WorldWideScience

Sample records for rodent gut pathophysiology

  1. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    Science.gov (United States)

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin

  2. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation.

    Science.gov (United States)

    Lee, Juneyoung; Park, Eun Jeong; Kiyono, Hiroshi

    2016-05-01

    The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269].

  3. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-04-01

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  4. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  5. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder.

    Science.gov (United States)

    Needham, Brittany D; Tang, Weiyi; Wu, Wei-Li

    2018-05-01

    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018. © 2018 Wiley Periodicals, Inc.

  6. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    Science.gov (United States)

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  7. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  8. Bariatric surgery, gut morphology and enteroendocrine cells

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik

    40 hormones. In this PhD study, gut morphology and the population of endocrine cells have been examined in three rodent animal models using stereological techniques. First, in a rodent model of type-2 diabetes (T2DM), the Zucker diabetic fatty rat (ZDF), the population of endocrine L-cells...... to contribute to the positive effects of bariatic surgery but the mechanisms remain largely unknown. The endocrine cells of the gastrointestinal tract that produce and secrete hormones are difficult to examine as they are distributed as single cells. Several types of endocrine cells together produce more than...... and the gut morphology were quantified. The number of Lcells was 4.8 million in the normal rat and the L-cells were found to double in number in the diabetic ZDF rat model. Second, the L-cell population, gut morphology and endocrine cell gene expression were examined in a rodent model of Roux-en-Y gastric...

  9. Effects of anatomy and diet on gastrointestinal pH in rodents.

    Science.gov (United States)

    Kohl, Kevin D; Stengel, Ashley; Samuni-Blank, Michal; Dearing, M Denise

    2013-04-01

    The pH of the gastrointestinal tract can have profound influences on digestive processes. Rodents exhibit wide variation in both stomach morphology and dietary strategies, both of which may influence gut pH. Various rodent species have evolved bilocular (or semi-segmented) stomachs that may allow for more microbial growth compared to unilocular (single-chambered) stomachs. Additionally, herbivory has evolved multiple times in rodents. The high dietary fiber typical of an herbivorous diet is known to induce secretion of bicarbonate in the gut. We predicted that stomach segmentation might facilitate the separation of contents in the proximal chamber from that of the gastric stomach, facilitating a chemical environment suitable to microbial growth. To investigate the effect of stomach anatomy and diet on gut pH, several species of rodent with varying stomach morphology were fed either a high or low-fiber diet for 7 days, and pH of the proximal stomach, gastric stomach, small intestine, and cecum were measured. We discovered that rodents with bilocular stomach anatomy maintained a larger pH gradient between the proximal and gastric stomach compartments, and were able to achieve a lower absolute gastric pH compared to those with unilocular stomachs. Dietary fiber increased the pH of the small intestine, but not in any other gut regions. The stomach pH data supports the century old hypothesis that bilocular stomach anatomy creates an environment in the proximal stomach that is suitable for microbial growth. Additionally, the alkaline small intestinal pH on a high fiber diet may enhance digestion. Copyright © 2013 Wiley Periodicals, Inc.

  10. Pathophysiology of the Gut and the Microbiome in the Host Response.

    Science.gov (United States)

    Lyons, John D; Coopersmith, Craig M

    2017-03-01

    To describe and summarize the data supporting the gut as the motor driving critical illness and multiple organ dysfunction syndrome presented at the National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). Summary of workshop keynote presentation. Not applicable. Presented by an expert in the field, the data assessing the role of gastrointestinal dysfunction driving critical illness were described with a focus on identifying knowledge gaps and research priorities. Summary of presentation and discussion supported and supplemented by relevant literature. The understanding of gut dysfunction in critical illness has evolved greatly over time, and the gut is now often considered as the "motor" of critical illness. The association of the gut with critical illness is supported by both animal models and clinical studies. Initially, the association between gut dysfunction and critical illness focused primarily on bacterial translocation into the bloodstream. However, that work has evolved to include other gut-derived products causing distant injury via other routes (e.g., lymphatics). Additionally, alterations in the gut epithelium may be associated with critical illness and influence outcomes. Gut epithelial apoptosis, intestinal hyperpermeability, and perturbations in the intestinal mucus layer have all been associated with critical illness. Finally, there is growing evidence that the intestinal microbiome plays a crucial role in mediating pathology in critical illness. Further research is needed to better understand the role of each of these mechanisms and their contribution to multiple organ dysfunction syndrome in children.

  11. Pathophysiology of increased intestinal permeability in obstructive jaundice

    Science.gov (United States)

    Assimakopoulos, Stelios F; Scopa, Chrisoula D; Vagianos, Constantine E

    2007-01-01

    Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome. PMID:18161914

  12. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  13. Gut-Brain Axis and Behavior.

    Science.gov (United States)

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  14. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.

    Science.gov (United States)

    Konturek, Peter C; Brzozowski, T; Konturek, S J

    2011-12-01

    Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress

  15. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome.

    Science.gov (United States)

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-06-28

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting.

  16. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  17. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    Science.gov (United States)

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  18. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  19. The gut microbiome in cardio-metabolic health

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Gøbel, Rikke J; Hansen, Torben

    2015-01-01

    that the gut microbiota, as an environmental factor influencing the metabolic state of the host, is readily modifiable through a variety of interventions. In this review we provide an overview of the development of the gut microbiome and its compositional and functional changes in relation to cardio......With the prevalence of cardio-metabolic disorders reaching pandemic proportions, the search for modifiable causative factors has intensified. One such potential factor is the vast microbial community inhabiting the human gastrointestinal tract, the gut microbiota. For the past decade evidence has...... accumulated showing the association of distinct changes in gut microbiota composition and function with obesity, type 2 diabetes and cardiovascular disease. Although causality in humans and the pathophysiological mechanisms involved have yet to be decisively established, several studies have demonstrated...

  20. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri.

    Directory of Open Access Journals (Sweden)

    Steven A Frese

    2011-02-01

    Full Text Available Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

  1. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri.

    Science.gov (United States)

    Frese, Steven A; Benson, Andrew K; Tannock, Gerald W; Loach, Diane M; Kim, Jaehyoung; Zhang, Min; Oh, Phaik Lyn; Heng, Nicholas C K; Patil, Prabhu B; Juge, Nathalie; Mackenzie, Donald A; Pearson, Bruce M; Lapidus, Alla; Dalin, Eileen; Tice, Hope; Goltsman, Eugene; Land, Miriam; Hauser, Loren; Ivanova, Natalia; Kyrpides, Nikos C; Walter, Jens

    2011-02-01

    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

  2. The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    Energy Technology Data Exchange (ETDEWEB)

    Frese, Steven A. [University of Nebraska, Lincoln; Benson, Andrew K. [University of Nebraska, Lincoln; Tannock, Gerald W. [University of Otago, Dunedin, New Zealand; Loach, Diane M. [University of Otago, Dunedin, New Zealand; Kim, Jaehyoung [University of Nebraska, Lincoln; Zhang, Min [University of Nebraska, Lincoln; Oh, Phaik Lyn [University of Nebraska, Lincoln; Heng, Nicholas C. K. [University of Otago, Dunedin, New Zealand; Patil, Prabhu [University of Nebraska, Lincoln; Juge, Nathalie [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; MacKenzie, Donald A. [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; Pearson, Bruce M. [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Walter, Jens [University of Nebraska, Lincoln

    2011-01-01

    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

  3. Gut morpbology of tbe Otomyine rodents: an arid-mesic comparison

    African Journals Online (AJOL)

    1998-06-15

    Jun 15, 1998 ... Despite the broad similarity in the gross gastro-intestinal anatomy between the speCies ... Present address: Department of Physiology, University of the Western ..... on growth and renal performance of juvenile Namib rodents.

  4. The Resistance to Plague Infection among Meriones persicus from Endemic and Non-endemic Regions in Iran: The Role of Gut Microbiota

    Science.gov (United States)

    ASSMAR, Mehdi; KEYPOUR, Marjan; ROHANI, Mehdi; MOSTAFAVI, Ehsan; DANESHVAR FARHUD, Dariush

    2018-01-01

    Background: The present study was conducted approximately 40 years ago, but its results have not been released. At the time of this study, the importance of the gut microbiota was not fully understood. Methods: Meriones persicus rodents, as one of the major reservoirs of Yersinia pestis bacterium in Iran, were compared in a disease endemic area (Akanlu, Hamadan, western Iran) and a non-endemic zone (Telo, Tehran, Iran) from 1977 to 1981. Results: This study was able to transmit the resistance to Y. pestis to other rodents creatively by using and transferring gut microbiota. Conclusion: The study indicated for the first time that the gut microbiota could affect the sensitivity to plague in Meriones in Telo. PMID:29318122

  5. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  6. Gut Microbiota in Obesity and Undernutrition.

    Science.gov (United States)

    de Clercq, Nicolien C; Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-11-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. © 2016 American Society for Nutrition.

  7. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    Science.gov (United States)

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  8. Gut Microbiota in Obesity and Undernutrition123

    Science.gov (United States)

    Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-01-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. PMID:28140325

  9. The gut microbiota and obesity: from correlation to causality.

    Science.gov (United States)

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  10. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  11. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans.

    Science.gov (United States)

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-03-01

    High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.

  12. Crosstalk between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    Background: The gut microbiota has a substantial impact on health and disease. The human gut microbiota influences the development and progression of metabolic diseases; however, the underlying mechanisms are not fully understood. The nuclear farnesoid X receptor (FXR), which regulates bile acid...... homeostasis and glucose and lipid metabolism, is activated by primary human and murine bile acids, chenodeoxycholic acid and cholic acid, while rodent specific primary bile acids tauromuricholic acids antagonise FXR activation. The gut microbiota deconjugates and subsequently metabolises primary bile acids...... into secondary bile acids in the gut and thereby changes FXR activation and signalling. Key Message: Mouse models have been used to study the crosstalk between bile acids and the gut microbiota, but the substantial differences in bile acid composition between humans and mice need to be considered when...

  13. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota.

    Science.gov (United States)

    Bird, Julia K; Raederstorff, Daniel; Weber, Peter; Steinert, Robert E

    2017-11-01

    Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N -oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans. © 2017 American Society for Nutrition.

  14. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  15. "Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans"

    NARCIS (Netherlands)

    Meijnikman, Abraham S.; Gerdes, Victor E.; Nieuwdorp, Max; Herrema, Hilde

    2017-01-01

    The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput

  16. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Yan Y. Lam

    2017-06-01

    Full Text Available Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  17. Alterations in Gut Microbiota and Immunity by Dietary Fat.

    Science.gov (United States)

    Yang, Bo Gie; Hur, Kyu Yeon; Lee, Myung Shik

    2017-11-01

    Gut microbiota play critical physiological roles in energy extraction from the intestine and in the control of systemic immunity, as well as local intestinal immunity. Disturbance of gut microbiota leads to the development of several diseases, such as colitis, inflammatory bowel diseases, metabolic disorders, cancer, etc. From a metabolic point of view, the gut is a large metabolic organ and one of the first to come into contact with dietary fats. Interestingly, excessive dietary fat has been incriminated as a primary culprit of metabolic syndrome and obesity. After intake of high-fat diet or Western diet, extensive changes in gut microbiota have been observed, which may be an underlying cause of alterations in whole body metabolism and nutrient homeostasis. Here, we summarize recent data on changes in the gut microbiota and immunity associated with dietary fat, as well as their relationships with the pathogenesis of metabolic syndrome. These findings may provide insight into the understanding of the complex pathophysiology related to the development of metabolic diseases and offer an opportunity to develop novel candidates for therapeutic agents. © Copyright: Yonsei University College of Medicine 2017.

  18. [Diet and gut microbiota: two sides of the same coin?

    Science.gov (United States)

    Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide

    2018-01-01

    Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.

  19. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders.

    Science.gov (United States)

    Okumura, Toshikatsu; Nozu, Tsukasa

    2011-04-01

    Orexins are neuropeptides that are localized in neurons within the lateral hypothalamic area and regulate feeding behavior. The lateral hypothalamic area plays an important role in not only feeding but the central regulation of other functions including gut physiology. Accumulating evidence have shown that orexins acts in the brain to regulate a wide variety of body functions including gastrointestinal functions. The purpose of this review is to summarize relevant findings on brain orexins and a digestive system, and discuss the pathophysiological roles of the peptides with special reference to functional gastrointestinal disorders. Exogenously administered orexin or endogenously released orexin in the brain potently stimulates gastric acid secretion in pylorus-ligated conscious rats. The vagal cholinergic pathway is involved in the orexin-induced stimulation of acid secretion, suggesting that orexin-containing neurons in lateral hypothalamic area activates neurons in the dorsal motor nucleus in medulla oblongata, followed by increasing vagal outflow, thereby stimulating gastric acid secretion. In addition, brain orexin stimulates gastric motility, pancreatic secretion and induce gastroprotective action. On the other hand, brain orexin is involved in a number of physiological functions other than gut physiology, such as control of sleep/awake cycle and anti-depressive action in addition to increase in appetite. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with functional gastrointestinal disorders who are frequently accompanied with appetite loss, sleep disturbance, depressive state and the inhibition of gut function. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  20. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T

    1999-01-01

    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we

  1. Marked seasonal variation in the wild mouse gut microbiota.

    Science.gov (United States)

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  2. Early-Life Antibiotic Exposure, Gut Microbiota Development, and Predisposition to Obesity.

    Science.gov (United States)

    Azad, Meghan B; Moossavi, Shirin; Owora, Arthur; Sepehri, Shadi

    2017-01-01

    Antibiotics are often prescribed inappropriately to infants and young children, with potentially adverse effects on the developing gut microbiota and related metabolic processes. We review evidence from 17 epidemiologic studies suggesting that antibiotic exposure during critical periods of early development may influence weight gain and the development of obesity. Complementary research in both humans and rodents indicates that gut microbiota play a key role in this process, although further research is needed to confirm and characterize the causal mechanisms involved. Obesity is a complex and multifactorial condition; thus, a multipronged prevention strategy will be required to curb the current obesity epidemic. Evidence to date suggests this strategy should include the judicious use of antibiotics, especially in early life when the developing gut microbiota is particularly susceptible to perturbations with long-lasting implications for metabolic programming and obesity risk. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  3. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Bruno Melo Carvalho

    2013-01-01

    Full Text Available Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.

  4. Prebiotics as a modulator of gut microbiota in paediatric obesity.

    Science.gov (United States)

    Nicolucci, A C; Reimer, R A

    2017-08-01

    This review highlights our current understanding of the role of gut microbiota in paediatric obesity and the potential role for dietary manipulation of the gut microbiota with prebiotics in managing paediatric obesity. The aetiology of obesity is multifactorial and is now known to include microbial dysbiosis in the gut. Prebiotics are non-digestible carbohydrates which selectively modulate the number and/or composition of gut microbes. The goal of prebiotic consumption is to restore symbiosis and thereby confer health benefits to the host. There is convincing evidence that prebiotics can reduce adiposity and improve metabolic health in preclinical rodent models. Furthermore, there are several clinical trials in adult humans highlighting metabolic and appetite-regulating benefits of prebiotics. In paediatric obesity, however, there are very limited data regarding the potential role of prebiotics as a dietary intervention for obesity management. As the prevalence of paediatric obesity and obesity-associated comorbidities increases globally, interventions that target the progression of obesity from an early age are essential in slowing the obesity epidemic. This review emphasizes the need for further research assessing the role of prebiotics, particularly as an intervention in effectively managing paediatric obesity. © 2016 World Obesity Federation.

  5. [Irritable bowel syndrome: New pathophysiological hypotheses and practical issues].

    Science.gov (United States)

    Duboc, H; Dior, M; Coffin, B

    2016-08-01

    In 2015, besides the fact that it still fills the gastroenterologists' offices and impairs patient's quality of life, the irritable bowel syndrome has considerably evolved on several points. The pathophysiology is now organized around a consensual hypothesis called the "brain-gut axis", which gather all the influences of peripheral factors as gut microbiota or local serotonin secretion, on the central pain perception, contributing to visceral hypersensitivity and transit modifications. About the diagnosis, the key message is "avoid over-prescription" of additional tests, and reminds that a positive clinical diagnosis based on Rome III criteria is possible after the elimination of simple clinical warning signs. Finally, the food component, a neglected and historical claim of patients, finally finds a strong scientific rational, with a diet low in fermentable sugar and polyols, that gives positive and reproducible results. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  6. Light rescues circadian behavior and brain dopamine abnormalities in diurnal rodents exposed to a winter-like photoperiod

    NARCIS (Netherlands)

    Itzhacki, Jacob; Clesse, Daniel; Goumon, Yannick; Van Someren, Eus J; Mendoza, Jorge

    2018-01-01

    Seasonal affective disorder (SAD), beyond mood changes, is characterized by alterations in daily rhythms of behavior and physiology. The pathophysiological conditions of SAD involve changes in day length and its first-line treatment is bright light therapy. Animal models using nocturnal rodents have

  7. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity.

    Science.gov (United States)

    Tai, Ningwen; Wong, F Susan; Wen, Li

    2015-03-01

    Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.

  8. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  9. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  10. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    Science.gov (United States)

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  11. Maternal separation as a model of brain-gut axis dysfunction.

    LENUS (Irish Health Repository)

    O'Mahony, Siobhain M

    2011-03-01

    Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS.

  12. Handling stress may confound murine gut microbiota studies

    Directory of Open Access Journals (Sweden)

    Cary R. Allen-Blevins

    2017-01-01

    Full Text Available Background Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO, the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis, a species sensitive to host stress (Bailey & Coe, 2004. Exposure to gut bacteria like B. infantisduring critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis, we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. Methods This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS solution or deionized, distilled water. Gastrointestinal (GI tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR was used to quantify and compare the amount of Bifidobacterium, Bacteroides, Bacteroidetes, and

  13. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Science.gov (United States)

    Lima-Ojeda, Juan M.; Rupprecht, Rainer; Baghai, Thomas C.

    2017-01-01

    Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches. PMID:28878696

  14. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Directory of Open Access Journals (Sweden)

    Juan M. Lima-Ojeda

    2017-08-01

    Full Text Available Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches.

  15. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS

    Directory of Open Access Journals (Sweden)

    Eamonn M.M. Quigley

    2018-01-01

    Full Text Available Irritable bowel syndrome (IBS is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  16. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis.

    Science.gov (United States)

    de Faria Ghetti, Fabiana; Oliveira, Daiane Gonçalves; de Oliveira, Juliano Machado; de Castro Ferreira, Lincoln Eduardo Villela Vieira; Cesar, Dionéia Evangelista; Moreira, Ana Paula Boroni

    2018-04-01

    Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium. Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.

  17. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model.

    Science.gov (United States)

    Hu, Jianzhong; Raikhel, Vincent; Gopalakrishnan, Kalpana; Fernandez-Hernandez, Heriberto; Lambertini, Luca; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Belpoggi, Fiorella; L Teitelbaum, Susan; Chen, Jia

    2016-06-14

    This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.

  18. Gut microbiota changes as a risk factor for obesity.

    Science.gov (United States)

    Kvit, Krystyna B; Kharchenko, Natalia V

    The number of obese people in recent decades is increasing significantly. Among the many aspects of obesity in the last decade, the role and importance of changes in the gut microbiota (GM) attracts special attention. The aim of the review was to analyze the results of studies, focused on the role of gut microbiota in the obesity development. Screening was conducted on 33 researches, which examined the role of the gut microbiota balance in the development of obesity. Among them, 13 studies were selected for more detailed analysis. Obesity revealed typical changes in GM: an increase in the number of microbes of the genus Firmicutes and a decrease in the number of microbes of the genus Bacteroeidetes, which is particularly vividly demonstrated by studies of rodents. In obese mice, the microfamilies of the genus Firmicutes account for 80% of all GM (in control animals 60%), and the number of microorganisms of the genus Bacteroeidetes decreases by half (from 40 to 20%), compared to mice with normal weight. Despite the complexity of the question of the relationship between GM and obesity, the totality of the data received, especially the results of experimental studies, affirm the thesis that changes in GM may contribute to the development of obesity.

  19. An update on equine post-operative ileus: Definitions, pathophysiology and management.

    Science.gov (United States)

    Lisowski, Z M; Pirie, R S; Blikslager, A T; Lefebvre, D; Hume, D A; Hudson, N P H

    2018-05-01

    Post-operative ileus (POI) is a serious condition which any horse undergoing abdominal surgery is at risk of developing, leading to increased hospitalisation time and resulting costs. Advances in the understanding of the development of equine POI are mainly based on human and rodent literature, where manipulation-induced inflammation has been identified as a trigger, with activation of resident muscularis externa macrophages playing a crucial role in the pathophysiology. Despite many pharmacological trials in all species, there is no single completely successful treatment for POI, highlighting that the condition is multifactorial in cause and requires a multimodal approach to minimise its incidence. © 2017 EVJ Ltd.

  20. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  1. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  2. Temporal and Spatial Characterization of Gait Pattern in Rodents as an Animal model of Cerebrovascular Lesion

    Directory of Open Access Journals (Sweden)

    Jaison D Cucarián

    2017-09-01

    Full Text Available Animal experimentation is crucial for the advance in the understanding of pathophysiological mechanisms and their application on both clinical diagnosis and neuro-rehabilitation. Particularly, rodent brain lesion is commonly used in the modeling of locomotor, somatosensory and cognitive symptoms. The automated rodent gait analysis has been proposed as a tool for studying locomotor and sensory abilities and its use includes the identification of functional alterations, structural adaptations as well as neuro-rehabilitation mechanisms. From that standpoint, the effectiveness of many therapeutic intervention (i.e. physical exercises has been documented in rodents and humans. The translation from experimental data to clinical conditions requires the continuous collaboration and feedback between researchers and health clinicians looking for the selection of the best rehabilitation protocols obtained from animal research. Here we will show some locomotor alterations, the traditional methods used to assess motor dysfunction and gait abnormalities in rodent models with stroke. The aim of this review is to show some motor deficiencies and some methods used to establish gait disturbances in rodents with cerebrovascular lesion. The review included the search of defined terms (MeSH in PychINFO, Medline and Web of Science, between January 2000 and January 2017. Qualitative and narrative reports, dissertations, end course works and conference resumes were discarded. The review focuses on some clinical signs, their effects on rodent locomotor activity, some methodologies used to create lesion and to study motor function, some assessment methods and some translational aspects.

  3. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism.

    Science.gov (United States)

    Zheng, P; Zeng, B; Zhou, C; Liu, M; Fang, Z; Xu, X; Zeng, L; Chen, J; Fan, S; Du, X; Zhang, X; Yang, D; Yang, Y; Meng, H; Li, W; Melgiri, N D; Licinio, J; Wei, H; Xie, P

    2016-06-01

    Major depressive disorder (MDD) is the result of complex gene-environment interactions. According to the World Health Organization, MDD is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. However, the definitive environmental mechanisms underlying the pathophysiology of MDD remain elusive. The gut microbiome is an increasingly recognized environmental factor that can shape the brain through the microbiota-gut-brain axis. We show here that the absence of gut microbiota in germ-free (GF) mice resulted in decreased immobility time in the forced swimming test relative to conventionally raised healthy control mice. Moreover, from clinical sampling, the gut microbiotic compositions of MDD patients and healthy controls were significantly different with MDD patients characterized by significant changes in the relative abundance of Firmicutes, Actinobacteria and Bacteroidetes. Fecal microbiota transplantation of GF mice with 'depression microbiota' derived from MDD patients resulted in depression-like behaviors compared with colonization with 'healthy microbiota' derived from healthy control individuals. Mice harboring 'depression microbiota' primarily exhibited disturbances of microbial genes and host metabolites involved in carbohydrate and amino acid metabolism. This study demonstrates that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host's metabolism.

  4. Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour.

    Science.gov (United States)

    Winther, Gudrun; Pyndt Jørgensen, Betina M; Elfving, Betina; Nielsen, Denis Sandris; Kihl, Pernille; Lund, Sten; Sørensen, Dorte Bratbo; Wegener, Gregers

    2015-06-01

    Gut microbiota (GM) has previously been associated with alterations in rodent behaviour, and since the GM is affected by the diet, the composition of the diet may be an important factor contributing to behavioural changes. Interestingly, a magnesium restricted diet has been shown to induce anxiety and depressive-like behaviour in humans and rodents, and it could be suggested that magnesium deficiency may mediate the effects through an altered GM. The present study therefore fed C57BL/6 mice with a standard diet or a magnesium deficient diet (MgD) for 6 weeks, followed by behavioural testing in the forced swim test (FST) to evaluate depressive-like behaviour. An intraperitoneal glucose tolerance test (GTT) was performed 2 day after the FST to assess metabolic alterations. Neuroinflammatory markers were analysed from hippocampus. GM composition was analysed and correlated to the behaviour and hippocampal markers. It was found that mice exposed to MgD for 6 weeks were more immobile than control mice in the FST, suggesting an increased depressive-like behaviour. No significant difference was detected in the GTT. GM composition correlated positively with the behaviour of undisturbed C57BL/6 mice, feeding MgD diet altered the microbial composition. The altered GM correlated positively to the hippocampal interleukin-6. In conclusion, we hypothesise that imbalances of the microbiota-gut-brain axis induced by consuming a MgD diet, contributes to the development of depressive-like behaviour.

  5. EJE PRIZE 2018: A gut feeling about glucagon.

    Science.gov (United States)

    Knop, Filip K

    2018-06-01

    Hyperglucagonaemia (in the fasting as well as in the postprandial state) is considered a core pathophysiological component of diabetes and is found to contribute substantially to the hyperglycaemic state of diabetes. Hyperglucagonaemia is usually viewed upon as a consequence of pancreatic alpha cell insensitivity to the glucagon-suppressive effects of glucose and insulin. Since we observed that the well-known hyperglucagonaemic response to oral glucose in patients with type 2 diabetes is exchanged by normal suppression of plasma glucagon levels following isoglycaemic intravenous glucose administration in these patients, we have been focusing on the gut and gut-derived factors as potential mediators of diabetic hyperglucagonaemia. In a series of clinical experiments, we have elucidated the role of gut-derived factors in diabetic hyperglucagonaemia and shown that glucose-dependent insulinotropic polypeptide promotes hyperglucagonaemia and that glucagon, hitherto considered a pancreas-specific hormone, may also be secreted from extrapancreatic tissues - most likely from proglucagon-producing enteroendocrine cells. Furthermore, our observation that fasting hyperglucagonaemia is unrelated to the diabetic state, but strongly correlates with obesity, liver fat content and circulating amino acids, has made us question the common 'pancreacentric' and 'glucocentric' understanding of hyperglucagonaemia and led to the hypothesis that steatosis-induced hepatic glucagon resistance (and reduced amino acid turnover) and compensatory glucagon secretion mediated by increased circulating amino acids constitute a complete endocrine feedback system: the liver-alpha cell axis. This article summarises the physiological regulation of glucagon secretion in humans and considers new findings suggesting that the liver and the gut play key roles in determining fasting and postabsorptive circulating glucagon levels. © 2018 European Society of Endocrinology.

