Sample records for rod-coil polyimide gel

  1. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.


    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  2. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.


    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  3. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)


    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  4. Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries

    Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.


    This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.

  5. Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction

    Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.


    Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.

  6. Microphase separation and liquid-crystalline ordering of rod-coil copolymers

    AlSunaidi, A.; Otter, den W.K.; Clarke, J.H.R.


    Microphase separation and liquid-crystalline ordering in diblock and triblock rod-coil copolymers (with rod-to-coil fraction f = 0.5) were investigated using the dissipative particle dynamics method. When the isotropic disordered phases of these systems were cooled down below their order-disorder tr

  7. Thermo-reversible gelation of rod-coil and coil-rod-coil molecules based on poly(dimethyl siloxane) and perylene imides and self-sorting of the homologous pair.

    Dahan, Elianne; Sundararajan, Pudupadi R


    Organogels with perylene derivatives and phthalocyanines reported in the literature so far involve self-assembly promoted by hydrogen bonds, in addition to aromatic and van der Waals interactions. Although the self assembly of these types of molecules without a hydrogen bonding group in the structure occurs in solution or during crystallization, the gelation studies reported so far incorporated a hydrogen bonding pair of the type N-H···O=C in the structure of the molecule. We present a case of thermo-reversible gelation without a hydrogen bonding group in the structure of (1) a coil-rod-coil molecule based on perylenetetracarboxylic diimide (PTCDI) and poly(dimethyl siloxane) (PDMS) and (2) a rod-coil molecule with perylene dicarboxylic imide (PDI) and PDMS. However IR spectroscopy shows the presence of multiple types of hydrogen bonding between the solvents and the gelator molecules. In addition, publications so far on gelation of perylene diimide based molecules involve groups attached to both imide nitrogens and with or without substitution in the bay position. We discuss here the gelation with a Mono-substituted perylene imide. The PDMS segment was attached to one side of PDI (Mono-PDMS) or to both imide nitrogens of PTCDI (Di-PDMS). The Mono-PDMS is an inverse macromolecular surfactant applicable to non-aqueous systems, and the Di-PDMS is a Gemini surfactant. The PDMS segment that we attached to PTCDI here is longer than most substituents used by other authors. These molecules gel propylamine, as well as mixed solvents of hexane-water and diisopropylamine-water. Both hexane and diisopropylamine dissolve Mono-PDMS and Di-PDMS at room temperature and addition of water results in precipitation. However, heating the solution to about 70 °C, adding water (5-15 wt%) and slowly cooling the solution, lead to gelation. The Di-PDMS forms fibers which are not flat but curved as an eaves trough. The Mono-PDMS forms hollow spheres. Although the Mono-PDMS and Di

  8. Controlling the Self-Assembly of Semiconducting Nanocrystals within Conjugated Rod-Coil Block Copolymers

    McCulloch, Bryan L.; Urban, Jeff J.; Segalman, Rachel A.


    Blends of conjugated polymers and inorganic nanoparticles have been investigated for numerous optoelectronic applications however optimization relies on precise control over the nanoscale morphologies. Here, we show that conjugated rod-coil block copolymers can be designed to self assemble into controllable morphologies with the coil block templating nanocrystal location. We have constructed a model system where nanocrystals are blended with poly(alkoxy-phenylene vinylene-b-2-vinylpyridine) (PPV-b-P2VP), which self assembles into tunable morphologies. Semiconducting nanocrystals reside within the P2VP domain, due to the favorable interactions between P2VP and the nanoparticle surface as well as the exclusionary effects of the liquid crystalline PPV. The placement of the nanoparticles can be tuned by altering domain size, nanocrystal diameter and nanocrystal surface chemistry. These findings are used to develop a comprehensive understanding of the self assembly processes in conjugated rod-coil block copolymer nanocomposites.

  9. Controlling the Self-Assembly of Inorganic Nanoparticles within Conjugated Rod-Coil Block Copolymers

    McCulloch, Bryan; Segalman, Rachel


    Blends of conjugated polymers and inorganic nanoparticles have been investigated for numerous applications however optimization relies on precise control over the nanoscale morphology. We have designed a conjugated rod-coil block copolymer consisting of poly(3-(2'-ethyl)hexylthiophene)-b-poly(2-vinyl pyridine) (P3EHT-b-P2VP) which self assembles into controllable morphologies. Inorganic nanoparticles reside within the P2VP domain due to the favorable interactions between P2VP and the nanoparticle surface as well as the exclusionary effects of the liquid crystalline P3EHT. The nanoparticle location can be tuned by altering nanocrystal surface chemistry. These findings are used to develop a comprehensive understanding of the self assembly processes in conjugated rod-coil block copolymer nanocomposites.

