We were both late to lunch and probably were the only people in the cafeteria. The principal topic of conversation was the expected low observing efficiency of the HST. Rodger described the extraordinary difficulty in making a schedule that would use a reasonable percentage of the available time for science observations. Slewing was slow and changing instruments or modes of observing was time-consuming. Also, the scheduling software that existed in 1989 was not very powerful. I asked Rodger, without thinking very

  8. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    Science.gov (United States)

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  9. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Science.gov (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  10. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  11. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault

    Science.gov (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.

    2017-12-01

    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  12. Determining on-fault magnitude distributions for a connected, multi-fault system

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2017-12-01

    A new method is developed to determine on-fault magnitude distributions within a complex and connected multi-fault system. A binary integer programming (BIP) method is used to distribute earthquakes from a 10 kyr synthetic regional catalog, with a minimum magnitude threshold of 6.0 and Gutenberg-Richter (G-R) parameters (a- and b-values) estimated from historical data. Each earthquake in the synthetic catalog can occur on any fault and at any location. In the multi-fault system, earthquake ruptures are allowed to branch or jump from one fault to another. The objective is to minimize the slip-rate misfit relative to target slip rates for each of the faults in the system. Maximum and minimum slip-rate estimates around the target slip rate are used as explicit constraints. An implicit constraint is that an earthquake can only be located on a fault (or series of connected faults) if it is long enough to contain that earthquake. The method is demonstrated in the San Francisco Bay area, using UCERF3 faults and slip-rates. We also invoke the same assumptions regarding background seismicity, coupling, and fault connectivity as in UCERF3. Using the preferred regional G-R a-value, which may be suppressed by the 1906 earthquake, the BIP problem is deemed infeasible when faults are not connected. Using connected faults, however, a solution is found in which there is a surprising diversity of magnitude distributions among faults. In particular, the optimal magnitude distribution for earthquakes that participate along the Peninsula section of the San Andreas fault indicates a deficit of magnitudes in the M6.0- 7.0 range. For the Rodgers Creek-Hayward fault combination, there is a deficit in the M6.0- 6.6 range. Rather than solving this as an optimization problem, we can set the objective function to zero and solve this as a constraint problem. Among the solutions to the constraint problem is one that admits many more earthquakes in the deficit magnitude ranges for both faults

  13. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    Science.gov (United States)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques

  14. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    Science.gov (United States)

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  15. Paleoseismology of the Denali fault system at the Schist Creek site, central Alaska

    Science.gov (United States)

    Personius, Stephen F.; Crone, Anthony J.; Burns, Patricia A.C.; Rozell, Ned

    2016-01-06

    Two hand-dug trenches at the Schist Creek site on the Denali fault system in central Alaska exposed evidence of four surface-rupturing earthquakes on the basis of upward terminations of fault strands and at least one buried, scarp-derived colluvial wedge. Limited radiocarbon ages provide some constraints on times of the ruptures. The youngest rupture (PE1) likely occurred about 200–400 years ago, the penultimate rupture (PE2) is younger than 1,200 years old, the third event back (PE3) occurred between 1,200 and 2,700 years ago, and the oldest rupture (PE4) occurred more than 2,700 and less than 17,000 years ago. Evidence for a possible additional rupture (PE4?) is equivocal and probably is related to earthquake PE4. On the basis of a nearby measured slip rate of 9.4 ± 1.6 millimeters per year and the long interevent times between our documented ruptures, we believe that our paleoseismic record at this site is incomplete. We suspect one undocumented earthquake between PE1 and PE2 and one or perhaps two more earthquakes between PE2 and PE3. We found stratigraphic evidence in the trenches for only four or possibly five (PE4?) earthquakes, but the addition of two or three inferred earthquakes yields a record of eight possible surface ruptures at the Schist Creek site. Our interpretation of the paleoseismic history at the site is consistent with recurrence intervals of several hundred years on this section of the Denali fault system.

  16. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  17. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  18. Width and dip of the southern San Andreas Fault at Salt Creek from modeling of geophysical data

    Science.gov (United States)

    Langenheim, Victoria; Athens, Noah D.; Scheirer, Daniel S.; Fuis, Gary S.; Rymer, Michael J.; Goldman, Mark R.; Reynolds, Robert E.

    2014-01-01

    We investigate the geometry and width of the southernmost stretch of the San Andreas Fault zone using new gravity and magnetic data along line 7 of the Salton Seismic Imaging Project. In the Salt Creek area of Durmid Hill, the San Andreas Fault coincides with a complex magnetic signature, with high-amplitude, short-wavelength magnetic anomalies superposed on a broader magnetic anomaly that is at least 5 km wide centered 2–3 km northeast of the fault. Marine magnetic data show that high-frequency magnetic anomalies extend more than 1 km west of the mapped trace of the San Andreas Fault. Modeling of magnetic data is consistent with a moderate to steep (> 50 degrees) northeast dip of the San Andreas Fault, but also suggests that the sedimentary sequence is folded west of the fault, causing the short wavelength of the anomalies west of the fault. Gravity anomalies are consistent with the previously modeled seismic velocity structure across the San Andreas Fault. Modeling of gravity data indicates a steep dip for the San Andreas Fault, but does not resolve unequivocally the direction of dip. Gravity data define a deeper basin, bounded by the Powerline and Hot Springs Faults, than imaged by the seismic experiment. This basin extends southeast of Line 7 for nearly 20 km, with linear margins parallel to the San Andreas Fault. These data suggest that the San Andreas Fault zone is wider than indicated by its mapped surface trace.

  19. Assédio moral: análise de conceito na perspectiva evolucionista de Rodgers Acoso moral: análisis de concepto en la perspectiva evolucionista de Rodgers Bullying: concept analysis from Rodgers' evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Graziela Ribeiro Pontes Cahú

    2012-01-01

    Full Text Available O estudo teve como objetivo analisar o conceito de assédio moral, na perspectiva evolucionista de Rodgers, conforme expresso na literatura da saúde, ciências jurídicas, sociais e humanas. Trata-se de uma pesquisa documental, que teve como fontes de dados artigos disponibilizados no Portal de Periódicos/CAPES e na Buscalegis de 1954 a 2010. A amostra constituiu-se de 46 artigos. Para a análise dos dados, foram utilizados os passos propostos por Rodgers em seu modelo de análise conceitual. Em relação aos termos substitutivos, destacaram-se psicoterror e mobbing. Quanto aos atributos, os mais frequentes compreenderam a violência psicológica e a exclusão social do trabalhador. Os antecedentes mais relevantes foram as condições opressivas de trabalho. No tocante às consequências, destacaram-se os problemas psicossomáticos, empresariais e sociais. Nesse sentido, o conceito assédio moral constitui-se em violência psicológica com a intenção de humilhar e excluir socialmente a vítima, provocando distúrbios psicossomáticos, prejuízos à sociedade e à instituição de trabalho.El estudio tuvo como objetivo analizar el concepto de acoso moral, en la perspectiva evolucionista de Rodgers, conforme referido en la literatura de la salud, ciencias jurídicas, sociales y humanas. Se trata de una investigación documental, que tuvo como fuentes de datos artículos disponibles en el Portal de Periódicos/CAPES y en la Buscalegis de 1954 a 2010. La muestra se constituyó de 46 artículos. Para el análisis de los datos, se utilizaron los pasos propuestos por Rodgers en su modelo de análisis conceptual. En relación a los términos sustitutivos, se destacaron psicoterror y mobbing. En cuanto a los atributos, los más frecuentes comprendieron la violencia psicológica y la exclusión social del trabajador. Los antecedentes más relevantes fueron las condiciones de opresión en el trabajo. En lo que respecta a las consecuencias, se

  20. Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R

    2009-03-09

    We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.

  1. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    Science.gov (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  2. Distribution of creep in the northern San Francisco Bay Area illuminated by repeating earthquakes and InSAR

    Science.gov (United States)

    Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.

    2017-12-01

    Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates

  3. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  4. [Positive deviance: concept analysis using the evolutionary approach of Rodgers].

    Science.gov (United States)

    Létourneau, Josiane; Alderson, Marie; Caux, Chantal; Richard, Lucie

    2013-06-01

    Positive deviance is a relatively new concept in healthcare. Since 2006, it has been applied to infection control in order to increase the awareness to good hand hygiene practices. This article focus on presenting analytical results of this concept using the evolutionary approach of Rodgers based on the philosophical postulate that concepts are dynamical and changing with time. For doing so, a census of the writings in nursing, medicine and psychology was carried out. By going through the CINAHL, Medline and PsyclNFO databases using positive deviance as a keyword for the time period: 1975 to May 2012, and in accordance with the method of Rodgers, ninety articles were retained (30 per discipline). The analysis enables one to notice that positive deviance described as an individual characteristic at first, is now used as a behavioral changing approach in nursing and medicine as well. At the end of the analysis and apart from this article, positive deviance will be used in order to study the practice of nurses that adheres to hand hygiene despite limiting constraints within hospital. We will then be able to continue the development of this concept in order to bring it, as Rodgers recommends, beyond the analysis. It would then be an important contribution to good nursing practices in the field of infection control and prevention.

  5. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    Science.gov (United States)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine

  6. Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine Fault : evidence from Hokuri Creek, south Westland, New Zealand

    International Nuclear Information System (INIS)

    Sutherland, R.; Norris, R.J.

    1995-01-01

    A 400 ± 100 m offset of Lake McKerrow, South Westland, New Zealand, combined with dated (15.6 ka) glacial lake silts, requires an Alpine Fault displacement rate of 26 ± 7 mm/yr. Moraines associated with Hokuri Creek (assumed to be 17 ± 2 ka) are offset by 440 ± 40 m and require a displacement rate on the Alpine Fault of 26 ± 6 mm/yr. Slickensides, fault exposure, and offset topography are consistent with an almost pure dextral sense of movement on a vertical or subvertical fault. Locally, a small vertical component of up-to-the-west movement is observed. Folding in late Quaternary sediments indicates active tilting of sediments at up to 0.4 degrees/ka and variations in local uplift/subsidence rates of up to 4 mm/yr. At one locality c.1 km northwest of the Alpine Fault and near the core of an anticline, uplifted shells require an uplift rate of 1.4 ± 0.5 mm/yr relative to sea level. Displaced river channels provide estimates of the last two coseismic displacements on the fault of 9 m (penultimate) and 8 m. This suggests characteristic earthquake behaviour with a recurrence interval of 330 ± 90 yr and probable M w > 7.5. Radiocarbon dating suggests the last coseismic displacement occurred just after 370 ± 150 cal yr B.P. (author). 34 refs., 10 figs., 3 tabs

  7. Investigation of the Meers fault in southwestern Oklahoma

    International Nuclear Information System (INIS)

    Luza, K.V.; Madole, R.F.; Crone, A.J.

    1987-08-01

    The Meers fault is part of a major system of NW-trending faults that form the boundary between the Wichita Mountains and the Anadarko basin in southwestern Oklahoma. A portion of the Meers fault is exposed at the surface in northern Comanche County and strikes approximately N. 60 0 W. where it offsets Permian conglomerate and shale for at least 26 km. The scarp on the fault is consistently down to the south, with a maximum relief of 5 m near the center of the fault trace. Quaternary stratigraphic relationships and 10 14 C age dates constrain the age of the last movement of the Meers fault. The last movement postdates the Browns Creek Alluvium, late Pleistocene to early Holocene, and predates the East Cache Alluvium, 100 to 800 yr B.P. Fan alluvium, produced by the last fault movement, buried a soil that dates between 1400 and 1100 yr B.P. Two trenches excavated across the scarp near Canyon Creek document the near-surface deformation and provide some general information on recurrence. Trench 1 was excavated in the lower Holocene part of the Browns Creek Alluvium, and trench 2 was excavated in unnamed gravels thought to be upper Pleistocene. Flexing and warping was the dominant mode of deformation that produced the scarp. The stratigraphy in both trenches indicates one surface-faulting event, which implies a lengthy recurrence interval for surface faulting on this part of the fault. Organic-rich material from two samples that postdate the last fault movement yielded 14 C ages between 1600 and 1300 yr B.P. These dates are in excellent agreement with the dates obtained from soils buried by the fault-related fan alluvium

  8. Dating Informed Correlations and Large Earthquake Recurrence at the Hokuri Creek Paleoseismic Site, Alpine Fault, South Island, New Zealand

    Science.gov (United States)

    Biasi, G. P.; Clark, K.; Berryman, K. R.; Cochran, U. A.; Prior, C.

    2010-12-01

    The Hokuri Creek paleoseismic site on the Alpine fault in south Westland, New Zealand has yielded a remarkable history of fault activity spanning the past ~7000 years. Evidence for earthquake occurrence and timing has been developed primarily from natural exposures created after a geologically major incision event a few hundred years ago. Prior to this event, the elevation of the spillway of Hokuri Creek into its previous drainage was controlled by NE translation of a shutter ridge during earthquakes. Each event increased the base level for sediment accumulation upstream by decimetres to perhaps a metre. Each increase in base level is associated with a period of accumulation principally of clean fine silts and rock flour. With infilling and time, the wetlands reestablish and sedimentation transitions to a slower and more organic-rich phase (Clark et al., this meeting). At least 18 such cycles have been identified at the site. Carbonaceous material is abundant in almost all layers. Much of the dating is done on macrofossils - individual beech tree leaves, reeds, and similar fragile features. Reworking is considered unlikely due to the fragility of the samples. All dates were developed by the Rafter Radiocarbon Laboratory of the National Isotope Centre at GNS. Delta 13C was measured and used to correct for fractionation. Dating earthquakes at the Hokuri Creek site presents some special challenges. Individual stratigraphic sections around the site expose different time intervals. The Main Section series provides the most complete single section, with over 5000 years of represented. Nearby auxiliary exposures cover nearly 1500 years more. Date series from individual exposures tend to be internally very consistent with stratigraphic ordering, but by virtue of their spatial separation, correlations between sections are more difficult. We find, however, that the distinctive layering and the typical 2-4 centuries between primary silt layers provides a way to cross

  9. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  10. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  11. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California

    Science.gov (United States)

    Scharer, K.M.; Biasi, G.P.; Weldon, R.J.

    2011-01-01

    The Pallett Creek paleoseismic record occupies a keystone position in most attempts to develop rupture histories for the southern San Andreas fault. Previous estimates of earthquake ages at Pallett Creek were determined by decay counting radiocarbon methods. That method requires large samples which can lead to unaccounted sources of uncertainty in radiocarbon ages because of the heterogeneous composition of organic layers. In contrast, accelerator mass spectrometry (AMS) radiocarbon dates may be obtained from small samples that have known carbon sources and also allow for a more complete sampling of the section. We present 65 new AMS radiocarbon dates that span nine ground-rupturing earthquakes at Pallett Creek. Overall, the AMS dates are similar to and reveal no dramatic bias in the conventional dates. For many layers, however, individual charcoal samples were younger than the conventional dates, leading to earthquake ages that are overall slightly younger than previously reported. New earthquake ages are determined by Bayesian refinement of the layer ages based on stratigraphic ordering and sedimentological constraints. The new chronology is more regular than previously published records in large part due to new samples constraining the age of event R. The closed interval from event C to 1857 has a mean recurrence of 135years (?? = 83.2 years) and a quasiperiodic coefficient of variation (COV) of 0.61. We show that the new dates and resultant earthquake chronology have a stronger effect on COV than the specific membership of this long series and dating precision improvements from sedimentation rates. Copyright 2011 by the American Geophysical Union.

  12. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  13. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  14. Stress-based aftershock forecasts made within 24h post mainshock: Expected north San Francisco Bay area seismicity changes after the 2014M=6.0 West Napa earthquake

    Science.gov (United States)

    Parsons, Thomas E.; Segou, Margaret; Sevilgen, Volkan; Milner, Kevin; Field, Edward; Toda, Shinji; Stein, Ross S.

    2014-01-01

    We calculate stress changes resulting from the M= 6.0 West Napa earthquake on north San Francisco Bay area faults. The earthquake ruptured within a series of long faults that pose significant hazard to the Bay area, and we are thus concerned with potential increases in the probability of a large earthquake through stress transfer. We conduct this exercise as a prospective test because the skill of stress-based aftershock forecasting methodology is inconclusive. We apply three methods: (1) generalized mapping of regional Coulomb stress change, (2) stress changes resolved on Uniform California Earthquake Rupture Forecast faults, and (3) a mapped rate/state aftershock forecast. All calculations were completed within 24 h after the main shock and were made without benefit of known aftershocks, which will be used to evaluative the prospective forecast. All methods suggest that we should expect heightened seismicity on parts of the southern Rodgers Creek, northern Hayward, and Green Valley faults.

  15. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand

    Science.gov (United States)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.