  6. Adropin – physiological and pathophysiological role

    Directory of Open Access Journals (Sweden)

    Natalia Marczuk

    2016-09-01

    Full Text Available Adropin is a peptide hormone that was discovered in 2008 by Kumar et al. This protein consists of 76 amino acids, and it was originally described as a secreted peptide, with residues 1-33 encoding a secretory signal peptide sequence. The amino acid sequence of this protein in humans, mice and rats is identical. While our knowledge of the exact physiological roles of this poorly understood peptide continues to evolve, recent data suggest a role in energy homeostasis and the control of glucose and fatty acid metabolism. This protein is encoded by the Enho gene, which is expressed primarily in the liver and the central nervous system. The regulation of adropin secretion is controversial. Adropin immunoreactivity has been reported by several laboratories in the circulation of humans, non-human primates and rodents. However, more recently it has been suggested that adropin is a membrane-bound protein that modulates cell-cell communication. Moreover, adropin has been detected in various tissues and body fluids, such as brain, cerebellum, liver, kidney, heart, pancreas, small intestine, endothelial cells, colostrum, cheese whey and milk. The protein level, as shown by previous research, changes in various physiological and pathophysiological conditions. Adropin is involved in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. The knowledge of this interesting protein, its exact role and mechanism of action is insufficient. This article provides an overview of the existing literature about the role of adropin, both in physiological and pathophysiological conditions.

  7. Gut

    DEFF Research Database (Denmark)

    Muscogiuri, Giovanna; Balercia, Giancarlo; Barrea, Luigi

    2017-01-01

    The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes...... which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible...... metabolism. Thus, the aim of this manuscript is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects....

  8. [Gut microbiota and immune crosstalk in metabolic disease].

    Science.gov (United States)

    Burcelin, Rémy

    2017-01-01

    , and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, which induces inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities. © Société de Biologie, 2017.

  9. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    Science.gov (United States)

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.

  10. Nutrient re-routing and altered gut-islet cell crosstalk may explain early relief of severe postprandial hypoglycaemia after reversal of Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Svane, M S; Toft-Nielsen, M B; Kristiansen, V B

    2017-01-01

    BACKGROUND: Roux-en-Y gastric bypass is associated with an increased risk of postprandial hyperinsulinaemic hypoglycaemia, but the underlying pathophysiology remains poorly understood. We therefore examined the effect of re-routing of nutrient delivery on gut-islet cell crosstalk in a person...... insulin and glucagon-like peptide-1 hypersecretion and eliminated postprandial hypoglycaemia, which emphasizes the importance of altered gut-islet cell crosstalk for glucose metabolism after Roux-en-Y gastric bypass. This article is protected by copyright. All rights reserved....

  11. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk.

    Science.gov (United States)

    Shi, Danni; Vine, Donna F

    2012-07-01

    To review rodent animal models of polycystic ovary syndrome (PCOS), with a focus on those associated with the metabolic syndrome and cardiovascular disease risk factors. Review. Rodent models of PCOS. Description and comparison of animal models. Comparison of animal models to clinical phenotypes of PCOS. Animals used to study PCOS include rodents, mice, rhesus monkeys, and ewes. Major methods to induce PCOS in these models include subcutaneous injection or implantation of androgens, estrogens, antiprogesterone, letrozole, prenatal exposure to excess androgens, and exposure to constant light. In addition, transgenic mice models and spontaneous PCOS-like rodent models have also been developed. Rodents are the most economical and widely used animals to study PCOS and ovarian dysfunction. The model chosen to study the development of PCOS and other metabolic parameters remains dependent on the specific etiologic hypotheses being investigated. Rodent models have been shown to demonstrate changes in insulin metabolism, with or without induction of hyperandrogenemia, and limited studies have investigated cardiometabolic risk factors for type 2 diabetes and cardiovascular disease. Given the clinical heterogeneity of PCOS, the utilization of different animal models may be the best approach to further our understanding of the pathophysiologic mechanisms associated with the early etiology of PCOS and cardiometabolic risk. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Urban resident attitudes toward rodents, rodent control products, and environmental effects

    Science.gov (United States)

    Rodent control in urban areas can result in the inadvertent mortality of non-target species (e.g., bobcats). However, there is little detailed information about rodent control practices of urban residents. Our objective was to evaluate urban rodent control behaviors in two area...

  13. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    Science.gov (United States)

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  14. Targeting the gut-liver axis in cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn S; Havelund, Troels; Krag, Aleksander

    2013-01-01

    The gut-liver axis in cirrhosis and portal hypertension is gaining increasing attention as a key pathophysiological mechanism responsible for progression of liver failure and development of complications such as spontaneous infections and hepatocellular carcinoma. Antibiotics and non-selective β......-blockers (NSBB) intercept this axis and each drug has proven efficacy in clinical trials. A synergistic effect is a hitherto unproven possibility. There is an increasing body of evidence supporting improved outcome with expanded use of NSBB and antibiotic therapy beyond current indications. This review addresses...... the issue of pharmacological treatment of cirrhosis and portal hypertension with antibiotics and NSBB. We discuss their mechanism of action and suggest that combining the two treatment modalities could potentially reduce the risk of complications....

  15. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis

    Directory of Open Access Journals (Sweden)

    Diling Chen

    2017-12-01

    Full Text Available Gut microbiota influences the central nervous system disorders such as Alzheimer’s disease (AD. The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats. Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42. 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic

  16. Recent developments in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    El-Salhy, Magdy

    2015-07-07

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients.

  17. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  18. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships.

    Science.gov (United States)

    Lyte, Mark; Fodor, Anthony A; Chapman, Clinton D; Martin, Gary G; Perez-Chanona, Ernesto; Jobin, Christian; Dess, Nancy K

    2016-06-01

    The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.

  19. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition.

    Science.gov (United States)

    Kang, Silvia S; Jeraldo, Patricio R; Kurti, Aishe; Miller, Margret E Berg; Cook, Marc D; Whitlock, Keith; Goldenfeld, Nigel; Woods, Jeffrey A; White, Bryan A; Chia, Nicholas; Fryer, John D

    2014-09-13

    The ingestion of a high-fat diet (HFD) and the resulting obese state can exert a multitude of stressors on the individual including anxiety and cognitive dysfunction. Though many studies have shown that exercise can alleviate the negative consequences of a HFD using metabolic readouts such as insulin and glucose, a paucity of well-controlled rodent studies have been published on HFD and exercise interactions with regard to behavioral outcomes. This is a critical issue since some individuals assume that HFD-induced behavioral problems such as anxiety and cognitive dysfunction can simply be exercised away. To investigate this, we analyzed mice fed a normal diet (ND), ND with exercise, HFD diet, or HFD with exercise. We found that mice on a HFD had robust anxiety phenotypes but this was not rescued by exercise. Conversely, exercise increased cognitive abilities but this was not impacted by the HFD. Given the importance of the gut microbiome in shaping the host state, we used 16S rRNA hypervariable tag sequencing to profile our cohorts and found that HFD massively reshaped the gut microbial community in agreement with numerous published studies. However, exercise alone also caused massive shifts in the gut microbiome at nearly the same magnitude as diet but these changes were surprisingly orthogonal. Additionally, specific bacterial abundances were directly proportional to measures of anxiety or cognition. Thus, behavioral domains and the gut microbiome are both impacted by diet and exercise but in unrelated ways. These data have important implications for obesity research aimed at modifications of the gut microbiome and suggest that specific gut microbes could be used as a biomarker for anxiety or cognition or perhaps even targeted for therapy.

  20. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes.

    Science.gov (United States)

    Houghton, David; Hardy, Timothy; Stewart, Christopher; Errington, Linda; Day, Christopher P; Trenell, Michael I; Avery, Leah

    2018-05-12

    Despite improved understanding of the pathophysiology of type 2 diabetes mellitus, explanations for individual variability in disease progression and response to treatment are incomplete. The gut microbiota has been linked to the pathophysiology of type 2 diabetes mellitus and may account for this variability. We conducted a systematic review to assess the effectiveness of dietary and physical activity/exercise interventions in modulating the gut microbiota and improving glucose control in adults with type 2 diabetes mellitus. A systematic search was conducted to identify studies reporting on the effect of dietary and physical activity/exercise interventions on the gut microbiota and glucose control in individuals with a confirmed diagnosis of type 2 diabetes mellitus. Study characteristics, methodological quality and details relating to interventions were captured using a data-extraction form. Meta-analyses were conducted where sufficient data were available, and other results were reported narratively. Eight studies met the eligibility criteria of the systematic review. No studies were found that reported on the effects of physical activity/exercise on the gut microbiota and glucose control. However, studies reporting on dietary interventions showed that such interventions were associated with modifications to the composition and diversity of the gut microbiota. There was a statistically significant improvement in HbA 1c (standardised mean difference [SMD] -2.31 mmol/mol [95% CI -2.76, -1.85] [0.21%; 95% CI -0.26, -0.16]; I 2  = 0%, p  0.05), fasting insulin (SMD -1.82 pmol/l [95% CI -7.23, 3.60], I 2  = 54%, p > 0.05) or HOMA-IR (SMD -0.15 [95% CI -0.63, 0.32], I 2  = 69%, p > 0.05) when comparing dietary interventions with comparator groups. There were no significant changes in the relative abundance of bacteria in the genera Bifidobacterium (SMD 1.29% [95% CI -4.45, 7.03], I 2  = 33%, p > 0.05), Roseburia (SMD -0.85% [95% CI

  1. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs

    Directory of Open Access Journals (Sweden)

    Adam J. Moeser

    2017-12-01

    Full Text Available The gastrointestinal (GI barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc. whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.

  2. The pathophysiology of necrotizing enterocolitis in preterm infants : New insights in the interaction between the gut and its microbiota

    NARCIS (Netherlands)

    Heida, Fardou Hadewych

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder affecting the preterm infant. The underlying cause of NEC is partly unknown. This thesis studied the gut flora, the intestinal barrier function, and the intestinal bloodcirculation contributing to NEC. We observed NEC-associated

  3. Post-traumatic stress disorder and beyond: an overview of rodent stress models.

    Science.gov (United States)

    Schöner, Johanna; Heinz, Andreas; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2017-10-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder of high prevalence and major socioeconomic impact. Patients suffering from PTSD typically present intrusion and avoidance symptoms and alterations in arousal, mood and cognition that last for more than 1 month. Animal models are an indispensable tool to investigate underlying pathophysiological pathways and, in particular, the complex interplay of neuroendocrine, genetic and environmental factors that may be responsible for PTSD induction. Since the 1960s, numerous stress paradigms in rodents have been developed, based largely on Seligman's seminal formulation of 'learned helplessness' in canines. Rodent stress models make use of physiological or psychological stressors such as foot shock, underwater trauma, social defeat, early life stress or predator-based stress. Apart from the brief exposure to an acute stressor, chronic stress models combining a succession of different stressors for a period of several weeks have also been developed. Chronic stress models in rats and mice may elicit characteristic PTSD-like symptoms alongside, more broadly, depressive-like behaviours. In this review, the major existing rodent models of PTSD are reviewed in terms of validity, advantages and limitations; moreover, significant results and implications for future research-such as the role of FKBP5, a mediator of the glucocorticoid stress response and promising target for therapeutic interventions-are discussed. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Shaun C Earl

    Full Text Available Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.

  5. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette...... with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies....... transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1...

  6. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-01-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)

  7. A safflower oil-based high fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria

    2017-01-01

    n-6 PUFA-rich diets are generally considered obesogenic in rodents. Here we examined how long-term intake of a high fat/high sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil...

  8. Neuregulin 1: a prime candidate for research into gene-environment interactions in schizophrenia? Insights from genetic rodent models

    Directory of Open Access Journals (Sweden)

    Tim eKarl

    2013-08-01

    Full Text Available Schizophrenia is a multi-factorial disease characterized by a high heritability and environmental risk factors. In recent years, an increasing number of researchers worldwide have started investigating the ‘two-hit hypothesis’ of schizophrenia predicting that genetic and environmental risk factors (GxE interactively cause the development of the disorder. This work is starting to produce valuable new animal models and reveal novel insights into the pathophysiology of schizophrenia. This mini review will focus on recent advancements in the field made by challenging mutant and transgenic rodent models for the schizophrenia candidate gene neuregulin 1 (NRG1 with particular environmental factors. It will outline results obtained from mouse and rat models for various Nrg1 isoforms/isoform types (e.g. transmembrane domain Nrg1, Type II Nrg1, which have been exposed to different forms of stress (acute versus chronic, restraint versus social and housing conditions (standard laboratory versus minimally enriched housing. These studies suggest Nrg1 as a prime candidate for GxE interactions in schizophrenia rodent models and that the use of rodent models will enable a better understanding of GxE interactions and the underlying mechanisms.

  9. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record

  10. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  11. GUTs without guts

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2014-01-01

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts

  12. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration

    Science.gov (United States)

    Dinan, Timothy G.

    2016-01-01

    Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441

  13. The Pathophysiology of Insomnia

    Science.gov (United States)

    Levenson, Jessica C.; Kay, Daniel B.

    2015-01-01

    Insomnia disorder is characterized by chronic dissatisfaction with sleep quantity or quality that is associated with difficulty falling asleep, frequent nighttime awakenings with difficulty returning to sleep, and/or awakening earlier in the morning than desired. Although progress has been made in our understanding of the nature, etiology, and pathophysiology of insomnia, there is still no universally accepted model. Greater understanding of the pathophysiology of insomnia may provide important information regarding how, and under what conditions, the disorder develops and is maintained as well as potential targets for prevention and treatment. The aims of this report are (1) to summarize current knowledge on the pathophysiology of insomnia and (2) to present a model of the pathophysiology of insomnia that considers evidence from various domains of research. Working within several models of insomnia, evidence for the pathophysiology of the disorder is presented across levels of analysis, from genetic to molecular and cellular mechanisms, neural circuitry, physiologic mechanisms, sleep behavior, and self-report. We discuss the role of hyperarousal as an overarching theme that guides our conceptualization of insomnia. Finally, we propose a model of the pathophysiology of insomnia that integrates the various types of evidence presented. PMID:25846534

  14. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    Science.gov (United States)

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  15. Neurobehavioral aspects, pathophysiology, and management of Tourette syndrome.

    Science.gov (United States)

    Shprecher, David R; Schrock, Lauren; Himle, Michael

    2014-08-01

    This update summarizes progress in understanding Tourette syndrome clinical characteristics, etiology, and treatment over the past year. Premonitory sensory phenomena were found to have important impacts on Tourette syndrome quality of life. A rare genetic form of Tourette syndrome due to L-histidine-decarboxylase mutation, with similar features in human and rodent, has inspired new research on functional anatomy of Tourette syndrome. In response to new data, treatment guidelines have been revised to include behavioral therapy as first-line treatment. Novel dopamine receptor antagonists aripiprazole and ecopipam have shown potential efficacy - as well as tolerability concerns. Recent work has suggested efficacy and tolerability of topiramate and fluphenazine, but more rigorous studies are needed to further understand their role in Tourette syndrome management. Recent consensus guidelines explain when deep brain stimulation can be considered for severe refractory cases under a multidisciplinary team. More research is needed to identify better tolerated treatments for, to understand pathophysiology or functional anatomy of, and to predict or influence longitudinal outcome of Tourette syndrome.

  16. Retinovascular physiology and pathophysiology: new experimental approach/new insights

    Science.gov (United States)

    Puro, Donald G.

    2012-01-01

    An important challenge in visual neuroscience is understand the physiology and pathophysiology of the intra-retinal vasculature, whose function is required for ophthalmoception by humans and most other mammals. In the quest to learn more about this highly specialized portion of the circulatory system, a newly developed method for isolating vast microvascular complexes from the rodent retina has opened the way for using techniques such as patch-clamping, fluorescence imaging and time-lapse photography to elucidate the functional organization of a capillary network and its pre-capillary arteriole. For example, the ability to obtain dual perforated-patch recordings from well-defined sites within an isolated microvascular complex permitted the first characterization of the electrotonic architecture of a capillary/arteriole unit. This analysis revealed that this operational unit is not simply a homogenous synctium, but has a complex functional organization that is dynamically modulated by extracellular signals such as angiotensin II. Another recent discovery is that a capillary and its pre-capillary arteriole have distinct physiological differences; capillaries have an abundance of ATP-sensitive potassium (KATP) channels and a dearth of voltage-dependent calcium channels (VDCCs) while the converse is true for arterioles. In addition, voltage transmission between abluminal cells and the endothelium is more efficient in the capillaries. Thus, the capillary network is well-equipped to generate and transmit voltages, and the pre-capillary arteriole is well-adapted to transduce a capillary-generated voltage into a change in abluminal cell calcium and thereby, a vasomotor response. Use of microvessels isolated from the diabetic retina has led to new insights concerning retinal vascular pathophysiology. For example, soon after the onset of diabetes, the efficacy of voltage transmission through the endothelium is diminished; arteriolar VDCCs is inhibited, and there is increased

  17. The human gut resistome.

    Science.gov (United States)

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  18. Gut microbiota’s effect on mental health: The gut-brain axis

    Directory of Open Access Journals (Sweden)

    Megan Clapp

    2017-09-01

    Full Text Available The bidirectional communication between the central nervous system and gut microbiota, referred to as the gut-brain-axis, has been of significant interest in recent years. Increasing evidence has associated gut microbiota to both gastrointestinal and extragastrointestinal diseases. Dysbiosis and inflammation of the gut have been linked to causing several mental illnesses including anxiety and depression, which are prevalent in society today. Probiotics have the ability to restore normal microbial balance, and therefore have a potential role in the treatment and prevention of anxiety and depression. This review aims to discuss the development of the gut microbiota, the linkage of dysbiosis to anxiety and depression, and possible applications of probiotics to reduce symptoms.

  19. Orexinergic system and pathophysiology of epilepsy.

    Science.gov (United States)

    Doreulee, N; Alania, M; Vashalomidze, G; Skhirtladze, E; Kapanadze, Ts

    2010-11-01

    Neuropeptids orexins, also known as the hypocretins, are expressed in the lateral hypothalamus. Orexin-containing cells project widely throughout the brains, are crucial for the regulation of wakefulness and dysfunction of this system is associated with pathophysiology of narcolepsy-cataplexy. Orexin neurons play an important role in motivation, feeding and adaptive behaviors. Distribution of orexinergic receptors in the hippocampus tended to the ideas that orexins might be involved in the functions relating to the hippocampus. Effects of neuropeptide orexin-A on epileptiform activity in hippocampal slices were investigated. 500 µm thick hippocampal slices from 8-10 week-old rodents were used. Field excitatory postsynaptic potential (pop-fEPSP) and population spike in CA1 of hippocamopus were registered using standard protocol of in vitro electrophysiological experiments. Initial slope of the fEPSP and amplitude of II pop-spike were measured. Bursting neurons in CA3 were recorded in modified saline. We have found that orexin-A decreases duration/amplitude of multiple discharges of pop-spikes and inhibits spontaneous epileptiform afterdischarges induced by bicuculline methiodide in CA1. Orexin-A also modulates the frequency of discharges of bursting neurons in CA3. Our results suggest possible involvement of orexinergic system in antiepileptic action. Supported by ISTC Grant G-1318.

  20. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  1. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  2. Building GUTs from strings

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1996-01-01

    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)

  3. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  4. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  5. Gut microbiota and bacterial translocation in digestive surgery: the impact of probiotics.

    Science.gov (United States)

    Komatsu, Shunichiro; Yokoyama, Yukihiro; Nagino, Masato

    2017-05-01

    It is conceivable that manipulation of the gut microbiota could reduce the incidence or magnitude of surgical complications in digestive surgery. However, the evidence remains inconclusive, although much effort has been devoted to randomized controlled trials (RCTs) and meta-analyses on probiotics. Furthermore, the mechanism behind the protective effects of probiotics appears elusive, our understanding of probiotic actions being fragmentary. The objective of this review is to assess the clinical relevance of the perioperative use of probiotics in major digestive surgery, based on a comprehensive view of the gut microbiota, bacterial translocation (BT), and host defense system. The first part of this article describes the pathophysiological events associated with the gut microbiota. Results of RCTs for the perioperative use of probiotics in major digestive surgery are reviewed in the latter part. The development of the structural and functional barrier to protect against BT primarily results from the generally cooperative interactions between the host and resident microbiota. There is a large body of evidence indicating that probiotics, by enhancing beneficial interactions, reinforce the host defense system to limit BT. The perioperative use of probiotics in patients undergoing hepatobiliary and pancreatic surgery is a promising approach for the prevention of postoperative infectious complications, while the effectiveness in colorectal surgery remains controversial due to substantial heterogeneity among the RCTs with small sample populations. Further studies, such as multi-center RCTs with a larger sample size, are necessary to confirm the clinical relevance of probiotic agents in major digestive surgery.

  6. Role of gut pathogens in development of irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Madhusudan Grover

    2014-01-01

    Full Text Available Acute infectious gastroenteritis is one of the most commonly identifiable risk factors for the development of irritable bowel syndrome (IBS. A number of bacterial, viral and parasitic pathogens have been found to be associated with the development of IBS and other functional gastrointestinal (GI disorders. Epidemiological studies have identified demographic and acute enteritis-related risk factors for the development of post-infectious-IBS (PI-IBS. Immune dysregulation, alterations in barrier function, serotonergic and mast cell activation have been identified as potential pathophysiological mechanisms. Additionally, variations in host genes involved in barrier function, antigen presentation and cytokine response have been associated with PI-IBS development. However, it is unknown whether specific pathogens have unique effects on long-term alterations in gut physiology or different pathogens converge to cause common alterations resulting in similar phenotype. The role of microbial virulence and pathogenicity factors in development of PI-IBS is also largely unknown. Additionally, alterations in host gut sensation, motility, secretion, and barrier function in PI-IBS need to be elucidated. Finally, both GI infections and antibiotics used to treat these infections can cause long-term alterations in host commensal microbiota. It is plausible that alteration in the commensal microbiome persists in a subset of patients predisposing them to develop PI-IBS.

  7. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Manual versus Automated Rodent Behavioral Assessment: Comparing Efficacy and Ease of Bederson and Garcia Neurological Deficit Scores to an Open Field Video-Tracking System

    OpenAIRE

    Fiona A. Desland; Aqeela Afzal; Zuha Warraich; J Mocco

    2014-01-01

    Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garc...

  9. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  10. SO(10) GUT baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2008-01-01

    Baryogenesis, through the decays of heavy bosons, was considered to be one of the major successes of the grand unified theories (GUTs). It was then realized that the sphaleron processes erased any baryon asymmetry from the GUT-baryogenesis at a later stage. In this Letter, we discuss the idea of resurrecting GUT-baryogenesis [M. Fukugita, T. Yanagida, Phys. Rev. Lett. 89 (2002) 131602] in a large class of SO(10) GUTs. Our analysis shows that fast lepton number violating but baryon number conserving processes can partially wash out the GUT-baryogenesis produced lepton and/or baryon asymmetry associated with or without the sphaleron and/or Yukawa interactions

  11. 21 CFR 1250.96 - Rodent control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  12. SUSY GUT Model Building

    International Nuclear Information System (INIS)

    Raby, Stuart

    2008-01-01

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.

  13. Matrigel alters the pathophysiology of orthotopic human breast adenocarcinoma xenografts with implications for nanomedicine evaluation.

    Science.gov (United States)

    Shuhendler, Adam J; Prasad, Preethy; Cai, Ping; Hui, Kelvin K W; Henderson, Jeffrey T; Rauth, Andrew M; Wu, Xiao Yu

    2013-08-01

    Matrigel, a mouse sarcoma-derived basement membrane protein mixture, is frequently used to facilitate human tumor xenograft growth in rodents. Despite its known effects on tumor growth and metastasis, its impact on tumor pathophysiology and preclinical evaluation of nanomedicines in tumor xenografts has not been reported previously. Herein bilateral MDA435 tumors were established orthotopically with (Mat+) or without (Mat-) co-injection of Matrigel. Tumor perfusion, morphology and nanoparticle retention were evaluated. As compared to Mat- tumors, Mat+tumors exhibited enhanced vascular perfusion and lymphatic flow, greater blood vessel and lymphatic growth within the tumor core, and more deformation and collapse of lymphatics in tumor-associated lymph nodes. These changes were accompanied by reduced nanoparticle retention in Mat+tumors. The results suggest that Matrigel is not a passive medium for tumor growth, but rather significantly alters long-term tumor architecture. These findings have significant implications for the evaluation of therapeutic nanomedicine in xenograft mouse models. Matrigel is utilized in facilitating human tumor xenograft growth in rodents. The authors demonstrate that Matrigel is not a passive medium for tumor growth; instead it significantly alters long-term tumor architecture, with major implications in the evaluation of therapeutic nanomedicine in xenograft mouse models. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Virtual reality systems for rodents.

    Science.gov (United States)

    Thurley, Kay; Ayaz, Aslı

    2017-02-01

    Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies.

  15. Understanding role of genome dynamics in host adaptation of gut commensal, L. reuteri

    Directory of Open Access Journals (Sweden)

    Shikha Sharma

    2017-10-01

    Full Text Available Lactobacillus reuteri is a gram-positive gut commensal and exhibits noteworthy adaptation to its vertebrate hosts. Host adaptation is often driven by inter-strain genome dynamics like expansion of insertion sequences that lead to acquisition and loss of gene(s and creation of large dynamic regions. In this regard we carried in-house genome sequencing of large number of L. reuteri strains origination from human, chicken, pig and rodents. We further next generation sequence data in understanding invasion and expansion of an IS element in shaping genome of strains belonging to human associated lineage. Finally, we share our experience in high-throughput genomic library preparation and generating high quality sequence data of a very low GC bacterium like L. reuteri.

  16. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    Science.gov (United States)

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  17. Radiation and Gut

    International Nuclear Information System (INIS)

    Potten, C.S.; Hendry, J.H.

    1995-08-01

    Texts on gut with reference to radiation (or other cytotoxic and carcinogenic agents) consist of primary research papers, review articles, or books which are now very out-of-date. With this in mind, the present book was conceived. Here, with chapters by experts in the field, we cover the basic structure and cell replacement process in the gut, the physical situation relevant for gut radiation exposure and a description of some of the techniques used to study radiation effects, in particular the clonal regeneration assay that assesses stem cell functional capacity. Chapters comprehensively cover the effects of radiation in experimental animal model systems and clinical experiences. The effects of radiation on the supportive tissue of the gut is also reviewed. The special radiation situation involving ingested radionuclides is reviewed and the most important late response-carcinogenesis-within the gut is considered. This book follows a volume on 'Radiation and Skin' (1985) and another on 'Radiation and Bone Marrow' is in preparation. The present volume is intended to cover the anatomy and renewal characteristics of the gut, and its response in terms of carcinogenicity and tissue injury in mammalian species including in particular man. The book is expected to be useful to students and teachers in these topics, as well as clinical oncologists (radiotherapists) and medical oncologists, and industrial health personnel. 70 figs., 20 tabs., 869 refs

  18. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    Science.gov (United States)

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  19. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  20. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course...... with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. clinicaltrials.gov NCT01633762....

  1. Dysbiosis of the gut microbiota in disease

    Directory of Open Access Journals (Sweden)

    Simon Carding

    2015-02-01

    rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis.This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention.

  2. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  3. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  4. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.

    Science.gov (United States)

    Malmuthuge, Nilusha; Guan, Le Luo

    2017-07-01

    Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    Science.gov (United States)

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  6. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose...

  7. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  8. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  9. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children.

    Science.gov (United States)

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-04-05

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome.

  10. The new era of treatment for obesity: evidence and expectations for gut microbiome transplantation

    Directory of Open Access Journals (Sweden)

    Thilini N Jayasinghe

    2016-02-01

    Full Text Available Obesity has reached epidemic proportions. Despite a better understanding of the underlying pathophysiology and growing treatment options, a significant proportion of obese patients do not respond to treatment. Recently, microbes residing in the human gastrointestinal tract have been found to act as an endocrine organ, whose composition and functionality may contribute to the development of obesity. Therefore, faecal/gut microbiome transplantation (GMT, which involves the transfer of faeces from a healthy donor to a recipient, is increasingly drawing attention as a potential treatment for obesity. Currently the evidence for GMT effectiveness in the treatment of obesity is preliminary. Here, we summarize benefits, procedures, and issues associated with GMT, with a special focus on obesity.

  11. A biometric approach to laboratory rodent identification.

    Science.gov (United States)

    Cameron, Jens; Jacobson, Christina; Nilsson, Kenneth; Rögnvaldsson, Thorsteinn

    2007-03-01

    Individual identification of laboratory rodents typically involves invasive methods, such as tattoos, ear clips, and implanted transponders. Beyond the ethical dilemmas they may present, these methods may cause pain or distress that confounds research results. The authors describe a prototype device for biometric identification of laboratory rodents that would allow researchers to identify rodents without the complications of other methods. The device, which uses the rodent's ear blood vessel pattern as the identifier, is fast, automatic, noninvasive, and painless.

  12. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  13. Rodent Models for Metabolic Syndrome Research

    Directory of Open Access Journals (Sweden)

    Sunil K. Panchal

    2011-01-01

    Full Text Available Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney, primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.

  14. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  15. The rodent ultrasound production mechanism.

    Science.gov (United States)

    Roberts, L H

    1975-03-01

    Rodents produce two types of sounds, audible and ultrasonic, that differ markedly in physical structure. Studies of sound production in light gases show that whereas the audible cries appear to be produced, as in the case of most other mammals, by vibrating structures in the larynx, the ultrasonic cries are produced by a different mechanism, probably a whistle. 'Bird-call' whistles are shown to have all the properties of rodent ultrasonic cries and to mimic them in almost every detail. Thus it is concluded that rodents have two distinct sound production mechanisms, one for audible cries and one for ultrasonic cries.

  16. Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents.

    Science.gov (United States)

    Quiñones, Mar; Folgueira, Cintia; Sánchez-Rebordelo, Estrella; Al-Massadi, Omar

    2015-01-01

    Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5) that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO) rats and leptin-deficient (ob/ob) mice), as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA). Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.

  17. Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents

    Directory of Open Access Journals (Sweden)

    Mar Quiñones

    2015-01-01

    Full Text Available Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5 that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO rats and leptin-deficient (ob/ob mice, as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA and Radioimmunoassay (RIA. Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.

  18. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  19. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    Science.gov (United States)

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  20. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  1. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  2. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    , are generally recognized to be of particular importance for the healthy development of children. While dietary changes are known to affect the adult gut microbiota, there is a gap in our knowledge on how the introduction of new dietary components into the diet of infants/young children affects the gut...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential......(breast/formula). Consequently, the neonatal period and early infancy has attracted much attention. However, after this first period the gut microbial composition continues to develop until the age of 3 years, and these 1st years have been designated "a window of opportunity" for microbial modulation. The beginning and end...

  4. Hh pathway expression in human gut tissues and in inflammatory gut diseases

    NARCIS (Netherlands)

    Nielsen, Corinne M.; Williams, Jerrell; van den Brink, Gijs R.; Lauwers, Gregory Y.; Roberts, Drucilla J.

    2004-01-01

    Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of

  5. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Stanisavljević, S; Lukić, J; Momčilović, M; Miljković, M; Jevtić, B; Kojić, M; Golić, N; Mostarica Stojković, M; Miljković, D

    2016-06-01

    Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis.

  6. The effect of an inhibitor of gut serotonin (LP533401) during the induction of periodontal disease.

    Science.gov (United States)

    Lima, G M G; Corazza, B J M; Moraes, R M; de Oliveira, F E; de Oliveira, L D; Franco, G C N; Perrien, D S; Elefteriou, F; Anbinder, A L

    2016-10-01

    LP533401 is an inhibitor of tryptophan hydroxylase 1, which regulates serotonin production in the gut. Previous work indicates that LP533401 has an anabolic effect in bone. Thus, we hypothesized that inhibition of gut serotonin production may modulate the host response in periodontal disease. In this study, we aimed to analyze the effects of LP533401 in a rat periodontitis model to evaluate the role of gut serotonin in periodontitis pathophysiology. Twenty-four rats were divided into three groups: treated group (T: ligature-induced periodontal disease and LP533401, 25 mg/kg/d) by gavage; ligature group (L: ligature-induced periodontal disease only); and control group (C: without ligature-induced periodontal disease). After 28 d, radiographic alveolar bone support was measured on digital radiographs, and alveolar bone volume fraction, tissue mineral density and trabeculae characteristics were quantified by microcomputed tomography in the right hemi-mandible. Left hemi-mandibles were decalcified and alveolar bone loss, attachment loss and area of collagen in the gingiva were histologically analyzed. Significant difference between the L and C groups was found, confirming that periodontal disease was induced. We observed no difference between the T and L groups regarding alveolar bone destruction and area of collagen. LP533401 (25 mg/kg/d) for 28 d does not prevent bone loss and does not modulate host response in a rat model of induced periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  8. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  9. Wild Rodent Ectoparasites Collected from Northwestern Iran

    Directory of Open Access Journals (Sweden)

    Zabihollah Zarei

    2017-04-01

    Full Text Available Background: Rodents play an important role as reservoir of some pathogens, and the host of some ectoparasites as well. These ectoparasites can transmit rodents’ pathogens to human or animals. The aim of this study was to assess the distribution and infestation load of ectoparasites on rodents in Meshkin-Shahr District, northwestern Iran.Method: Rodents were captured using baited live traps in spring 2014 from Meshkin-Shahr District and were trans­ferred to the laboratory for identification to the species level. Their ectoparasites were collected, mounted and identi­fied.Results: Three rodent species including Meriones persicus (74%, Mus musculus (16.9% and Cricetulus migrato­rius (9% were identified. Among all rodents, 185 specimens (90.69% were infested with a total of 521 ectopara­sites. Overall, 10 arthropods species were collected, including fleas (97.6%, one mite (1.6% and one louse species (0.6% as follows: Xenopsylla nubica, X. astia, X. buxtoni, X. cheopis, Nosopsyllus fasciatus, N. iranus, Cten­ocephalides felis, Ctenophthalmus rettigismiti, Ornithonyssus sp and one species of genus Polyplax. The most prev­alent ectoparasites species was X. nubica (89%.Conclusion: Nearly all rodent species were infested with Xenopsylla species. Monitoring of ectoparasites on infested rodents is very important for awareness and early warning towards control of arthropod-borne diseases.

  10. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET

    DEFF Research Database (Denmark)

    De Leon, Mony J.; Li, Yi; Okamura, Nobuyuki

    2017-01-01

    Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribrif......Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing...

  12. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  13. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design

    Science.gov (United States)

    Laukens, Debby; Brinkman, Brigitta M.; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter

    2015-01-01

    Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. PMID:26323480

  14. Albumin infusion after reperfusion prevents gut ischemia-reperfusion-induced gut-associated lymphoid tissue atrophy.

    Science.gov (United States)

    Ikezawa, Fumie; Fukatsu, Kazuhiko; Moriya, Tomoyuki; Maeshima, Yoshinori; Okamoto, Koichi; Hara, Etsuko; Hiraide, Hoshio; Compher, Charlene W

    2006-01-01

    Our recent study clarified that gut ischemia-reperfusion (I/R) causes gut-associated lymphoid tissue (GALT) mass atrophy, a possible mechanism for increased morbidity of infectious complications after severe surgical insults. Because albumin administration reportedly reduces hemorrhagic shock-induced lung injury, we hypothesized that albumin treatment prevents GALT atrophy due to gut I/R. Male mice (n = 37) were randomized to albumin, normal saline, and sham groups. All groups underwent jugular vein catheter insertion. The albumin and normal saline groups underwent 75-minute occlusion of the superior mesenteric artery. During gut ischemia, all mice received normal saline infusions at 1.0 mL/h. The albumin group was given 5% bovine serum albumin in normal saline at 1.0 mL/h for 60 minutes after reperfusion, whereas the normal saline group received 0.9% sodium chloride at 1.0 mL/h. The sham group underwent laparotomy only. Mice were killed on day 1 or 7, and the entire small intestine was harvested. GALT lymphocytes were isolated and counted. Their phenotypes (alphabetaTCR, gammadeltaTCR, CD4, CD8, B220) were determined by flow cytometry. On day 1, the gut I/R groups showed significantly lower total lymphocyte and B cell numbers in Peyer's patches and the lamina propria than the sham group. However, the albumin infusion partially but significantly restored these cell numbers. On day 7, there were no significant differences in any of the parameters measured among the 3 groups. Albumin infusion after a gut ischemic insult may maintain gut immunity by preventing GALT atrophy.

  15. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  16. Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo

    Directory of Open Access Journals (Sweden)

    Andrea Ziková

    2008-01-01

    Full Text Available Cyanobacterial water blooms became a global problem/issue because beside a dramatic deterioration of water quality parameters they also produce cyanobacterial toxins being harmful for animals and humans. Cyanotoxins especially the most prominent one, microcystin-LR (MC-LR, are of major concern and they have been reported to cause even death of mammals following ingestion or ingurgitation due to hepatotoxic modes of action. The aim of the recent study is to summarize briefly the impacts of microcystin on laboratory rodents, mice and rats, being used as models for other mammals including human beings. Most experimental approaches used intraperitoneal rather than oral and intratracheal application of microcystins, especially MC-LR, being the most efficient way to induce adverse impacts on different target organs. However, no matter how the exposure of rodents was performed, microcystins induced severe harmful impacts on the different target organs, preferentially the liver, for instances hemorrhages and apoptosis in liver, liver tumours, adverse effects on gut, kidney, testis and epididymis including spermatogenesis, on lung, on serum parameters and on progeny. In addition to these histological findings, microcystin was found to affect specifically biochemical parameters of target organs such as enzymes e.g. GST, CAT, GR, GPX, SOD, AST, ALT, γ-GT, protein phosphatases, SDH, SoDH and LDH or stress proteins such as HSP-70 and further parameters such as hepatic sulfhydryl content, GSH depletion, total bilirubin, urea nitrogen, and creatinine. Gene array analyses revealed that microcystin affects genes related to actin organization, cell cycle, apoptosis, cellular redox potential, cell signalling, albumin metabolism, glucose homeostasis pathway and organic anion transport polypeptide system. In combination with a further proteomics approach the proteomic analyses indicate that liver apoptosis induced by microcystin can be induced by two pathways: the

  17. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  18. The Pathophysiological Effects of Acrylamide in Albino Wister Rats

    Directory of Open Access Journals (Sweden)

    Shler Akram Faqe Mahmood

    2016-07-01

    Full Text Available Studies of the pathophysiological effects of suspected compounds are conducted in rodent species, especially rats and mice, to determine the potential toxic effects of a particular compound. In the assessment of acrylamide (ACR which is available as a dietary compound in daily food stuffs, the potential toxicity was determined following the method described earlier. In this study, Albino Wister rats were used and were observed for clinical abnormalities, changes in food consumption, a n d s y m p t o m s o f toxicity over a period of two months following the oral administration of ACR. Among the parameters used to assess the effect of ACR were include ovarian histopathology, blood sugar, haemogram and lipid profile. The most notable clinical abnormalities observed in a few rats were a rough coat and decreased activity. None of the rats died or howedbehavioural change resulting from treatment with ACR. The concentration of serum biochemical parameters and haemogram showed significant differences between normal and treated rats. Histological examination of the ovaries of the treated rats showed great abnormalities as well. In fact, oral ACR doses are practically toxic with regard to rats after exposure for two months at a dose rate of 30 mg/kg, suggesting the compound is quite non-innocuous.

  19. [Pathophysiology of chronic diarrhea].

    Science.gov (United States)

    Gerok, W

    2000-10-12

    The symptom of diarrhoea is defined as an abnormally frequent discharge from the bowel (more than 3 times a day) and a semisolid or fluid consistency of the faecal matter. Diarrhoea is termed chronic when it lasts more than four weeks. Diarrhoea is the result of disturbances in enteral water and electrolyte balance. Increased intestinal motility is usually not the cause but the result of diarrhoea. Transport of water through the gut is dependent on the osmotic gradient between interstitium and gut lumen. The secretion of chloride ions by the cells of the intestinal glands plays a major role in water secretion into the gut lumen, while sodium and potassium absorption in the villous zone of the enterocytes is crucial for enteral water absorption. Enteral water and electrolyte balance is regulated by the autonomic and enteral nervous system, by gastrointestinal hormones and signal messengers of mesenchymal cells. Pathogenetically, one distinguishes between secretory and osmotic diarrhoea. Furthermore, mixed forms of both pathogenic types can occur. The various types can be differentiated clinically and by the "osmotic gap". Diarrhoea can be a symptom of various diseases. Its pathogenesis is illustrated using examples of diarrhoea in pathological bile acid absorption, bacterial infections, carbohydrate malabsorption or disaccharidase insufficiency and in chronic inflammatory bowel disease.

  20. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  1. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    Science.gov (United States)

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission

    NARCIS (Netherlands)

    Narasimhan, Sukanya; Coumou, Jeroen; Schuijt, Tim J.; Boder, Eric; Hovius, Joppe W.; Fikrig, Erol

    2014-01-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized

  3. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases.

    Science.gov (United States)

    Power, Krista A; Lepp, Dion; Zarepoor, Leila; Monk, Jennifer M; Wu, Wenqing; Tsao, Rong; Liu, Ronghua

    2016-02-01

    Understanding how dietary components alter the healthy baseline colonic microenvironment is important in determining their roles in influencing gut health and gut-associated diseases. Dietary flaxseed (FS) has demonstrated anti-colon cancer effects in numerous rodent models, however, exacerbated acute colonic mucosal injury and inflammation in a colitis model. This study investigates whether FS alters critical aspects of gut health in healthy unchallenged mice, which may help explain some of the divergent effects observed following different gut-associated disease challenges. Four-week-old C57Bl/6 male mice were fed an AIN-93G basal diet (BD) or an isocaloric BD+10% ground FS diet for 3 weeks. FS enhanced colon goblet cell density, mucus production, MUC2 mRNA expression, and cecal short chain fatty acid levels, indicative of beneficial intestinal barrier integrity responses. Additionally, FS enhanced colonic regenerating islet-derived protein 3 gamma (RegIIIγ) and reduced MUC1 and resistin-like molecule beta (RELMβ) mRNA expression which may indicate altered responses in regulating microbial defense and injury repair responses. FS diet altered the fecal microbial community structure (16S rRNA gene profiling), including a 20-fold increase in Prevotella spp. and a 30-fold reduction in Akkermansia muciniphila abundance. A 10-fold reduction in A. muciniphila abundance by FS was also demonstrated in the colon tissue-associated microbiota (quantitative PCR). Furthermore, fecal branched chain fatty acids were increased by FS, indicative of increased microbial-derived putrefactive compounds. In conclusion, consumption of a FS-supplemented diet alters the baseline colonic microenvironment of healthy mice which may modify subsequent mucosal microbial defense and injury-repair responses leading to altered susceptibility to different gut-associated diseases. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  5. Gut microbiota sustains hematopoiesis

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim

    2017-01-01

    In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1......In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1...

  6. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes.

    Science.gov (United States)

    Sato, Junko; Kanazawa, Akio; Ikeda, Fuki; Yoshihara, Tomoaki; Goto, Hiromasa; Abe, Hiroko; Komiya, Koji; Kawaguchi, Minako; Shimizu, Tomoaki; Ogihara, Takeshi; Tamura, Yoshifumi; Sakurai, Yuko; Yamamoto, Risako; Mita, Tomoya; Fujitani, Yoshio; Fukuda, Hiroshi; Nomoto, Koji; Takahashi, Takuya; Asahara, Takashi; Hirose, Takahisa; Nagata, Satoru; Yamashiro, Yuichiro; Watada, Hirotaka

    2014-08-01

    Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and "live gut bacteria" in the systemic circulation of Japanese patients with type 2 diabetes. Using a sensitive reverse transcription-quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Fecal excretion of Maillard reaction products and the gut microbiota composition of rats fed with bread crust or bread crumb.

    Science.gov (United States)

    Helou, C; Anton, P M; Niquet-Léridon, C; Spatz, M; Tessier, F J; Gadonna-Widehem, P

    2017-08-01

    A comparison between the impacts of advanced (N ε -carboxymethyllysine - CML) and terminal (melanoidins) Maillard reaction products from bread on gut microbiota was carried out in this study. Gut microbiota composition as well as fecal excretion of CML from both bread crust and bread crumb, and of melanoidins from bread crust were assessed on a rodent model. Rats were fed with pellets supplemented or not with 13% of bread crust, bread crumb, a fiber-free bread crust model (glucose, starch and gluten heated together) or a fiber-free-melanoidin-free bread model (glucose-starch and gluten heated separately) for four weeks. These model systems were developed to limit the presence of wheat-native dietary fibers such as cellulose, hemicelluloses and lignin. CML and melanoidins in pellets and feces were evaluated by LC/MS-MS and HPLC/fluorescence respectively, and gut microbiota composition was determined by cultivation and molecular approaches. Diets supplemented with crumb or the fiber-free-melanoidin-free model contained respectively 17% and 64% less melanoidins than their respective controls. A higher excretion of melanoidins was observed for rats fed with crust or bread crust model compared to their controls, confirming that melanoidins are in contact with gut microbiota. No impact of diets was observed on Firmicutes, Bacteroidetes and lactic flora. A decrease of enterobacteria was only observed for rats fed with the diet supplemented with the fiber-free bread crust model. Moreover, a significant increase of bifidobacteria numbers in the presence of crust, crumb and both bread models was observed, showing that this bifidogenic effect of bread is not due to the presence of melanoidins or wheat-native dietary fibers.

  8. Gut microbiome and its role in cardiovascular diseases.

    Science.gov (United States)

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  9. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Directory of Open Access Journals (Sweden)

    Mathilde Jaglin

    2018-04-01

    Full Text Available Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional

  10. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Science.gov (United States)

    Jaglin, Mathilde; Rhimi, Moez; Philippe, Catherine; Pons, Nicolas; Bruneau, Aurélia; Goustard, Bénédicte; Daugé, Valérie; Maguin, Emmanuelle; Naudon, Laurent; Rabot, Sylvie

    2018-01-01

    Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings

  11. Stroke MRI: pathophysiology, potential and perspectives

    International Nuclear Information System (INIS)

    Fiehler, J.; Kucinski, T.; Zeumer, H.

    2004-01-01

    Magnetic resonance imaging (MRT) is increasingly utilized as the primary imaging modality in major stroke centers. The ability to depict several aspects of individual pathophysiology makes the use of MRI in stroke both attractive and complex. Profound knowledge of the pathophysiology of the imaging findings is crucial for a rational diagnostic workup. The pathophysiology of MRI in stroke will be reviewed considering recent experiences in clinical application, and the potential of stroke MRI will be assessed. Further perspectives like application of 'blood oxygen level dependent' (BOLD) and the use of multiparametric prediction maps will be discussed. (orig.) [de

  12. Testing GUTs: where do monopoles fit

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    The report shows why the inadequacies of the standard model of elementary particles impel some theorists toward embedding the strong, weak and electromagnetic interactions in a simple GUT group, and explains why the grand unification scale and hence the GUM (Grand Unified Monopoles) mass are expected to be so large (greater than or equal to 10 14 GeV). It goes on to describe some model GUTs, notably minimal SU(5) and supersymmetric (susy) GUTs. The grand unified analogues of generalized Cabibbo mixing angles are introduced relevant to the prediction of baryon decay modes in different theories as well as to the Decay modes catalyzed by GUMs. Phenomenologies of conventional and susy GUTs are contrasted including the potential increase in the grand unification scale as well as possible different baryon decay modes in susy GUTs. The phenomenology of GUMs is discussed, principally their ability to catalyze baryon decays. Some of the astrophysical and cosmological constraints on GUMs, GUMs, which make it difficult to imagine ever seeing a GUM and may impose serious restrictions on GUT model-building via their behavior in the very early universe are introduced. Finally, the reasons why GUMs are crucial aspects and tests of GUTs are summarized

  13. 33 CFR 117.537 - Townsend Gut.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Gut. 117.537 Section 117... OPERATION REGULATIONS Specific Requirements Maine § 117.537 Townsend Gut. The draw of the Southport (SR27) Bridge, at mile 0.7, across Townsend Gut between Boothbay Harbor and Southport, Maine shall open on...

  14. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Science.gov (United States)

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  15. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Directory of Open Access Journals (Sweden)

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  16. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    Science.gov (United States)

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  17. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  19. Template based rodent brain extraction and atlas mapping.

    Science.gov (United States)

    Weimin Huang; Jiaqi Zhang; Zhiping Lin; Su Huang; Yuping Duan; Zhongkang Lu

    2016-08-01

    Accurate rodent brain extraction is the basic step for many translational studies using MR imaging. This paper presents a template based approach with multi-expert refinement to automatic rodent brain extraction. We first build the brain appearance model based on the learning exemplars. Together with the template matching, we encode the rodent brain position into the search space to reliably locate the rodent brain and estimate the rough segmentation. With the initial mask, a level-set segmentation and a mask-based template learning are implemented further to the brain region. The multi-expert fusion is used to generate a new mask. We finally combine the region growing based on the histogram distribution learning to delineate the final brain mask. A high-resolution rodent atlas is used to illustrate that the segmented low resolution anatomic image can be well mapped to the atlas. Tested on a public data set, all brains are located reliably and we achieve the mean Jaccard similarity score at 94.99% for brain segmentation, which is a statistically significant improvement compared to two other rodent brain extraction methods.

  20. Gut transit is associated with gastrointestinal symptoms and gut hormone profile in patients with cirrhosis

    DEFF Research Database (Denmark)

    Kalaitzakis, Evangelos; Sadik, Riadh; Holst, Jens Juul

    2008-01-01

    BACKGROUND & AIMS: Liver cirrhosis is associated with increased prevalence of gastrointestinal symptoms, insulin resistance, and altered gut transit. We aimed to assess the prevalence of gut transit abnormalities in patients with cirrhosis, compared with healthy controls, and to evaluate the rela......BACKGROUND & AIMS: Liver cirrhosis is associated with increased prevalence of gastrointestinal symptoms, insulin resistance, and altered gut transit. We aimed to assess the prevalence of gut transit abnormalities in patients with cirrhosis, compared with healthy controls, and to evaluate...... the relation of gut transit with gastrointestinal symptoms and postprandial glucose and hormone profiles. METHODS: Half gastric emptying, small bowel residence, and colonic filling times were measured with a validated radiologic procedure in 42 consecutive patients with cirrhosis. In a subgroup of 25 patients......, gastrointestinal symptoms were evaluated by using a validated questionnaire and a caloric satiation test. Postprandial glucose, insulin, leptin, ghrelin, glucagon-like peptide 1, and PYY responses were also studied. Eighty-three healthy subjects served as controls for the transit studies and 10 for the hormone...

  1. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    Directory of Open Access Journals (Sweden)

    Nishat Tasnim

    2017-10-01

    Full Text Available Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development.

  2. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity.

    Science.gov (United States)

    Pigeyre, Marie; Yazdi, Fereshteh T; Kaur, Yuvreet; Meyre, David

    2016-06-01

    In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Tactile learning in rodents: Neurobiology and neuropharmacology.

    Science.gov (United States)

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Gut microbiota and malnutrition.

    Science.gov (United States)

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. How many food additives are rodent carcinogens?

    Science.gov (United States)

    Johnson, F M

    2002-01-01

    One generally assumes that chemical agents added to foods are reasonably free of risks to human health, and practically everyone consumes some additives in his or her food daily throughout life. In the United States, the 1958 Food Additives Amendment to the Federal Food, Drug and Cosmetic Act of 1938 requires food manufacturers to demonstrate the safety of food additives to the Food and Drug Administration (FDA). The Amendment contains a provision that prohibits approval of an additive if it is found to cause cancer in humans or animals. In the present study, data from the National Toxicology Program rodent bioassay (NTPRB) were used to identify a sample of approximately 50 rodent-tested additives and other chemicals added to food that had been evaluated independently of the FDA/food industry. Surprisingly, the sample shows more than 40% of these food chemicals to be carcinogenic in one or more rodent groups. If this percentage is extrapolated to all substances added to food in the United States, it would imply that more than 1000 of such substances are potential rodent carcinogens. The NTP and FDA test guidelines use similar, though not necessarily identical, rodent test procedures, including near lifetime exposures to the maximum tolerated dose. The FDA specifies that test chemicals should be administered by the oral route. However, the oral route includes three methods of delivering chemicals, that is, mixed in the food or water or delivered by stomach tube (gavage). The NTP data show only 1 of 18 food chemicals mixed in the food are rodent carcinogens, but 16 of 23 gavage-administered food chemicals are carcinogenic to rodents. The distribution suggests that among orally delivered chemicals, those administered in the feed will more likely prove to be noncarcinogens than chemicals given by gavage. The rodent data also reveal that effects may vary according to dose and genotype, as well as by route of administration, to further complicate extrapolation to humans

  7. COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants.

    Science.gov (United States)

    Connor, E E; Evock-Clover, C M; Walker, M P; Elsasser, T H; Kahl, S

    2015-02-01

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as

  8. Convergent and Divergent Adaptations of Subterranean Rodents

    DEFF Research Database (Denmark)

    Fang, Xiaodong

    Subterranean rodents comprise approximately 250 species that spend their entire lives in underground, unventilated tunnels, distributed along all continents except Australia and Antarctica. Subterranean rodents escape from predators and extreme climatic fluctuations in their underground habitats,...