    2010-12-01

    At Hokuri Creek, in south Westland, New Zealand, an 18 m thickness of Holocene sediments has accumulated against the upthrown side of the Alpine Fault. Recent fluvial incision has created numerous exposures of this sedimentary sequence. At a decimetre to metre scale there are two dominant types of sedimentary units: clastic-dominated, grey silt packages, and organic-dominated, light brown peaty-silt units. These units represent repeated alternations of the paleoenvironment due to fault rupture over the past 7000 years. We have located the event horizons within the sedimentary sequence, and identified evidence to support earthquake-driven paleoenvironmental change (rather than climatic variability), and developed a model of paleoenvironmental changes over a typical seismic cycle. To quantitatively characterise the sediments we use high resolution photography, x-ray imaging, magnetic-susceptibility and total carbon analysis. To understand the depositional environment we used diatom and pollen studies. The organic-rich units have very low magnetic susceptibility and density values, with high greyscale and high total carbon values. Diatoms indicate these units represent stable wetland environments with standing water and predominantly in-situ organic material deposition. The clastic-rich units are characterised by higher magnetic susceptibility and density values, with low greyscale and total carbon. The clastic-rich units represent environments of flowing water and deep pond settings that received predominantly catchment-derived silt and sand. The event horizon is located at the upper contact of the organic-rich horizons. The event horizon contact marks a drastic change in hydrologic regime as fault rupture changed the stream base level and there was a synchronous influx of clastic sediment as the catchment responded to earthquake shaking. During the interseismic period the flowing-water environment gradually stabilised and returned to an organic-rich wetland. Such

  16. Post-Pennsylvanian reactivation along the Washita Valley fault, southern Oklahoma

    International Nuclear Information System (INIS)

    VanArsdale, R.; Ward, C.; Cox, R.

    1989-06-01

    Surface exposures of faults of the Washita Valley fault (WVF) system in Garvin, Murray, Carter, and Johnston counties of southern Oklahoma were studied to determine if there has been post-Pennsylvanian fault reactivation and to determine if there has been any Quaternary fault movement. This was undertaken through field mapping, by dating alluvium which overlies the faults, and by logging trenches excavated across the WVF. In northern Murray County and southern Garvin County (site A), the WVF displaces Late-Pennsylvanian Oscar Group showing post-Pennsylvanian movement; however, no faulting was observed in 2000 year old alluvium of Wildhorse Creek along strike of the WVF. Three sites (B, C, and D) are located within the Arbuckle Mountains. Faulting of Virgilian age Vanoss Conglomerate and Vanoss Shale reveal post-Virgilian (Late Pennsylvanian) activity along a subsidiary fault in northern Murray County (site B). A 12000 to 15000 year old terrace at this site is unfaulted. Absence of any fault related features in paleosols which overly the WVF along the Washita River (site C) show that the fault has not been active during the last 1570 /+-/ 190 years in southern Murray County. Similarly, absence of any fault related features along Oil Creek (site D) indicates that the WVF has not been active during the last 1810 /+-/ 80 years in northern Carter and Johnston Counties. Faults in the Antlers Sandstone in southern Johnston County (site E) reveal post-Lower Cretaceous reactivation of the WVF. 49 refs., 28 figs., 1 tab

  17. Revisiting the Concepts "Approach", "Design" and "Procedure" According to the Richards and Rodgers (2011) Framework

    Science.gov (United States)

    Cumming, Brett

    2012-01-01

    The three concepts Approach, Design and Procedure as proposed in Rodgers' Framework are considered particularly effective as a framework in second language teaching with the specific aim of developing communication as well as for better understanding methodology in the use of communicative language use.

  18. Critical thinking: concept analysis from the perspective of Rodger's evolutionary method of concept analysis.

    Science.gov (United States)

    Carbogim, Fábio da Costa; Oliveira, Larissa Bertacchini de; Püschel, Vilanice Alves de Araújo

    2016-09-01

    to analyze the concept of critical thinking (CT) in Rodger's evolutionary perspective. documentary research undertaken in the Cinahl, Lilacs, Bdenf and Dedalus databases, using the keywords of 'critical thinking' and 'Nursing', without limitation based on year of publication. The data were analyzed in accordance with the stages of Rodger's conceptual model. The following were included: books and articles in full, published in Portuguese, English or Spanish, which addressed CT in the teaching and practice of Nursing; articles which did not address aspects related to the concept of CT were excluded. the sample was made up of 42 works. As a substitute term, emphasis is placed on 'analytical thinking', and, as a related factor, decision-making. In order, the most frequent preceding and consequent attributes were: ability to analyze, training of the student nurse, and clinical decision-making. As the implications of CT, emphasis is placed on achieving effective results in care for the patient, family and community. CT is a cognitive skill which involves analysis, logical reasoning and clinical judgment, geared towards the resolution of problems, and standing out in the training and practice of the nurse with a view to accurate clinical decision-making and the achieving of effective results. analisar o conceito de pensamento crítico (PC), na perspectiva evolucionista de Rodgers. pesquisa documental realizada nas bases de dados Cinahl, Lilacs, Bdenf e Dedalus, utilizando-se as palavras-chave pensamento crítico e Enfermagem, sem delimitação de ano de publicação. Os dados foram analisados conforme etapas do modelo conceitual de Rodgers. Incluíram-se livros e artigos na íntegra, publicados em português, inglês ou espanhol que abordavam o PC no ensino e prática de Enfermagem, excluindo-se estudos que não abordassem aspectos relacionados ao conceito do PC. a amostra foi constituída por 42 trabalhos. Como termo substituto, destacou-se pensamento analítico e, como

  19. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD)

    Science.gov (United States)

    Moore, Diane E.; Rymer, Michael J.

    2012-05-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  20. Paleoseismic evidence for late Holocene tectonic deformation along the Saddle mountain fault zone, Southeastern Olympic Peninsula, Washington

    Science.gov (United States)

    Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.

    2015-01-01

    Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2  mm/yr and between 0.7 and 3.2  mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.

  1. Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics

    Science.gov (United States)

    Moore, Diane E.; Rymer, Michael J.

    2012-01-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  2. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  3. Critical thinking: concept analysis from the perspective of Rodger's evolutionary method of concept analysis

    Directory of Open Access Journals (Sweden)

    Fábio da Costa Carbogim

    Full Text Available ABSTRACT Objective: to analyze the concept of critical thinking (CT in Rodger's evolutionary perspective. Method: documentary research undertaken in the Cinahl, Lilacs, Bdenf and Dedalus databases, using the keywords of 'critical thinking' and 'Nursing', without limitation based on year of publication. The data were analyzed in accordance with the stages of Rodger's conceptual model. The following were included: books and articles in full, published in Portuguese, English or Spanish, which addressed CT in the teaching and practice of Nursing; articles which did not address aspects related to the concept of CT were excluded. Results: the sample was made up of 42 works. As a substitute term, emphasis is placed on 'analytical thinking', and, as a related factor, decision-making. In order, the most frequent preceding and consequent attributes were: ability to analyze, training of the student nurse, and clinical decision-making. As the implications of CT, emphasis is placed on achieving effective results in care for the patient, family and community. Conclusion: CT is a cognitive skill which involves analysis, logical reasoning and clinical judgment, geared towards the resolution of problems, and standing out in the training and practice of the nurse with a view to accurate clinical decision-making and the achieving of effective results.

  4. Dynamic Models of Earthquake Rupture along branch faults of the Eastern San Gorgonio Pass Region in CA using Complex Fault Structure

    Science.gov (United States)

    Douilly, R.; Oglesby, D. D.; Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Compilation of geomorphic and paleoseismic data have illustrated that the right-lateral Coachella segment of the southern San Andreas Fault is past its average recurrence time period. On its western edge, this fault segment is split into two branches: the Mission Creek strand, and the Banning fault strand, of the San Andreas. Depending on how rupture propagates through this region, there is the possibility of a through-going rupture that could lead to the channeling of damaging seismic energy into the Los Angeles Basin. The fault structures and rupture scenarios on these two strands are potentially very different, so it is important to determine which strand is a more likely rupture path, and under which circumstances rupture will take either one. In this study, we focus on the effect of different assumptions about fault geometry and stress pattern on the rupture process to test those scenarios and thus investigate the most likely path of a rupture that starts on the Coachella segment. We consider two types of fault geometry based on the SCEC Community Fault Model and create a 3D finite element mesh. These two meshes are then incorporated into the finite element method code FaultMod to compute a physical model for the rupture dynamics. We use the slip-weakening friction law, and we consider different assumptions of background stress such as constant tractions, regional stress regimes of different orientations, heterogeneous off-fault stresses and the results of long-term stressing rates from quasi-static crustal deformation models that consider time since last event on each fault segment. Both the constant and regional stress distribution show that it is more likely for the rupture to branch from the Coachella segment to the Mission Creek compared to the Banning fault segment. For the regional stress distribution, we encounter cases of super-shear rupture for one type of fault geometry and sub-shear rupture for the other one. The fault connectivity at this branch

  5. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  6. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  7. Evaluation of hypotheses for right-lateral displacement of Neogene strata along the San Andreas Fault between Parkfield and Maricopa, California

    Science.gov (United States)

    Stanley, Richard G.; Barron, John A.; Powell, Charles L.

    2017-12-22

    We used geological field studies and diatom biostratigraphy to test a published hypothesis that Neogene marine siliceous strata in the Maricopa and Parkfield areas, located on opposite sides of the San Andreas Fault, were formerly contiguous and then were displaced by about 80–130 kilometers (km) of right-lateral slip along the fault. In the Maricopa area on the northeast side of the San Andreas Fault, the upper Miocene Bitterwater Creek Shale consists of hard, siliceous shale with dolomitic concretions and turbidite sandstone interbeds. Diatom assemblages indicate that the Bitterwater Creek Shale was deposited about 8.0–6.7 million years before present (Ma) at the same time as the uppermost part of the Monterey Formation in parts of coastal California. In the Parkfield area on the southwest side of the San Andreas Fault, the upper Miocene Pancho Rico Formation consists of soft to indurated mudstone and siltstone and fossiliferous, bioturbated sandstone. Diatom assemblages from the Pancho Rico indicate deposition about 6.7–5.7 Ma (latest Miocene), younger than the Bitterwater Creek Shale and at about the same time as parts of the Sisquoc Formation and Purisima Formation in coastal California. Our results show that the Bitterwater Creek Shale and Pancho Rico Formation are lithologically unlike and of different ages and therefore do not constitute a cross-fault tie that can be used to estimate rightlateral displacement along the San Andreas Fault.In the Maricopa area northeast of the San Andreas Fault, the Bitterwater Creek Shale overlies conglomeratic fan-delta deposits of the upper Miocene Santa Margarita Formation, which in turn overlie siliceous shale of the Miocene Monterey Formation from which we obtained a diatom assemblage dated at about 10.0–9.3 Ma. Previous investigations noted that the Santa Margarita Formation in the Maricopa area contains granitic and metamorphic clasts derived from sources in the northern Gabilan Range, on the opposite side of

  8. 2016-2017 Update of Hydraulic Fracturing Induced Earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Zhang, M.

    2017-12-01

    With a reported Richter magnitude (ML) of 4.8, the January 12, 2016 earthquake near Fox Creek is the largest event in Alberta during the past decade. This event led to the suspension of a nearby hydraulic fracturing well, in compliance with the provincial "traffic-light" protocol. In previous study, we examine the hypocenter location and focal mechanism of this earthquake, and the results support an anthropogenic origin. Since then (until August 2017), no event reached ML=4, while several ML>3 events occurred in the Fox Creek area. Their focal mechanisms are consistent with the ones from previous events that were induced by hydraulic fracturing, suggesting a strike-slip mechanism with either N-S or E-W trending fault. In 2017, the near-source station (distance Fox Creek region.

  9. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  10. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    Science.gov (United States)

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some

  11. VizieR Online Data Catalog: H-α emission regions in Southern Milky Way (Rodgers+ 1960)

    Science.gov (United States)

    Rodgers, A. W.; Campbell, C. T.; Whiteoak, J. B.

    2000-05-01

    The Catalogue of Rodgers, Cambell, and Whiteoak (RCW), was the result of a survey of emission nebulae carried out at Mt. Stromlo Observatory from December 1957 to April 1959. The entire region of the Milky Way southward of the Palomar sky survey with a latitude of plus or minus 15 degrees of the galactic equator was photographed in the light of hydrogen alpha with comparison plates obtained in yellow light. This work roughly complements the Sharpless (Sh2, see Cat. ) survey published in 1959. (2 data files).

  12. The human and the inhuman: visual culture, political culture, and the images produced by George Rodger and Henri Cartier-Bresson in the Nazi concentration camps

    Directory of Open Access Journals (Sweden)

    Erika Cazzonatto Zerwes

    2016-08-01

    Full Text Available This article aims to grasp some aspects of the notion of humanism in photography and its closeness to the political culture and the visual culture in the period, through the specific experiences of George Rodger and Henri Cartier-Bresson, two photographers who were first-hand witnesses and provided accounts of horror in the Nazi concentration camps at the end of World War II. George Rodger photographed the Bergen-Belsen camp as soon as it was liberated by the British troops. Henri Cartier-Bresson was there with a film crew recording the deported masses newly freed from the Nazi concentration and extermination camps. These experiences came to have profound impact on the biography and work of both of them. In the two cases, there is a notion of humanism linked to World War II events, which is observed in photography and photographic representation, and it has a significant consequence for the contemporary visual culture.   Keywords: Visual Culture; Political Culture; War Photography; Photojournalism; Concentration Camps.   Original title: O humano e o desumano: cultura visual, cultura política e as imagens feitas por George Rodger e Henri Cartier-Bresson nos campos de concentração nazistas.

  13. Stratigraphic and structural data for the Conasauga Group and the Rome Formation on the Copper Creek fault block near Oak Ridge, Tennessee: preliminary results from test borehole ORNL-JOY No. 2

    International Nuclear Information System (INIS)

    Haase, C.S.; Walls, E.C.; Farmer, C.D.

    1985-06-01

    To resolve long-standing problems with the stratigraphy of the Conasauga Group and the Rome Formation on the Copper Creek fault block near Oak Ridge National Laboratory (ORNL), an 828.5-m-deep test borehole was drilled. Continuous rock core was recovered from the 17.7- to 828.5-m-deep interval; temperature, caliper, neutron, gamma-ray, and acoustic (velocity and televiewer) logs were obtained. The Conasauga Group at the study site is 572.4 m thick and comprises six formations that are - in descending stratigraphic order - Maynardville Limestone (98.8 m), Nolichucky Shale (167.9 m), Maryville Limestone (141.1 m), Rogersville Shale (39.6 m), Rutledge Limestone (30.8 m), and Pumpkin Valley Shale (94.2 m). The formations are lithologically complex, ranging from clastics that consist of shales, mudstones, and siltstones to carbonates that consist of micrites, wackestones, packstones, and conglomerates. The Rome Formation is 188.1 m thick and consists of variably bedded mudstones, siltstones, and sandstones. The Rome Formation thickness represents 88.1 m of relatively undeformed section and 100.0 m of highly deformed, jumbled, and partially repeated section. The bottom of the Rome Formation is marked by a tectonic disconformity that occurs within a 46-m-thick, intensely deformed interval caused by motion along the Copper Creek fault. Results from this study establish the stratigraphy and the lithology of the Conasauga Group and the Rome Formation near ORNL and, for the first time, allow for the unambiguous correlation of cores and geophysical logs from boreholes elsewhere in the ORNL vicinity. 45 refs., 26 figs., 2 tabs

  14. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    Science.gov (United States)

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  15. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  16. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.

    Science.gov (United States)

    Niemeijer, A R; Boulton, C; Toy, V G; Townend, J; Sutherland, R

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T  = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing ( V  Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  17. Rg/sup a/ (Rodgers) and the HLA region: linkage and associations

    Energy Technology Data Exchange (ETDEWEB)

    Giles, C.M. (MRC Blood Group Reference Lab., London, Eng.); Gedde-Dahl, T. Jr.; Robson, E.B.; Thorsby, E.; Olaisen, B.; Arnason, A.; Kissmeyer-Nielsen, F.; Schreuder, I.

    1976-01-01

    In 19 families with 97 children the segregation of Rg/sup a/ (Rodgers) was found to be compatible with Mendelian inheritance and five backcross and 14 intercross families were found among HLA and BF type families. Close linkage (lods + 17.82) without recombination was found between Rg and the HLA region, with a direct count of 96 nonrecombinant meioses for Rg--HLA--B, Rg/sup -/ was strongly associated with HLA-B8 (29 of 30 haplotypes) and probably associated with Bw40, but did occur on other HLA--B haplotypes. By inference Rg/sup -/ is negatively associated with Ch/sup -/ (Chido). The Rg/sup -/Ch/sup -/ haplotype has not been observed. Rg/sup a/ and Ch/sup a/ may or may not be coded for by different sites of the same cistron closely linked to HLA--B:C and cannot as yet be excluded from being parts of B or C.

  18. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  19. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    Science.gov (United States)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  20. Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park

    Science.gov (United States)

    Carr, B.; Elliot, M.; Sims, K. W. W.