  9. Precision LEP data, supersymmetric GUTs and string unification

    International Nuclear Information System (INIS)

    Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center

    1990-01-01

    The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)

  10. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  11. Rodent-borne diseases and their public health importance in Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Rabiee

    2018-04-01

    Full Text Available Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran.We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID, and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50% parasitic diseases, 13 (38% bacterial diseases, and 4 (12% viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases, Mus musculus (14 diseases, Rattus rattus (13 diseases, Meriones persicus (7 diseases, Apodemus spp. (5 diseases, Tatera indica (4 diseases, Meriones libycus (3 diseases, Rhombomys opimus (3 diseases, Cricetulus migratorius (3 diseases, and Nesokia indica (2 diseases.The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases.

  12. Rodent-borne diseases and their public health importance in Iran

    Science.gov (United States)

    Mahmoudi, Ahmad; Siahsarvie, Roohollah; Kryštufek, Boris; Mostafavi, Ehsan

    2018-01-01

    Background Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran. Methodology/Principal finding We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID), and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50%) parasitic diseases, 13 (38%) bacterial diseases, and 4 (12%) viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases), Mus musculus (14 diseases), Rattus rattus (13 diseases), Meriones persicus (7 diseases), Apodemus spp. (5 diseases), Tatera indica (4 diseases), Meriones libycus (3 diseases), Rhombomys opimus (3 diseases), Cricetulus migratorius (3 diseases), and Nesokia indica (2 diseases). Conclusions/Significance The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases. PMID:29672510

  13. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    The establishment of the human gut microbiota in early life has been associated with later health and disease. During the 1st months after birth, the microbial composition in the gut is known to be affected by the mode of delivery, use of antibiotics, geographical location and type of feeding...... of this window is currently debated, but it likely coincides with the complementary feeding period, marking the gradual transition from milk- based infant feeding to family diet usually occurring between 6 and 24 months. Furthermore, the 'first 1000 days,' i.e., the period from conception until age 2 years...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential...

  14. Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia

    Science.gov (United States)

    Mielcarek, Mathilde; Tatard, Caroline; Chaval, Yannick; Suputtamongkol, Yupin; Buchy, Philippe; Jittapalapong, Sathaporn; Herbreteau, Vincent; Morand, Serge

    2014-01-01

    Background Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking. Methodology/Principal Findings We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands). Conclusion/Significance L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which

  15. Ectoparasites of Rodents Captured in Hamedan, Western Iran

    Directory of Open Access Journals (Sweden)

    Hamid Zendehfili

    2015-10-01

    Full Text Available Background: Rodents with a population greater than the entire population of other mammals on earth are the source of economic losses and health conflicts. One of the major health problems with the rodents is their role as reservoir hosts of zoonotic diseases. The aim of this study was to assess the infestation of commensal rodents with ectoparasites in Hamedan City, Western Iran.Methods: The samples were collected by live traps during years 2012–2013. After transferring the samples to the Entomological Laboratory of Hamedan University of Medical Sciences, their ectoparasites were collected andidentified.Results: A total of 171 slides were prepared from 105 captured commensal rodents: Mus musculus, Rattus rattus and R. norvegicus comprising three orders namely Mesostigmata: Hypoaspis (Laelaspis astronomica, Dermanyssius sp, Pachylaelapidae (male. Metastigmata: Rhipicephalus sp and Anoplura: Polyplax spinulosa were recovered in Hamedan City. Seventy (66.6% rodents were found infested with at least one species of ectoparasites.Conclusion: The results of our study indicate that ectoparasites infestation in commensal rodents of Hamedan city is high and more attention by local health authorities is needed to prevent zoonotic diseases.

  16. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  17. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    Understanding the link between the human gut microbiome and human health is one of the biggest scientific challenges in our decade. Because 90% of our cells are bacteria, and the microbial genome contains 200 times more genes than the human genome, the study of the human microbiome has...... the potential to impact many areas of our health. This PhD thesis is the first study to generate a large amount of experimental data on the DNA and RNA of the human gut microbiome. This was made possible by our development of a human gut microbiome array capable of profiling any human gut microbiome. Analysis...... of our results changes the way we link the gut microbiome with diseases. Our results indicate that inflammatory diseases will affect the ecological system of the human gut microbiome, reducing its diversity. Classification analysis of healthy and unhealthy individuals demonstrates that unhealthy...

  18. A Community-Based Surveillance on Determinants of Rodent Infestation

    Directory of Open Access Journals (Sweden)

    Hsiu-Hua Pai

    2003-01-01

    Full Text Available Rodent infestation is an important factor in the transmission of infectious diseases of public health importance. From October to November 1998, surveillance stations were established in 110 boroughs of Kaohsiung City in southern Taiwan. Boroughs were chosen by random sampling 10 boroughs from each of 11 districts (464 boroughs in the city. The extent of rodent infestation was determined by cage trapping. The possibility of applying a community-based control program was evaluated by investigating associated demographic and environmental factors as well as related knowledge, attitudes, and behaviors. A total of 90 rodents were trapped in 41% of the 110 boroughs. Using univariate analyses, 17 factors were significantly associated with rodent infestation. A lack of knowledge that rodent control relies on community cooperation was the most important factor among the seven variables associated with the extent of rodent infestation (OR 3.1 by logistic multiple regression. This revealed the importance of community cooperation in controlling rodent infestation. Moreover, improvement of environmental hygiene associated with garbage problems, such as cleanliness of storage rooms and closets, and the hygiene of empty space and resource recycling stations should not be ignored.

  19. Microbiota-gut-brain axis and the central nervous system

    OpenAIRE

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-01-01

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated ...

  20. Mycotoxin: Its Impact on Gut Health and Microbiota

    Science.gov (United States)

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  1. Mycotoxin: Its Impact on Gut Health and Microbiota

    Directory of Open Access Journals (Sweden)

    Winnie-Pui-Pui Liew

    2018-02-01

    Full Text Available The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin

  2. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae).

    Science.gov (United States)

    Treves, D S; Martin, M M

    1994-08-01

    Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.

  3. Radiative breaking scenario for the GUT gauge symmetry

    International Nuclear Information System (INIS)

    Fukuyama, T.; Kikuchi, T.

    2006-01-01

    The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)

  4. No-scale SU(5) super-GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Evans, Jason L. [KIAS, School of Physics, Seoul (Korea, Republic of); Nagata, Natsumi [University of Tokyo, Department of Physics, Tokyo, Bunkyo-ku (Japan); Nanopoulos, Dimitri V. [Texas A and M University, George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States); Houston Advanced Research Center (HARC), Astroparticle Physics Group, Woodlands, TX (United States); Academy of Athens, Division of Natural Sciences, Athens (Greece); Olive, Keith A. [University of Minnesota, School of Physics and Astronomy, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2017-04-15

    We reconsider the minimal SU(5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M{sub in} above the GUT scale M{sub GUT}. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. We do not find consistent solutions if none of the matter and Higgs fields are assigned to twisted chiral supermultiplets, even in the presence of Giudice-Masiero terms. However, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions. (orig.)

  5. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  6. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  7. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  8. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice.

    Science.gov (United States)

    Olivares, Marta; Neyrinck, Audrey M; Pötgens, Sarah A; Beaumont, Martin; Salazar, Nuria; Cani, Patrice D; Bindels, Laure B; Delzenne, Nathalie M

    2018-05-25

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are agents designed to increase the half-life of incretins. Although they are administered orally, little is known about their effects on the gut microbiota and functions, despite the fact that some bacteria present in the gut microbiota exhibit DPP-4-like activity. Our objective was to study the impact of the DPP-4 inhibitor vildagliptin on gut functions and the intestinal ecosystem in a murine model of obesity induced by a Western diet (WD). Twenty seven male C57BL/6J mice were randomised to receive a control diet, a WD (45% kJ from fat and 17% kJ from sucrose) or a WD + vildagliptin (0.6 mg/ml in drinking water) for 8 weeks. Vildagliptin significantly reduced DPP-4 activity in the caecal content and faeces. Vildagliptin impacted on the composition of the gut microbiota and its metabolic activity. It mainly decreased Oscillibacter spp. (a direct effect independent of DPP-4 activity was shown on cultured O. valericigenes), increased Lactobacillus spp. and propionate, and reduced the ligands of Toll-like receptors 2 and 4. Vildagliptin protected against the reductions in crypt depth and ileal expression of antimicrobial peptides induced by the WD. In the liver, the expression of immune cell populations (Cd3g and Cd11c [also known as Itgax]) and cytokines was decreased in the WD + vildagliptin-fed mice compared with the WD-fed group. Ex vivo exposure of precision-cut liver slices to vildagliptin showed that this response was not related to a direct effect of the drug on the liver tissue. Our study is the first to consider the DPP-4-like activity of the gut microbiota as a target of DPP-4 inhibition. We propose that vildagliptin exerts beneficial effects at the intestinal level in association with modulation of gut microbiota, with consequences for hepatic immunity. If relevant in humans, this could open new therapeutic uses of DPP-4 inhibition to tackle gut dysfunctions in different pathophysiological contexts. The

  9. Imaging Alzheimer's disease pathophysiology with PET

    Directory of Open Access Journals (Sweden)

    Lucas Porcello Schilling

    Full Text Available ABSTRACT Alzheimer's disease (AD has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI, and dementia stages. Positron emission tomography (PET associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.

  10. Hunting, Food Preparation, and Consumption of Rodents in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Kanokwan Suwannarong

    Full Text Available A cross-sectional study was conducted in 29 villages of Khamkeuth District in Bolikhamxay Province in the Lao PDR during March to May 2013. The study aimed to determine the characteristics associated with rodent consumption and related behaviors among different ethnic groups, ages, and genders. Five-hundred-eighty-four (584 males and females from 18-50 years of age participated in this study. Half of them were Hmong (292, 50% while 152 respondents were Lao-Tai (26% or other ethnic groups (140, 24%. Most of the respondents (79.5% had farming as their main occupation. Prevalences of the studied outcomes were high: 39.9 for hunting or capturing rodents in the previous year, 77.7% for preparing rodents as food, and 86.3% for rodent consumption. Multivariable logistic regression analysis showed that likelihood of these types of rodent contact was more consistently associated with behavioral factors (gathering things from the forest and elsewhere, cultivation-related activities, and taking measures to prevent rodent-borne disease than with socio-demographic, environmental, or cultural factors. The strongest associations were observed for gathering things; these associations were consistently positive and statistically significant. Although this study did not directly assess rodent-borne zoonosis risk, we believe that study findings raise concern that such risk may be substantial in the study area and other similar areas. Further epidemiological studies on the association between rodent-borne disease infection and rodent hunting, preparation for food, and consumption are recommended. Moreover, further studies are needed on the association between these potential exposure factors (i.e., rodent hunting, preparation for food, and consumption and rodent-borne infections, especially among ethnic groups like the Hmong in Lao PDR and those in neighboring countries with similar socio-demographic, environmental, behavioral and cultural contexts.

  11. A note on local GUT models in F-theory

    International Nuclear Information System (INIS)

    Chen, C.-M.; Chung, Y.-C.

    2010-01-01

    We construct non-minimal GUT local models in the F-theory configuration. The gauge group on the bulk G S is one rank higher than the GUT gauge group. The line bundles on the curves are nontrivial to break G S down to the GUT gauge groups. We demonstrate examples of SU(5) GUT from G S =SU(6) and G S =SO(10), the flipped SU(5) from G S =SO(10), and the SO(10) GUT from G S =SO(12) and G S =E 6 . We obtain complete GUT matter spectra and couplings, with minimum exotic matter contents. GUT gauge group breaking to MSSM is achievable by instanton configurations.

  12. Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain.

    Science.gov (United States)

    Kortlever, Joost T P; Janssen, Stein J; Molleman, Jeroen; Hageman, Michiel G J S; Ring, David

    2016-06-01

    Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology.

  13. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  14. Dietary patterns of two herbivorous rodents: and Parotomys brantsii ...

    African Journals Online (AJOL)

    Frequency of occurrence of plant species in the diets were compared with availability of the plants in the rodents' habitats. Both rodents are generalist herbivores, eating plants species in proportion to the availability in their habitats. Dietary patterns, diversity of diet and degree of overlap between rodent's diets are a function ...

  15. Thermoregulation of the subterranean rodent genus Bathyergus ...

    African Journals Online (AJOL)

    The thermoregulation of the largest subterranean rodent, genus Bathyergus, comprising two species, B. suillus and B. janetta,occurring in mesic and semiarid habitats respectively, was investigated and compared with that of other subterranean rodents. Both species display low resting metabolic rates and low body ...

  16. Tuberculosis 2: Pathophysiology and microbiology of pulmonary ...

    African Journals Online (AJOL)

    2005-08-01

    Aug 1, 2005 ... February 2013 Downloaded from www.southsudanmedicaljournal.com. MaIN arTIClES. 10. Tuberculosis 2: Pathophysiology and microbiology of pulmonary tuberculosis. Robert L. Serafino Wania MBBS, MrCP, MSc (Trop Med). Pathophysiology. Inhalation of Mycobacterium tuberculosis leads to one of.

  17. Gut-Bioreactor and Human Health in Future.

    Science.gov (United States)

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  18. Gut dysbiosis impairs recovery after spinal cord injury.

    Science.gov (United States)

    Kigerl, Kristina A; Hall, Jodie C E; Wang, Lingling; Mo, Xiaokui; Yu, Zhongtang; Popovich, Phillip G

    2016-11-14

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid-producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. © 2016 Kigerl et al.

  19. A Field Study of Plague and Tularemia in Rodents, Western Iran.

    Science.gov (United States)

    Mostafavi, Ehsan; Shahraki, Abdolrazagh Hashemi; Japoni-Nejad, Alireza; Esmaeili, Saber; Darvish, Jamshid; Sedaghat, Mohammad Mehdi; Mohammadi, Ali; Mohammadi, Zeinolabedin; Mahmoudi, Ahmad; Pourhossein, Behzad; Ghasemi, Ahmad; Gyuranecz, Miklós; Carniel, Elisabeth

    2017-04-01

    Kurdistan Province in Iran is a historical focus for plague and tularemia. This study aimed at assessing the current status of these two foci by studying their rodent reservoirs. Rodents were trapped and their ectoparasites were collected. The genus and species of both rodents and ectoparasites were determined. Serological analyses of rodent blood samples were done by enzyme-linked immunosorbent assay for plague and by standard tube agglutination assay for tularemia. Rodent spleen samples were subjected to bacterial culture, microscopic examination, and real-time PCR to search for active plague or tularemia infection. During this study, 245 rodents were trapped, of which the most abundant genera were Apodemus (40%), Mus (24.49%), and Meriones (12.65%). One hundred fifty-three fleas, 37 mites, and 54 ticks were collected on these rodents. The results of all direct and indirect tests were negative for plague. Serological tests were positive for tularemia in 4.8% of trapped rodents. This study is the first report on the presence of tularemia infection in rodents in Western Iran. Since Meriones persicus is a known reservoir for plague and tularemia, and this rodent carried plague and tularemia vectors in Marivan and Sanandaj districts, there is a real potential for the occurrence of these two diseases in this region.

  20. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  1. Pathophysiology of cervical myelopathy.

    Science.gov (United States)

    Baptiste, Darryl C; Fehlings, Michael G

    2006-01-01

    Cervical myelopathy is a group of closely related disorders usually caused by spondylosis or by ossification of the posterior longitudinal ligament and is characterized by compression of the cervical spinal cord or nerve roots by varying degrees and number of levels. The decrease in diameter of the vertebral canal secondary to disc degeneration and osteophytic spurs compresses the spinal cord and nerve roots at one or several levels, producing direct damage and often secondary ischemic changes. Clinicians who treat cervical myelopathy cord injuries should have a basic understanding of the pathophysiology and the processes that are initiated after the spinal cord has been injured. Literature review. Literature review of human cervical myelopathy and clinically relevant animal models to further our understanding of the pathological mechanisms involved. The pathophysiology of cervical myelopathy involves static factors, which result in acquired or developmental stenosis of the cervical canal and dynamic factors, which involve repetitive injury to the cervical cord. These mechanical factors in turn result in direct injury to neurons and glia as well as a secondary cascade of events including ischemia, excitotoxicity, and apoptosis; a pathobiology similar to that occurring in traumatic spinal cord injury. This review summarizes some of the significant pathophysiological processes involved in cervical myelopathy.

  2. Hadronic EDM constraints on orbifold GUTs

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru

    2005-01-01

    We point out that the null results of the hadronic electric dipole moment (EDM) searches constrain orbifold grand unified theories (GUTs), where the GUT symmetry and supersymmetry (SUSY) are both broken by boundary conditions in extra dimensions and it leads to rich fermion and sfermion flavor structures. A marginal chromoelectric dipole moment (CEDM) of the up quark is induced by the misalignment between the CP violating left- and right-handed up-type squark mixings, in contrast to the conventional four-dimensional SUSY GUTs. The up quark CEDM constraint is found to be as strong as those from charged lepton flavor violation (LFV) searches. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism

  3. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular......), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform...

  4. Alterations of the Gut Microbiome in Hypertension

    Directory of Open Access Journals (Sweden)

    Qiulong Yan

    2017-08-01

    Full Text Available Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s have not yet been surveyed in a comprehensive manner.Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing.Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05 and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension.Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between

  5. Uus Multiphonic Rodent

    Index Scriptorium Estoniae

    2009-01-01

    Tartus tegutsenud eksperimentaal-rock-duo Opium Flirt Eestisse jäänud liige Erki Hõbe (paarimees Ervin Trofimov tegutseb Ungaris) annab välja oma teise sooloalbumi nime all Multiphonic Rodent, heliplaadi "Astral Dance" esitluskontsert toimub 5. veebruaril Tallinnas baaris Juuksur

  6. Transforming pathophysiology instruction through narrative pedagogy and Socratic questioning.

    Science.gov (United States)

    Rogge, M M

    2001-01-01

    Pathophysiology, heavily content driven, has typically been taught through the use of traditional behavioral pedagogy and a reliance on the formal lecture. The author describes the limitations of this approach to teaching pathophysiology and describes the use of narrative pedagogy and Socratic questioning as alternative methods of instruction to augment lecture methods. Specific strategies for transforming traditional classroom teaching by using Socratic questions in a pathophysiology course for nurse practitioners are described. Student and faculty reactions to the initial efforts to transform pathophysiology instruction are also described.

  7. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  8. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  9. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    Science.gov (United States)

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  10. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  12. Microbiota in fermented feed and swine gut.

    Science.gov (United States)

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  13. Rodent management: the man/environment interface

    International Nuclear Information System (INIS)

    Jackson, W.B.

    1978-01-01

    Rodents which interact with man generally are regarded as undesirable. Attempts at eliminating such rodents by increasing predation (including traps, microbiological agents, toxicants) have been relatively unsuccessful. Management by environmental manipulation must be basic. This then can be supplemented with predation at critical points where public health, use practices, or imperfections in the system demand. Society mores, practices, and economic considerations also have significant impact on the management system

  14. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  15. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  16. Multislice ct in gut related pathologies

    International Nuclear Information System (INIS)

    Nadeem, A.; Shaukat, A.; Ahmad, M.W.; Amin, Y.

    2007-01-01

    The objective of this study is to evaluate the effectiveness of Multislice CT in Gut related pathologies. 50 consecutive patients, referred from surgical and medical departments, with gut pathology suspicion were scanned in this respect on Toshiba MSCT 4 slice Aquilion. Patients were. 100 ml iodinated non ionic IV contrast was given. Preferably water was used as oral contrast and oral iodinated contrast was used only in selective cases. As a result, 33 patients showed positive response and 17 were normal; 23 were females and 10 were males. We found following pathologies Acute Appendicitis 10, Diverticulitis 02, Inflammatory Bowel Disease 03, Small Bowel Obstruction 04, Malignant Gut masses 08, Omental Implants 05, Perforation (Duodenal) 01. It is thus concluded that MDCT has a definite role in gut pathologies especially when the ultrasound is negative. (author)

  17. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    Science.gov (United States)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  18. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  19. The first microbial colonizers of the human gut

    NARCIS (Netherlands)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Palacio, Susana Delgado; Montes, Silvia Arboleya; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; Vos, De Willem; Gueimonde, Miguel; Margolles, Abelardo; Sinderen, Van Douwe; Ventura, Marco

    2017-01-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially)

  20. Recruitment and establishment of the gut microbiome in arctic shorebirds.

    Science.gov (United States)

    Grond, Kirsten; Lanctot, Richard B; Jumpponen, Ari; Sandercock, Brett K

    2017-12-01

    Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird chicks are likely void of microbiota prior to hatch, but that stable gut microbiome establishes as early as 3 days of age, probably from environmental inocula. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling.

    Science.gov (United States)

    Carboni, Lucia; Nguyen, Thanh-Phuong; Caberlotto, Laura

    2016-12-01

    The pathophysiological basis of major depression is incompletely understood. Recently, numerous proteomic studies have been performed in rodent models of depression to investigate the molecular underpinnings of depressive-like behaviours with an unbiased approach. The objective of the study is to integrate the results of these proteomic studies in depression models to shed light on the most relevant molecular pathways involved in the disease. Network analysis is performed integrating preexisting proteomic data from rodent models of depression. The IntAct mouse and the HRPD are used as reference protein-protein interaction databases. The functionality analyses of the networks are then performed by testing overrepresented GO biological process terms and pathways. Functional enrichment analyses of the networks revealed an association with molecular processes related to depression in humans, such as those involved in the immune response. Pathways impacted by clinically effective antidepressants are modulated, including glutamatergic signaling and neurotrophic responses. Moreover, dysregulations of proteins regulating energy metabolism and circadian rhythms are implicated. The comparison with protein pathways modulated in depressive patients revealed significant overlapping. This systems biology study supports the notion that animal models can contribute to the research into the biology and therapeutics of depression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An update on pancreatic pathophysiology (do we have to rewrite pancreatic pathophysiology?).

    Science.gov (United States)

    Hammer, Heinz F

    2014-02-01

    This review focuses on seven aspects of physiology and pathophysiology of the exocrine pancreas that have been intensively discussed and studied within the past few years: (1) the role of neurohormonal mechanisms like melatonin, leptin, or ghrelin in the stimulation of pancreatic enzyme secretion; (2) the initiation processes of acute pancreatitis, like fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen by the lysosomal enzyme cathepsin B, or autoactivation of trypsinogen; (3) the role of genes in the pathogenesis of acute pancreatitis; (4) the role of alcohol and constituents of alcoholic beverages in the pathogenesis of acute pancreatitis; (5) the role of pancreatic hypertension, neuropathy, and central mechanisms for the pathogenesis of pain in chronic pancreatitis; (6) the relation between exocrine pancreatic function and diabetes mellitus; and (7) pathophysiology, diagnosis and treatment of pancreatic steatorrhea.

  3. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  4. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    Science.gov (United States)

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  6. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    Science.gov (United States)

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  7. Testing the limits of Rodent Sperm Analysis: azoospermia in an otherwise healthy wild rodent population.

    Science.gov (United States)

    Tannenbaum, Lawrence V; Thran, Brandolyn H; Willams, Keith J

    2009-01-01

    By comparing the sperm parameters of small rodents trapped at contaminated terrestrial sites and nearby habitat-matched noncontaminated locations, the patent-pending Rodent Sperm Analysis (RSA) method provides a direct health status appraisal for the maximally chemical-exposed mammalian ecological receptor in the wild. RSA outcomes have consistently allowed for as definitive determinations of receptor health as are possible at the present time, thereby streamlining the ecological risk assessment (ERA) process. Here, we describe the unanticipated discovery, at a contaminated US EPA Superfund National Priorities List site, of a population of Hispid cotton rats (Sigmodon hispidus), with a high percentage of adult males lacking sperm entirely (azoospermia). In light of the RSA method's role in streamlining ERAs and in bringing contaminated Superfund-type site investigations to closure, we consider the consequences of the discovery. The two matters specifically discussed are (1) the computation of a population's average sperm count where azoospermia is present and (2) the merits of the RSA method and its sperm parameter thresholds-for-effect when azoospermia is masked in an otherwise apparently healthy rodent population.

  8. Forecasting rodent outbreaks in Africa

    DEFF Research Database (Denmark)

    Leirs, Herwig; Verhagen, Ron; Verheyen, Walter

    1996-01-01

    1. Rainfall data were collated for years preceding historical outbreaks of Mastomys rats in East Africa in order to test the hypothesis that such outbreaks occur after long dry periods. 2. Rodent outbreaks were generally not preceded by long dry periods. 3. Population dynamics of Mastomys...... natalensis rats in Tanzania are significantly affected by the distribution of rainfall during the rainy season. 4. All previous rodent outbreaks in Tanzania were preceded by abundant rainfall early in the rainy season, i.e, towards the end of the year. 5. A flow chart is constructed to assess the likelihood...

  9. Old World hantaviruses in rodents in New Orleans, Louisiana.

    Science.gov (United States)

    Cross, Robert W; Waffa, Bradley; Freeman, Ashley; Riegel, Claudia; Moses, Lina M; Bennett, Andrew; Safronetz, David; Fischer, Elizabeth R; Feldmann, Heinz; Voss, Thomas G; Bausch, Daniel G

    2014-05-01

    Seoul virus, an Old World hantavirus, is maintained in brown rats and causes a mild form of hemorrhagic fever with renal syndrome (HFRS) in humans. We captured rodents in New Orleans, Louisiana and tested them for the presence of Old World hantaviruses by reverse transcription polymerase chain reaction (RT-PCR) with sequencing, cell culture, and electron microscopy; 6 (3.4%) of 178 rodents captured--all brown rats--were positive for a Seoul virus variant previously coined Tchoupitoulas virus, which was noted in rodents in New Orleans in the 1980s. The finding of Tchoupitoulas virus in New Orleans over 25 years since its first discovery suggests stable endemicity in the city. Although the degree to which this virus causes human infection and disease remains unknown, repeated demonstration of Seoul virus in rodent populations, recent cases of laboratory-confirmed HFRS in some US cities, and a possible link with hypertensive renal disease warrant additional investigation in both rodents and humans.

  10. Copepod guts as biogeochemical hotspots in the sea

    DEFF Research Database (Denmark)

    Tang, Kam W.; Glud, Ronnie N.; Glud, Anni

    2011-01-01

    The environmental conditions inside the gut of Calanus hyperboreus and C. glacialis were measured with microelectrodes. An acidic potential hydrogen (pH) gradient was present in the gut of C. hyperboreus, and the lowest pH recorded was 5.40. The gut pH of a starved copepod decreased by 0.53 after...... the copepod resumed feeding for a few hours, indicating the secretion of acidic digestive fluid. A copepod feeding on Thalassiosira weissflogii (diatom) had slightly lower pH than that feeding on Rhodomonas salina (cryptophyte). Oxygen was undersaturated in the gut of both C. hyperboreus and C. glacialis......, with a steep gradient from the anal opening to the metasome region. The central metasome region was completely anoxic. Food remains in the gut led to a lower oxygen level, and a diatom diet induced a stronger oxygen gradient than a cryptophyte diet. The acidic and suboxic–anoxic environments of the copepod gut...