    2017-12-01

    Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome

  1. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  2. O humano e o desumano: cultura visual, cultura política e as imagens feitas por George Rodger e Henri Cartier-Bresson nos campos de concentração nazistas

    OpenAIRE

    Erika Cazzonatto Zerwes

    2016-01-01

    Este artigo busca compreender alguns aspectos da noção de humanismo na fotografia e sua proximidade com a cultura política e a cultura visual do período, a partir das experiências específicas de George Rodger e Henri Cartier-Bresson, dois fotógrafos que viveram em primeira mão e que deram testemunho do horror dos campos de concentração nazistas ao final da Segunda Guerra Mundial. George Rodger fotografou o campo de Bergen-Belsen assim que foi libertado pelas tropas britânicas. Henri Cartier-B...

  3. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  4. Preliminary isostatic gravity map of the Grouse Creek and east part of the Jackpot 30 by 60 quadrangles, Box Elder County, Utah, and Cassia County, Idaho

    Science.gov (United States)

    Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.

    2013-01-01

    A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.

  5. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    Science.gov (United States)

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  6. Horizontal faults as potential aquifers in the department of Florida. Part One: Thrust-fault Paleoproterozoic Castro Creek

    International Nuclear Information System (INIS)

    Bossi, J.; Caggiano, R.; Pineyro, D.

    2011-01-01

    Since 1996 Bossi and Pineyro proposed the posibility of subhorizontal contacts between Piedra Alta geological units with very different metamorphic grade and lithological associations. The idea was discarded in an itinerant workshop because of lacking of mylonites in the proposed planes containing pegmatites and/or muscovite granites of very low dipping. The possibility that peraluminous magma acted as a lubricant and allow significant movements without great efforts led to rework the topic, utilizing 850 observations of the Vulcanitas Arqueanas Project and 750 observations of the Terreno Piedra Alta Project Georeferenced observations were located on 1:50,000 topographic maps and areas with higher density were aerophotointerpreted at 1:40,000 scale and geologically surveyed at different scales.The thrust-fault of Florida granite belt over San Jose belt was confirmed, and a new thrust-fault was found in the Arroyo Castro valley with 2% dipping to the north

  7. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  8. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  9. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    Science.gov (United States)

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  10. Telegraph Canyon Creek, City of Chula Vista, San Diego County, California. Detailed Report for Flood Control. Volume 2. Technical Appendixes.

    Science.gov (United States)

    1983-07-01

    occurred within 40 miles of’ the site. Most of these earthquakes appear to be related to activity on the Elsinore, Agua Caliente, and offshore faults. The...device would be required by the Sweetwater Authority to prevent contamination of potable water lines. TELEGRAPH CANYON CREEK - - Recommended Plant List A

  11. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  12. Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho

    International Nuclear Information System (INIS)

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G.; Kneupfer, P.L.K.; Forman, S.L.; Smith, R.P.

    1991-01-01

    Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14 C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

  13. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Natural Resource Agency — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  14. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  15. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  16. Geology, Burnst Timber Creek, west of fifth meridian, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    1966-01-01

    The Burnt Timber Creek map-area lies in the southern Foothills of Alberta and includes a narrow strip of the Front Range of the Rocky Mts. along its western edge. The area may be divided into 3 principal structural units, underlain from west to east by the McConnell, Burnt Timber, and Fallentimber thrusts, respectively. McConnell thrust underlies the eastern edge of the mountains. Subsidiary folding and faulting are locally evident in the Paleozoic strata above the thrust. Beneath the McConnell thrust, Mesozoic and Paleozoic strata of the Burnt Timber thrust sheet are strongly overturned in the Panther anticline. The axis of this anticline trends northwest. A culmination along it, in the vicinity of Sheep Creek, deforms the McConnel thrust as well. A total of 16 wells have been drilled to date in 4 separate groups. Each group has revealed the presence of gas and 8 of the wells have been capped as potential gas producers. The reservoir rocks are of Mississippian and Devonian age. Shell Panther River No. 1 well (5-19-30-10W5) is remarkable in having tested at about 86% hydrogen sulfide.

  17. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    Science.gov (United States)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  18. Geologic setting, sedimentary architecture, and paragenesis of the Mesoproterozoic sediment-hosted Sheep Creek Cu-Co-Ag deposit, Helena embayment, Montana

    Science.gov (United States)

    Graham, Garth; Hitzman, Murray W.; Zieg, Jerry

    2012-01-01

    The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred

  19. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  20. Microseismic data records fault activation before and after a Mw 4.1 induced earthquake

    Science.gov (United States)

    Eyre, T.; Eaton, D. W. S.

    2017-12-01

    Several large earthquakes (Mw 4) have been observed in the vicinity of the town of Fox Creek, Alberta. These events have been determined to be induced earthquakes related to hydraulic fracturing in the region. The largest of these has a magnitude Mw = 4.1, and is associated with a hydraulic-fracturing treatment close to Crooked Lake, about 30 km west of Fox Creek. The underlying factors that lead to localization of the high numbers of hydraulic fracturing induced events in this area remain poorly understood. The treatment that is associated with the Mw 4.1 event was monitored by 93 shallow three-level borehole arrays of sensors. Here we analyze the temporal and spatial evolution of the microseismic and seismic data recorded during the treatment. Contrary to expected microseismic event clustering parallel to the principal horizontal stress (NE - SW), the events cluster along obvious fault planes that align both NNE - SSW and N - S. As the treatment well is oriented N - S, it appears that each stage of the treatment intersects a new portion of the fracture network, causing seismicity to occur. Focal-plane solutions support a strike-slip failure along these faults, with nodal planes aligning with the microseismic cluster orientations. Each fault segment is activated with a cluster of microseismicity in the centre, gradually extending along the fault as time progresses. Once a portion of a fault is active, further seismicity can be induced, regardless if the present stage is distant from the fault. However, the large events seem to occur in regions with a gap in the microseismicity. Interestingly, most of the seismicity is located above the reservoir, including the larger events. Although a shallow-well array is used, these results are believed to have relatively high depth resolution, as the perforation shots are correctly located with an average error of 26 m in depth. This information contradicts previously held views that large induced earthquakes occur primarily

  1. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  2. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  3. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and... Proposed Land Use Alternative) identified in the final environmental impact statement (FEIS). Under the...

  4. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  5. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  6. A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta

    Science.gov (United States)

    Schultz, R.; Wang, R.; Gu, Y. J.; Haug, K.; Atkinson, G. M.

    2016-12-01

    In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45º P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.

  7. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta

    Science.gov (United States)

    Schultz, Ryan; Wang, Ruijia; Gu, Yu Jeffrey; Haug, Kristine; Atkinson, Gail

    2017-01-01

    This paper summarizes the current state of understanding regarding the induced seismicity in connection with hydraulic fracturing operations targeting the Duvernay Formation in central Alberta, near the town of Fox Creek. We demonstrate that earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism using (i) cross-correlation detection methods to delineate transient temporal relationships, (ii) double-difference relocations to confirm spatial clustering, and (iii) moment tensor solutions to assess fault motion consistency. The spatiotemporal clustering of the earthquake sequences is strongly related to the nearby hydraulic fracturing operations. In addition, we identify a preference for strike-slip motions on subvertical faults with an approximate 45° P axis orientation, consistent with expectation from the ambient stress field. The hypocentral geometries for two of the largest-magnitude (M 4) sequences that are robustly constrained by local array data provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these lineaments as subvertical faults orientated approximately north-south, consistent with the regional moment tensor solutions. Finally, we conclude that the sequences were triggered by pore pressure increases in response to hydraulic fracturing stimulations along previously existing faults.

  8. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  9. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  10. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  11. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  12. The relationship between mineralisation and depositional environment in Early Proterozoic metasediments of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Stuart-Smith, P.G.

    1984-01-01

    Recent geological mapping has indicated changes to the stratigraphy of the Pine Creek Geosyncline. The new stratigraphy and interpreted depositional environments are examined in relation to the distribution and genesis of stratabound mineral deposits. Basinward correlations are made with near-shore carbonate and psammite-rudite units in the Rum Jungle region. Most other units in the same region are condensed, indicating long-lived supratidal, intertidal or shallow conditions during most of the depositional cycle. Units containing most of the mineralisation represent the earliest near-shore developments of strongly reducing partly pelitic and evaporitic conditions and contain mainly uranium and base metals. Areas of potential mineralisation include near-shore environments in the north, and carbonate reefs along growth faults. Two suites of postorogenic felsic volcanics and related sediments deposited in shallow water within and around northwest and east-northeast rift systems, overlie the metasediments of the Pine Creek Geosyncline in the south. The suites have potential for volcanogenic deposits, mostly of uranium, gold and copper

  13. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  14. Henretta Creek reclamation project

    International Nuclear Information System (INIS)

    Pumphrey, J.F.

    2009-01-01

    Teck Coal Ltd. operates 6 open-pit coal mines, of which 5 are located in the Elk Valley in southeastern British Columbia. The Fording River Operations (FRO) began in 1971 in mining areas in Eagle Mountain, Turnbull Mountain and Henretta Valley. The recovery of approximately 5 million tons of coal from the Henretta Creek Valley posed significant challenges to mine planners, hydrologists and environmental experts because the coal had to be recovered from the valley flanks and also from under the main valley floor, on which the fish-bearing Henretta Creek runs. The Henretta Dragline Mining project was described along with the water control structures and fisheries management efforts for the cutthroat trout. A detailed Environmental Impact Assessment and Stage 1 mining report for the Henretta Valley area was completed in December 1990. FRO was granted a mining and reclamation permit in 1991. A temporary relocation of 1,270 metres was required in in April 1997 in order to enable mining on both sides and below the creek bed. Among the innovative construction techniques was a diversion of Henretta Creek through large diameter steel culverts and a specialized crossing of the creek to allow fish passage. The first water flowed through the reclaimed Henretta Creek channel in late 1998 and the first high flow occurred in the spring of 2000. Teck coal FRO then launched an annual fish and fish habitat monitoring program which focused on the Henretta Creek Reclaimed Channel and Henretta Lake. This document presented the results from the final year, 2006, and a summary of the 7 year aquatic monitoring program. It was concluded that from mining through to reclamation, the Henretta project shows the commitment and success of mining and reclamation practices at Teck Coal. Indicators of the project's success include riparian zone vegetation, fisheries re-establishment, aquatic communities and habitat utilization by terrestrial and avian species. 33 refs., 1 fig.

  15. Temperature profile and water depth data collected from USS JOHN RODGERS using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 August 1988 to 03 October 1988 (NODC Accession 8900041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS JOHN RODGERS in the Northeast / Northwest Atlantic Ocean, Ionian Sea,...

  16. Ordovician and Silurian Phi Kappa and Trail Creek formations, Pioneer Mountains, central Idaho; stratigraphic and structural revisions, and new data on graptolite faunas

    Science.gov (United States)

    Dover, James H.; Berry, William B.N.; Ross, Reuben James

    1980-01-01

    Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser

  17. Using SLAM to Look For the Dog Valley Fault, Truckee Area, California

    Science.gov (United States)

    Cronin, V. S.; Ashburn, J. A.; Sverdrup, K. A.

    2014-12-01

    The Truckee earthquake (9/12/1966, ML6.0) was a left-lateral event on a previously unrecognized NW-trending fault. The Prosser Creek and Boca Dams sustained damage, and the trace of the suspected causative fault passes near or through the site of the then-incomplete Stampede Dam. Another M6 earthquake occurred along the same general trend in 1948 with an epicenter in Dog Valley ~14 km to the NW of the 1966 epicenter. This trend is called the Dog Valley Fault (DVF), and its location on the ground surface is suggested by a prominent but broad zone of geomorphic lineaments near the cloud of aftershock epicenters determined for the 1966 event. Various ground effects of the 1966 event described by Kachadoorian et al. (1967) were located within this broad zone. The upper shoreface of reservoirs in the Truckee-Prosser-Martis basin are now exposed due to persistent drought. We have examined fault strands in a roadcut and exposed upper shoreface adjacent to the NE abutment of Stampede Dam. These are interpreted to be small-displacement splays associated with the DVF -- perhaps elements of the DVF damage zone. We have used the Seismo-Lineament Analysis Method (SLAM) to help us constrain the location of the DVF, based on earthquake focal mechanisms. Seismo-lineaments were computed, using recent revisions in the SLAM code (bearspace.baylor.edu/Vince_Cronin/www/SLAM/), for the 1966 main earthquake and for the better-recorded earthquakes of 7/3/1983 (M4) and 8/30/1992 (M3.2) that are inferred to have occurred along the DVF. Associated geomorphic analysis and some field reconnaissance identified a trend that might be associated with a fault, extending from the NW end of Prosser Creek Reservoir ~32° toward the Stampede Dam area. Triangle-strain analysis using horizontal velocities of local Plate Boundary Observatory GPS sites P146, P149, P150 and SLID indicates that the area rotates clockwise ~1-2°/Myr relative to the stable craton, as might be expected because the study area is

  18. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  19. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    Science.gov (United States)

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  20. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  1. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  2. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  3. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  4. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Science.gov (United States)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  5. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  6. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  7. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  8. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  9. Development of kink bands in granodiorite: Effect of mechanical heterogeneities, fault geometry, and friction

    Science.gov (United States)

    Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.

    2014-12-01

    The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so

  10. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  11. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  12. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    Science.gov (United States)

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  13. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Science.gov (United States)

    2012-02-24

    ... Operation Regulation; Snake Creek, Islamorada, FL AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of Snake Creek Bridge, mile 0.5, across Snake Creek... schedule of Snake Creek Bridge in Islamorada, Florida. This deviation will result in the bridge opening...

  14. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  15. 33 CFR 117.324 - Rice Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  16. 33 CFR 117.231 - Brandywine Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  17. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  18. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the Baltimore...

  19. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    Science.gov (United States)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond

  20. 33 CFR 117.841 - Smith Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  1. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  2. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet Estuary,...

  3. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  4. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  5. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  6. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  7. 27 CFR 9.211 - Swan Creek.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  8. Currents and siltation at Dharamtar creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Kolhatkar, V.M.; Fernandes, A.A.

    Hydrographic data collected in Dharamtar Creek during 1976-77 have been analysed. This showed that the waters in the Creek are well mixed and the salinity varied with the tide. The tidal currents are found to be generally strong. The distribution...

  9. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  10. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  11. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  12. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    2000-01-01

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion

  13. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  14. 33 CFR 117.1001 - Cat Point Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  15. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  16. 33 CFR 117.800 - Mill Neck Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  17. Pine creek geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Ewers, G.R.; Ferguson, J.

    1988-01-01

    The Pine Creek Geosyncline is a 66,000 km 2 inlier of Early Proterozoic metasediments, mafic and felsic intrusives and minor extrusives, surrounding small late Archaean granitic domes. Economic uranium occurrences cluster into three fields, with the Alligator Rivers field being the most significant. The metasediments are alluvial and reduced shallow-water pelites and psammites. Evaporitic carbonate developed on shallow shelves around Archaean islands. Basin development and sedimentation (c. 2000-1870 Ma) were related to gradual subsidence induced by crustal extension. Facies variations and volcanism were in places controlled by the extensional faults. The rocks were metamorphosed to lower the high grade, complexly folded, and intruded by numerous granitoids from c. 1870 to 1730 Ma. Late orogenic felsic volcanics accumulated in local rift systems. Middle Proterozoic sandstone was deposited on a peneplaned and deeply weathered surface from about 1650 Ma. Uranium is enriched in some Archaean and Proterozoic igneous rocks, but there is no local or regional enrichment of the metasedimentary hosts or of the unconformably overlying sandstone. There is no regional gravity, magnetic or radiometric character attributable to the region's significance as a uranium province; contrasts with surrounding sedimentary basins reflect expected differences in rock properties between a heterogeneous igneous/metamorphic region and relatively homogeneous undeformed and unmineralized sediments. Uranium-enriched Archaean and Proterozoic granitoids and felsic volcanics with labile U are likely though not exclusive source rocks. U was probably transported in oxidized low temperature solutions as uranyl complexes and precipitated in reduced, structurally controlled, low-pressure traps. All uranium occurrences are broadly classified as 'Proterozoic unconformity related'. Greatest potential for further discovery is offered in the Alligator Rivers field, where perhaps at least 3 to 5.5 times the

  18. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  19. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  20. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  1. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    The study was aimed at assessing the quality of water from the Ogbe Creek ... indicated the impact of the perturbational stress on the organisms inhabiting the creek. ... experiences seasonal flooding which introduces a lot of detritus and ...

  2. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    rich plankton community. However, recent industrial development along the banks of creek may pose the problem due to waste disposal into this creek system. Losses of marine life diversity are largely the results of conflicting uses, in particular...

  3. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  4. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-02-02

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD AGENCY: Coast Guard, DHS. ACTION: Notice... operation of the Baltimore County highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk... Avenue across Bear Creek, mile 3.4 between Dundalk and Sparrows Point, MD. This change would require the...

  5. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  6. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    Science.gov (United States)

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  7. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    International Nuclear Information System (INIS)

    Matscha, G.; Sutherland, D.

    2005-06-01

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs

  8. Wolf Creek Generating Station containment model

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-01-01

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project

  9. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  10. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  11. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    Science.gov (United States)

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  12. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  13. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  14. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  15. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  16. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  17. Quaternary Geology and Liquefaction Susceptibility, Napa, California 1:100,000 Quadrangle: A Digital Database

    Science.gov (United States)

    Sowers, Janet M.; Noller, Jay S.; Lettis, William R.