  11. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    Science.gov (United States)

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  12. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  13. Early-life gut microbiome and egg allergy.

    Science.gov (United States)

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  14. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  15. CT-Sellink - a new method for demonstrating the gut wall

    International Nuclear Information System (INIS)

    Thiele, J.; Kloeppel, R.; Schulz, H.G.

    1993-01-01

    34 patients were examined by CT following a modified enema (CT-Sellink) in order to demonstrate the gut. By introducing a 'gut index' it is possible to define the tone of the gut providing its folds remain constant. By means of a radial density profile the gut wall can be defined objectively and in numerical terms. Gut wall thickness in the small bowel averaged 1.2 mm with a density of 51 Hu and gut wall thickness in the colon averaged 2 mm with a density of 59 Hu. (orig.) [de

  16. Central administration of the anorexigenic peptide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents.

    Science.gov (United States)

    Vallöf, Daniel; Ulenius, Lisa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2017-05-01

    By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans. © 2016 The Authors Addiction Biology published by John Wiley & Sons Ltd.

  17. Lassa fever or lassa hemorrhagic fever risk to humans from rodent-borne zoonoses.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2015-04-01

    Viral hemorrhagic fevers (VHFs) typically manifest as rapidly progressing acute febrile syndromes with profound hemorrhagic manifestations and very high fatality rates. Lassa fever, an acute hemorrhagic fever characterized by fever, muscle aches, sore throat, nausea, vomiting, diarrhea and chest and abdominal pain. Rodents are important reservoirs of rodent-borne zoonosis worldwide. Transmission rodents to humans occur by aerosol spread, either from the genus Mastomys rodents' excreta (multimammate rat) or through the close contact with infected patients (nosocomial infection). Other rodents of the genera Rattus, Mus, Lemniscomys, and Praomys are incriminated rodents hosts. Now one may ask do the rodents' ectoparasites play a role in Lassa virus zoonotic transmission. This paper summarized the update knowledge on LHV; hopping it might be useful to the clinicians, nursing staff, laboratories' personals as well as those concerned zoonoses from rodents and rodent control.

  18. The emerging role of incretins in the pathophysiology of insulin resistance in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Gorana Mirošević

    2017-09-01

    Full Text Available The pathophysiology of insulin resistance (IR comprises a complex adipokine-mediated crosstalk between white adipose tissue and other organs. Although it is a prominent feature of Type 2 diabetes, a certain degree of IR also exists in Type 1 diabetes mellitus (T1DM. Incretins are gut derived hormones secreted into the circulation in response to nutrient ingestion that enhances glucose-stimulated insulin secretion. One of the main incretin hormones is glucagon-like peptide-1. It is degraded by dipeptidyl peptidase-4 (DPP-4 minutes after secretion. The diminished “incretin effect” is recognized as a part of prediabetes, usually associated with IR. DPP-4, as a part of the incretin system, has recently been proposed as a novel adipokine linked to IR and DPP-4 activity is higher in T1DM patients compared to healthy controls; furthermore, it correlates with the degree of IR. The role of the incretin system, with special emphasis on DPP-4, merits further evaluation because it might offer an insulin add-on therapeutic approach in the metabolic control of T1DM.

  19. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  20. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  1. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Influence of functional food components on gut health.

    Science.gov (United States)

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  3. Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

    Directory of Open Access Journals (Sweden)

    Usha Vyas

    2012-01-01

    Full Text Available The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.

  4. Global F-theory GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.; /Bonn U.; Jurke, Benjamin; /Munich, Max Planck Inst.; Weigand, Timo; /SLAC

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.

  5. Global F-theory GUTs

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Grimm, Thomas W.; Jurke, Benjamin; Weigand, Timo

    2010-01-01

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4)xU(1) X ] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P 4 [4].

  6. Gradual Changes of Gut Microbiota in Weaned Miniature Piglets

    Directory of Open Access Journals (Sweden)

    Xianghua Yan

    2016-11-01

    Full Text Available Colonization of gut microbiota in mammals during the early life is vital to host health. The miniature piglet has recently been considered as an optimal infant model. However, less is known about the development of gut microbiota in miniature piglets. Here, this study was conducted to explore how the gut microbiota develops in weaned Congjiang miniature piglets. In contrast to the relatively stabilized gut fungal community, gut bacterial community showed a marked drop in alpha diversity, accompanied by significant alterations in taxonomic compositions. The relative abundances of 24 bacterial genera significantly declined, whereas the relative abundances of 7 bacterial genera (Fibrobacter, Collinsella, Roseburia, Prevotella, Dorea, Howardella, and Blautia significantly increased with the age of weaned piglets. Fungal taxonomic analysis showed that the relative abundances of 2 genera (Kazachstania and Aureobasidium significantly decreased, whereas the relative abundances of 4 genera (Aspergillus, Cladosporium, Simplicillium, and Candida significantly increased as the piglets aged. Kazachstania telluris was the signature species predominated in gut fungal communities of weaned miniature piglets. The functional maturation of the gut bacterial community was characterized by the significantly increased digestive system, glycan biosynthesis and metabolism, and vitamin B biosynthesis as the piglets aged. These findings suggest that marked gut microbial changes in Congjiang miniature piglets may contribute to understand the potential gut microbiota development of weaned infants.

  7. [Dermohypodermitis and gut translocation Escherichia coli septicemia in a newborn infant].

    Science.gov (United States)

    Gouache, E; Chantier, E; Hubert, N; Rivière, M-F

    2013-01-01

    The burden of neonatal bacterial infections continues. They remain a significant cause of death and morbidity, despite recommendations for prevention. The epidemiology of these infections has changed. Currently the two most causative pathogens for early-onset neonatal sepsis and for late-onset sepsis in term infants are Group B streptococci (GBS) and Escherichia coli. E. coli's role is increasingly important since the widespread use of intrapartum antibiotic prophylaxis. In late-onset infections, one of the suggested pathophysiological mechanisms is microbial translocation in the gut secondary to digestive colonization, particularly when E. coli is isolated in blood cultures. This can occur either before or after birth. Bacterial sepsis can be associated with various non-specific peripheral manifestations involving skin and soft tissues. We report the case of a full-term, 26-day-old newborn admitted to the hospital for fever. She presented with dermohypodermitis of the left trunk and was diagnosed with E. coli septicemia. She was discharged in good condition after appropriate intravenous antibiotic therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. On building superpotentials in F-GUTs

    International Nuclear Information System (INIS)

    Saidi, E. H.

    2016-01-01

    Using characters of finite group representations, we construct the fusion algebras of operators of the spectrum of F-theory grand unified theories (GUTs). These fusion relations are used in building monodromy-invariant superpotentials of the low-energy effective 4D N=1 supersymmetric GUT models

  9. The Influence of Prebiotics on Neurobiology and Behavior.

    Science.gov (United States)

    Kao, A C C; Harty, S; Burnet, P W J

    2016-01-01

    Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged. © 2016 Elsevier Inc. All rights reserved.

  10. Probiotics and the Gut Immune System: Indirect Regulation.

    Science.gov (United States)

    La Fata, Giorgio; Weber, Peter; Mohajeri, M Hasan

    2018-03-01

    The gastrointestinal tract (GIT) represents the largest interface between the human organism and the external environment. In the lumen and upper part of the mucus layer, this organ hosts an enormous number of microorganisms whose composition affects the functions of the epithelial barrier and the gut immune system. Consequentially, the microorganisms in the GIT influence the health status of the organism. Probiotics are living microorganisms which, in specific conditions, confer a health benefit to the host. Among others, probiotics have immunomodulatory properties that usually act directly by (a) increasing the activity of macrophages or natural killer cells, (b) modulating the secretion of immunoglobulins or cytokines, or indirectly by (c) enhancing the gut epithelial barrier, (d) altering the mucus secretion, and (e) competitive exclusion of other (pathogenic) bacteria. This review focuses on specific bacteria strains with indirect immunomodulatory properties. Particularly, we describe here the mechanisms through which specific probiotics enhance the gut epithelial barrier and modulate mucus production. Moreover, we describe the antimicrobial properties of specific bacteria strains. Recent data suggest that multiple pathologies are associated with an unbalanced gut microflora (dysbiosis). Although the cause-effect relationship between pathology and gut microflora is not yet well established, consumption of specific probiotics may represent a powerful tool to re-establish gut homeostasis and promote gut health.

  11. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  12. Impacts of Gut Bacteria on Human Health and Diseases

    Science.gov (United States)

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  13. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    Directory of Open Access Journals (Sweden)

    Saad Rama

    2012-11-01

    Full Text Available Abstract The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics, notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  14. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2018-06-01

    Full Text Available In recent years, the first-line anti-diabetic drug metformin has been shown to be also useful for the treatment of other diseases like cancer. To date, few reports were about the impact of metformin on gut microbiota. To fully understand the mechanism of action of metformin in treating diseases other than diabetes, it is especially important to investigate the impact of long-term metformin treatment on the gut microbiome in non-diabetic status. In this study, we treated healthy mice with metformin for 30 days, and observed 46 significantly changed gut microbes by using the 16S rRNA-based microbiome profiling technique. We found that microbes from the Verrucomicrobiaceae and Prevotellaceae classes were enriched, while those from Lachnospiraceae and Rhodobacteraceae were depleted. We further compared the altered microbiome profile with the profiles under various disease conditions using our recently developed comparative microbiome tool known as MicroPattern. Interestingly, the treatment of diabetes patients with metformin positively correlates with colon cancer and type 1 diabetes, indicating a confounding effect on the gut microbiome in patients with diabetes. However, the treatment of healthy mice with metformin exhibits a negative correlation with multiple inflammatory diseases, indicating a protective anti-inflammatory role of metformin in non-diabetes status. This result underscores the potential effect of metformin on gut microbiome homeostasis, which may contribute to the treatment of non-diabetic diseases.

  15. Neurobiology of rodent self-grooming and its value for translational neuroscience.

    Science.gov (United States)

    Kalueff, Allan V; Stewart, Adam Michael; Song, Cai; Berridge, Kent C; Graybiel, Ann M; Fentress, John C

    2016-01-01

    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.

  16. Redefining the gut as the motor of critical illness

    OpenAIRE

    Mittal, Rohit; Coopersmith, Craig M.

    2013-01-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiologic insults alter this relationship, l...

  17. Experimental models of the gut microbiome

    NARCIS (Netherlands)

    Venema, K.; Abbeele, P. van den

    2013-01-01

    The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch

  18. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular...... health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes...

  19. Exercise, fitness, and the gut.

    Science.gov (United States)

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  20. Multiple Co-infections of Rodents with Hantaviruses, Leptospira, and Babesia in Croatia

    Science.gov (United States)

    Turk, Nenad; Korva, Miša; Margaletić, Josip; Beck, Relja; Vucelja, Marko; Habuš, Josipa; Svoboda, Petra; Županc, Tatjana Avšič; Henttonen, Heikki; Markotić, Alemka

    2012-01-01

    Abstract Hantaviruses, Leptospira spp., and Babesia spp. are rodent-borne pathogens present worldwide. We studied multiple co-infections of small rodents in Croatia with all three pathogens. Twenty-eight Apodemus flavicollis and 16 Myodes glareolus were tested for the presence of hantavirus RNA by real-time RT-PCR, Leptospira strains by renoculture method and Babesia DNA by PCR. Anti-hantavirus antibodies and anti-Leptospira antibodies were detected by serological methods. Very high infection rates with each pathogen were found in A. flavicollis: 20 of 28 rodents (71%) were infected with Dobrava virus, 13 rodents (46%) were infected with Leptospira, and 5 rodents (18%) were infected with Babesia. Multiple co-infections with all three pathogens were found in 3 of 28 (11%) A. flavicollis animals, suggesting that the same rodent host can be infected with several pathogens at the same time. Dual infections with both hantaviruses and Leptospira were found in 7 of 44 rodents (16%), with hantaviruses and Babesia in 2 rodents (5%), and double infection with both Leptospira and Babesia were found in 1 rodent (2%). Since hantaviruses, Leptospira, and Babesia have similar geographical distributions, it is to be expected that in other parts of the world multiple co-infections, representing a serious threat to public health, can be found. PMID:22217170

  1. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  2. Current concepts in the pathophysiology of glaucoma

    Directory of Open Access Journals (Sweden)

    Agarwal Renu

    2009-01-01

    Full Text Available Glaucoma, the second leading cause of blindness, is characterized by changes in the optic disc and visual field defects. The elevated intraocular pressure was considered the prime factor responsible for the glaucomatous optic neuropathy involving death of retinal ganglion cells and their axons. Extensive investigations into the pathophysiology of glaucoma now reveal the role of multiple factors in the development of retinal ganglion cell death. A better understanding of the pathophysiological mechanisms involved in the onset and progression of glaucomatous optic neuropathy is crucial in the development of better therapeutic options. This review is an effort to summarize the current concepts in the pathophysiology of glaucoma so that newer therapeutic targets can be recognized. The literature available in the National Medical Library and online Pubmed search engine was used for literature review.

  3. Maximal sfermion flavour violation in super-GUTs

    CERN Document Server

    AUTHOR|(CDS)2108556; Velasco-Sevilla, Liliana

    2016-01-01

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses $m_0$ specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses $m_{1/2}$, as is expected in no-scale models, the dominant effects of renormalization between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to $m_{1/2}$ and generation-independent. In this case, the input scalar masses $m_0$ may violate flavour maximally, a scenario we call MaxFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity.

  4. The pathophysiology of Peyronie's disease.

    Science.gov (United States)

    El-Sakka, Ahmed I; Salabas, Emre; Dinçer, Murat; Kadioglu, Ates

    2013-09-01

    To review the contemporary knowledge of the pathophysiology of Peyronie's disease (PD). Medline was searched for papers published in English from 2000 to March 2013, using the keywords 'Peyronie's disease' and 'pathophysiology'. More than 300 relevant articles were identified for the purpose of this review. Unfortunately only a few studies had a high level of evidence, and the remaining studies were not controlled in their design. Many theories have been proposed to explain the cause of PD, but the true pathogenesis of PD remains an enigma. Identifying particular growth factors and the specific genes responsible for the induction of PD have been the ultimate goal of research over the past several decades. This would provide the means to devise a possible gene therapy for this devastating condition. We discuss present controversies and new discoveries related to the pathophysiology of this condition. PD is one of the most puzzling diseases in urology. The pathogenesis remains uncertain and there is still controversy about the best management. The pathogenesis of PD has been explored in animal models, cell cultures and clinical trials, but the results have led to further questions. New research on the aetiology and pathogenesis of PD is needed, and which will hopefully improve the understanding and management for patients with this frustrating disease.

  5. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.; Pratchett, Morgan S.; Goodman, Brett Alexander

    2011-01-01

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  6. Breaking down the gut microbiome composition in multiple sclerosis.

    Science.gov (United States)

    Budhram, Adrian; Parvathy, Seema; Kremenchutzky, Marcelo; Silverman, Michael

    2017-04-01

    The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.

  7. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.

    2011-06-17

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  8. Leptospira and rodents in Cambodia : environmental determinants of infection

    OpenAIRE

    Ivanova, S.; Herbreteau, Vincent; Blasdell, K.; Chaval, Y.; Buchy, P.; Guillard, B.; Morand, S.

    2012-01-01

    We investigated infection of rodents and shrews by Leptospira spp. in two localities of Cambodia (Veal Renh, Kaev Seima) and in four types of habitat (forests, non-flooded lands, lowland rain-fed paddy fields, houses) during the wet and the dry seasons. Habitat preference was common, and rodent and shrew species were found only in houses or in rain-fed paddy fields or in forests. Among 649 small mammals trapped belonging to 12 rodent species and 1 shrew species, 71 of 642 animals tested were ...

  9. Redefining the gut as the motor of critical illness.

    Science.gov (United States)

    Mittal, Rohit; Coopersmith, Craig M

    2014-04-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiological insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Targeting gut microbiome: A novel and potential therapy for autism.

    Science.gov (United States)

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Neutrino assisted GUT baryogenesis revisited

    Science.gov (United States)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  12. Tularemia and plague survey in rodents in an earthquake zone in southeastern Iran

    Science.gov (United States)

    Gyuranecz, Miklós

    2015-01-01

    OBJECTIVES: Earthquakes are one the most common natural disasters that lead to increased mortality and morbidity from transmissible diseases, partially because the rodents displaced by an earthquake can lead to an increased rate of disease transmission. The aim of this study was to evaluate the prevalence of plague and tularemia in rodents in the earthquake zones in southeastern Iran. METHODS: In April 2013, a research team was dispatched to explore the possible presence of diseases in rodents displaced by a recent earthquake magnitude 7.7 around the cities of Khash and Saravan in Sistan and Baluchestan Province. Rodents were trapped near and in the earthquake zone, in a location where an outbreak of tularemia was reported in 2007. Rodent serums were tested for a serological survey using an enzyme-linked immunosorbent assay. RESULTS: In the 13 areas that were studied, nine rodents were caught over a total of 200 trap-days. Forty-eight fleas and 10 ticks were obtained from the rodents. The ticks were from the Hyalomma genus and the fleas were from the Xenopsylla genus. All the trapped rodents were Tatera indica. Serological results were negative for plague, but the serum agglutination test was positive for tularemia in one of the rodents. Tatera indica has never been previously documented to be involved in the transmission of tularemia. CONCLUSIONS: No evidence of the plague cycle was found in the rodents of the area, but evidence was found of tularemia infection in rodents, as demonstrated by a positive serological test for tularemia in one rodent. PMID:26602769

  13. Regulation of body fat mass by the gut microbiota

    DEFF Research Database (Denmark)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik

    2016-01-01

    New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries...

  14. A vicious circle in chronic lymphoedema pathophysiology?

    DEFF Research Database (Denmark)

    Cucchi, F; Rossmeislova, L; Simonsen, L

    2017-01-01

    Chronic lymphoedema is a disease caused by a congenital or acquired damage to the lymphatic system and characterized by complex chains of pathophysiologic events such as lymphatic fluid stasis, chronic inflammation, lymphatic vessels impairment, adipose tissue deposition and fibrosis. These event....... Together, these observations indicate strong reciprocal relationship between lymphatics and adipose tissue and suggest a possible key role of the adipocyte in the pathophysiology of chronic lymphoedema's vicious circle....

  15. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    Science.gov (United States)

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity.

    Science.gov (United States)

    Stephens, Richard W; Arhire, Lidia; Covasa, Mihai

    2018-05-01

    This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity. © 2018 The Obesity Society.

  17. Empathy, burn-out and the use of gut feeling

    DEFF Research Database (Denmark)

    Pedersen, Anette Fischer; Ingeman, Mads Lind; Vedsted, Peter

    2018-01-01

    OBJECTIVE: Research has suggested that physicians' gut feelings are associated with parents' concerns for the well-being of their children. Gut feeling is particularly important in diagnosis of serious low-incidence diseases in primary care. Therefore, the aim of this study was to examine whether...... results suggest that gut feelings have diagnostic value, these findings highlight the importance of incorporating empathy and interpersonal skills into medical training to increase sensitivity to patient concern and thereby increase the use and reliability of gut feeling....

  18. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej

    2016-01-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  19. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review

    Directory of Open Access Journals (Sweden)

    Chun Hua Huang

    2018-06-01

    Full Text Available The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.

  20. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut.

    Science.gov (United States)

    Zhao, Yi; Su, Jian-Qiang; An, Xin-Li; Huang, Fu-Yi; Rensing, Christopher; Brandt, Kristian Koefoed; Zhu, Yong-Guan

    2018-04-15

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×10 10 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (Padditives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gut inflammation in chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2010-10-01

    Full Text Available Abstract Chronic fatigue syndrome (CFS is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS, a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestinal microbiota, mucosal barrier function, and the immune system have been shown to play a role in the disorder's pathogenesis. Studies examining the microecology of the gastrointestinal (GI tract have identified specific microorganisms whose presence appears related to disease; in CFS, a role for altered intestinal microbiota in the pathogenesis of the disease has recently been suggested. Mucosal barrier dysfunction promoting bacterial translocation has also been observed. Finally, an altered mucosal immune system has been associated with the disease. In this article, we discuss the interplay between these factors in CFS and how they could play a significant role in GI dysfunction by modulating the activity of the enteric nervous system, the intrinsic innervation of the gut. If an altered intestinal microbiota, mucosal barrier dysfunction, and aberrant intestinal immunity contribute to the pathogenesis of CFS, therapeutic efforts to modify gut microbiota could be a means to modulate the development and/or progression of this disorder. For example, the administration of probiotics could alter the gut microbiota, improve mucosal barrier function, decrease pro-inflammatory cytokines, and have the potential to positively influence mood in patients where both emotional symptoms and inflammatory immune signals are elevated. Probiotics also have the potential to improve gut motility, which is dysfunctional in many CFS patients.

  2. Gut as a target for cadmium toxicity.

    Science.gov (United States)

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  4. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  5. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.

    Science.gov (United States)

    Mishra, Alok Kumar; Dubey, Vinay; Ghosh, Asit Ranjan

    2016-01-01

    Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  7. The bioeconomics of controlling an African rodent pest species

    DEFF Research Database (Denmark)

    Skonhoft, Anders; Leirs, Herwig; Andreassen, Harry P

    2006-01-01

    The paper treats the economy of controlling an African pest rodent, the multimammate rat, causing major damage in maize production. An ecological population model is presented and used as a basis for the economic analyses carried out at the village level using data from Tanzania. This model...... incorporates both density-dependent and density-independent (stochastic) factors. Rodents are controlled by applying poison, and the costs are made up of the cost of poison plus the damage to maize production. We analyse how the present-value costs of maize production are affected by various rodent control...

  8. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model.

    Science.gov (United States)

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.

  9. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Maximal sfermion flavour violation in super-GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Olive, Keith A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Velasco-Sevilla, L. [University of Bergen, Department of Physics and Technology, PO Box 7803, Bergen (Norway)

    2016-10-15

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m{sub 0} specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m{sub 1/2}, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m{sub 1/2} and generation independent. In this case, the input scalar masses m{sub 0} may violate flavour maximally, a scenario we call MaxSFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity. (orig.)

  11. Sneutrino driven GUT inflation in supergravity

    International Nuclear Information System (INIS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-01-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  12. Sneutrino driven GUT inflation in supergravity

    Science.gov (United States)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  13. Advancing gut microbiome research using cultivation

    DEFF Research Database (Denmark)

    Sommer, Morten OA

    2015-01-01

    Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic...... approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel...... cultivation approaches should enable improved studies of xenobiotic tolerance and modification phenotypes and allow a drastic expansion of the gut microbiota reference genome catalogues. Furthermore, the new cultivation methods should facilitate systematic studies of the causal relationship between...

  14. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    Science.gov (United States)

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of

  15. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  16. Gut microbiota and obesity: lessons from the microbiome.

    Science.gov (United States)

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  17. Obesity: Pathophysiology and Intervention

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2014-11-01

    Full Text Available Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.

  18. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  19. Immmunohistochemical study of the blood and lymphatic vasculature and the innervation of mouse gut and gut-associated lymphoid tissue.

    Science.gov (United States)

    Ma, B; von Wasielewski, R; Lindenmaier, W; Dittmar, K E J

    2007-02-01

    The blood and lymphatic vascular system of the gut plays an important role in tissue fluid homeostasis, nutrient absorption and immune surveillance. To obtain a better understanding of the anatomic basis of these functions, the blood and lymphatic vasculature of the lower segment of mouse gut and several constituents of gut-associated lymphoid tissue (GALT) including Peyer's patch, specialized lymphoid nodules in the caecum, small lymphoid aggregates and lymphoid nodules in the colon were studied by using confocal microscopy. Additionally, the innervation and nerve/immune cell interactions in the gut and Peyer's patch were investigated by using cell surface marker PGP9.5 and Glial fibrillary acidic protein (GFAP). In the gut and Peyer's patch, the nerves have contact with B cell, T cell and B220CD3 double-positive cells. Dendritic cells, the most important antigen-presenting cells, were closely apposed to some nerves. Some dendritic cells formed membrane-membrane contact with nerve terminals and neuron cell body. Many fine nerve fibres, which are indirectly detected by GFAP, have contact with dendritic cells and other immune cells in the Peyer's patch. Furthermore, the expression of Muscarinic Acetylcholine receptor (subtype M2) was characterized on dendritic cells and other cell population. These findings are expected to provide a route to understand the anatomic basis of neuron-immune regulation/cross-talk and probably neuroinvasion of prion pathogens in the gut and GALT.

  20. Keeping gut lining at bay: impact of emulsifiers.

    Science.gov (United States)

    Cani, Patrice D; Everard, Amandine

    2015-06-01

    Obesity is associated with altered gut microbiota and low-grade inflammation. Both dietary habits and food composition contribute to the onset of such diseases. Emulsifiers, compounds commonly used in a variety of foods, were shown to induce body weight gain, low-grade inflammation and metabolic disorders. These dietary compounds promote gut microbiota alteration and gut barrier dysfunction leading to negative metabolic alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Diets Alter the Gut Microbiome of Crocodile Lizards

    Directory of Open Access Journals (Sweden)

    Hai-Ying Jiang

    2017-10-01

    Full Text Available The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4% and Bacteroidetes (∼19.1%. However, the abundance of Firmicutes (∼2.6% in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus–Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards.

  2. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Science.gov (United States)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  3. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  4. Pathophysiology, Evaluation, and Treatment of Bloating

    Science.gov (United States)

    Gabbard, Scott L.; Crowell, Michael D.

    2011-01-01

    Abdominal bloating is commonly reported by men and women of all ages. Bloating occurs in nearly all patients with irritable bowel syndrome, and it also occurs in patients with other functional and organic disorders. Bloating is frequently disturbing to patients and frustrating to clinicians, as effective treatments are limited and are not universally successful. Although the terms bloating and abdominal distention are often used interchangeably, these symptoms likely involve different pathophysiologic processes, both of which are still not completely understood. The goal of this paper is to review the pathophysiology, evaluation, and treatment of bloating and abdominal distention. PMID:22298969

  5. Study of hantavirus infection in captive breed colonies of wild rodents

    Directory of Open Access Journals (Sweden)

    RC Oliveira

    2004-10-01

    Full Text Available Wild sigmondontine rodents are known to be the reservoir of several serotypes of New World hantaviruses. The mechanism of viral transmission is by aerosol inhalation of the excreta from infected rodents. Considering that the captive breed colonies of various wild mammals may present a potencial risk for hantaviral transmission, we examined 85 speciemens of Thrichomys spp. (Echimyidae and 17 speciemens of Nectomys squamipes (Sigmodontinae from our colony for the presence of hantavirus infections. Blood samples were assayed for the presence of antibodies to Andes nucleocapsid antigen using enzyme-linked immunosorbent assay (ELISA. Additionally, serum samples from workers previously exposed to wild rodents, in the laboratories where the study was conducted, were also tested by ELISA to investigate prevalence of anti-hantavirus IgG antibodies. All blood samples were negative for hantavirus antibodies. Although these results suggest that those rodent's colonies are hantavirus free, the work emphasizes the need for hantavirus serological monitoring in wild colonized rodents and secure handling potentially infected rodents as important biosafety measures.