    1998-01-01

    Earthquake-induced ground failures such as liquefaction have historically brought loss of life and damage to property and infrastructure. Observations of the effects of historical large-magnitude earthquakes show that the distribution of liquefaction phenomena is not random. Liquefaction is restricted to areas underlain by loose, cohesionless sands and silts that are saturated with water. These areas can be delineated on the basis of thorough geologic, geomorphic, and hydrologic mapping and map analysis (Tinsley and Holzer, 1990; Youd and Perkins, 1987). Once potential liquefaction zones are delineated, appropriate public and private agencies can prepare for and mitigate seismic hazard in these zones. In this study, we create a liquefaction susceptibility map of the Napa 1:100,000 quadrangle using Quaternary geologic mapping, analysis of historical liquefaction information, groundwater data, and data from other studies. The study is atterned after state-of-the-art studies by Youd (1973) Dupre and Tinsley (1980) and Dupre (1990) in the Monterey-Santa Cruz area, Tinsley and others (1985) in the Los Angeles area, and Youd and Perkins (1987) in San Mateo County, California. The study area comprises the northern San Francisco Metropolitan Area, including the cities of Santa Rosa, Vallejo, Napa, Novato, Martinez, and Fairfield (Figure 1). Holocene estuarine deposits, Holocene stream deposits, eolian sands, and artificial fill are widely present in the region (Helley and Lajoie, 1979) and are the geologic materials of greatest concern. Six major faults capable of producing large earthquakes cross the study area, including the San Andreas, Rodgers Creek, Hayward, West Napa, Concord, and Green Valley faults (Figure 1).

  18. 76 FR 65118 - Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD

    Science.gov (United States)

    2011-10-20

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD AGENCY: Coast Guard, DHS. ACTION... regulation. The Baltimore County Revenue Authority (Dundalk Avenue) highway toll drawbridge across Bear Creek... applicable or necessary. Basis and Purpose The drawbridge across Bear Creek, mile 1.5 was removed and...

  19. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  20. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  1. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Science.gov (United States)

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission (Commission) of...

  2. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along the...

  3. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Science.gov (United States)

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  4. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  5. Upper Neogene stratigraphy and tectonics of Death Valley — a review

    Science.gov (United States)

    Knott, J. R.; Sarna-Wojcicki, A. M.; Machette, M. N.; Klinger, R. E.

    2005-12-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ˜3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post - 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.

  6. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  7. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  8. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  9. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  10. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    Science.gov (United States)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  11. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-10-25

    ...] Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor Creek, and... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  12. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  13. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-05-03

    ...] Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor Creek, and... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  14. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  15. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  16. Streamflow conditions along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  17. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...

  18. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  19. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  20. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    Science.gov (United States)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  1. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  2. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  3. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  4. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  5. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  6. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  7. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J.; Burris, J.A.

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  8. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  9. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian Sunflower

    2017-01-01

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  10. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  11. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  12. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  13. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  14. Characterization of surface water contaminants in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Ford, C.; Madix, S.; Rash, C.

    1995-01-01

    Surface waters in the Clinch River and Poplar Creek have been contaminated by activities on the DOE's Oak Ridge Reservation throughout the more than 50 year history of Oak Ridge. Though the Clinch River and Poplar Creek drainage areas are contaminated with heavy metals, organics and radionuclides, public access to these sites is not restricted. The investigation, divided into discrete studies, was tailored to provide a statistically sound picture of contaminants and aqueous toxicity in Poplar Creek, investigate contaminant remobilization from sediments, and determine contaminant levels during a series of ''worst-case'' events. Results for Poplar Creek indicate that average contaminant values were below levels of concern for human health and ecological risk, though contaminant distributions suggest that episodic events contribute sufficiently to system contaminant levels to be of concern. Additionally, water column contaminant levels were significantly higher in particle deposition areas rather than at known contaminant sources. Levels of organic compounds in reference areas to Poplar Creek exceeded those in the Poplar Creek study area. In the Clinch River and Poplar Creek, statistical differences in metal and radionuclide levels from known contaminated areas confirmed previous results, and were used to independently distinguish between sites. Contaminant concentrations were elevated in association with sediments, though no distinction between deposition and remobilization could be made. Due to elevated contaminant levels, and some unexpected contaminant distributions, sites in Poplar Creek and off-channel embayments of the Clinch River were identified that will require additional characterization

  15. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    2000-01-01

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  16. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    Science.gov (United States)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma

  17. Emotional intelligence in professional nursing practice: A concept review using Rodgers's evolutionary analysis approach

    Directory of Open Access Journals (Sweden)

    Angelina E. Raghubir

    2018-04-01

    Full Text Available Background: Knowledge around emotional intelligence originated in the 1990s from research regarding thoughts, emotions and abilities. The concept of emotional intelligence has evolved over the last 25 years; however, the understanding and use is still unclear. Despite this, emotional intelligence has been a widely-considered concept within professions such as business, management, education, and within the last 10 years has gained traction within nursing practice. Aims and objectives: The aim of this concept review is to clarify the understanding of the concept emotional intelligence, what attributes signify emotional intelligence, what are its antecedents, consequences, related terms and implications to advance nursing practice. Method: A computerized search was guided by Rodger's evolutional concept analysis. Data courses included: CINAHL, PyschINFO, Scopus, EMBASE and ProQuest, focusing on articles published in Canada and the United Stated during 1990–2017. Results: A total of 23 articles from various bodies of disciplines were included in this integrative concept review. The analysis reveals that there are many inconsistencies regarding the description of emotional intelligence, however, four common attributes were discovered: self-awareness, self-management, social awareness and social/relationship management. These attributes facilitate the emotional well-being among advance practice nurses and enhances the ability to practice in a way that will benefit patients, families, colleagues and advance practice nurses as working professionals and as individuals. Conclusion: The integration of emotional intelligence is supported within several disciplines as there is consensus on the impact that emotional intelligence has on job satisfaction, stress level, burnout and helps to facilitate a positive environment. Explicit to advance practice nursing, emotional intelligence is a concept that may be central to nursing practice as it has the

  18. The Patroon Creek Contamination Migration Investigation

    International Nuclear Information System (INIS)

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-01-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and

  19. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approach...... for the MMC under submodule (SM) faults. The characteristic of the MMC with arms containing different number of healthy SMs under faults is analyzed. Based on the characteristic, the proposed approach can effectively keep the MMC operation as normal under SM faults. It can effectively improve the MMC...

  20. Diel variation in fish assemblages in tidal creeks in southern Brazil

    Directory of Open Access Journals (Sweden)

    JF. Oliveira-Neto

    Full Text Available Tidal creeks are strongly influenced by tides and are therefore exposed to large differences in salinity and depth daily. Here we compare fish assemblages in tidal creeks between day and night in two tidal creeks in southern Brazil. Monthly day and night, simultaneous collections were carried out in both creeks using fyke nets. Clupeiformes tended to be caught more during the day. Cathorops spixii, Genidens genidens and Rypticus randalli tended to be caught at night. Sciaenidae also tended to be caught more during the night. In general, pelagic species were diurnal, while deep water species were nocturnal. These trends are probably due to a variety of causes, such as phylogeny, predation and net avoidance.

  1. Channel stability of Turkey Creek, Nebraska

    Science.gov (United States)

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  2. The Wells Creek Meteorite Impact Site and Changing Views on Impact Cratering

    Science.gov (United States)

    Ford, J. R. H.; Orchiston, Wayne; Clendening, Ron

    2012-11-01

    Wells Creek is a confirmed meteorite impact site in Tennessee, USA. The Wells Creek structure was first noticed by railroad surveyors around 1855 and brought to the attention of J.M. Safford, Tennessee's State Geologist. He included an insert in the 1869 Geologic Map of Tennessee, which is the first known map to include the structure. The origin of the Wells Creek structure was controversial, and was interpreted as being either the result of volcanic steam explosion or meteorite impact. It was only in the 1960s that Wilson and Stearns were able to state that the impact hypothesis was preferred. Evidence for a Wells Creek meteorite impact includes drill core results, extreme brecciation and shatter cones, while a local lack of volcanic material is telling. Just to the north of the Wells Creek Basin are three small basins that Wilson concluded were associated with the Wells Creek impact event, but evidence regarding the origin of the Austin, Indian Mound and Cave Spring Hollow sites is not conclusive.

  3. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  4. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2015-01-01

    Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.

  5. Hail creek

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2005-09-01

    The paper examines the development of one of the largest coking coal deposits in the world. Hail Creek is 100 km west of Mackay and 35 km northeast of Nebo, Queensland and has proven opencut reserves of 195.6 as at December 2003. Coal processing stated in July 2003. The award winning project included construction of a coal handling and preparation plant, a railway, a village and offsite infrastructure and mine buildings and site services. Coal is mined by conventional dragline and truck/shovel techniques. 1 photo.

  6. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  7. Pine Creek Ranch, FY 2001 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Berry, Mark E.

    2001-01-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring

  8. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  9. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  10. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  11. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    Science.gov (United States)

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  12. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  13. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  14. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  15. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    Science.gov (United States)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  16. 75 FR 57766 - Ryckman Creek Resources, LLC; Notice of Petition

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-498-000] Ryckman Creek Resources, LLC; Notice of Petition September 15, 2010. Take notice that on September 3, 2010, Ryckman Creek..., a petition for an Exemption of Temporary Acts and Operations and Request for Expedited Approval...

  17. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Science.gov (United States)

    2013-12-19

    ... operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across... performing lift bridge maintenance and upgrades for the BNSF Chambers Creek Railway Bridge across Chambers... maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements...

  18. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2015-08-20

    Digital flood-inundation maps for a 12.4-mile reach of Big Creek that extends from 260 feet above the McGinnis Ferry Road bridge to the U.S. Geological Survey (USGS) streamgage at Big Creek below Hog Wallow Creek at Roswell, Georgia (02335757), were developed by the USGS in cooperation with the cities of Alpharetta and Roswell, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Big Creek near Alpharetta, Georgia (02335700). Real-time stage information from this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs for many streams where the USGS operates streamgages and provides flow data. The forecasted peak-stage information for the USGS streamgage at Big Creek near Alpharetta (02335700), available through the AHPS Web site, may be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.

  19. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  20. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  1. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  2. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  3. Sedimentation Study and Flume Investigation, Mission Creek, Santa Barbara, California; Corte Madera Creek, Marin County, California

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2000-01-01

    .... An existing concrete-lined flood control channel on Corte Madera Creek in Marin County, California lacks a debris basin at its upstream terminus and carries significant bed load through a supercritical flow reach...

  4. Anticipated transport of Cs-137 from Steel Creek following L-Area restart

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1982-01-01

    Heat exchanger cooling water, spent fuel storage basin effluents, and process water from P and L-Reactor Areas were discharged to Steel Creek beginning in 1954. Cs-137 was the most significant radionuclide discharged to the environs. Once the Cs-137 was discharged from P and L-Area reactors to Steel Creek, it became associated with silt and clay in the Steel Creek system. After its association with the silt and clay, the Cs-137 becomes part of the sediment transport process and undergoes continual deposition-resuspension in the stream system. This report discusses the expected fate and transport of Cs-137 currently present in the Steel Creek system after L-Reactor restart

  5. Design of fault simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario, L1H 7K4 (Canada)], E-mail: hossam.gabbar@uoit.ca; Sayed, Hanaa E.; Osunleke, Ajiboye S. [Okayama University, Graduate School of Natural Science and Technology, Division of Industrial Innovation Sciences Department of Intelligent Systems Engineering, Okayama 700-8530 (Japan); Masanobu, Hara [AspenTech Japan Co., Ltd., Kojimachi Crystal City 10F, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan)

    2009-08-15

    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  6. Impact of urbanization on flood of Shigu creek in Dongguan city

    Science.gov (United States)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  7. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  8. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  9. Evaluation of the consequences of thermal isolation on biota of upper Steel Creek

    International Nuclear Information System (INIS)

    Gladden, J.B.

    1984-04-01

    The objective of this report is to summarize and evaluate existing data concerning the upper reaches of Steel Creek on the Savannah River Plant (SRP) near Aiken, South Carolina. This report addresses the current ecological status of this stream section and the need and/or desirability of maintaining an ambient water temperature zone of passage with lower Steel Creek or the nearby Meyers Branch, an undisturbed watershed that is a major tributary to Steel Creek. The specific case evaluated involves the construction of an 800 to 1000 acre cooling reservoir on Steel Creek upstream of the confluence of Steel Creek and Meyers Branch. Water temperatures exiting this reservoir are assumed to never exceed 90 0 F. Studies were conducted in connection with the proposed restart of the L-Reactor at SRP. 8 references, 3 figures, 2 tables

  10. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-34-000] Bear Creek..., 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569 Brookwood Village, Suite 749, Birmingham....208, 157.213 and 157.216 of the Commission's Regulations under the Natural Gas Act, and Bear Creek's...

  11. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    Science.gov (United States)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  12. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  13. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  14. Tritium at the Steel Creek Landing

    International Nuclear Information System (INIS)

    Arnett, M.; Heffner, J.D.; Fledderman, P.D.; Littrell, J.W.; Hayes, D.W.; Dodgen, M.S.

    1998-01-01

    In December 1997 and January 1998, the South Carolina Department of Health and Environmental Control (SCDHEC) collected routine weekly grab samples from the Savannah River near the Steel Creek Boat Landing

  15. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    Science.gov (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  16. Phytoplankton characteristics in a polluted Bombay Harbour-Thana-Bassein creek estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Nair, V.R.

    Annual variations in phytoplankton characteristics were studied from Bombay Harbour-Thana creek-Bassein creek (BHTCBC) estuarine confluence to assess the levels of pigment concentration, productivity and, qualitative and qunatitative nature...

  17. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2008-11-01

    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  18. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  19. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems. These ...

  20. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  1. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  2. Paleoseismology: evidence of earth activity

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie

    2016-01-01

    Roč. 105, č. 5 (2016), 1467-1469 ISSN 1437-3254 Institutional support: RVO:67985891 Keywords : Paleoseismology * Colluvial wedge * White Creek Fault _ * Greendale Fault * San Andreas Fault * Paganica Fault Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  3. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  4. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    Science.gov (United States)

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  5. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  6. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  7. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2010-02-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  8. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2009-12-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  9. Stability of a sand spit due to dredging in an adjacent creek

    Digital Repository Service at National Institute of Oceanography (India)

    Patgaonkar, R.S.; Ilangovan, D.; Vethamony, P.; Babu, M.T.; Jayakumar, S.; Rajagopal, M.D.

    , safety factor 1. Introduction The Jatadharmohan creek (hereinafter referred to as JMC) is a tidal creek oriented in the NE-SW direction (Fig. 1) and lies to the south of Paradip, along the east coast of India. This creek runs almost parallel... cor = 15 + (Nobs -15)/2, for Nobs > 15 b) Overburden correction: Ncor = Nobs x 350/ (? + 70) where, ? = overburden pressure The critical circular failure surface is the one for which factor of safety is the least. This is arrived...

  10. Very high geothermal gradient in near surface of the Whataroa Valley adjacent to the Alpine Fault: topographic driving forces and permeable mountains

    Science.gov (United States)

    Upton, P.; Sutherland, R.; Townend, J.; Coussens, J.; Capova, L.

    2015-12-01

    The first phase of the Deep Fault Drilling Project (DFDP-1B) yielded a geothermal gradient of 62.6 ± 2.1 °C/km from a depth of 126 m where it intersected the Alpine Fault principal slip surface beneath Gaunt Creek (Sutherland et al. 2012). Ambient fluid pressures in DFDP-2B at Whataroa River were 8-10% above hydrostatic and a geothermal gradient of >130°C/km was determined, the geothermal gradient being considerably higher than we had predicted previously. 3D coupled thermal/fluid flow models have been generated of the Whataroa Valley and the DFDP-2 drill site. Modelling confirms that the following features, present in the Whataroa Valley, are a requirement for a geothermal gradient of >130°C/km at a depth of 1km beneath the valley; high topography, permeability on the order of 10-15 m2 in both the mountains and beneath the valleys to depths of > 1km below the valley floor, and abundant fluid. The high permeability and large topographic driving force leads to abundant meteoric water flowing downward through the mountains, hitting the permeability barrier of the Alpine Fault and being pushed upward into the valleys. The high geothermal gradient of the DFDP-2B borehole implies that the valleys also have a very high permeability which is likely a result of rock damage along the Alpine Fault.

  11. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  12. Water quality in the upper Shoal Creek basin, southwestern Missouri, 1999-2000

    Science.gov (United States)

    Schumacher, John G.

    2001-01-01

    Results of a water-quality investigation of the upper Shoal Creek Basin in southwestern Missouri indicate that concentrations of total nitrite plus nitrate as nitrogen (NO2t+NO3t) in water samples from Shoal Creek were unusually large [mean of 2.90 mg/L (milligrams per liter), n (sample size)=60] compared to other Missouri streams (mean of 1.02 mg/L, n=1,340). A comparison of instantaneous base-flow loads of NO2t+NO3t indicates that at base-flow conditions, most NO2t+NO3t discharged by Shoal Creek is from nonpoint sources. Nearly all the base-flow instantaneous load of total phosphorus as P (Pt) discharged by Shoal Creek can be attributed to effluent from a municipal wastewater treatment plant. Samples collected from a single runoff event indicate that substantial quantities of Pt can be transported during runoff events compared to base-flow transport. Only minor quantities of NO2t+NO3t are transported during runoff events compared to base-flow transport. Fecal coliform bacteria densities at several locations exceed the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. During 13 months of monitoring at 13 stream sites, fecal coliform densities (median of 277 and 400 col/100 mL) at two sites (sites 2 and 3) on Shoal Creek exceeded the MDNR standard at base-flow conditions. The maximum fecal coliform density of 120,000 col/100 mL was detected at site 3 (MDNR monitoring site) during a runoff event in April 1999 at a peak discharge of 1,150 ft3/s (cubic feet per second). Fecal coliform densities also exceeded the MDNR standard in three tributaries with the largest densities (median of 580 col/100 mL) detected in Pogue Creek. Results of ribopattern analyses indicate that most Escherichia coli (E. coli) bacteria in water samples from the study area probably are from nonhuman sources. The study area contains about 25,000 cattle, and has an estimated annual production of 33 million

  13. A Design Method for Fault Reconfiguration and Fault-Tolerant Control of a Servo Motor

    Directory of Open Access Journals (Sweden)

    Jing He

    2013-01-01

    Full Text Available A design scheme that integrates fault reconfiguration and fault-tolerant position control is proposed for a nonlinear servo system with friction. Analysis of the non-linear friction torque and fault in the system is used to guide design of a sliding mode position controller. A sliding mode observer is designed to achieve fault reconfiguration based on the equivalence principle. Thus, active fault-tolerant position control of the system can be realized. A real-time simulation experiment is performed on a hardware-in-loop simulation platform. The results show that the system reconfigures well for both incipient and abrupt faults. Under the fault-tolerant control mechanism, the output signal for the system position can rapidly track given values without being influenced by faults.

  14. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  15. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J

    2017-01-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  16. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  17. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    International Nuclear Information System (INIS)

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy's Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included

  18. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  19. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  20. 75 FR 31418 - Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek-Council...

    Science.gov (United States)

    2010-06-03

    ... Ranger District; Idaho; Mill Creek--Council Mountain Landscape Restoration Project AGENCY: Forest Service... the Mill Creek--Council Mountain Landscape Restoration Project. The approximate 51,900 acre project area is located about two miles east of Council, Idaho. The Mill Creek--Council Mountain Landscape...

  1. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the

  2. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  3. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    Science.gov (United States)

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance faults of many orientations may or may not be present, only similarly oriented fault planes produce earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.

  4. Summary of the Skookumchuck Creek bull trout enumeration project 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Baxter, James S.; Baxter, Jeremy

    2002-01-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing

  5. Vipava fault (Slovenia

    Directory of Open Access Journals (Sweden)

    Ladislav Placer

    2008-06-01

    Full Text Available During mapping of the already accomplished Razdrto – Senožeče section of motorway and geologic surveying of construction operations of the trunk road between Razdrto and Vipava in northwestern part of External Dinarides on the southwestern slope of Mt. Nanos, called Rebrnice, a steep NW-SE striking fault was recognized, situated between the Predjama and the Ra{a faults. The fault was named Vipava fault after the Vipava town. An analysis of subrecent gravitational slips at Rebrnice indicates that they were probably associated with the activity of this fault. Unpublished results of a repeated levelling line along the regional road passing across the Vipava fault zone suggest its possible present activity. It would be meaningful to verify this by appropriate geodetic measurements, and to study the actual gravitational slips at Rebrnice. The association between tectonics and gravitational slips in this and in similar extreme cases in the areas of Alps and Dinarides points at the need of complex studying of geologic proceses.

  6. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of L reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1981-10-01

    Information is presented on the following subjects: habitat and vegetation, the avifauna, semi-aquatic and terrestrial vertebrates, and aquatic communities of Steel Creek, species of special concern, and radiocesium in Steel Creek. Two main goals of the study were the compilation of a current inventory of the flora and fauna of the Steel Creek ecosystem and an assessment of the probable impacts of radionuclides, primarily 137 Cs, that were released into Steel Creek during earlier reactor operations. Although a thorough evaluation of the impacts of the L reactor restart is impossible at this time, it is concluded that the effects on the Steel Creek ecosystem will be substantial if no mitigative measures are taken

  7. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  8. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1994-02-01

    In this work, the Fuzzy Signed Digraph(FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators

  9. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1994-01-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author)

  10. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  11. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  12. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  13. Optimal design of superconducting fault detector for superconductor triggered fault current limiters

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.; Park, K.B.; Lee, B.W.

    2008-01-01

    We have designed and tested a superconducting fault detector (SFD) for a 22.9 kV superconductor triggered fault current limiters (STFCLs) using Au/YBCO thin films. The SFD is to detect a fault and commutate the current from the primary path to the secondary path of the STFCL. First, quench characteristics of the Au/YBCO thin films were investigated for various faults having different fault duration. The rated voltage of the Au/YBCO thin films was determined from the results, considering the stability of the Au/YBCO elements. Second, the recovery time to superconductivity after quench was measured in each fault case. In addition, the dependence of the recovery characteristics on numbers and dimension of Au/YBCO elements were investigated. Based on the results, a SFD was designed, fabricated and tested. The SFD successfully detected a fault current and carried out the line commutation. Its recovery time was confirmed to be less than 0.5 s, satisfying the reclosing scheme in the Korea Electric Power Corporation (KEPCO)'s power grid

  14. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    Science.gov (United States)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  15. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Feasibility Report and Environmental Statement for Water Resources Development, Cache Creek Basin, California

    Science.gov (United States)

    1979-02-01

    classified as Porno , Lake Miwok, and Patwin. Recent surveys within the Clear Lake-Cache Creek Basin have located 28 archeological sites, some of which...additional 8,400 acre-feet annually to the Lakeport area. Porno Reservoir on Kelsey Creek, being studied by Lake County, also would supplement M&l water...project on Scotts Creek could provide 9,100 acre- feet annually of irrigation water. Also, as previously discussed, Porno Reservoir would furnish

  17. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  18. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  19. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  20. Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The purpose of this paper is to show a novel fault-tolerant tracking control (FTC strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST and simulating it in MATLAB/Simulink.

  1. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  2. ESR dating of the fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2005-01-01

    We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Ulzin nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows : this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and tertiary volcanic sedimentary rocks about 2 Ma, 1.5 Ma and 1 Ma ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800 ka ago. This fault zone was reactivated again between fault breccia derived form Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650 ka and after 125 ka ago. These data suggest that the long-term(200-500 k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. In the Ulzin area, ESR dates from the NW and EW trend faults range from 800 ka to 600 ka NE and EW trend faults were reactivated about between 200 ka and 300 ka ago. On the other hand, ESR date of the NS trend fault is about 400 ka and 50 ka. Results of this research suggest the fault activity near the Ulzin nuclear reactor fault activity continued into the Pleistocene. One ESR date near the Youngkwang nuclear reactor is 200 ka

  3. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    Faults in the earth crust occur within large range of scales from microscale over mesoscopic to large basin scale faults. Frequently deformation associated with faulting is not only limited to the fault plane alone, but rather forms a combination with continuous near field deformation in the wall rock, a phenomenon that is generally called fault drag. The correct interpretation and recognition of fault drag is fundamental for the reconstruction of the fault history and determination of fault kinematics, as well as prediction in areas of limited exposure or beyond comprehensive seismic resolution. Based on fault analyses derived from 3D visualization of natural examples of fault drag, the importance of fault geometry for the deformation of marker horizons around faults is investigated. The complex 3D structural models presented here are based on a combination of geophysical datasets and geological fieldwork. On an outcrop scale example of fault drag in the hanging wall of a normal fault, located at St. Margarethen, Burgenland, Austria, data from Ground Penetrating Radar (GPR) measurements, detailed mapping and terrestrial laser scanning were used to construct a high-resolution structural model of the fault plane, the deformed marker horizons and associated secondary faults. In order to obtain geometrical information about the largely unexposed master fault surface, a standard listric balancing dip domain technique was employed. The results indicate that for this normal fault a listric shape can be excluded, as the constructed fault has a geologically meaningless shape cutting upsection into the sedimentary strata. This kinematic modeling result is additionally supported by the observation of deformed horizons in the footwall of the structure. Alternatively, a planar fault model with reverse drag of markers in the hanging wall and footwall is proposed. Deformation around basin scale normal faults. A second part of this thesis investigates a large scale normal fault

  4. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  5. Fault diagnosis of power transformer based on fault-tree analysis (FTA)

    Science.gov (United States)

    Wang, Yongliang; Li, Xiaoqiang; Ma, Jianwei; Li, SuoYu

    2017-05-01

    Power transformers is an important equipment in power plants and substations, power distribution transmission link is made an important hub of power systems. Its performance directly affects the quality and health of the power system reliability and stability. This paper summarizes the five parts according to the fault type power transformers, then from the time dimension divided into three stages of power transformer fault, use DGA routine analysis and infrared diagnostics criterion set power transformer running state, finally, according to the needs of power transformer fault diagnosis, by the general to the section by stepwise refinement of dendritic tree constructed power transformer fault

  6. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  7. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    Science.gov (United States)

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen

    2014-01-01

    The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.

  9. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  10. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  11. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  12. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their... Granite Creek Watershed Mining Plans analysis area that meets the Purpose of and Need for Action. It is... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an...

  13. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  14. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  15. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    Science.gov (United States)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  16. Study of fault diagnosis software design for complex system based on fault tree

    International Nuclear Information System (INIS)

    Yuan Run; Li Yazhou; Wang Jianye; Hu Liqin; Wang Jiaqun; Wu Yican

    2012-01-01

    Complex systems always have high-level reliability and safety requirements, and same does their diagnosis work. As a great deal of fault tree models have been acquired during the design and operation phases, a fault diagnosis method which combines fault tree analysis with knowledge-based technology has been proposed. The prototype of fault diagnosis software has been realized and applied to mobile LIDAR system. (authors)

  17. Foraminiferal study from Kharo Creek, Kachchh (Gujarat), north west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Chaturvedi, S.K.

    any creek of Kachchh area will also serve as a baseline data to assess the future impact of industrial pollution (if any) as a jetty for offoading cement is being constructed in Kharo creek for proposed cement plant which is coming up in this area....

  18. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  19. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  20. Illite authigenesis during faulting and fluid flow - a microstructural study of fault rocks

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; van der Lelij, Roelant; Margreth, Annina

    2017-04-01

    Authigenic illite can form synkinematically during slip events along brittle faults. In addition it can also crystallize as a result of fluid flow and associated mineral alteration processes in hydrothermal environments. K-Ar dating of illite-bearing fault rocks has recently become a common tool to constrain the timing of fault activity. However, to fully interpret the derived age spectra in terms of deformation ages, a careful investigation of the fault deformation history and architecture at the outcrop-scale, ideally followed by a detailed mineralogical analysis of the illite-forming processes at the micro-scale, are indispensable. Here we integrate this methodological approach by presenting microstructural observations from the host rock immediately adjacent to dated fault gouges from two sites located in the Rolvsnes granodiorite (Bømlo, western Norway). This granodiorite experienced multiple episodes of brittle faulting and fluid-induced alteration, starting in the Mid Ordovician (Scheiber et al., 2016). Fault gouges are predominantly associated with normal faults accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges constrains deformation and alteration due to fluid ingress from the Permian to the Cretaceous, with a cluster of ages for the finest (middle Jurassic. At site one, high-resolution thin section structural mapping reveals a complex deformation history characterized by several coexisting types of calcite veins and seven different generations of cataclasite, two of which contain a significant amount of authigenic and undoubtedly deformation-related illite. At site two, fluid ingress along and adjoining the fault core induced pervasive alteration of the host granodiorite. Quartz is crosscut by calcite veinlets whereas plagioclase, K-feldspar and biotite are almost completely replaced by the main alteration products kaolin, quartz and illite. Illite-bearing micro-domains were physically separated by

  1. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  2. Road construction on Caspar Creek watersheds --- 10-year report on impact

    Science.gov (United States)

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  3. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  4. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  5. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    International Nuclear Information System (INIS)

    Reheis, M.C.; Noller, J.S.

    1991-01-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs

  6. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  7. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    International Nuclear Information System (INIS)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of 238 U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site

  8. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    Science.gov (United States)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a

  9. 77 FR 29918 - Proposed Amendment of Class E Airspace; Battle Creek, MI

    Science.gov (United States)

    2012-05-21

    ... airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at W. K. Kellogg.... Kellogg Airport, Battle Creek, MI. Controlled airspace is needed for the safety and management of IFR... controlled airspace at W.K. Kellogg Airport, Battle Creek, MI. Environmental Review This proposal will be...

  10. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    Science.gov (United States)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing

  11. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  12. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    Science.gov (United States)

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  13. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    Science.gov (United States)

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  14. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  15. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  16. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    Science.gov (United States)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  17. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    Science.gov (United States)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  18. UTILIZING CREEKS FOR INTEGRATED RURAL COASTAL ...

    African Journals Online (AJOL)

    Osondu

    2013-02-09

    Feb 9, 2013 ... This study examines the Utilization of Creeks for Integrated Coastal Development of Ilaje ... utilization, poor fishing techniques, poor sources of water and navigation routes, and manual ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.3 .... together, implement, monitor and evaluate.

  19. Distribution network fault section identification and fault location using artificial neural network

    DEFF Research Database (Denmark)

    Dashtdar, Masoud; Dashti, Rahman; Shaker, Hamid Reza

    2018-01-01

    In this paper, a method for fault location in power distribution network is presented. The proposed method uses artificial neural network. In order to train the neural network, a series of specific characteristic are extracted from the recorded fault signals in relay. These characteristics...... components of the sequences as well as three-phase signals could be obtained using statistics to extract the hidden features inside them and present them separately to train the neural network. Also, since the obtained inputs for the training of the neural network strongly depend on the fault angle, fault...... resistance, and fault location, the training data should be selected such that these differences are properly presented so that the neural network does not face any issues for identification. Therefore, selecting the signal processing function, data spectrum and subsequently, statistical parameters...

  20. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  1. Geochemical results of a hydrothermally altered area at Baker Creek, Blaine County, Idaho

    Science.gov (United States)

    Erdman, James A.; Moye, Falma J.; Theobald, Paul K.; McCafferty, Anne E.; Larsen, Richard K.

    2001-01-01

    The area immediately east of Baker Creek, Blaine County, Idaho, is underlain by a thick section of mafic to intermediate lava flows of the Eocene Challis Volcanic Group. Widespread propylitic alteration surrounds a zone of argillic alteration and an inner core of phyllic alteration. Silicified breccia is present along an east-trending fault within the zone of phyllic alteration. As part of a reconnaissance geochemical survey, soils and plants were sampled. Several species of plants (Douglas-fir [ Pseudotsuga menziesii ], mountain big sagebrush [ Artemisia tridentata ssp. vaseyana ], and elk sedge [ Carex geyerii ]) were collected from 10 upland localities and stream sediments, panned concentrates, and aquatic mosses were collected from 16 drainage basin localities all of which were generally within the area of alteration. Geochemical results yielded anomalous concentrations of molybenum, zinc, silver, and lead in at least half of the seven different sample media and of gold, thallium, arsenic, antimony, manganese, boron, cadmium, bismuth, copper, and beryllium in from one to four of the various media. Part of this suite of elements? silver, gold, arsenic, antimony, thallium, and manganese? suggests that the mineralization in the area is epithermal. Barite and pyrite (commonly botryoidal-framboidal) are widespread throughout the area sampled. Visible gold and pyromorphite (a secondary lead mineral) were identified in only one small drainage basin, but high levels of gold were detected in aquatic mosses over a larger area. Data from the upland and stream sampling indicate two possible mineralized areas. The first mineralized area was identified by a grab sample from an outcrop of quartz stockwork that contained 50 ppb Au, 1.5 ppm Ag, and 50 ppm Mo. Although the soil and plant species that were sampled in the area indicated mineralized bedrock, the Douglas-fir samples were the best indicators of the silver anomaly. The second possible mineralized area centers on the

  2. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  3. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  4. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    Science.gov (United States)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new

  5. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.