  6. Thieving rodents as substitute dispersers of megafaunal seeds

    Science.gov (United States)

    Jansen, Patrick A.; Hirsch, Ben T.; Emsens, Willem-Jan; Zamora-Gutierrez, Veronica; Wikelski, Martin; Kays, Roland

    2012-01-01

    The Neotropics have many plant species that seem to be adapted for seed dispersal by megafauna that went extinct in the late Pleistocene. Given the crucial importance of seed dispersal for plant persistence, it remains a mystery how these plants have survived more than 10,000 y without their mutualist dispersers. Here we present support for the hypothesis that secondary seed dispersal by scatter-hoarding rodents has facilitated the persistence of these large-seeded species. We used miniature radio transmitters to track the dispersal of reputedly megafaunal seeds by Central American agoutis, which scatter-hoard seeds in shallow caches in the soil throughout the forest. We found that seeds were initially cached at mostly short distances and then quickly dug up again. However, rather than eating the recovered seeds, agoutis continued to move and recache the seeds, up to 36 times. Agoutis dispersed an estimated 35% of seeds for >100 m. An estimated 14% of the cached seeds survived to the next year, when a new fruit crop became available to the rodents. Serial video-monitoring of cached seeds revealed that the stepwise dispersal was caused by agoutis repeatedly stealing and recaching each other’s buried seeds. Although previous studies suggest that rodents are poor dispersers, we demonstrate that communities of rodents can in fact provide highly effective long-distance seed dispersal. Our findings suggest that thieving scatter-hoarding rodents could substitute for extinct megafaunal seed dispersers of tropical large-seeded trees. PMID:22802644

  7. The microbial flora of the different gut regions of the variegated ...

    African Journals Online (AJOL)

    The microbial flora of the gut regions and gut contents of the variegated grasshopper Zonocerus variegatus instars was studied using the pour plate technique. The gut sections (Fore-, mid-, and hind-gut) harboured a variety organisms mainly bacteria, fungi and mould. Yeasts species isolated were Candida, ...

  8. Delayed radiation injury of gut-exposed and gut-shielded mice. I. The decrement in resistance to continuous gamma-ray stress

    International Nuclear Information System (INIS)

    Spalding, J.F.; Archuleta, R.F.; London, J.E.; Prine, J.R.

    1977-02-01

    Two mouse strains (RF/J and C57B1/6J) were exposed to x-ray doses totaling 400, 800, or 1200 rad. Total doses were given in 200-rad fractions at 7-day intervals to the whole body, gut only, or gut shielded. Animals treated as above (conditioned) were divided into 2 groups to form a two-part investigation. X-ray-conditioned and control mice were subjected to a continuous gamma-ray stress (challenge exposure) 28 days after the last x-ray dose. Delayed injury was measured as a reduction in mean after-survival (MAS) time and was observed in whole-body, gut-conditioned, and gut-shielded groups. The cause of death was attributed to hemopoietic hypoplasia in all groups. MAS reduction in all conditioned groups in both strains was linear with dose within the dose range used. Delayed injury per volume dose (measured as a reduction in MAS) was independent of the tissue initially conditioned with an acute dose of x rays. Thus, delayed injury per unit weight of gut tissue exposed was equal to that of either whole-body or gut-shielded radiation injury. Comparative weight loss observations during the continuous gamma-ray challenge exposure revealed a decrement in metabolic processes associated with body weight maintenance. This decrement was seen in all x-ray-conditioned groups

  9. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  10. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  11. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  12. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    Science.gov (United States)

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  13. Compartmentalization of the gut viral reservoir in HIV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Grant Tannika

    2007-12-01

    Full Text Available Abstract Background Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1 infection. The gut associated lymphoid tissue (GALT is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. Results Gut biopsies (esophagus, stomach, duodenum and colorectum were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy patients. HIV-1 Nef and Reverse transcriptase (RT encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p Conclusion Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.

  14. Validation and characterization of a novel method for selective vagal deafferentation of the gut.

    Science.gov (United States)

    Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume

    2017-10-01

    There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.

  15. Older Siblings Affect Gut Microbiota Development in Early Childhood

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Zachariassen, Gitte; Bahl, Martin Iain

    .006) at 18 months. Further, having older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota....... Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first three years of life. Conclusions: Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which...... could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes...

  16. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. stem bark in rodents

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... However, in the phenol red meal test in rats, the extract (100, 200 or .... control), Gmeq = Gut travel reduction (in % of control) and Pfreq = ... aP < 0.05 significantly different from the control, Student's t-test (n = 5 - 6 per group).

  18. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  19. The role of rodents in avian influenza outbreaks in poultry farms: a review.

    Science.gov (United States)

    Velkers, Francisca C; Blokhuis, Simon J; Veldhuis Kroeze, Edwin J B; Burt, Sara A

    2017-12-01

    Wild migratory birds are associated with global avian influenza virus (AIV) spread. Although direct contact with wild birds and contaminated fomites is unlikely in modern non-free range poultry farms applying biosecurity measures, AIV outbreaks still occur. This suggests involvement of other intermediate factors for virus transmission between wild birds and poultry. This review describes current evidence of the potential role of rodents in AIV transmission from wild birds to poultry and between poultry houses. Rodents can be abundant around poultry houses, share their habitat with waterfowl and can readily enter poultry houses. Survival of AIV from waterfowl in poultry house surroundings and on the coat of rodents suggests that rodents are likely to act as mechanical vector. AIVs can replicate in rodents without adaptation, resulting in high viral titres in lungs and nasal turbinates, virus presence in nasal washes and saliva, and transmission to naïve contact animals. Therefore, active AIV shedding by infected rodents may play a role in transmission to poultry. Further field and experimental studies are needed to provide evidence for a role of rodents in AIV epidemiology. Making poultry houses rodent-proof and the immediate surroundings unattractive for rodents are recommended as preventive measures against possible AIV introduction.

  20. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function.

    Science.gov (United States)

    Sanz, Yolanda; De Palma, Giada

    2009-01-01

    The intestinal tract mucosa is exposed to a vast number of environmental antigens and a large community of commensal bacteria. The mucosal immune system has to provide both protection against pathogens and tolerance to harmless bacteria. Immune homeostasis depends on the interaction of indigenous commensal and transient bacteria (probiotics) with various components of the epithelium and the gut-associated lymphoid tissue. Herein, an update is given of the mechanisms by which the gut microbiota and probiotics are translocated through the epithelium, sensed via pattern-recognition receptors, and activate innate and adaptive immune responses.

  1. Constrained Sypersymmetric Flipped SU (5) GUT Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; /CERN /King' s Coll. London; Mustafayev, Azar; /Minnesota U., Theor. Phys. Inst.; Olive, Keith A.; /Minnesota U., Theor. Phys. Inst. /Minnesota U. /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, Min, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tilde {tau}}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2}, m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to Min, as we illustrate for several cases with tan {beta} = 10 and 55. However, these features do not necessarily disappear at large Min, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.

  2. Constrained supersymmetric flipped SU(5) GUT phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mustafayev, Azar [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Stanford University, Department of Physics and SLAC, Palo Alto, CA (United States)

    2011-07-15

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M{sub in}, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tau}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2},m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M{sub in}, as we illustrate for several cases with tan {beta}=10 and 55. However, these features do not necessarily disappear at large M{sub in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)

  3. Constrained supersymmetric flipped SU(5) GUT phenomenology

    International Nuclear Information System (INIS)

    Ellis, John; Mustafayev, Azar; Olive, Keith A.

    2011-01-01

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M in , above the GUT scale, M GUT . We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino χ and the lighter stau τ 1 is sensitive to M in , as is the relationship between m χ and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m 1/2 ,m 0 ) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M in , as we illustrate for several cases with tan β=10 and 55. However, these features do not necessarily disappear at large M in , unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)

  4. Advances and perspectives in in vitro human gut fermentation modeling.

    Science.gov (United States)

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  6. Characterization of the human gut microbiome during travelers' diarrhea.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  7. The role of probiotics and prebiotics inducing gut immunity

    Directory of Open Access Journals (Sweden)

    Angelica Thomaz Vieira

    2013-12-01

    Full Text Available The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms and prebiotics (food components have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp. that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.

  8. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

    OpenAIRE

    Krajmalnik-Brown, Rosa; Ilhan, Zehra-Esra; Kang, Dae-Wook; DiBaise, John K.

    2012-01-01

    Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characteriz...

  9. Towards sustainable management of rodents in organic animal husbandry

    NARCIS (Netherlands)

    Meerburg, B.G.; Bonde, M.; Brom, F.W.A.; Endepols, S.; Jensen, A.N.; Leirs, H.; Lodal, J.; Singleton, G.R.; Pelz, H.J.; Rodenburg, T.B.; Kijlstra, A.

    2004-01-01

    From 26 to 28 May 2004 an international seminar was held in Wageningen, the Netherlands, about current knowledge and advice on rodent management on organic pig and poultry farms in Western Europe. This paper summarizes the discussions. Rodent management is necessary to protect the food production

  10. Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    CERN Document Server

    Ellis, John; Olive, Keith A

    2011-01-01

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...

  11. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  12. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  13. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    Science.gov (United States)

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  15. Population dynamics of Rodents and Insectivores in lowland tropical ...

    African Journals Online (AJOL)

    The community structure of rodents and insectivores in the lowland tropical rainforest of Okomu National Park, Edo State, Nigeria was assessed using a combination of live-trapping and sighting techniques during the dry and wet seasons. Seventeen species (14 species of rodent, 3 species of insectivores) were captured, ...

  16. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multiple infections of rodents with zoonotic pathogens in Austria.

    Science.gov (United States)

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  18. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Farmer survey in the hinterland of Kisangani (Democratic Republic of Congo) on rodent crop damage and rodent control techniques used

    DEFF Research Database (Denmark)

    Drazo, Nicaise Amundala; Kennis, Jan; Leirs, Herwig

    2008-01-01

    We conducted a survey on rodent crop damage among farmers in the hinterland of Kisangani (Democratic Republic of Congo). We studied the amount of crop damage, the rodent groups causing crop damage, the growth stages affected and the control techniques used. We conducted this survey in three...... municipalities using a standard questionnaire form translated into local languages, between November 2005 and June 2006 and during July 2007. We used the Quotas method and interviewed 70 households per municipality. Farmers indicated rodent groups implicated in crop damage on color photographs. Two types...... of survey techniques were used: individual and focus-group surveys. The sugar cane rat, Thryonomys sp. and Lemniscomys striatus caused most damage to crops, but inside granaries, Rattus rattus was the primary pest species eating stored food supplies and causing damage to stored goods. Cassava and maize were...

  20. GUT scale and superpartner masses from anomaly mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo; Shadmi, Yael; Shirman, Yuri

    2001-01-01

    We consider models of anomaly-mediated supersymmetry breaking (AMSB) in which the grand unification (GUT) scale is determined by the vacuum expectation value of a chiral superfield. If the anomaly-mediated contributions to the potential are balanced by gravitational-strength interactions, a GUT scale of M Planck /(16π 2 ) can be generated. The GUT threshold also affects superpartner masses, and can easily give rise to realistic predictions if the GUT gauge group is asymptotically free. We give an explicit example of a model with these features, in which the doublet-triplet splitting problem is solved. The resulting superpartner spectrum is very different from that of previously considered AMSB models, with gaugino masses typically unifying at the GUT scale

  1. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  2. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    Science.gov (United States)

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  3. MR microscopy of the lung in small rodents

    International Nuclear Information System (INIS)

    Takahashi, Masaya; Kubo, Shigeto; Kiryu, Shigeru; Gee, James; Hatabu, Hiroto

    2007-01-01

    Understanding how the mammalian respiratory system works and how it changes in disease states and under the influence of drugs is frequently pursued in model systems such as small rodents. These have many advantages, including being easily obtained in large numbers as purebred strains. Studies in small rodents are valuable for proof of concept studies and for increasing our knowledge about disease mechanisms. Since the recent developments in the generation of genetically designed animal models of disease, one needs the ability to assess morphology and function in in vivo systems. In this article, we first review previous reports regarding thoracic imaging. We then discuss approaches to take in making use of small rodents to increase MR microscopic sensitivity for these studies and to establish MR methods for clinically relevant lung imaging

  4. Microbiota-stimulated immune mechanisms to maintain gut homeostasis.

    Science.gov (United States)

    Chung, Hachung; Kasper, Dennis Lee

    2010-08-01

    In recent years there has been an explosion of interest to identify microbial inhabitants of human and understand their beneficial role in health. In the gut, a symbiotic host-microbial interaction has coevolved as bacteria make essential contributions to human metabolism and bacteria in turn benefits from the nutrient-rich niche in the intestine. To maintain host-microbe coexistence, the host must protect itself against microbial invasion, injury, and overreactions to foreign food antigens, and gut microbes need protection against competing microbes and the host immune system. Perturbation of this homeostatic coexistence has been strongly associated with human disease. This review discusses how gut bacteria regulate host innate and adaptive immunity, with emphasis on how this regulation contributes to host-microbe homeostasis in the gut. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Ecology of rodents at an old quarry in Zambia

    African Journals Online (AJOL)

    Ecology of rodents at an old quarry in Zambia. E.N. Chidumayo. Livingstone Museum, Zambia. An old quarry, 2,5 hain size near Livingstone in southern. Zambia was kill- and live-trapped between September 1974 and December 1976 to determine ecological relations among. rodent species inhabiting it. Seven species ...

  6. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.

    Science.gov (United States)

    Kruger, Jean-Leigh; Gravett, Nadine; Bhagwandin, Adhil; Bennett, Nigel C; Archer, Elizabeth K; Manger, Paul R

    2016-01-01

    The Cape mole rat Georychus capensis is a solitary subterranean rodent found in the western and southern Cape of South Africa. This approximately 200-gram bathyergid rodent shows a nocturnal circadian rhythm, but sleep in this species is yet to be investigated. Using telemetric recordings of the electroencephalogram (EEG) and electromyogram (EMG) in conjunction with video recordings, we were able to show that the Cape mole rat, like all other rodents, has sleep periods composed of both rapid eye movement (REM) and slow-wave (non-REM) sleep. These mole rats spent on average 15.4 h awake, 7.1 h in non-REM sleep and 1.5 h in REM sleep each day. Cape mole rats sleep substantially less than other similarly sized terrestrial rodents but have a similar percentage of total sleep time occupied by REM sleep. In addition, the duration of both non-REM and REM sleep episodes was markedly shorter in the Cape mole rat than has been observed in terrestrial rodents. Interestingly, these features (total sleep time and episode duration) are similar to those observed in another subterranean bathyergid mole rat, i.e. Fukomys mechowii. Thus, there appears to be a bathyergid type of sleep amongst the rodents that may be related to their environment and the effect of this on their circadian rhythm. Investigating further species of bathyergid mole rats may fully define the emerging picture of sleep in these subterranean African rodents. © 2016 S. Karger AG, Basel.

  7. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    Science.gov (United States)

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  8. Dry eye disease: pathophysiology, classification, and diagnosis.

    Science.gov (United States)

    Perry, Henry D

    2008-04-01

    Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.

  9. Leaky Gut As a Danger Signal for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Qinghui Mu

    2017-05-01

    Full Text Available The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.

  10. The Role of the Gut Microbiota in Childhood Obesity.

    Science.gov (United States)

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  11. Constraints on GUT 7-brane topology in F-theory

    International Nuclear Information System (INIS)

    Hayashi, Hirotaka; Kawano, Teruhiko; Watari, Taizan

    2012-01-01

    We study the relation between phenomenological requirements and the topology of the surfaces that GUT 7-branes wrap in F-theory compactifications. In addition to the exotic matter free condition in the hypercharge flux scenario of SU(5) GUT breaking, we analyze a new condition that comes from a discrete symmetry aligning the contributions to low-energy Yukawa matrices from a number of codimension-three singularity points. We see that the exotic matter free condition excludes Hirzebruch surfaces (except F 0 ) as the GUT surface, correcting an existing proof in the literature. We further find that the discrete symmetry for the alignment of the Yukawa matrices excludes del Pezzo surfaces and a rational elliptic surface as the GUT surface. Therefore, some GUT 7-brane surfaces are good for some phenomenological requirements, but sometimes not for others, and this aspect should be kept in mind in geometry search in F-theory compactifications.

  12. Insights into the human gut microbiome and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2018-01-01

    Full Text Available The microbiome comprises all of the genetic materials within a microbiota. This can also be referred to as the metagenome of the microbiota. Dysbiosis, a change in the composition of the gut microbiota, has been associated with pathology, including cardiovascular diseases (CVDs. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention toward the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to chronic kidney disease, atherosclerosis, and hypertension. Dysbiosis has been implicated in CVD as well as many aspects of obesity, hypertension, chronic kidney disease, and diabetes.

  13. Natural Intestinal Protozoa in Rodents (Rodentia: Gerbillinae, Murinae, Cricetinae in Northwestern Iran

    Directory of Open Access Journals (Sweden)

    Mehdi MOHEBALI

    2017-09-01

    Full Text Available Background: Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, Cricetulus migratorius.Methods: This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117, M. musculus (n=63 and C. migratorius (n=24 were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively.Results: About 121(59.3% of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%, Trichomonas muris 55(27.0%, Chilomastix betencourtti 17 (8.3%, Giardia muris 19(9.3%, Eimeria spp. 46(22.5%, Isospora spp. 4(2% and Cryptosporidium spp. 1(0.5% were found from the collected rodents. Microsporidian spores were identified in 63 (31% out of the 204 collected rodents using aniline blue staining method.Conclusion: Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans.

  14. Natural Intestinal Protozoa in Rodents (Rodentia: Gerbillinae, Murinae, Cricetinae) in Northwestern Iran

    Science.gov (United States)

    MOHEBALI, Mehdi; ZAREI, Zabiholah; Khanaliha, Khadijeh; KIA, Eshrat Beigom; MOTAVALLI-HAGHI, Afsaneh; DAVOODI, Jaber; REZAEIAN, Tahereh; TARIGHI, Fathemeh; REZAEIAN, Mostafa

    2017-01-01

    Background: Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, Cricetulus migratorius. Methods: This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117), M. musculus (n=63) and C. migratorius (n=24) were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively. Results: About 121(59.3%) of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%), Trichomonas muris 55(27.0%), Chilomastix betencourtti 17 (8.3%), Giardia muris 19(9.3%), Eimeria spp. 46(22.5%), Isospora spp. 4(2%) and Cryptosporidium spp. 1(0.5%) were found from the collected rodents. Microsporidian spores were identified in 63 (31%) out of the 204 collected rodents using aniline blue staining method. Conclusion: Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans. PMID:28979348

  15. A review of metabolic potential of human gut microbiome in human nutrition.

    Science.gov (United States)

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  16. Supersymmetry Searches in GUT Models with Non-Universal Scalar Masses

    CERN Document Server

    Cannoni, M.; Gómez, M.E.; Lola, S.; Ruiz de Austri, R.

    2016-03-22

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predict the possibility of $\\tilde{t}_1-\\chi$ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing $E_T$...

  17. Gut inflammation in chronic fatigue syndrome

    OpenAIRE

    Lakhan, Shaheen E; Kirchgessner, Annette

    2010-01-01

    Abstract Chronic fatigue syndrome (CFS) is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS), a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestin...

  18. A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation.

    Science.gov (United States)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria; Normann-Hansen, Ann; Brejnrod, Asker; Kragh, Marie; Madsen, Tobias; Nielsen, Christian; Josefsen, Knud; Fretté, Xavier; Fjaere, Even; Madsen, Lise; Hellgren, Lars I; Brix, Susanne; Kristiansen, Karsten

    2017-05-01

    Omega-6 (n-6) PUFA-rich diets are generally considered obesogenic in rodents. Here, we examined how long-term intake of a high-fat/high-sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation, and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil-rich in n-6 PUFAs-or a low-fat/low-sucrose diet for 40 wk. Compared to the low-fat/low-sucrose diet, intake of the safflower-based HF/HS diet only led to moderate weight gain, while glucose intolerance developed at week 5 prior to signs of inflammation, but concurrent with increased levels of linoleic acid and arachidonic acid in hepatic phospholipids. Intake of the HF/HS diet resulted in early changes in the gut microbiota, including an increased abundance of Blautia, while late changes coincided with altered inflammatory profiles and increased fasting plasma insulin. Analysis of immune cells in visceral fat and liver revealed no differences between diets before week 40, where the number of immune cells decreased in the liver of HF/HS-fed mice. We suggest that a diet-dependent increase in the n-6 to omega-3 (n-3) PUFA ratio in hepatic phospholipids together with gut microbiota changes contributed to early development of glucose intolerance without signs of inflammation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine?

    Directory of Open Access Journals (Sweden)

    Ravinder eNagpal

    2014-06-01

    Full Text Available Our gut harbors an extremely diverse collection of trillions of microbes that, besides degrading the complex dietary constituents, execute numerous activities vital for our metabolism and immune health. Although the importance of gut microbiota in maintaining digestive health has long been believed, its close correlation with numerous chronic ailments has recently been exposed, thanks to the innovative mechanistic studies on the compositional and functional aspects of gut microbial communities using germ-free or humanized animal models. Since a myriad of mysteries about the precise structures and functions of gut microbial communities in specific health situations still remains to be explicated, the emerging field of gut microbiota remains a foremost objective of research for microbiologists, computational biologists, clinicians, nutritionalists etc. Nevertheless, it is only after a comprehensive understanding of the structure, density and function of the gut microbiota that the new therapeutic targets could be captured and utilized for a healthier gut as well as overall wellbeing.

  20. Early Eocene rodents (Mammalia) from the Subathu Formation of ...

    Indian Academy of Sciences (India)

    1997a, b). Most of the rodents from this stratigraphic level have been referred to a rather diverse family Cha- pattimyidae ... Herein we describe a new early Eocene rodent assemblage .... thick zone of brownish red shales that occur as a ..... 1997b;. Plate 3, figure 31). ...... northwestern Pakistan and remarks on the collision.

  1. Research Note. Occurrence of gastrointestinal helminths in commensal rodents from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Cigarroa-Toledo N.

    2017-06-01

    Full Text Available The aim of this study was to determine the prevalence and species composition of helminths in commensal rodents captured inside private residences in the city of Villahermosa in Tabasco, Mexico. Trapping was performed at each house for three consecutive nights from October to December 2015. Fifty commensal rodents were captured: 23 Rattus norvegicus, 16 Mus musculus and 11 Rattus rattus. Rodents were transported alive to the laboratory and held in cages until they defecated. Feces were analyzed for helminth eggs using the Sheather’s flotation technique. The overall prevalence of helminths in rodents was 60 %: R. norvegicus was more likely to be parasitized (87.0 % than R. rattus (63.6 % and M. musculus (18.8 %. Eggs from at least 13 species of helminths were identified: Hymenolepis diminuta, Rodentolepis nana, Moniliformis moniliformis, Heligmosomoides polygyrus, Heterakis spumosa, Mastophorus muris, Nippostrongylus brasiliensis, Strongyloides ratti, Syphacia obvelata, Syphacia muris, Toxocara sp., Trichosomoides crassicauda, and Trichuris muris. This is the first study to report the presence of H. polygyrus, S. ratti and T. crassicauda in commensal rodents in Mexico. In conclusion, our results suggest that helminths commonly infect commensal rodents in Villahermosa and therefore rodents present a health risk to inhabitants in this region.

  2. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  3. Polymers in the gut compress the colonic mucus hydrogel.

    Science.gov (United States)

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  4. 95th Anniversary of Pathophysiology in Croatia.

    Science.gov (United States)

    Kovač, Zdenko

    2017-12-01

    University level of Pathophysiology research and teaching in Croatia had started with the third year of Medical School of Zagreb in academic year 1919./20. Ever since, despite historical changes of the main university stake holder, the state of Croatia, Department of Pathophysiology development progressed and has made visible academic achievements, with a broader effect in medical community. The first 95 years of academic tradition and major achievements are shortly described in this paper. Professor Miroslav Mikuličić envisioned Pathophysiology in close relations with Pharmacology and made the pioneering steps of establishing the "double" department at Šalata. His group was academically very pro-active, with strong international scientific participation and recruitment of professionals. The group published the first voluminous textbook of Pharmacology and Pathophysiology, in Croatian. In fifties, professor Pavao Sokolić established clinical pathophysiology within the Hospital Centre at Rebro. Out of "double" department two new departments were founded, the Pathophysiology one was completed with the clinical ward. That institutional move from Šalata hill to the Rebro hill was a necessary gigantic step and a prerequisite for the proper further development. It was in accordance with the concept of the Mikuličić's program of Pathophysiology from 1917. Pavao Sokolić has been remembered for his visions, deep insights into etiopathogenesis, ability to transfer knowledge and friendly relations to students. Sharp intellectual power, emanating charisma, academic erudition and unique clinical competencies made the legendary image of the "Teacher" - as students used to refer to him with admiration. He was second to no one when complex patient issues were to be resolved. Clinical Hospital Centre Zagreb and his Department at Rebro have become a referral point to whom to go to despair. Students recognized in their Teacher the landmark of Croatian medicine, which made a

  5. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael

    2013-01-01

    and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism.......New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota...

  6. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael

    2013-01-01

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota...... and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  7. Microbes vs. chemistry in the origin of the anaerobic gut lumen.

    Science.gov (United States)

    Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V; Hou, Likai; Chau, Lillian; Jiang, Jack; Mesaros, Clementina; Lund, Peder J; Liang, Xue; FitzGerald, Garret A; Goulian, Mark; Lee, Daeyeon; Garcia, Benjamin A; Blair, Ian A; Vinogradov, Sergei A; Wu, Gary D

    2018-04-17

    The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO 2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.

  8. Changes in human gut flora with age: an Indian familial study.

    Science.gov (United States)

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  9. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis

    Science.gov (United States)

    Ben-Eliezer, Daniel; Yechiam, Eldad

    2016-01-01

    Considered an antidepressant and anti-anxiety agent, Hypericum perforatum affects multiple neurotransmitters in a non-competitive synergistic manner, and may have nootropic potential. We quantitatively reviewed the pre-clinical literature to examine if there is a cognitive-enhancing effect of H. perforatum in healthy rodents. Additionally, within these studies, we compared the effects observed in intact rodents versus those whose performance has been impaired, mostly through stress manipulations. The meta-analysis incorporated studies that examined the effect of H. perforatum versus placebo on memory indices of task performance. All analyses were based on weighting different studies according to their inverse variance. Thirteen independent studies (published 2000–2014) involving 20 experimental comparisons met our inclusion criteria. The results showed a large positive effect of H. perforatum on cognitive performance for intact, healthy rodents (d = 1.11), though a larger effect emerged for stress-impaired rodents (d = 3.10 for restraint stress). The positive effect on intact rodents was observed in tasks assessing reference memory as well as working memory, and was not moderated by the type of memory or motivation (appetitive versus aversive). Thus, while primarily considered as a medication for depression, H. perforatum shows considerable nootropic potential in rodents. PMID:27762349

  10. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  11. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    Science.gov (United States)

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  12. Public Health Implications of Changing Rodent Importation Patterns - United States, 1999-2013.

    Science.gov (United States)

    Lankau, E W; Sinclair, J R; Schroeder, B A; Galland, G G; Marano, N

    2017-04-01

    The United States imports a large volume of live wild and domestic animal species; these animals pose a demonstrated risk for introduction of zoonotic diseases. Rodents are imported for multiple purposes, including scientific research, zoo exhibits and the pet trade. Current U.S. public health regulatory restrictions specific to rodent importation pertain only to those of African origin. To understand the impacts of these regulations and the potential public health risks of international rodent trade to the United States, we evaluated live rodent import records during 1999-2013 by shipment volume and geographic origin, source (e.g. wild-caught versus captive- or commercially bred), intended purpose and rodent taxonomy. Live rodent imports increased from 2737 animals during 1999 to 173 761 animals during 2013. Increases in both the number and size of shipments contributed to this trend. The proportion of wild-captured imports declined from 75% during 1999 to guinea pigs and hamsters arriving from other countries in North America were predominant taxa underlying this trend. After 2003, African-origin imports became sporadic events under the federal permit process. These patterns suggest development of large-scale captive rodent breeding markets abroad for commercial sale in the United States. While the shift from wild-captured imports alleviates many conservation concerns and risks for novel disease emergence, such consolidated sourcing might elevate exposure risks for zoonotic diseases associated with high-density rodent breeding (e.g. lymphocytic choriomeningitis or salmonellosis). A responsive border health system must periodically re-evaluate importation regulations in conjunction with key stakeholders to ensure a balance between the economic benefits of rodent trade against the potential public health risks. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  13. Prebiotics and gut microbiota in chickens.

    Science.gov (United States)

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The Revised Neurobehavioral Severity Scale (NSS-R) for Rodents.

    Science.gov (United States)

    Yarnell, Angela M; Barry, Erin S; Mountney, Andrea; Shear, Deborah; Tortella, Frank; Grunberg, Neil E

    2016-04-08

    Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models. Copyright © 2016 John Wiley & Sons, Inc.

  15. The microbiome-gut-brain axis in health and disease

    OpenAIRE

    Dinan, Timothy G.; Cryan, John F.

    2017-01-01

    Gut microbes are capable of producing most neurotransmitters found in the human brain. While these neurotransmitters primarily act locally in the gut, modulating the enteric nervous system, evidence is now accumulating to support the view that gut microbes through multiple mechanisms can influence central neurochemistry and behavior. This has been described as a fundamental paradigm shift in neuroscience. Bifidobacteria for example can produce and increase plasma levels of the serotonin precu...

  16. Control of lupus nephritis by changes of gut microbiota.

    Science.gov (United States)

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  17. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study.

    Directory of Open Access Journals (Sweden)

    Vanessa Stadlbauer

    Full Text Available Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13 or no LcS (n = 15. Data were compared to healthy controls (n = 16. Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level.ClinicalTrials.gov NCT01182844.

  18. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia

    Science.gov (United States)

    Wilson, Christina A.; Koenig, James I.

    2015-01-01

    Negative symptoms (e.g., asociality and anhedonia) are a distinct symptomatic domain that has been found to significantly affect the quality of life in patients diagnosed with schizophrenia. Additionally, the primary negative symptom of asociality (i.e., withdrawal from social contact that derives from indifference or lack of desire to have social contact) is a major contributor to poor psychosocial functioning and has been found to play an important role in the course of the disorder. Nonetheless, the pathophysiology underlying these symptoms is unknown and currently available treatment options (e.g., antipsychotics and cognitive-behavioral therapy) fail to reliably produce efficacious benefits. Utilizing rodent paradigms that measure social behaviors (e.g., social withdrawal) to elucidate the neurobiological substrates that underlie social dysfunction and to identify novel therapeutic targets may be highly informative and useful to understand more about the negative symptoms of schizophrenia. Accordingly, the purpose of this review is to provide an overview of the behavioral tasks for assessing social functioning that may be translationally relevant for investigating negative symptoms associated with schizophrenia. PMID:24342774

  19. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia.

    Science.gov (United States)

    Wilson, Christina A; Koenig, James I

    2014-05-01

    Negative symptoms (e.g., asociality and anhedonia) are a distinct symptomatic domain that has been found to significantly affect the quality of life in patients diagnosed with schizophrenia. Additionally, the primary negative symptom of asociality (i.e., withdrawal from social contact that derives from indifference or lack of desire to have social contact) is a major contributor to poor psychosocial functioning and has been found to play an important role in the course of the disorder. Nonetheless, the pathophysiology underlying these symptoms is unknown and currently available treatment options (e.g., antipsychotics and cognitive-behavioral therapy) fail to reliably produce efficacious benefits. Utilizing rodent paradigms that measure social behaviors (e.g., social withdrawal) to elucidate the neurobiological substrates that underlie social dysfunction and to identify novel therapeutic targets may be highly informative and useful to understand more about the negative symptoms of schizophrenia. Accordingly, the purpose of this review is to provide an overview of the behavioral tasks for assessing social functioning that may be translationally relevant for investigating negative symptoms associated with schizophrenia. © 2013 Published by Elsevier B.V. and ECNP.

  20. The Super-GUT CMSSM Revisited

    CERN Document Server

    Ellis, John

    2016-01-01

    We revisit minimal supersymmetric SU(5) grand unification (GUT) models in which the soft supersymmetry-breaking parameters of the minimal supersymmetric Standard Model (MSSM) are universal at some input scale, $M_{in}$, above the supersymmetric gauge coupling unification scale, $M_{GUT}$. As in the constrained MSSM (CMSSM), we assume that the scalar masses and gaugino masses have common values, $m_0$ and $m_{1/2}$ respectively, at $M_{in}$, as do the trilinear soft supersymmetry-breaking parameters $A_0$. Going beyond previous studies of such a super-GUT CMSSM scenario, we explore the constraints imposed by the lower limit on the proton lifetime and the LHC measurement of the Higgs mass, $m_h$. We find regions of $m_0$, $m_{1/2}$, $A_0$ and the parameters of the SU(5) superpotential that are compatible with these and other phenomenological constraints such as the density of cold dark matter, which we assume to be provided by the lightest neutralino. Typically, these allowed regions appear for $m_0$ and $m_{1/...

  1. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    Science.gov (United States)

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  2. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

    Science.gov (United States)

    Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi

    2017-01-01

    Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Supersymmetry searches in GUT models with non-universal scalar masses

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, M.; Gómez, M.E. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Ellis, J. [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom); Lola, S. [Department of Physics, University of Patras, 26500 Patras (Greece); De Austri, R. Ruiz, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: John.Ellis@cern.ch, E-mail: mario.gomez@dfa.uhu.es, E-mail: magda@physics.upatras.gr, E-mail: rruiz@ific.uv.es [Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia (Spain)

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ∼t{sub 1}−χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E{sub T}, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.

  4. Development of the intrinsic and extrinsic innervation of the gut.

    Science.gov (United States)

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  6. Pathophysiology of gastroesophageal reflux disease

    NARCIS (Netherlands)

    Boeckxstaens, Guy E.; Rohof, Wout O.

    2014-01-01

    Gastroesophageal reflux disease (GERD) is one of the most common digestive diseases in the Western world, with typical symptoms, such as heartburn, regurgitation, or retrosternal pain, reported by 15% to 20% of the general population. The pathophysiology of GERD is multifactorial. Our understanding

  7. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the

  8. Public Health and Rodents: A Game of Cat and Mouse

    NARCIS (Netherlands)

    Meerburg, B.G.

    2015-01-01

    Rodents are the most abundant order of living mammals, distributed on every continent except Antarctic and represent 43 % of all mammalian species. Beside causing food losses and infrastructural damage, rodents can harbour pathogens that may cause serious problems to human and animal health.

  9. Flavor Preferences in Animals: Role of Mouth and Gut Nutrient Sensors

    Directory of Open Access Journals (Sweden)

    Anthony Sclafani

    2014-07-01

    Full Text Available Food appetite and preference are greatly influenced by taste, odor, and texture stimuli that are integrated in the brain as flavor sensations. One of the most potent flavor elements is the sweet taste of sugar. In mammals, sugar taste is detected primarily by two receptor proteins, T1R2 and T1R3, that join together to form a sweet taste receptor that responds to a variety of sugars and non-nutritive sweeteners [1]. The flavor of fat is also a source of food pleasure, which includes a taste component that influences the preference for fatty foods in some animals. The gustatory detection of fat is thought to involve lipid binding proteins including CD36, GPR120, and GPR40 located in taste receptor cells [1]. Another more subtle flavor component is umami, the taste of glutamate and certain nucleotides that adds a savory flavor to foods [1]. While many mammals have an innate preference for sweet and perhaps for fatty and umami tastes as well, most preferences for complex flavors are acquired in part through learned associations with the nutritional properties of foods. Social and cultural factors also contribute to learned flavor preferences, particularly in humans. Food is “tasted” not only in the mouth but also in the gut where there are taste receptors and other nutrient sensors that detect sugar, fat, and protein [2]. There is extensive research on how nutrients in the gut generate neural and hormonal “satiation” signals that terminate meals and maintain post-meal satiety. Less well known is that nutrient actions in the gut can stimulate eating and condition flavor preferences though a process referred to as “appetition” [3]. Appetition has been most intensively studied in laboratory rodents. In a prototypical experiment, mice are offered flavored non-nutritive solutions (CS, conditioned stimuli on alternate days with one flavor (CS+ paired with intragastric (IG infusions of a sugar solution and a different flavor (CS- paired with a

  10. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  11. Control of the gut microbiome by fecal microRNA

    Directory of Open Access Journals (Sweden)

    Shirong Liu

    2016-03-01

    Full Text Available Since their discovery in the early 90s, microRNAs (miRNAs, small non-coding RNAs, have mainly been associated with posttranscriptional regulation of gene expression on a cell-autonomous level. Recent evidence has extended this role by adding inter-species communication to the manifold functional range. In our latest study [Liu S, et al., 2016, Cell Host & Microbe], we identified miRNAs in gut lumen and feces of both mice and humans. We found that intestinal epithelial cells (IEC and Hopx+ cells were the two main sources of fecal miRNA. Deficiency of IEC-miRNA resulted in gut dysbiosis and WT fecal miRNA transplantation restored the gut microbiota. We investigated potential mechanisms for this effect and found that miRNAs were able to regulate the gut microbiome. By culturing bacteria with miRNAs, we found that host miRNAs were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth. Oral administration of synthetic miRNA mimics affected specific bacteria in the gut. Our findings describe a previously unknown pathway by which the gut microbiome is regulated by the host and raises the possibility that miRNAs may be used therapeutically to manipulate the microbiome for the treatment of disease.

  12. Assessing pathophysiology of cancer anorexia.

    Science.gov (United States)

    Laviano, Alessandro; Koverech, Angela; Seelaender, Marilia

    2017-09-01

    Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.

  13. First Isolates of Leptospira spp., from Rodents Captured in Angola

    Science.gov (United States)

    Fortes-Gabriel, Elsa; Carreira, Teresa; Vieira, Maria Luísa

    2016-01-01

    Rodents play an important role in the transmission of pathogenic Leptospira spp. However, in Angola, neither the natural reservoirs of these spirochetes nor leptospirosis diagnosis has been considered. Regarding this gap, we captured rodents in Luanda and Huambo provinces to identify circulating Leptospira spp. Rodent kidney tissue was cultured and DNA amplified and sequenced. Culture isolates were evaluated for pathogenic status and typing with rabbit antisera; polymerase chain reaction (PCR) and sequencing were also performed. A total of 37 rodents were captured: Rattus rattus (15, 40.5%), Rattus norvegicus (9, 24.3%), and Mus musculus (13, 35.2%). Leptospiral DNA was amplified in eight (21.6%) kidney samples. From the cultures, we obtained four (10.8%) Leptospira isolates belonging to the Icterohaemorrhagiae and Ballum serogroups of Leptospira interrogans and Leptospira borgpetersenii genospecies, respectively. This study provides information about circulating leptospires spread by rats and mice in Angola. PMID:26928840

  14. Faecalibacterium Gut Colonization Is Accelerated by Presence of Older Siblings

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Laursen, Rikke Pilmann; Larnkjær, Anni

    2017-01-01

    Faecalibacterium prausnitzii is a highly abundant human gut microbe in healthy individuals, but it is present at reduced levels in individuals with gastrointestinal inflammatory diseases. It has therefore been suggested to constitute a marker of a healthy gut and is associated with anti......-inflammatory properties. However, factors affecting the colonization of F. prausnitzii in the human gut during early life are very poorly understood. By analysis of 16S rRNA amplicon sequencing data from three separate infant study populations, we determined the colonization dynamics of Faecalibacterium and factors...... affecting its establishment in the gut. We found that in particular, the presence of older siblings was consistently associated with Faecalibacterium gut colonization during late infancy and conclude that acquisition of Faecalibacterium is very likely to be accelerated through transfer between siblings...

  15. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    Science.gov (United States)

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  16. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  17. GUTs and exceptional branes in F-theory - II. Experimental predictions

    International Nuclear Information System (INIS)

    Beasley, Chris; Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    We consider realizations of GUT models in F-theory. Adopting a bottom up approach, the assumption that the dynamics of the GUT model can in principle decouple from Planck scale physics leads to a surprisingly predictive framework. An internal U(1) hypercharge flux Higgses the GUT group directly to the MSSM or to a flipped GUT model, a mechanism unavailable in heterotic models. This new ingredient automatically addresses a number of puzzles present in traditional GUT models. The internal U(1) hyperflux allows us to solve the doublet-triplet splitting problem, and explains the qualitative features of the distorted GUT mass relations for lighter generations due to the Aharanov-Bohm effect. These models typically come with nearly exact global symmetries which prevent bare μ terms and also forbid dangerous baryon number violating operators. Strong curvature around our brane leads to a repulsion mechanism for Landau wave functions for neutral fields. This leads to large hierarchies of the form exp(-c/ε 2γ ) where c and γ are order one parameters and ε ∼ α GUT -1 M GUT /M pl . This effect can simultaneously generate a viably small μ term as well as an acceptable Dirac neutrino mass on the order of 0.5 x 10 -2±0.5 eV. In another scenario, we find a modified seesaw mechanism which predicts that the light neutrinos have masses in the expected range while the Majorana mass term for the heavy neutrinos is ∼ 3 x 10 12±1.5 GeV. Communicating supersymmetry breaking to the MSSM can be elegantly realized through gauge mediation. In one scenario, the same repulsion mechanism also leads to messenger masses which are naturally much lighter than the GUT scale.

  18. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.

    Science.gov (United States)

    Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2016-04-20

    The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

  19. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    Science.gov (United States)

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  20. Early-life gut microbiome composition and milk allergy resolution

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M.; Leung, Donald; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C.

    2016-01-01

    Background Gut microbiota may play a role in the natural history of cow’s milk allergy Objective To examine the association between early life gut microbiota and the resolution of cow’s milk allergy Methods We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy (CoFAR) observational study of food allergy. Fecal samples were collected at age 3–16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using QIIME (Quantitative Insights into Microbial Ecology), PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), and STAMP (Statistical Analysis of Metagenomic Profiles). Results Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3–6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = 0.047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η2 = 0.43, ANOVA P = 0.034). Conclusions Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. PMID:27292825

  1. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia.

    Science.gov (United States)

    Tadin, Ante; Tokarz, Rafal; Markotić, Alemka; Margaletić, Josip; Turk, Nenad; Habuš, Josipa; Svoboda, Petra; Vucelja, Marko; Desai, Aaloki; Jain, Komal; Lipkin, W Ian

    2016-02-01

    Croatia is a focus for many rodent-borne zoonosis. Here, we report a survey of 242 rodents and small mammals, including 43 Myodes glareolus, 131 Apodemus flavicollis, 53 Apodemus agrarius, three Apodemus sylvaticus, six Sorex araneus, four Microtus arvalis, one Microtus agrestis, and one Muscardinus avellanarius, collected at eight sites in Croatia over an 8-year period. Multiplex MassTag polymerase chain reaction (PCR) was used for detection of Borrelia, Rickettsia, Bartonella, Babesia, Ehrlichia, Anaplasma, Francisella tularensis, and Coxiella burnetii. Individual PCR assays were used for detection of Leptospira, lymphocytic choriomeningitis virus, orthopoxviruses, flaviviruses, hantaviruses, and Toxoplasma gondii. Of the rodents, 52 (21.5%) were infected with Leptospira, 9 (3.7%) with Borrelia miyamotoi, 5 (2%) with Borrelia afzelii, 29 (12.0%) with Bartonella, 8 (3.3%) with Babesia microti, 2 (0.8%) with Ehrlichia, 4 (1.7%) with Anaplasma, 2 (0.8%) with F. tularensis, 43 (17.8%) with hantaviruses, and 1 (0.4%) with an orthopoxvirus. Other agents were not detected. Multiple infections were found in 32 rodents (13.2%): dual infections in 26 rodents (10.7%), triple infections in four rodents (2.9%), and quadruple infections in two rodents (0.8%). Our findings indicate that rodents in Croatia harbor a wide range of bacteria and viruses that are pathogenic to humans. © The American Society of Tropical Medicine and Hygiene.

  2. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    Science.gov (United States)

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection.

    Science.gov (United States)

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-07-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut microbiota gradually increased from day 1 to day 19 of life and consisted of Proteobacteria and Firmicutes. For the first 3 days of life, chicken cecum was protected by increased expression of chicken β-defensins (i.e., gallinacins 1, 2, 4, and 6), expression of which dropped from day 4 of life. On the other hand, a transient increase in interleukin-8 (IL-8) and IL-17 expression could be observed in chicken cecum on day 4 of life, indicating physiological inflammation and maturation of the gut immune system. In agreement, the response of chickens infected with S. Enteritidis on days 1, 4, and 16 of life shifted from Th1 (characterized mainly by induction of gamma interferon [IFN-γ] and inducible nitric oxide synthase [iNOS]), observed in younger chickens, to Th17, observed in 16-day-old chickens (characterized mainly by IL-17 induction). Active modification of chicken gut microbiota in the future may accelerate or potentiate the maturation of the gut immune system and increase its resistance to infection with different pathogens.

  4. Comparison of the distal gut microbiota from people and animals in Africa.

    Science.gov (United States)

    Ellis, Richard J; Bruce, Kenneth D; Jenkins, Claire; Stothard, J Russell; Ajarova, Lilly; Mugisha, Lawrence; Viney, Mark E

    2013-01-01

    The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human--animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas.

  5. Pathophysiology and Biomarkers in Acute Ischemic Stroke – A Review

    African Journals Online (AJOL)

    The pathophysiology of ischemic stroke is complex, and majorly involves excitotoxicity, oxidative stress, inflammation, blood-brain barrier dysfunction, apoptosis, etc. Several of the biomarkers are related to these pathophysiologic mechanisms and they may have applications in stroke prediction, diagnosis, assessment, ...

  6. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease.

    Science.gov (United States)

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S; Pavan, William J; Sidransky, Ellen

    2016-07-01

    Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1 Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1 To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. © 2016. Published by The Company of Biologists Ltd.

  7. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    Directory of Open Access Journals (Sweden)

    Wendy Westbroek

    2016-07-01

    Full Text Available Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+ by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.

  8. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    Science.gov (United States)

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  9. "Sport Guts" in Japanese Girl Anime

    OpenAIRE

    Miho Tsukamoto

    2015-01-01

    "Sport Guts" in Japanese anime developed not only to strengthen mentality but also to challenge for objectives. This paper helps to understand the development of Japanese girl anime, and its philosophical concepts of Japanese amine. This paper focuses on girls' sport anime "Sport Guts,", which is the major philosophy of Japanese girl anime and centers on a girl who is enthusiastic about volleyball and makes an effort to compete in the World Series by focusing on girl anime b...

  10. Gut microbiota, low-grade inflammation, and metabolic syndrome.

    Science.gov (United States)

    Chassaing, Benoit; Gewirtz, Andrew T

    2014-01-01

    The intestinal tract is inhabited by a large diverse community of bacteria collectively referred to as the gut microbiota. Alterations in gut microbiota composition are associated with a variety of disease states including obesity, diabetes, and inflammatory bowel disease (IBD). Transplant of microbiota from diseased persons (or mice) to germfree mice transfers some aspects of disease phenotype, indicating that altered microbiota plays a role in disease establishment and manifestation. There are myriad potential mechanisms by which alterations in gut microbiota might promote disease, including increasing energy harvest, production of toxic metabolites, and molecular mimicry of host proteins. However, our research indicates that an overarching mechanism by which an aberrant microbiota negatively impacts health is by driving chronic inflammation. More specifically, we hypothesize that the histopathologically evident gut inflammation that defines IBD is a severe but relatively rare outcome of an altered host-microbiota relationship, while a much more common consequence of such disturbances is "low-grade" inflammation characterized by elevated proinflammatory gene expression that associates with, and may promote, metabolic syndrome. In this context, a variety of chronic inflammatory diseases may stem from inability of the mucosal immune system to properly manage a stable healthy relationship with the gut microbiota. While one's ability to manage their gut microbiota is dictated in part by genetics, it can be markedly influenced by the composition of the microbiota one inherits from their early environment. Moreover, the host-microbiota relationship can be perturbed by instigator bacteria or dietary components, which may prove to play a role in promoting chronic inflammatory disease states.

  11. Nutrition, the Gut and the Microbiome

    DEFF Research Database (Denmark)

    Kjølbæk, Louise

    , but an optimal diet to improve the success of weight loss maintenance has not reached consensus among worldwide expects. During the last decade, it has been observed that the gut microbiota composition is associated with obesity and obesity-associated diseases. However, a deeper understanding of how the host...... the gut and the microbiome in relation to obesity and obesity-associated diseases. The objective was investigated by the conduct of three studies (KIFU, PROKA, MNG). In KIFU, the effect of habitual calcium intake on faecal fat and energy excretions was investigated by an observational study. The 189...... (PUFA) intakes on the gut microbiota composition was investigated by a randomised cross-over study with two 4-week diets periods and a 4-week washout period. Faecal samples and metabolic markers were collected from 30 subjects before and after each diet period. Results showed that habitual dietary...

  12. Wild Rodents as Experimental Intermediate Hosts of Lagochilascaris minor Leiper, 1909

    Directory of Open Access Journals (Sweden)

    Julieta Machado Paçô

    1999-07-01

    Full Text Available A total of 25 specimens of Cavia porcellus (guinea pig, 5 Dasyprocta agouti (agouti, and 22 Calomys callosus (vesper mice were inoculated with infective eggs of Lagochilascaris minor. The inoculum was prepared with embryonated eggs and orally administered to each individual animal through an esophagus probe. In parallel, 100 specimens of Felis catus domesticus were individually fed with 55-70 nodules containing 3rd-stage larvae encysted in tissues of infected rodents. Animals were examined and necropsied at different time intervals. The migration and encystment of L3 larva was observed in viscera, skeletal muscle, adipose and subcutaneous tissues from all rodents. Adult worms localized at abscesses in the cervical region, rhino, and oropharynx were recovered from domestic cats inoculated with infected rodent tissues. Through this study we can conclude that: (1 wild rodents act as intermediate hosts, characterizing this ascarid heteroxenic cycle; (2 in natural conditions rodents could possibly act as either intermediate hosts or paratenic hosts of Lagochilascaris minor; (3 despite the occurrence of an auto-infecting cycle, in prime-infection of felines (definite hosts the cycle is only completed when intermediate hosts are provided; and (4 in the wild, rodents could serve as a source of infection for humans as they are frequently used as food in regions with the highest incidence of human lagochilascariasis.

  13. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy

    Directory of Open Access Journals (Sweden)

    Junli Ma

    2017-10-01

    Full Text Available The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD, type 2 diabetes(T2D, and insulin resistance(IR, highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.

  14. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  15. Effect of woodland patch size on rodent seed predation in a fragmented landscape

    Directory of Open Access Journals (Sweden)

    J. Loman

    2007-05-01

    Full Text Available Predation on large woody plant seeds; chestnuts, acorns and sloe kernels, was studied in deciduous forests of two size classes: small woodlots (<1 ha and large woods (at least 25 ha in southern Sweden. Seeds used for the study were artificially distributed on the forest ground and seed predation measured as seed removal. Predation rate was similar in both types of woods. However, rodent density was higher in small woodlots and a correction for differences in rodent density showed that predation rate per individual rodent was higher in the large woods. This suggests that the small woodlots (including the border zone and their adjacent fields have more rodent food per area unit. A small woodlot cannot be considered a representative sample of a large continuous forest, even if the habitats appear similar. There was a strong effect of rodent density on seed predation rate. This suggests that rodents are major seed predators in this habitat.

  16. Rodent Species Distribution and Hantavirus Seroprevalence in Residential and Forested areas of Sarawak, Malaysia.

    Science.gov (United States)

    Hamdan, Nur Elfieyra Syazana; Ng, Yee Ling; Lee, Wei Bin; Tan, Cheng Siang; Khan, Faisal Ali Anwarali; Chong, Yee Ling

    2017-01-01

    Rodents belong to the order Rodentia, which consists of three families in Borneo (i.e., Muridae, Sciuridae and Hystricidae). These include rats, mice, squirrels, and porcupines. They are widespread throughout the world and considered pests that harm humans and livestock. Some rodent species are natural reservoirs of hantaviruses (Family: Bunyaviridae) that can cause zoonotic diseases in humans. Although hantavirus seropositive human sera were reported in Peninsular Malaysia in the early 1980s, information on their infection in rodent species in Malaysia is still lacking. The rodent populations in residential and forested areas in Sarawak were sampled. A total of 108 individuals from 15 species of rodents were collected in residential ( n = 44) and forested ( n = 64) areas. The species diversity of rodents in forested areas was significantly higher (H = 2.2342) compared to rodents in residential areas (H = 0.64715) ( p Sarawak, East Malaysia. The results suggested that hantavirus was not circulating in the studied rodent populations in Sarawak, or it was otherwise at a low prevalence that is below the detection threshold. It is important to remain vigilant because of the zoonotic potential of this virus and its severe disease outcome. Further studies, such as molecular detection of viral genetic materials, are needed to fully assess the risk of hantavirus infection in rodents and humans in this region of Malaysia.