    2004-01-01

    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  6. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  7. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  9. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  10. Absolute age determination of quaternary faults

    International Nuclear Information System (INIS)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik

    2000-03-01

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results

  11. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  12. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  13. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  14. Geophysical Imaging of Fault Structures Over the Qadimah Fault, Saudi Arabia

    KAUST Repository

    AlTawash, Feras

    2011-06-01

    The purpose of this study is to use geophysical imaging methods to identify the conjectured location of the ‘Qadimah fault’ near the ‘King Abdullah Economic City’, Saudi Arabia. Towards this goal, 2-D resistivity and seismic surveys were conducted at two different locations, site 1 and site 2, along the proposed trace of the ‘Qadimah fault’. Three processing techniques were used to validate the fault (i) 2-D travel time tomography, (ii) resistivity imaging, and (iii) reflection trim stacking. The refraction traveltime tomograms at site 1 and site 2 both show low-velocity zones (LVZ’s) next to the conjectured fault trace. These LVZ’s are interpreted as colluvial wedges that are often observed on the downthrown side of normal faults. The resistivity tomograms are consistent with this interpretation in that there is a significant change in resistivity values along the conjectured fault trace. Processing the reflection data did not clearly reveal the existence of a fault, and is partly due to the sub-optimal design of the reflection experiment. Overall, the results of this study strongly, but not definitively, suggest the existence of the Qadimah fault in the ‘King Abdullah Economic City’ region of Saudi Arabia.

  15. The distribution of deformation in parallel fault-related folds with migrating axial surfaces: comparison between fault-propagation and fault-bend folding

    Science.gov (United States)

    Salvini, Francesco; Storti, Fabrizio

    2001-01-01

    In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.

  16. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  17. Some Physicochemical Charateristics of Badagry Creek, Nigeria ...

    African Journals Online (AJOL)

    West African Journal of Applied Ecology ... Badagry Creek runs through Nigeria and Republic of Benin with access to the Atlantic Ocean. ... Colour, surface temperature, pH, salinity, turbidity, phenol, dissolved oxygen, biological oxygen ...

  18. 75 FR 9201 - Kilarc-Cow Creek Hydroelectric Project; Notice of Intention To Prepare an Environmental Impact...

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 606-027-CA] Kilarc-Cow... of license for the Kilarc-Cow Creek Hydroelectric Project, FERC No. 606. The project contains two developments and is located on Old Cow Creek and South Cow Creek in Shasta County, northern California. In the...

  19. Continuous fission-product monitor system at Oyster Creek. Final report

    International Nuclear Information System (INIS)

    Collins, L.L.; Chulick, E.T.

    1980-10-01

    A continuous on-line fission product monitor has been installed at the Oyster Creek Nuclear Generating Station, Forked River, New Jersey. The on-line monitor is a minicomputer-controlled high-resolution gamma-ray spectrometer system. An intrinsic Ge detector scans a collimated sample line of coolant from one of the plant's recirculation loops. The minicomputer is a Nuclear Data 6620 system. Data were accumulated for the period from April 1979 through January 1980, the end of cycle 8 for the Oyster Creek plant. Accumulated spectra, an average of three a day, were stored on magnetic disk and subsequently analyzed for fisson products, Because of difficulties in measuring absolute detector efficiency, quantitative fission product concentrations in the coolant could not be determined. Data for iodine fission products are reported as a function of time. The data indicate the existence of fuel defects in the Oyster Creek core during cycle 8

  20. Fault Current Distribution and Pole Earth Potential Rise (EPR) Under Substation Fault

    Science.gov (United States)

    Nnassereddine, M.; Rizk, J.; Hellany, A.; Nagrial, M.

    2013-09-01

    New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.

  1. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  2. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  3. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  4. Characterization of leaky faults

    International Nuclear Information System (INIS)

    Shan, Chao.

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs

  5. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan

    International Nuclear Information System (INIS)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-01-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis

  6. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  7. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  8. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  9. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  10. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  11. FSN-based fault modelling for fault detection and troubleshooting in CANDU stations

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, E., E-mail: elnara.nasimi@brucepower.com [Bruce Power LLP., Tiverton, Ontario(Canada); Gabbar, H.A. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2013-07-01

    An accurate fault modeling and troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities of current and future generation of CANDU designs. This paper presents fault modeling approach using Fault Semantic Network (FSN) methodology with risk estimation. Its application is demonstrated using a case study of Bruce B zone-control level oscillations. (author)

  12. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    Science.gov (United States)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  13. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  14. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves

    Science.gov (United States)

    Li, Y.; Vidale, J.; Cochran, E.

    2003-04-01

    In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused

  16. 22 CFR 17.3 - Fault.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the individual...

  17. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  18. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Todd M. [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)], E-mail: tmhurd@ship.edu; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)

    2008-11-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in {delta}{sup 13}C relative to autotrophs and wild fish. Spring creek sediments were enriched in {delta}{sup 13}C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in {delta}{sup 34}S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in {delta}{sup 15}N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with {delta}{sup 13}C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of

  19. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    International Nuclear Information System (INIS)

    Hurd, Todd M.; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David

    2008-01-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in δ 13 C relative to autotrophs and wild fish. Spring creek sediments were enriched in δ 13 C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in δ 34 S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in δ 15 N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with δ 13 C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and potential exposure

  20. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  1. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Fish Creek, an approximately 25-kilometer-long tributary to Snake River, is located in Teton County in western Wyoming near the town of Wilson. Fish Creek is an important water body because it is used for irrigation, fishing, and recreation and adds scenic value to the Jackson Hole properties it runs through. Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address these concerns, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the hydrology, water quality, and biologic communities of Fish Creek during 2007–11. The hydrology of Fish Creek is strongly affected by groundwater contributions from the area known as the Snake River west bank, which lies east of Fish Creek and west of Snake River. Because of this continuous groundwater discharge to the creek, land-use activities in the west bank area can affect the groundwater quality. Evaluation of nitrate isotopes and dissolved-nitrate concentrations in groundwater during the study indicated that nitrate was entering Fish Creek from groundwater, and that the source of nitrate was commonly a septic/sewage effluent or manure source, or multiple sources, potentially including artificial nitrogen fertilizers, natural soil organic matter, and mixtures of sources. Concentrations of dissolved nitrate and orthophosphate, which are key nutrients for growth of aquatic plants, generally were low in Fish Creek and occasionally were less than reporting levels (not detected). One potential reason for the low nutrient concentrations is that nutrients were being consumed by aquatic plant life that increases during the summer growing season, as a result of the seasonal increase in temperature and larger number of daylight hours. Several aspects of Fish Creek’s hydrology contribute to higher productivity and biovolume of aquatic plants in Fish Creek than typically observed in streams of its size in

  2. Network Fault Diagnosis Using DSM

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing

    2004-01-01

    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  3. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  4. Summary of hydrologic conditions in the Reedy Creek Improvement District, central Florida

    Science.gov (United States)

    German, Edward R.

    1986-01-01

    The Reedy Creek Improvement is an area of about 43 square miles in southwestern Orange and northwestern Osceola Counties, Florida. A systematic program of hydrologic data collection in the Reedy Creek Improvement District and vicinity provided data for assessing the impact of development, mostly the Walt Disney World Theme Park and related development on the hydrology. Data collected include stream discharge, water quality, groundwater levels, lakes levels, and climatological. Rainfall has been less than the long-term average in the Reedy Creek Improvement District since development began in 1968. The deficient rainfall has reduced stream discharge, lowered groundwater and lake levels, and possibly affected water quality in the area. Groundwater levels and lake levels have declined since 1970. However, the coincidence of below-average rainfall with the period of development makes it impossible to assess the effect of pumping on declines. Occurrence of toxic metals does not relate to development, but distribution of insecticides and herbicides does appear to relate to development. Specific conductance, phosphorous, and nitrate concentrations have increased in Reedy Creek since 1970, probably due to disposal of treated wastes. (USGS)

  5. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    Science.gov (United States)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically

  6. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  7. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  8. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault......The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...

  9. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    Science.gov (United States)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  10. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    Science.gov (United States)

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  11. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  12. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  13. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  14. 31 CFR 29.522 - Fault.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at fault...

  15. The macroinvertebrates of Magela Creek, Northern Territory

    International Nuclear Information System (INIS)

    Marchant, R.

    1982-04-01

    The littoral zones of five permanent billabongs in Magela Creek were sampled monthly for macroinvertebrates. Greatest numbers of taxa and individuals were caught in the late wet season and early dry season in the shallow billabongs; in the deep billabongs, seasonal variations were not so marked. These changes appeared to be associated with the development of macrophytes, which offered food and shelter to the invertebrate fauna. The dominant groups were the Chironomidae, Oligochaetae and Ephemeroptera. The seasonal patterns of the catches were sufficiently consistent for future samples to be able to be compared with these initial ones with some confidence that any changes are real. This work is part of a larger study into the biota and water quality of Magela Creek designed to provide data on aquatic communities before mining of the Ranger uranium deposit starts

  16. Wilshire fault: Earthquakes in Hollywood?

    Science.gov (United States)

    Hummon, Cheryl; Schneider, Craig L.; Yeats, Robert S.; Dolan, James F.; Sieh, Kerry E.; Huftile, Gary J.

    1994-04-01

    The Wilshire fault is a potentially seismogenic, blind thrust fault inferred to underlie and cause the Wilshire arch, a Quaternary fold in the Hollywood area, just west of downtown Los Angeles, California. Two inverse models, based on the Wilshire arch, allow us to estimate the location and slip rate of the Wilshire fault, which may be illuminated by a zone of microearthquakes. A fault-bend fold model indicates a reverse-slip rate of 1.5-1.9 mm/yr, whereas a three-dimensional elastic-dislocation model indicates a right-reverse slip rate of 2.6-3.2 mm/yr. The Wilshire fault is a previously unrecognized seismic hazard directly beneath Hollywood and Beverly Hills, distinct from the faults under the nearby Santa Monica Mountains.

  17. Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico

    Science.gov (United States)

    Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.

    2017-12-01

    The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in

  18. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield.

    Science.gov (United States)

    Taira, Taka'aki; Silver, Paul G; Niu, Fenglin; Nadeau, Robert M

    2009-10-01

    Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

  19. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  20. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  1. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Science.gov (United States)

    2012-01-11

    ... Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park AGENCY: National Park...), Rock Creek Park, Washington, DC The Plan will support long-term protection, preservation, and restoration of native vegetation and other natural and cultural resources in Rock Creek Park. DATES: The NPS...

  2. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  3. Development of direct dating methods of fault gouges: Deep drilling into Nojima Fault, Japan

    Science.gov (United States)

    Miyawaki, M.; Uchida, J. I.; Satsukawa, T.

    2017-12-01

    It is crucial to develop a direct dating method of fault gouges for the assessment of recent fault activity in terms of site evaluation for nuclear power plants. This method would be useful in regions without Late Pleistocene overlying sediments. In order to estimate the age of the latest fault slip event, it is necessary to use fault gouges which have experienced high frictional heating sufficient for age resetting. It is said that frictional heating is higher in deeper depths, because frictional heating generated by fault movement is determined depending on the shear stress. Therefore, we should determine the reliable depth of age resetting, as it is likely that fault gouges from the ground surface have been dated to be older than the actual age of the latest fault movement due to incomplete resetting. In this project, we target the Nojima fault which triggered the 1995 Kobe earthquake in Japan. Samples are collected from various depths (300-1,500m) by trenching and drilling to investigate age resetting conditions and depth using several methods including electron spin resonance (ESR) and optical stimulated luminescence (OSL), which are applicable to ages later than the Late Pleistocene. The preliminary results by the ESR method show approx. 1.1 Ma1) at the ground surface and 0.15-0.28 Ma2) at 388 m depth, respectively. These results indicate that samples from deeper depths preserve a younger age. In contrast, the OSL method dated approx. 2,200 yr1) at the ground surface. Although further consideration is still needed as there is a large margin of error, this result indicates that the age resetting depth of OSL is relatively shallow due to the high thermosensitivity of OSL compare to ESR. In the future, we plan to carry out further investigation for dating fault gouges from various depths up to approx. 1,500 m to verify the use of these direct dating methods.1) Kyoto University, 2017. FY27 Commissioned for the disaster presentation on nuclear facilities (Drilling

  4. Water quality, selected chemical characteristics, and toxicity of base flow and urban stormwater in the Pearson Creek and Wilsons Creek Basins, Greene County, Missouri, August 1999 to August 2000

    Science.gov (United States)

    Richards, Joseph M.; Johnson, Byron Thomas

    2002-01-01

    The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and

  5. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  6. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...

  7. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  8. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  9. The natural channel of Brandywine Creek, Pennsylvania

    Science.gov (United States)

    Wolman, M.G.

    1955-01-01

    This study of the channel of Brandy wine Creek, Pennsylvania, consists of three parts. The first is an analysis of the changes which take place in the width, depth, velocity, slope of the water surface, suspended load, and roughness factor with changing discharge below the bankfull stage at each of several widely separated cross sections of the channel. Expressed as functions of the discharge, it is found that the variables behave systematically. In every section studied, as the discharge increases, the velocity increases to about the 0.6 power, depth to the 0.4, and load to the 2.0 power of the discharge. The roughness decreases to the 0.2 power of the discharge. The relative magnitudes and the direction of these variations are similar to those which have been observed in other rivers in the United States, primarily in the West. Some modifications of the hypotheses applicable to the western rivers are probably required because on Brandywine Creek the difference between the materials on the bed and in the banks is considerably greater than it is on most of the western rivers studied. In the second part of the paper the progressive changes of the same variables in the downstream direction with increasing discharge at a given frequency are described. Despite the disorderly appearance of the stream, it is found that the variables display a progressive, orderly change in the downstream direction when traced from the headwater tributaries through the trunk stream of Brandywine Creek. At a given frequency of flow, width increases with discharge to about the 0.5 power. Depth increases downstream somewhat less rapidly, while the slope and roughness both decrease in the downstream direction. Despite a decrease in the size of the material on the bed, both the mean velocity and the mean bed velocity increase downstream. The rates of change of these variables are in close accord with the changes observed on rivers flowing in alluvium and in stable irrigation canals. These

  10. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  11. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  12. Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Ponti, Daniel J.; Wells, Ray E.

    1991-01-01

    The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on

  13. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  14. Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    International Nuclear Information System (INIS)

    Bartlett, L.M.; Hurdle, E.E.; Kelly, E.M.

    2009-01-01

    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted

  15. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  16. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  17. Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington

    Science.gov (United States)

    Nelson, Alan R.; Personius, Stephen; Wells, Ray; Schermer, Elizabeth R.; Bradley, Lee-Ann; Buck, Jason; Reitman, Nadine G.

    2017-01-01

    The Lake Creek–Boundary Creek fault, previously mapped in Miocene bedrock as an oblique thrust on the north flank of the Olympic Mountains, poses a significant earthquake hazard. Mapping using 2015 light detection and ranging (lidar) confirms 2004 lidar mapping of postglacial (≥14  km along a splay fault, the Sadie Creek fault, west of Lake Crescent. Scarp morphology suggests repeated earthquake ruptures along the eastern section of the Lake Creek–Boundary Creek fault and the Sadie Creek fault since ∼13  ka">∼13  ka. Right‐lateral (∼11–28  m">∼11–28  m) and vertical (1–2 m) cumulative fault offsets suggest slip rates of ∼1–2  mm/yr">∼1–2  mm/yr Stratigraphic and age‐model data from five trenches perpendicular to scarps at four sites on the eastern section of the fault show evidence of 3–5 surface‐rupturing earthquakes. Near‐vertical fault dips and upward‐branching fault patterns in trenches, abrupt changes in the thickness of stratigraphic units across faults, and variations in vertical displacement of successive stratigraphic units along fault traces also suggest a large lateral component of slip. Age models suggest two earthquakes date from 1.3±0.8">1.3±0.8 and 2.9±0.6  ka">2.9±0.6  ka; evidence and ages for 2–3 earlier earthquakes are less certain. Assuming 3–5 postglacial earthquakes, lateral and vertical cumulative fault offsets yield average slip per earthquake of ∼4.6  m">∼4.6  m, a lateral‐to‐vertical slip ratio of ∼10:1">∼10:1, and a recurrence interval of 3.5±1.0  ka">3.5±1.0  ka. Empirical relations yield moment magnitude estimates of M 7.2–7.5 (slip per earthquake) and 7.1–7.3 (56 km maximum rupture length). An apparent left‐lateral Miocene to right‐lateral Holocene slip reversal on the faults is probably related to overprinting of east‐directed, accretion‐dominated deformation in the eastern core of the Olympic

  18. Concentration of metals in shrimps and crabs from Thane-Bassein creek system, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamurti, A.J.; Nair, V.R.

    was in the order of Zn>Cu>Cd>Ni>Pb. In shrimps maximum level of Cu (av. 41.3 ppm dry wt) and Zn (av. 164 ppm dry wt) were observed respectively in Metapenaeus brevicornis from Thane Creek and Exopalaemon stylifera from Bassein Creek. The crabs, Scylla serrata from...

  19. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  20. Reactivated basement structures in the central Savannah River area and their relationship to coastal plain deformation

    International Nuclear Information System (INIS)

    Cumbest, R.J.; Price, V.; Temples, T.J.; Fallaw, W.C.; Snipes, D.S.

    1993-01-01

    Structural surface mapping and geophysical studies have identified several faults in the crystalline basement and overlying Coastal Plain sedimentary sequences in the central Savannah River area. Major subsurface basement shear zones occur parallel to and near Upper Three Runs Creek and Tinker Creek and are associated with linear aeromagnetic anomalies. Reflection seismic imaging of the basement shows a band of southeast dipping events parallel to Upper Three Runs Creek. Drill core from basement contain phyllonites, mylonites, fault breccia and pseudotachylite. The magnetic anomalies also mark the boundary separating greenschist facies metavolcanic rocks from amphibolite facies felsic gneiss, schist, and amphibolite. These features are similar to those that characterize other Paleozoic faults of the Eastern Piedmont Fault system. Reflection seismic imaging shows the sub-Cretaceous unconformity as well defined and easily identified event as well as easily traced laterally extensive events in Coastal Plain sequences. The unconformity and sedimentary sequences are faulted or deformed in several locations which also coincide with changes in dip of the unconformity. In the vicinity of Upper Three Runs Creek the unconformity shows a broad warping across which the elevation drops to the southeast and sedimentary sequences show a marked rate of thickening southeast. This indicates deformation of the basement exerted a control on deposition of the Coastal Plain sediments with down to the southeast movement. The basement shear zones are closely associated with the Dunbarton basin and are probable reactivated Paleozoic structures associated with extensional basin development as commonly seen associated with extensional basins on the east coast of North America

  1. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  2. Research of fault activity in Japan

    International Nuclear Information System (INIS)

    Nohara, T.; Nakatsuka, N.; Takeda, S.

    2004-01-01

    Six hundreds and eighty earthquakes causing significant damage have been recorded since the 7. century in Japan. It is important to recognize faults that will or are expected to be active in future in order to help reduce earthquake damage, estimate earthquake damage insurance and siting of nuclear facilities. Such faults are called 'active faults' in Japan, the definition of which is a fault that has moved intermittently for at least several hundred thousand years and is expected to continue to do so in future. Scientific research of active faults has been ongoing since the 1930's. Many results indicated that major earthquakes and fault movements in shallow crustal regions in Japan occurred repeatedly at existing active fault zones during the past. After the 1995 Southern Hyogo Prefecture Earthquake, 98 active fault zones were selected for fundamental survey, with the purpose of efficiently conducting an active fault survey in 'Plans for Fundamental Seismic Survey and Observation' by the headquarters for earthquake research promotion, which was attached to the Prime Minister's office of Japan. Forty two administrative divisions for earthquake disaster prevention have investigated the distribution and history of fault activity of 80 active fault zones. Although earthquake prediction is difficult, the behaviour of major active faults in Japan is being recognised. Japan Nuclear Cycle Development Institute (JNC) submitted a report titled 'H12: Project to Establish the. Scientific and Technical Basis for HLW Disposal in Japan' to the Atomic Energy Commission (AEC) of Japan for official review W. The Guidelines, which were defined by AEC, require the H12 Project to confirm the basic technical feasibility of safe HLW disposal in Japan. In this report the important issues relating to fault activity were described that are to understand the characteristics of current fault movements and the spatial extent and magnitude of the effects caused by these movements, and to

  3. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  4. 75 FR 66077 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental...

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12555-004-PA] Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental Assessment... Energy Projects has reviewed the application for an original license for the Mahoning Creek Hydroelectric...

  5. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  6. Fault Recoverability Analysis via Cross-Gramian

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2016-01-01

    Engineering systems are vulnerable to different kinds of faults. Faults may compromise safety, cause sub-optimal operation and decline in performance if not preventing the whole system from functioning. Fault tolerant control (FTC) methods ensure that the system performance maintains within...... with feedback control. Fault recoverability provides important and useful information which could be used in analysis and design. However, computing fault recoverability is numerically expensive. In this paper, a new approach for computation of fault recoverability for bilinear systems is proposed...... approach for computation of fault recoverability is proposed which reduces the computational burden significantly. The proposed results are used for an electro-hydraulic drive to reveal the redundant actuating capabilities in the system....

  7. 78 FR 26063 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Final Environmental...

    Science.gov (United States)

    2013-05-03

    ...-100-00-0-0, CUPCA00] Central Utah Project Completion Act; East Hobble Creek Restoration Project Final... Creek Restoration Project. These two agencies have determined that the proposed [[Page 26064

  8. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  9. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of the L-reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1982-10-01

    This report summarizes the findings of slightly more than one year's study of the Steel Creek ecosystem. Generally, the findings have allowed us to refine our understanding of the structural and functional organization of the Steel Creek ecosystem which is an essential prerequisite for predicting the impacts associated with L-reactor restart. Reanalysis of the Steel Creek plant community relationships using 1981 aerial photography revealed that this component of the delta ecosystem continues to change as a result of natural successional processes. The major detectable changes have occurred on the more elevated portions of Steel Creek delta where coverage by woody species (especially willow) is continuing to increase. This successional woody community is invading areas previously dominated by persistent herbaceous species such as cut grass. Eleven vegetation associations were identified in the Steel Creek delta area, including two associations that were not apparently affected by the earlier reactor operations

  10. Drywell corrosion stopped at Oyster Creek

    International Nuclear Information System (INIS)

    Lipford, B.L.; Flynn, J.C.

    1993-01-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results

  11. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...... availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault...... is detected. The envelope of the possible remedial actions is wide. This paper introduces tools to analyze and explore structure and other fundamental properties of an automated system such that any redundancy in the process can be fully utilized to enhance safety and a availability....

  12. Seismotectonic Implications Of Clustered Regional GPS Velocities In The San Francisco Bay Region, California

    Science.gov (United States)

    Graymer, R. W.; Simpson, R.

    2012-12-01

    We have used a hierarchical agglomerative clustering algorithm with Euclidean distance and centroid linkage, applied to continuous GPS observations for the Bay region available from the U.S. Geological Survey website. This analysis reveals 4 robust, spatially coherent clusters that coincide with 4 first-order structural blocks separated by 3 major fault systems: San Andreas (SA), Southern/Central Calaveras-Hayward-Rodgers Creek-Maacama (HAY), and Northern Calaveras-Concord-Green Valley-Berryessa-Bartlett Springs (NCAL). Because observations seaward of the San Gregorio (SG) fault are few in number, the cluster to the west of SA may actually contain 2 major structural blocks not adequately resolved: the Pacific plate to the west of the northern SA and a Peninsula block between the Peninsula SA and the SG fault. The average inter-block velocities are 11, 10, and 9 mm/yr across SA, HAY, and NCAL respectively. There appears to be a significant component of fault-normal compression across NCAL, whereas SA and HAY faults appear to be, on regional average, purely strike-slip. The velocities for the Sierra Nevada - Great Valley (SNGV) block to the west of NCAL are impressive in their similarity. The cluster of these velocities in a velocity plot forms a tighter grouping compared with the groupings for the other cluster blocks, suggesting a more rigid behavior for this block than the others. We note that for 4 clusters, none of the 3 cluster boundaries illuminate geologic structures other than north-northwest trending dominantly strike-slip faults, so plate motion is not accommodated by large-scale fault-parallel compression or extension in the region or by significant plastic deformation , at least over the time span of the GPS observations. Complexities of interseismic deformation of the upper crust do not allow simple application of inter-block velocities as long-term slip rates on bounding faults. However, 2D dislocation models using inter-block velocities and typical

  13. Introduction to fault tree analysis

    International Nuclear Information System (INIS)

    Barlow, R.E.; Lambert, H.E.

    1975-01-01

    An elementary, engineering oriented introduction to fault tree analysis is presented. The basic concepts, techniques and applications of fault tree analysis, FTA, are described. The two major steps of FTA are identified as (1) the construction of the fault tree and (2) its evaluation. The evaluation of the fault tree can be qualitative or quantitative depending upon the scope, extensiveness and use of the analysis. The advantages, limitations and usefulness of FTA are discussed

  14. Fault-tolerant control for current sensors of doubly fed induction generators based on an improved fault detection method

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    Fault-tolerant control of current sensors is studied in this paper to improve the reliability of a doubly fed induction generator (DFIG). A fault-tolerant control system of current sensors is presented for the DFIG, which consists of a new current observer and an improved current sensor fault...... detection algorithm, and fault-tolerant control system are investigated by simulation. The results indicate that the outputs of the observer and the sensor are highly coherent. The fault detection algorithm can efficiently detect both soft and hard faults in current sensors, and the fault-tolerant control...

  15. Physical Processes Affecting the Distribution of Diydymosphenia Geminata Biomass Bloom in Rapid Creek, South Dakota

    Science.gov (United States)

    Abessa, M. B.; Sundareshwar, P. V.; Updhayay, S.

    2010-12-01

    Didymosphenia geminata is a freshwater diatom that has invaded and colonized many of the world’s oligotrophic streams and rivers, including Rapid Creek in Western South Dakota - a perennial oligotrophic stream that emerges from the Black Hills and is fed by cold water release from the Pactola Reservoir. Since 2002, D. geminata blooms have been observed in certain stretches of the Rapid Creek. These massive blooms are localized to certain segments of the Creek where the flow is mainly slow, stable and shallow dominated by boulder type bed material and submerged large woody debris. Water chemistry data from this Creek showed the variability of major nutrients such as phosphate, nitrates/nitrites and ammonium are insignificant across our study sites while the nature of the stream flow is quite irregular. We measured flow rates, depth, temperature, stream bed characteristics, water chemistry, and D. geminata biomass in regions with and without blooms. The presentation will discuss how changes in physical parameters along the various reaches of the Creek impact the biomass distribution of this invasive alga.

  16. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    Science.gov (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  17. Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations

    Science.gov (United States)

    2013-07-01

    Water Bodies Organization 1 SWMM5 LMCW EPA 1 HEC - RAS Minnehaha Creek and Lake Minnetonka system HEC 2 CE-QUAL-W2 Lake Minnetonka system ERDC...and adjusted as needed to adequately address project goals and priorities. SWMM5 and HEC - RAS are the recommended Tier 1 models. The current SWMM5...model is an appropriate modeling platform for modeling subbasins in the LMCW. HEC - RAS should be used to model Minnehaha Creek and the Lake Minnetonka

  18. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Science.gov (United States)

    2010-12-14

    ... and/or affected individuals, organizations and governmental agencies will be used to identify resource... upcoming 2015 World Alpine Championships. In order for Beaver Creek to continue to host international... located at Beaver Creek. Hosting the 2015 International Skiing Federation (FIS) World Alpine Ski...

  19. 75 FR 15705 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12555-004-PA] Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Environmental Assessment March 23, 2010. In... reviewed the application for an original license for the Mahoning Creek Hydroelectric Project, to be...

  20. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...... to the quality of decisions given to navigators....

  1. Multi-link faults localization and restoration based on fuzzy fault set for dynamic optical networks.

    Science.gov (United States)

    Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo

    2013-01-28

    Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.

  2. Collaborative monitoring in Walnut Creek, California

    Science.gov (United States)

    Heidi Ballard; Ralph Kraetsch; Lynn Huntsinger

    2002-01-01

    In 1995 and 2000, a monitoring program was designed and implemented to track oak regeneration and native grass populations in target management areas in the four Open Space Preserves of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the...

  3. 77 FR 58979 - Boundary Establishment for the Au Sable, Bear Creek, Manistee, and the Pine Wild and Scenic...

    Science.gov (United States)

    2012-09-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Establishment for the Au Sable, Bear Creek..., Washington Office, is transmitting the final boundary of the Au Sable, Bear Creek, Manistee, and the Pine..., Cadillac, MI 49601, (231) 775- 5023, ext. 8756. SUPPLEMENTARY INFORMATION: The Au Sable, Bear Creek...

  4. CREEK Project's Oyster Growth and Survival Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  5. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  6. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    OpenAIRE

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01

    Horseshoe Creek, located in the Oakland Hills of California, flows through a remnant oak and redwood forests in Horseshoe Canyon. From the 1880s through the 1930s, nearby Leona sulfur mine deposited massive tailings piles in the valleys east of Horseshoe Creek. During that time, clear-cut logging of redwoods denuded and destabilized the surrounding hillsides. Today, most of Horseshoe Creekʼs upper and middle reaches are either culverted or transformed into an engineered channel, and Merritt C...

  7. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  8. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  9. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    Science.gov (United States)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  10. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  11. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    Science.gov (United States)

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  12. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT for Aquaculture

    Directory of Open Access Journals (Sweden)

    Yingyi Chen

    2017-01-01

    Full Text Available In the Internet of Things (IoT equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  13. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    Science.gov (United States)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  14. Rated-voltage enhancement by fast-breaking of the fault current for a resistive superconducting fault current limiter component

    International Nuclear Information System (INIS)

    Park, C.-R.; Kim, M.-J.; Yu, S.-D.; Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.

    2010-01-01

    Performance of a resistive superconducting fault current limiter (SFCL) component is usually limited by temperature rise associated with energy input by fault current application during a fault. Therefore, it is expected that short application of the fault current may enhance the power ratings of the component. This can be accomplished by a combination of a HTS component and a mechanical switch. The fast switch (FS) developed recently enables the fault duration to be as short as 1/2 cycle after a fault. Various second-generation (2G) high temperature superconductors (HTS) and YBCO thin films have been tested. The relation between the rated voltage V and the fault duration time t was found to be V 2 ∼ t -1 . Based upon the relation, we predict that when the FS break the fault current within 1/2 cycle after a fault, the amount of HTS components required to build an SFCL can be reduced by as much as about 60%, of that when breaking the fault current at three cycles.

  15. Architecting Fault-Tolerant Software Systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are

  16. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    Science.gov (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  17. An effort allocation model considering different budgetary constraint on fault detection process and fault correction process

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2016-01-01

    Full Text Available Fault detection process (FDP and Fault correction process (FCP are important phases of software development life cycle (SDLC. It is essential for software to undergo a testing phase, during which faults are detected and corrected. The main goal of this article is to allocate the testing resources in an optimal manner to minimize the cost during testing phase using FDP and FCP under dynamic environment. In this paper, we first assume there is a time lag between fault detection and fault correction. Thus, removal of a fault is performed after a fault is detected. In addition, detection process and correction process are taken to be independent simultaneous activities with different budgetary constraints. A structured optimal policy based on optimal control theory is proposed for software managers to optimize the allocation of the limited resources with the reliability criteria. Furthermore, release policy for the proposed model is also discussed. Numerical example is given in support of the theoretical results.

  18. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip.

    Science.gov (United States)

    Yang, Zhibing; Juanes, Ruben

    2018-02-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard. Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method. We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous (homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault, the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  19. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip

    Science.gov (United States)

    Yang, Zhibing; Juanes, Ruben

    2018-02-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard. Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method. We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous (homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault, the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  20. Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States

    Science.gov (United States)

    Wells, M.L.; Snee, L.W.; Blythe, A.E.

    2000-01-01

    Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine the above for the top-to-the-east Raft River detachment fault and shear zone by study of spatial gradients in 40Ar/39Ar and fission track cooling ages of footwall rocks and cooling histories and by comparison of cooling histories with deformation temperatures. Mica 40Ar/39Ar cooling ages indicate that extension-related cooling began at ???25-20 Ma, and apatite fission track ages show that motion on the Raft River detachment proceeded until ???7.4 Ma. Collective cooling curves show acceleration of cooling rates during extension, from 5-10??C/m.y. to rates in excess of 70-100??C/m.y. The apparent slip rate along the Raft River detachment, recorded in spatial gradients of apatite fission track ages, is 7 mm/yr between 13.5 and 7.4 Ma and is interpreted to record the rate of migration of a rolling hinge. Microstructural study of footwall mylonite indicates that deformation conditions were no higher than middle greenschist facies and that deformation occurred during cooling to cataclastic conditions. These data show that the shear zone and detachment fault represent a continuum produced by progressive exhumation and shearing during Miocene extension and preclude the possibility of a Mesozoic age for the ductile shear zone. Moderately rapid cooling in middle Eocene time likely records exhumation resulting from an older, oppositely rooted, extensional shear zone along the west side of the Grouse Creek, Raft River, and Albion Mountains. Copyright 2000 by the American Geophysical Union.

  1. Fault-tolerant reference generation for model predictive control with active diagnosis of elevator jamming faults

    NARCIS (Netherlands)

    Ferranti, L.; Wan, Y.; Keviczky, T.

    2018-01-01

    This paper focuses on the longitudinal control of an Airbus passenger aircraft in the presence of elevator jamming faults. In particular, in this paper, we address permanent and temporary actuator jamming faults using a novel reconfigurable fault-tolerant predictive control design. Due to their

  2. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1994-01-01

    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  3. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  4. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  5. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  6. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Xiaojie Guo

    2016-12-01

    Full Text Available Fault diagnosis in rotating machinery is significant to avoid serious accidents; thus, an accurate and timely diagnosis method is necessary. With the breakthrough in deep learning algorithm, some intelligent methods, such as deep belief network (DBN and deep convolution neural network (DCNN, have been developed with satisfactory performances to conduct machinery fault diagnosis. However, only a few of these methods consider properly dealing with noises that exist in practical situations and the denoising methods are in need of extensive professional experiences. Accordingly, rethinking the fault diagnosis method based on deep architectures is essential. Hence, this study proposes an automatic denoising and feature extraction method that inherently considers spatial and temporal correlations. In this study, an integrated deep fault recognizer model based on the stacked denoising autoencoder (SDAE is applied to both denoise random noises in the raw signals and represent fault features in fault pattern diagnosis for both bearing rolling fault and gearbox fault, and trained in a greedy layer-wise fashion. Finally, the experimental validation demonstrates that the proposed method has better diagnosis accuracy than DBN, particularly in the existing situation of noises with superiority of approximately 7% in fault diagnosis accuracy.