  17. Nutritional Evaluation of NASA's Rodent Food Bar Diet

    Science.gov (United States)

    Barrett, Joyce E.; Yu, Diane S.; Dalton, Bonnie P.

    2000-01-01

    Tests are being conducted on NASA's rodent Food Bar in preparation for long-term use as the rat and mouse diet aboard the International Space Station. Nutritional analyses are performed after the bars are manufactured and then repeated periodically to determine nutritional stability. The primary factors analyzed are protein, ash, fat, fiber, moisture, amino acids, fatty acids, and minerals. Nutrient levels are compared to values published in the National Research Council's dietary requirements for rodents, and also to those contained in several commonly used commercial rodent lab diets. The Food Bar is manufactured from a powdered diet to which moisture is added as it is processed through an extruder. The bars are dipped into potassium sorbate, vacuum-sealed, and irradiated. In order to determine nutrient changes during extrusion and irradiation, the powdered diet, the non-irradiated bars, and the irradiated bars are all analyzed. We have observed lower values for some nutrients (iodine, vitamin K, and iron) in the Food Bars compared with NRC requirements. Many nutrients in the Food Bars are contained at a higher level than levels in the NRC requirements. An additional factor we are investigating is the 26% moisture level in the Food Bars, which drops to about 15% within a week, compared to a stable 10% moisture in many standard lab chow diets. In addition to the nutritional analyses, the food bar is being fed to several strains of rats and mice, and feeding study and necropsy results are being observed (Barrett et al, unpublished data). Information from the nutritional analyses and from the rodent studies will enable us to recommend the formulation that will most adequately meet the rodent Food Bar requirements for long-term use aboard the Space Station.

  18. Human gut microbiome viewed across age and geography

    Science.gov (United States)

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  19. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    Science.gov (United States)

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Helminth Infections of Rodents and Their Zoonotic Importance in Boyer-Ahmad District, Southwestern Iran.

    Science.gov (United States)

    Ranjbar, Mohammad Javad; Sarkari, Bahador; Mowlavi, Gholam Reza; Seifollahi, Zeinab; Moshfe, Abdolali; Abdolahi Khabisi, Samaneh; Mobedi, Iraj

    2017-01-01

    Rodents are considered as reservoirs of various zoonotic diseases including helminthic infections. The current study aimed to evaluate the prevalence of helminth infections in rodents, in Boyer-Ahmad district, Southwestern Iran. Overall, 52 rodents were captured from various areas of the district by Sherman live traps. The animals were then euthanized and dissected. During necropsy, each organ was examined macroscopically for presence of any cyst or visible parasite. The gastrointestinal tract was removed and their contents were evaluated for larva or adult worms. Trichinella larvae in the rodents' muscles were investigated by both digestion and pathological methods. Twenty-eight (53.8%) of the trapped rodents were male. The rodents were including 25 (48.1%) Meriones persicus , 1(1.9%) Calomyscus bailwardi , 1 (1.9%) Arvicola terresterris , 7 (13.5%) Rattus rattus , 8 (15.4%) R. norvegicus , and 10 (19.2%) Apodemus sylvaticus . Of them, 38 (73.0%) were infected with at least one helminth. Collected rodents were infected with Hymenolepis diminuta (50%), Hymenolepis nana fraterna (28.8%), Skrjabinotaenia sp. (15.4%), Anoplocephalidae sp. (15.4%), Cysticercus fasciolaris (5.8%), Trichuris muris (36.5%), Aspiculuris tetraptera (15.4%), Syphacia sp. (5.7%), Rictularia sp. (15.4%), Trichostrongylus sp. (3.8%), and Gongylonema sp. (3.8%). M. persicus was the most (84%) infected rodent, yet the differences between rodent genus and helminth infectivity were not statistically significant ( P >0.05). The rodents in Boyer-Ahmad district are infected with different helminths infections that some of them are recognized as threat to human health.

  1. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis.

    Science.gov (United States)

    Stromberg, Paul E; Woolsey, Cheryl A; Clark, Andrew T; Clark, Jessica A; Turnbull, Isaiah R; McConnell, Kevin W; Chang, Katherine C; Chung, Chun-Shiang; Ayala, Alfred; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2009-06-01

    Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1(-/-) and wild-type (WT) mice. However, Rag-1(-/-) animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1(-/-) mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4(+) but not CD8(+), gammadelta, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1(-/-) mice. Further, adoptively transferring lymphocytes to Rag-1(-/-) mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4(+) lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.

  2. Bone morphology of the hind limbs in two caviomorph rodents.

    Science.gov (United States)

    de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F

    2013-04-01

    In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.

  3. First Isolates of Leptospira spp., from Rodents Captured in Angola.

    Science.gov (United States)

    Fortes-Gabriel, Elsa; Carreira, Teresa; Vieira, Maria Luísa

    2016-05-04

    Rodents play an important role in the transmission of pathogenic Leptospira spp. However, in Angola, neither the natural reservoirs of these spirochetes nor leptospirosis diagnosis has been considered. Regarding this gap, we captured rodents in Luanda and Huambo provinces to identify circulating Leptospira spp. Rodent kidney tissue was cultured and DNA amplified and sequenced. Culture isolates were evaluated for pathogenic status and typing with rabbit antisera; polymerase chain reaction (PCR) and sequencing were also performed. A total of 37 rodents were captured: Rattus rattus (15, 40.5%), Rattus norvegicus (9, 24.3%), and Mus musculus (13, 35.2%). Leptospiral DNA was amplified in eight (21.6%) kidney samples. From the cultures, we obtained four (10.8%) Leptospira isolates belonging to the Icterohaemorrhagiae and Ballum serogroups of Leptospira interrogans and Leptospira borgpetersenii genospecies, respectively. This study provides information about circulating leptospires spread by rats and mice in Angola. © The American Society of Tropical Medicine and Hygiene.

  4. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carb......To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  5. Homeostasis between gut-associated microorganisms and the immune system in Drosophila.

    Science.gov (United States)

    You, Hyejin; Lee, Won Jun; Lee, Won-Jae

    2014-10-01

    The metabolic activities of a given gut bacterium or gut commensal community fluctuate in a manner largely depending on the physicochemical parameters within the gut niche. Recognition of the bacterial metabolic status in situ, by a sensing of the gut metabolites as a signature of a specific bacterial metabolic activity, has been suggested to be a highly beneficial means for the host to maintain gut-microbe homeostasis. Recently, analysis of Drosophila gut immunity revealed that bacterial-derived uracil and uracil-modulated intestinal reactive oxygen species (ROS) generation play a pivotal role in diverse aspects of host-microbe interactions, such as pathogen clearance, commensal protection, intestinal cell regeneration, colitogenesis, and possibly also interorgan immunological communication. A deeper understanding of the role of uracil in Drosophila immunity will provide additional insight into the molecular mechanisms underlying host-microbe symbiosis and dysbiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels.

    Science.gov (United States)

    Ren, Tiantian; Boutin, Stan; Humphries, Murray M; Dantzer, Ben; Gorrell, Jamieson C; Coltman, David W; McAdam, Andrew G; Wu, Martin

    2017-12-21

    Our understanding of gut microbiota has been limited primarily to findings from human and laboratory animals, but what shapes the gut microbiota in nature remains largely unknown. To fill this gap, we conducted a comprehensive study of gut microbiota of a well-studied North American red squirrel (Tamiasciurus hudsonicus) population. Red squirrels are territorial, solitary, and live in a highly seasonal environment and therefore represent a very attractive system to study factors that drive the temporal and spatial dynamics of gut microbiota. For the first time, this study revealed significant spatial patterns of gut microbiota within a host population, suggesting limited dispersal could play a role in shaping and maintaining the structure of gut microbial communities. We also found a remarkable seasonal rhythm in red squirrel's gut microbial composition manifested by a tradeoff between relative abundance of two genera Oscillospira and Corpococcus and clearly associated with seasonal variation in diet availability. Our results show that in nature, environmental factors exert a much stronger influence on gut microbiota than host-associated factors including age and sex. Despite strong environmental effects, we found clear evidence of individuality and maternal effects, but host genetics did not seem to be a significant driver of the gut microbial communities in red squirrels. Taken together, the results of this study emphasize the importance of external ecological factors rather than host attributes in driving temporal and spatial patterns of gut microbiota in natural environment.

  7. Factors influencing the grass carp gut microbiome and its effect on metabolism.

    Science.gov (United States)

    Ni, Jiajia; Yan, Qingyun; Yu, Yuhe; Zhang, Tanglin

    2014-03-01

    Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Rodent Research on the International Space Station - A Look Forward

    Science.gov (United States)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  9. Gas embolism: pathophysiology and treatment

    NARCIS (Netherlands)

    van Hulst, Robert A.; Klein, Jan; Lachmann, Burkhard

    2003-01-01

    Based on a literature search, an overview is presented of the pathophysiology of venous and arterial gas embolism in the experimental and clinical environment, as well as the relevance and aims of diagnostics and treatment of gas embolism. The review starts with a few historical observations and

  10. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  11. Overweight and the feline gut microbiome - a pilot study.

    Science.gov (United States)

    Kieler, I N; Mølbak, L; Hansen, L L; Hermann-Bank, M L; Bjornvad, C R

    2016-06-01

    Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy-seven rescue-shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when available, by a paired litter box sample. Body condition was assessed using a 9-point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high-throughput quantitative real-time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p gut microbiome as compared to lean cats. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  12. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  13. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    Science.gov (United States)

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  14. Public health implications of changing rodent importation patterns— United States, 1999–2013

    Science.gov (United States)

    Lankau, Emily W.; Sinclair, Julie R.; Schroeder, Betsy A.; Galland, G. Gale; Marano, Nina

    2015-01-01

    Summary The United States imports a large volume of live wild and domestic animal species; these animals pose a demonstrated risk for introduction of zoonotic diseases. Rodents are imported for multiple purposes, including scientific research, zoo exhibits, and the pet trade. Current U.S. public health regulatory restrictions specific to rodent importation pertain only to those of African origin. To understand the impacts of these regulations and the potential public health risks of international rodent trade to the United States, we evaluated live rodent import records during 1999 –2013 by shipment volume and geographic origin, source (e.g., wild -caught versus captive-or commercially bred), intended purpose, and rodent taxonomy. Live rodent imports increased from 2,737 animals during 1999 to 173,761 animals during 2013. Increases in both the number and size of shipments contributed to this trend. The proportion of wild-captured imports declined from 75% during 1999 to guinea pigs, and hamsters arriving from other countries in North America were predominant taxa underlying this trend . After 2003, African-origin imports became sporadic events under the federal permit process. These patterns suggest development of large -scale captive rodent breeding markets abroad for commercial sale in the United States. While the shift from wild-captured imports alleviates many conservation concerns and risks for novel disease emergence, such consolidated sourcing might elevate exposure risks for zoonotic diseases associated with high-density rodent breeding(e.g. , lymphocytic choriomeningitis or salmonellosis). A responsive border health system must periodically re-evaluate importation regulations in conjunction with key stakeholders to ensure a balance between the economic benefits of rodent trade against the potential public health risks. PMID:26245515

  15. Pathophysiological role of host microbiota in the development of obesity.

    Science.gov (United States)

    Kobyliak, Nazarii; Virchenko, Oleksandr; Falalyeyeva, Tetyana

    2016-04-23

    Overweight and obesity increase the risk for a number of diseases, namely, cardiovascular diseases, type 2 diabetes, dyslipidemia, premature death, non-alcoholic fatty liver disease as well as different types of cancer. Approximately 1.7 billion people in the world suffer from being overweight, most notably in developed countries. Current research efforts have focused on host and environmental factors that may affect energy balance. It was hypothesized that a microbiota profile specific to an obese host with increased energy-yielding behavior may exist. Consequently, the gut microbiota is becoming of significant research interest in relation to obesity in an attempt to better understand the aetiology of obesity and to develop new methods of its prevention and treatment. Alteration of microbiota composition may stimulate development of obesity and other metabolic diseases via several mechanisms: increasing gut permeability with subsequent metabolic inflammation; increasing energy harvest from the diet; impairing short-chain fatty acids synthesis; and altering bile acids metabolism and FXR/TGR5 signaling. Prebiotics and probiotics have physiologic functions that contribute to the health of gut microbiota, maintenance of a healthy body weight and control of factors associated with obesity through their effects on mechanisms that control food intake, body weight, gut microbiota and inflammatory processes.

  16. Harvesting behaviour of three central European rodents: Identifying the rodent pest in cereals

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Tkadlec, Emil

    2011-01-01

    Roč. 30, č. 1 (2011), s. 82-84 ISSN 0261-2194 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : Apodemus sylvaticus * Apodemus uralensis * feeding behaviour * lab experiments * Microtus arvalis * rodent pest control Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.402, year: 2011

  17. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  18. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    Science.gov (United States)

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. The obese gut microbiome across the epidemiologic transition

    Directory of Open Access Journals (Sweden)

    Lara R. Dugas

    2016-01-01

    Full Text Available Abstract The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host’s geographic location ‘human geography’, and behavioral factors (diet and physical activity. Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

  20. Gastroenterology issues in schizophrenia: why the gut matters.

    Science.gov (United States)

    Severance, Emily G; Prandovszky, Emese; Castiglione, James; Yolken, Robert H

    2015-05-01

    Genetic and environmental studies implicate immune pathologies in schizophrenia. The body's largest immune organ is the gastrointestinal (GI) tract. Historical associations of GI conditions with mental illnesses predate the introduction of antipsychotics. Current studies of antipsychotic-naïve patients support that gut dysfunction may be inherent to the schizophrenia disease process. Risk factors for schizophrenia (inflammation, food intolerances, Toxoplasma gondii exposure, cellular barrier defects) are part of biological pathways that intersect those operant in the gut. Central to GI function is a homeostatic microbial community, and early reports show that it is disrupted in schizophrenia. Bioactive and toxic products derived from digestion and microbial dysbiosis activate adaptive and innate immunity. Complement C1q, a brain-active systemic immune component, interacts with gut-related schizophrenia risk factors in clinical and experimental animal models. With accumulating evidence supporting newly discovered gut-brain physiological pathways, treatments to ameliorate brain symptoms of schizophrenia should be supplemented with therapies to correct GI dysfunction.

  1. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach?

    Science.gov (United States)

    Liao, Yuxiao; Peng, Zhao; Chen, Liangkai; Nüssler, Andreas K; Liu, Liegang; Yang, Wei

    2018-02-01

    Deoxynivalenol (DON, vomitoxin) is the most frequent mycotoxin in grains and grain products. DON contamination in fodder and food is a serious threat for health, since it impairs the immune and gastrointestinal systems of both human and animals. Gut microbiota seems to play a more and more important part in human and animals' health according to related researches. Previous studies implied some associations among gut microbiota, DON and immune system. For example, DON affects immune system as well as the composition and abundance of gut microbiota, and the latter influences immune system as well. In the present short review, we not only provide the available information about the toxic consequences of DON-induced immunotoxicity on different animals and cell lines and discuss its main possible molecule mechanisms, but also summarize research results concerning the role of gut microbiota in DON-induced immunotoxicity and gender differences, with the aim to find some potential therapeutic strategies to tackle DON-induced immunotoxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    Buckley, Maria M; O'Mahony, Siobhain M; O'Malley, Dervla

    2014-07-21

    Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares. Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.

  3. Gut Microbiota and Lifestyle Interventions in NAFLD

    Science.gov (United States)

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  4. Early-life gut microbiome composition and milk allergy resolution.

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M; Leung, Donald Y M; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C

    2016-10-01

    Gut microbiota may play a role in the natural history of cow's milk allergy. We sought to examine the association between early-life gut microbiota and the resolution of cow's milk allergy. We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = .047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η 2  = 0.43; ANOVA P = .034). Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  6. The response of human and rodent cells to hyperthermia

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Pirro, J.P.

    1991-01-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat

  7. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  8. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  10. Bacteria from diverse habitats colonize and compete in the mouse gut.

    Science.gov (United States)

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization of the gut microbiota in leptin deficient obese mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Krych, Lukasz; Hansen, Camilla Hartmann Friis

    2014-01-01

    Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being...... able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lep(ob)/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression...... model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high...

  12. The Nitrogen Moieties of Dietary Nonessential Amino Acids Are Distinctively Metabolized in the Gut and Distributed to the Circulation in Rats.

    Science.gov (United States)

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei

    2017-08-01

    Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived

  13. The role of the gut microbiota in childhood obesity

    DEFF Research Database (Denmark)

    Friis Pihl, Andreas; Esmann Fonvig, Cilius; Stjernholm, Theresa

    2016-01-01

    Background: Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism...... associated with obesity. Methods: We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. Results: The review discusses the potential role of the bacterial...... component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood...

  14. Behind every great ant, there is a great gut

    DEFF Research Database (Denmark)

    Poulsen, Michael; Sapountzis, Panagiotis

    2012-01-01

    on the potential contribution of the ants’ gut symbionts. This issue of Molecular Ecology contains a study by Anderson et al. (2012), who take a comparative approach to explore the link between trophic levels and ant microbiomes, specifically, to address three main questions: (i) Do closely related herbivorous...... conserved gut microbiomes, suggesting symbiont functions that directly relate to dietary preference of the ant host. These findings suggest an ecological role of gut symbionts in ants, for example, in metabolism and/or protection, and the comparative approach taken supports a model of co-evolution between...... ant species and specific core symbiont microbiomes. This study, thereby, highlights the omnipresence and importance of gut symbioses—also in the Hymenoptera—and suggests that these hitherto overlooked microbes likely have contributed to the ecological success of the ants....

  15. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  16. Visual Landmarks Facilitate Rodent Spatial Navigation in Virtual Reality Environments

    Science.gov (United States)

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain…

  17. Gut microbiomes and their metabolites shape human and animal health.

    Science.gov (United States)

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  18. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  19. The human gut microbiome and its dysfunctions through the meta-omics prism.

    Science.gov (United States)

    Mondot, Stanislas; Lepage, Patricia

    2016-05-01

    The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases. © 2016 New York Academy of Sciences.

  20. Thalassemia: Pathophysiology and management. Part A

    International Nuclear Information System (INIS)

    Fucharoen, S.; Rowley, P.T.; Paul, N.W.

    1988-01-01

    This book contains papers divided among the following sections: molecular biology and pathogenesis; pathophysiology - molecular and cellular; clinical manifestations and hematologic changes; cardiopulmonary defects and platelet function; hormones and minerals; and infection and immunology

  1. Hydrogen-antihydrogen oscillations: Signature of intermediate mass scales in GUTs

    Directory of Open Access Journals (Sweden)

    Uptal Sarkar

    1983-01-01

    Full Text Available Hydrogen-antihydrogen oscillations and the double nucleon decay (pp, np and nn into two antileptons are discussed in the context of SO(10, E(6 and SU(16 GUTs. It is shown that the intermediate mass scales of the GUTs concerned govern the amplitude of these processes which are found to compete with the other baryon nonconserving processes in SU(16 GUT.

  2. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.......) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial...

  3. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2011-11-01

    Full Text Available Abstract Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS, which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.

  4. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study.

    Science.gov (United States)

    Koloski, N A; Jones, M; Talley, N J

    2016-09-01

    Traditionally, functional gastrointestinal disorders (FGIDs) are conceptualised as originating in the brain via stress pathways (brain-to-gut). It is uncertain how many with irritable bowel syndrome (IBS) and functional dyspepsia (FD) have a gut origin of symptoms (gut-to-brain pathway). To determine if there is a distinct brain-to-gut FGID (where psychological symptoms begin first) and separately a distinct gut-to-brain FGID (where gut symptoms start first). A prospective random population sample from Newcastle, Australia who responded to a validated survey in 2012 and completed a 1-year follow-up survey (n = 1900). The surveys contained questions on Rome III IBS and FD and the Hospital Anxiety and Depression Scale. We found that higher levels of anxiety and depression at baseline were significant predictors of developing IBS (OR = 1.31; 95% CI 1.06-1.61, P = 0.01; OR = 1.54; 95% CI 1.29-1.83, P intestinal features in many cases. © 2016 John Wiley & Sons Ltd.

  5. Gut size flexibility in rodents: what we know, and don't know, after a century of research Flexibilidad en el tamaño del tracto digestivo en roedores: qué sabemos, y qué no sabemos, después de un siglo de investigación

    Directory of Open Access Journals (Sweden)

    DANIEL E NAYA

    2008-12-01

    Full Text Available Phenotypic plasticity comprises a central concept in the understanding of how organisms interact with their environment, and thus, is a central topic in ecology and evolution. A particular case of phenotypic plasticity is phenotypic flexibility, which refers to reversible change in organism traits due to changes in internal or external environmental conditions. Flexibility of digestive features has been analyzed for more than a century in a myriad of different species and contexts. Studies in rodents on gut size flexibility have been developed mainly from two different áreas of the biological sciences, physiology and ecology. However, as for several other topics related with physiological ecology, both kinds of studies largely developed along sepárate paths. Herein, I evaluate altogether the information belonging to both áreas. The major conclusions reached are: (1 there is a clear match between digestive morphology adjustments and change in environmental conditions, and gut size flexibility could be considered a widespread physiological mechanism oceurring in laboratory and wild species, and under laboratory, semi-natural and natural conditions. (2 For laboratory species, the experimental factors that have been more investigated are diet quality, reproductive status, environmental temperature and fasting, while for wild species the more analyzed factors are diet quality and temperature. (3 For wild rodent species, no differences in small intestine length flexibility between methodological approaches ñor species feeding categories has been identified. (4 It appears that high energetic demands are mainly coped with by changes at the small intestine level, while changes in the amount of undigestible material in the diet are mainly coped with by changes in the hindgut. (5 Change in gut length may be related to a decrease in food retention time (e.g., during diet dilution, while change in gut mass appears to be related to a need of higher

  6. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.

    Directory of Open Access Journals (Sweden)

    Xiaoshu Tang

    Full Text Available BACKGROUND: The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. METHODS/PRINCIPAL FINDINGS: To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. CONCLUSIONS: Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.

  7. Correlating the Gut Microbiome to Health and Disease

    NARCIS (Netherlands)

    Marques, T.M.; Holster, S.; Wall, R.; König, J.; Brummer, R.J.; Vos, de Willem

    2016-01-01

    The gut microbiota is a complex ecosystem consisting of a diverse population of prokaryotes that has a symbiotic relationship with its host; thus it plays a vital role for the host's health. Our understanding of the effect of the gut microbiome in health and disease has grown substantially over

  8. Food Design to Feed the Human Gut Microbiota

    NARCIS (Netherlands)

    Ercolini, Danilo; Fogliano, Vincenzo

    2018-01-01

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and

  9. Relationships between rodent white adipose fat pads and human white adipose fat depots

    Directory of Open Access Journals (Sweden)

    Daniella E. Chusyd

    2016-04-01

    Full Text Available The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of white adipose tissue. Thus, further research is warranted to more carefully define the strengths and limitations of rodent white adipose tissue as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.

  10. Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection ▿

    Science.gov (United States)

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-01-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut microbiota gradually increased from day 1 to day 19 of life and consisted of Proteobacteria and Firmicutes. For the first 3 days of life, chicken cecum was protected by increased expression of chicken β-defensins (i.e., gallinacins 1, 2, 4, and 6), expression of which dropped from day 4 of life. On the other hand, a transient increase in interleukin-8 (IL-8) and IL-17 expression could be observed in chicken cecum on day 4 of life, indicating physiological inflammation and maturation of the gut immune system. In agreement, the response of chickens infected with S. Enteritidis on days 1, 4, and 16 of life shifted from Th1 (characterized mainly by induction of gamma interferon [IFN-γ] and inducible nitric oxide synthase [iNOS]), observed in younger chickens, to Th17, observed in 16-day-old chickens (characterized mainly by IL-17 induction). Active modification of chicken gut microbiota in the future may accelerate or potentiate the maturation of the gut immune system and increase its resistance to infection with different pathogens. PMID:21555397

  11. The Ethics of Rodent Control

    NARCIS (Netherlands)

    Meerburg, B.G.; Brom, F.W.A.; Kijlstra, A.

    2008-01-01

    Because western societies generally see animals as objects of moral concern, demands have been made on the way they are treated, e.g. during animal experimentation. In the case of rodent pests, however, inhumane control methods are often applied. This inconsistency in the human-animal relationship

  12. Gut microbiome development along the colorectal adenoma-carcinoma sequence

    DEFF Research Database (Denmark)

    Feng, Qiang; Liang, Suisha; Jia, Huijue

    2015-01-01

    factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment......Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe...

  13. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus ...... and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities....

  14. Functional variation in the gut microbiome of wild Drosophila populations.

    Science.gov (United States)

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Gut microbiota in patients with Parkinson's disease in southern China.

    Science.gov (United States)

    Lin, Aiqun; Zheng, Wenxia; He, Yan; Tang, Wenli; Wei, Xiaobo; He, Rongni; Huang, Wei; Su, Yuying; Huang, Yaowei; Zhou, Hongwei; Xie, Huifang

    2018-05-16

    Accumulating evidence has revealed alterations in the communication between the gut and brain in patients with Parkinson's disease (PD), and previous studies have confirmed that alterations in the gut microbiome play an important role in the pathogenesis of numerous diseases, including PD. The aim of this study was to determine whether the faecal microbiome of PD patients in southern China differs from that of control subjects and whether the gut microbiome composition alters among different PD motor phenotypes. We compared the gut microbiota composition of 75 patients with PD and 45 age-matched controls using 16S rRNA next-generation-sequencing. We observed significant increases in the abundance of four bacterial families and significant decreases in the abundance of seventeen bacterial families in patients with PD compared to those of the controls. In particular, the abundance of Lachnospiraceae was reduced by 42.9% in patients with PD, whereas Bifidobacteriaceae was enriched in patients with PD. We did not identify a significant difference in the overall microbial composition among different PD motor phenotypes, but we identified the association between specific taxas and different PD motor phenotypes. PD is accompanied by alterations in the abundance of specific gut microbes. The abundance of certain gut microbes was altered depending on clinical motor phenotypes. Based on our findings, the gut microbiome may be a potential PD biomarker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  17. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness

    Directory of Open Access Journals (Sweden)

    Christopher B. Forsyth

    2014-01-01

    Full Text Available Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD. While alcohol is necessary for the development of ALD, only 20–30% of alcoholics develop alcoholic steatohepatitis (ASH with progressive liver disease leading to cirrhosis and liver failure (ALD. This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new

  18. Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD

    Directory of Open Access Journals (Sweden)

    Rimenez R. Souza

    2017-09-01

    Full Text Available The endurance of memories of emotionally arousing events serves the adaptive role of minimizing futur