  7. Fault diagnostics of dynamic system operation using a fault tree based method

    International Nuclear Information System (INIS)

    Hurdle, E.E.; Bartlett, L.M.; Andrews, J.D.

    2009-01-01

    For conventional systems, their availability can be considerably improved by reducing the time taken to restore the system to the working state when faults occur. Fault identification can be a significant proportion of the time taken in the repair process. Having diagnosed the problem the restoration of the system back to its fully functioning condition can then take place. This paper expands the capability of previous approaches to fault detection and identification using fault trees for application to dynamically changing systems. The technique has two phases. The first phase is modelling and preparation carried out offline. This gathers information on the effects that sub-system failure will have on the system performance. Causes of the sub-system failures are developed in the form of fault trees. The second phase is application. Sensors are installed on the system to provide information about current system performance from which the potential causes can be deduced. A simple system example is used to demonstrate the features of the method. To illustrate the potential for the method to deal with additional system complexity and redundancy, a section from an aircraft fuel system is used. A discussion of the results is provided.

  8. Residential runoff as a source of pyrethroid pesticides to urban creeks

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P. [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720-3140 (United States)], E-mail: dweston@berkeley.edu; Holmes, R.W. [Water Branch, California Department of Fish and Game, 830 S Street, Sacramento, CA 95811 (United States)], E-mail: rholmes@dfg.ca.gov; Lydy, M.J. [Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)], E-mail: mlydy@siu.edu

    2009-01-15

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations.

  9. Residential runoff as a source of pyrethroid pesticides to urban creeks

    International Nuclear Information System (INIS)

    Weston, D.P.; Holmes, R.W.; Lydy, M.J.

    2009-01-01

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations

  10. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    Science.gov (United States)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  11. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    Science.gov (United States)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by

  12. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    Science.gov (United States)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  13. 75 FR 62112 - Intent To Prepare an Environmental Impact Statement (EIS) for the San Juan Creek and Tributaries...

    Science.gov (United States)

    2010-10-07

    ... evaluate flood risk management alternative measures along the lower portions of San Juan, Trabuco, and Oso... to its confluence with Tijeras Creek; and Oso Creek from its confluence with Trabuco Creek northwest approximately 4.5 miles to just north of Oso Parkway. The communities of San Juan Capistrano, Mission Viejo...

  14. Simulation of Co-Seismic Off-Fault Stress Effects: Influence of Fault Roughness and Pore Pressure Coupling

    Science.gov (United States)

    Fälth, B.; Lund, B.; Hökmark, H.

    2017-12-01

    Aiming at improved safety assessment of geological nuclear waste repositories, we use dynamic 3D earthquake simulations to estimate the potential for co-seismic off-fault distributed fracture slip. Our model comprises a 12.5 x 8.5 km strike-slip fault embedded in a full space continuum where we apply a homogeneous initial stress field. In the reference case (Case 1) the fault is planar and oriented optimally for slip, given the assumed stress field. To examine the potential impact of fault roughness, we also study cases where the fault surface has undulations with self-similar fractal properties. In both the planar and the undulated cases the fault has homogeneous frictional properties. In a set of ten rough fault models (Case 2), the fault friction is equal to that of Case 1, meaning that these models generate lower seismic moments than Case 1. In another set of ten rough fault models (Case 3), the fault dynamic friction is adjusted such that seismic moments on par with that of Case 1 are generated. For the propagation of the earthquake rupture we adopt the linear slip-weakening law and obtain Mw 6.4 in Case 1 and Case 3, and Mw 6.3 in Case 2 (35 % lower moment than Case 1). During rupture we monitor the off-fault stress evolution along the fault plane at 250 m distance and calculate the corresponding evolution of the Coulomb Failure Stress (CFS) on optimally oriented hypothetical fracture planes. For the stress-pore pressure coupling, we assume Skempton's coefficient B = 0.5 as a base case value, but also examine the sensitivity to variations of B. We observe the following: (I) The CFS values, and thus the potential for fracture slip, tend to increase with the distance from the hypocenter. This is in accordance with results by other authors. (II) The highest CFS values are generated by quasi-static stress concentrations around fault edges and around large scale fault bends, where we obtain values of the order of 10 MPa. (III) Locally, fault roughness may have a

  15. Fuzzy fault diagnosis system of MCFC

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenlei; Qian Feng; Cao Guangyi

    2005-01-01

    A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.

  16. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  17. 5 CFR 845.302 - Fault.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission that...

  18. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  19. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    bedoti was the true inhabitant. In general zooplankton production indicated 1.5 fold increase towards the upper reaches of the creek where salinity variations were drastic. A more diversified faunal assemblage of oceanic and neritic species characterised...

  20. 20 CFR 410.561b - Fault.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see § 410...

  1. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  2. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  3. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    Science.gov (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  4. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  5. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  6. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  7. High stresses stored in fault zones: example of the Nojima fault (Japan)

    Science.gov (United States)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a

  8. High stresses stored in fault zones: example of the Nojima fault (Japan

    Directory of Open Access Journals (Sweden)

    A.-M. Boullier

    2018-04-01

    Full Text Available During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan that was drilled after the Hyogo-ken Nanbu (Kobe earthquake is studied by using electron backscattered diffraction (EBSD and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7–11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to

  9. Subaru FATS (fault tracking system)

    Science.gov (United States)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  10. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand

    Science.gov (United States)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (< 1 cm to < 7 cm) layered structure or a relatively thick (10s cm) package lacking a detectable macroscopic fabric. Lithological and related rheological contrasts are widely assumed to govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial

  11. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    Science.gov (United States)

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  12. 5 CFR 831.1402 - Fault.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The fact...

  13. Fault tree analysis

    International Nuclear Information System (INIS)

    1981-09-01

    Suggestion are made concerning the method of the fault tree analysis, the use of certain symbols in the examination of system failures. This purpose of the fault free analysis is to find logical connections of component or subsystem failures leading to undesirable occurrances. The results of these examinations are part of the system assessment concerning operation and safety. The objectives of the analysis are: systematical identification of all possible failure combinations (causes) leading to a specific undesirable occurrance, finding of reliability parameters such as frequency of failure combinations, frequency of the undesirable occurrance or non-availability of the system when required. The fault tree analysis provides a near and reconstructable documentation of the examination. (orig./HP) [de

  14. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  15. Quaternary faulting in the Tatra Mountains, evidence from cave morphology and fault-slip analysis

    Directory of Open Access Journals (Sweden)

    Szczygieł Jacek

    2015-06-01

    Full Text Available Tectonically deformed cave passages in the Tatra Mts (Central Western Carpathians indicate some fault activity during the Quaternary. Displacements occur in the youngest passages of the caves indicating (based on previous U-series dating of speleothems an Eemian or younger age for those faults, and so one tectonic stage. On the basis of stress analysis and geomorphological observations, two different mechanisms are proposed as responsible for the development of these displacements. The first mechanism concerns faults that are located above the valley bottom and at a short distance from the surface, with fault planes oriented sub-parallel to the slopes. The radial, horizontal extension and vertical σ1 which is identical with gravity, indicate that these faults are the result of gravity sliding probably caused by relaxation after incision of valleys, and not directly from tectonic activity. The second mechanism is tilting of the Tatra Mts. The faults operated under WNW-ESE oriented extension with σ1 plunging steeply toward the west. Such a stress field led to normal dip-slip or oblique-slip displacements. The faults are located under the valley bottom and/or opposite or oblique to the slopes. The process involved the pre-existing weakest planes in the rock complex: (i in massive limestone mostly faults and fractures, (ii in thin-bedded limestone mostly inter-bedding planes. Thin-bedded limestones dipping steeply to the south are of particular interest. Tilting toward the N caused the hanging walls to move under the massif and not toward the valley, proving that the cause of these movements was tectonic activity and not gravity.

  16. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  17. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  18. Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults

    International Nuclear Information System (INIS)

    Mohammadi, J.; Afsharnia, S.; Vaez-Zadeh, S.

    2014-01-01

    Highlights: • A comparative review of DFIGs fault-ride-through improvement approaches is presented. • An efficient control strategy is proposed to improve the FRT capability of DFIG. • The rotor overcurrent, DC-link overvoltage and torque oscillations are decreased. • The RSC, DC-link capacitor and mechanical parts are kept safe during the grid faults. • The DFIG remains connected to the grid during the symmetrical and asymmetrical faults. - Abstract: As the penetration of wind power in electrical power system increases, it is necessary that wind turbines remain connected to the grid and contribute to the system stability during and after the grid faults. This paper proposes an efficient control strategy to improve the fault ride through (FRT) capability of doubly fed induction generator (DFIG) during the symmetrical and asymmetrical grid faults. The proposed scheme consists of active and passive FRT compensators. The active compensator is carried out by determining the rotor current references to reduce the rotor over voltages. The passive compensator is based on rotor current limiter (RCL) that considerably reduces the rotor inrush currents at the instants of occurring and clearing the grid faults with deep sags. By applying the proposed strategy, negative effects of the grid faults in the DFIG system including the rotor over currents, electromagnetic torque oscillations and DC-link over voltage are decreased. The system simulation results confirm the effectiveness of the proposed control strategy

  19. Fault tree graphics

    International Nuclear Information System (INIS)

    Bass, L.; Wynholds, H.W.; Porterfield, W.R.

    1975-01-01

    Described is an operational system that enables the user, through an intelligent graphics terminal, to construct, modify, analyze, and store fault trees. With this system, complex engineering designs can be analyzed. This paper discusses the system and its capabilities. Included is a brief discussion of fault tree analysis, which represents an aspect of reliability and safety modeling

  20. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  1. CREEK Project: RUI: the Role of Oyster Reefs in the Structure and Function of Tidal Creeks. A Project Overview: 1996-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet, South Carolina, USA were studied using a replicated BACI (Before - After...

  2. Tom Beaver, Creek Television Reporter. With Teacher's Guide. Native Americans of the Twentieth Century.

    Science.gov (United States)

    Minneapolis Public Schools, MN.

    A biography for elementary school students presents an account of an American Indian television reporter, Tom Beaver (Creek), and includes a map of Oklahoma showing the location of Indian tribes. A teacher's guide following the biography contains information about the Creek tribe and the history of television, learning objectives and directions…

  3. Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan)

    Science.gov (United States)

    Satsukawa, T.; Lin, A.

    2016-12-01

    Most of the large intraplate earthquakes which occur as slip on mature active faults induce serious damages, in spite of their relatively small magnitudes comparing to subduction-zone earthquakes. After 1995 Kobe Mw7.2 earthquake, a number of studies have been done to understand the structure, physical properties and dynamic phenomenon of active faults. However, the deformation mechanics and related earthquake generating mechanism in the intraplate active fault zone are still poorly understood. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for reconstructing the complex framework of brittle deformation. Here, we present two examples of active fault damage zones: Nojima fault and Arima-Takatsuki active fault zone in the southwest Japan. We perform field investigations, combined with meso-and micro-structural analyses of fault-related rocks, which provide the important information in reconstructing the long-term seismic faulting behavior and tectonic environment. Our study shows that in both sites, damage zone is observed in over 10m, which is composed by the host rocks, foliated and non-foliated cataclasites, fault gouge and fault breccia. The slickenside striations in Asano fault, the splay fault of Nojima fault, indicate a dextral movement sense with some normal components. Whereas, those of Arima-Takatsuki active fault shows a dextral strike-slip fault with minor vertical component. Fault gouges consist of brown-gray matrix of fine grains and composed by several layers from few millimeters to a few decimeters. It implies that slip is repeated during millions of years, as the high concentration and physical interconnectivity of fine-grained minerals in brittle fault rocks produce the fault's intrinsic weakness in the crust. Therefore, faults rarely express only on single, discrete deformation episode, but are the cumulative result of several superimposed slip events.

  4. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  5. 20 CFR 255.11 - Fault.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than the...

  6. The timing of fault motion in Death Valley from Illite Age Analysis of fault gouge

    Science.gov (United States)

    Lynch, E. A.; Haines, S. H.; Van der Pluijm, B.

    2014-12-01

    We constrained the timing of fluid circulation and associated fault motion in the Death Valley region of the US Basin and Range Province from Illite Age Analysis (IAA) of fault gouge at seven Low-Angle Normal Fault (LANF) exposures in the Black Mountains and Panamint Mountains, and in two nearby areas. 40Ar/39Ar ages of neoformed, illitic clay minerals in these fault zones range from 2.8 Ma to 18.6 Ma, preserving asynchronous fault motion across the region that corresponds to an evolving history of crustal block movements during Neogene extensional deformation. From north to south, along the western side of the Panamint Range, the Mosaic Canyon fault yields an authigenic illite age of 16.9±2.9 Ma, the Emigrant fault has ages of less than 10-12 Ma at Tucki Mountain and Wildrose Canyon, and an age of 3.6±0.17 Ma was obtained for the Panamint Front Range LANF at South Park Canyon. Across Death Valley, along the western side of the Black Mountains, Ar ages of clay minerals are 3.2±3.9 Ma, 12.2±0.13 Ma and 2.8±0.45 Ma for the Amargosa Detachment, the Gregory Peak Fault and the Mormon Point Turtleback detachment, respectively. Complementary analysis of the δH composition of neoformed clays shows a primarily meteoric source for the mineralizing fluids in these LANF zones. The ages fall into two geologic timespans, reflecting activity pulses in the Middle Miocene and in the Upper Pliocene. Activity on both of the range front LANFs does not appear to be localized on any single portion of these fault systems. Middle Miocene fault rock ages of neoformed clays were also obtained in the Ruby Mountains (10.5±1.2 Ma) to the north of the Death Valley region and to the south in the Whipple Mountains (14.3±0.19 Ma). The presence of similar, bracketed times of activity indicate that LANFs in the Death Valley region were tectonically linked, while isotopic signatures indicate that faulting pulses involved surface fluid penetration.

  7. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    Johnson, B.J.Bradley J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  8. A study on quantification of unavailability of DPPS with fault tolerant techniques considering fault tolerant techniques' characteristics

    International Nuclear Information System (INIS)

    Kim, B. G.; Kang, H. G.; Kim, H. E.; Seung, P. H.; Kang, H. G.; Lee, S. J.

    2012-01-01

    With the improvement of digital technologies, digital I and C systems have included more various fault tolerant techniques than conventional analog I and C systems have, in order to increase fault detection and to help the system safely perform the required functions in spite of the presence of faults. So, in the reliability evaluation of digital systems, the fault tolerant techniques (FTTs) and their fault coverage must be considered. To consider the effects of FTTs in a digital system, there have been several studies on the reliability of digital model. Therefore, this research based on literature survey attempts to develop a model to evaluate the plant reliability of the digital plant protection system (DPPS) with fault tolerant techniques considering detection and process characteristics and human errors. Sensitivity analysis is performed to ascertain important variables from the fault management coverage and unavailability based on the proposed model

  9. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  10. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  11. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  12. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure

  13. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  14. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  15. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  16. 78 FR 62361 - Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed...

    Science.gov (United States)

    2013-10-21

    ... Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed Restricted Service... issuance of a new license for the Otter Creek Hydroelectric Project No. 2558. The programmatic agreement... Agreement would be incorporated into any Order issuing a license. Green Mountain Power Corporation, as...

  17. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Science.gov (United States)

    2013-01-14

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental Assessment AGENCY: Office of the Assistant Secretary... assessment for the East Hobble Creek Restoration Project is available for public review and comment. The...

  18. Distribution and nature of fault architecture in a layered sandstone and shale sequence: An example from the Moab fault, Utah

    Science.gov (United States)

    Davatzes, N.C.; Aydin, A.

    2005-01-01

    We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.

  19. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  20. Frequency of fault occurrence at shallow depths during Plio-Pleistocene and estimation of the incident of new faults

    International Nuclear Information System (INIS)

    Shiratsuchi, H.; Yoshida, S.

    2009-01-01

    It is required that buried high-level radioactive wastes should not be broken directly by faulting in the future. Although a disposal site will be selected in an area where no active faults are present, the possibility of new fault occurrence in the site has to be evaluated. The probability of new fault occurrence is estimated from the frequency of faults which exist in Pliocene and Pleistocene strata distributed beneath 3 large plains in Japan, where a large number of seismic profiles and borehole data are obtained. Estimation of the frequency of faults having occurred and/or reached at shallow depth during Plio-Pleistocene time. The frequency of fault occurrence was estimated by counting the number of faults that exist in Plio-Pleistocene strata that are widely distributed in large plains in Japan. Three plains, Kanto, Nobi and Osaka Plains are selected for this purpose because highly precise geological profiles, which were prepared from numerous geological drillings and geophysical investigations, are available in them. (authors)