  10. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory

    Yan, Dadong; Tang, Jiuzhou; Jiang, Ying; Zhang, Xinghua; Chen, Jeff

    A unified phase diagram is presented for rod-coil diblock copolymer melts in the isotropic phase regime as a function of the asymmetric parameter. The study is based on free-energy calculation, which incorporates three-dimensional spatial variations of the volume fraction with angular dependence. The wormlike-chain model is used in a self-consistent field treatment. Body-centered cubic, A15, hexagonal, gyroid, and lamellar structures where the rod segments are packed inside the convex rod-coil interface are found stable. As the conformational asymmetric parameter increases, the A15 phase region expands and the gyroid phase region reduces. The stability of the structures is analyzed by concepts such as packing frustration, spinodal limit, and interfacial curvature.

  11. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous

  12. Synthesis and Characterization of A Novel Water-soluble Block Copolymer with A Rod-coil Structure

    Zhijian Zhang; Wei Wei; Wei Huang


    @@ 1Introduction In this paper, a novel water-soluble block copolymer with rod-coil structures was prepared using polyfluorene (PF) as rod segment and polyethylene glycol (PEG) as coil segment in the main chain. A new but simple way of polycondensation ( shown in Scheme 1 ) was employed, compared with tedious atom transfer radical polymerization and ionic polymerization approaches.

  13. Nitroxid-vermittelte Polymerisation mittels NMR-Sonden tragender Initiatoren zur Darstellung von coil-rod-coil-Blockcopolymeren

    Tietz, Marco


    A systematic synthesis for coil-rod-coil(c-r-c) block copolymers with differing material characteristics should lead to the usage of c-r-c block copolymers as surface probes and for the study of the self assembling behavior of c-r-c block copolymers. Therefor 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) based alkoxyamines with covalently attached NMR probes where synthesized starting from nitroxides and functionalized styrenes. These alkoxyamines were used as initiators f...

  14. Effect of Geometrical Asymmetry on the Phase Behavior of Rod-Coil Diblock Copolymers

    Jingying Yu


    Full Text Available The effect of geometrical asymmetry β (described by the length-diameter ratio of rods on the rod-coil diblock copolymer phase behavior is studied by implementation of self-consistent field theory (SCFT in three-dimensional (3D position space while considering the rod orientation on the spherical surface. The phase diagrams at different geometrical asymmetry show that the aspect ratio of rods β influences not only the order-disorder transition (ODT but also the order-order transition (OOT. By exploring the phase diagram with interactions between rods and coils plotted against β, the β effect on the phase diagram is similar to the copolymer composition f. This suggests that non-lamellae structures can be obtained by tuning β, besides f. When the rods are slim compared with the isotropic shape of the coil segment (β is relatively large, the phase behavior is quite different from that of coil-coil diblock copolymers. In this case, only hexagonal cylinders with the coil at the convex side of the interface and lamella phases are stable even in the absence of orientational interaction between rods. The phase diagram is no longer symmetrical about the symmetric copolymer composition and cylinder phases occupy the large area of the phase diagram. The ODT is much lower than that of the coil-coil diblock copolymer system and the triple point at which disordered, cylinder and lamella phases coexist in equilibrium is located at rod composition fR = 0.66. In contrast, when the rods are short and stumpy (β is smaller, the stretching entropy cost of coils can be alleviated and the phase behavior is similar to coil-coil diblocks. Therefore, the hexagonal cylinder phase formed by coils is also found beside the former two structures. Moreover, the ODT may even become a little higher than that of the coil-coil diblock copolymers due to the large interfacial area per chain provided by the stumpy rods, thus compensating the stretching entropy loss of the coils.

  15. Control on self-assembly structures of rod-coil-rod (PANI)98-(PEG)136-(PANI)98 triblock copolymer

    Zhifang YANG; Jingao WU; Yingkui YANG; Xingping ZHOU; Xiaolin XIE


    The self-assembly behaviors of the rod-coil-rod (PANI)98-(PEG)136-(PANI)98 triblock copolymer are investigated in different solvents, such as N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), ethanol and water. The effects of solvents, concentration and ultrasonic irradiation on self-assembly are discussed. The results indicate that the triblock copolymer forms particles, rods, fiber, networks and fiber bands in the above solvents, respectively. Especially, the triblock copolymer can form a multi-layer, tri-dimensional fibrous network and a petaline structure from the mono-layer fibrous network with the increase of its concentration in ethanol. Also, the ultrasonic irradiation has a great effect on the self-assembly of the triblock copolymer.

  16. Self-assembly of monodisperse polymer microspheres from PPQ-b-PEG rod-coil block copolymers in selective solvents

    ZHANG Xueao; CHEN Ke; XIE Kai; LONG Yongfu


    Poly(phenylquinoline)-block-poly(ethylene glycol)(PPQ-b-PEG) rod-coil block copolymers possess the self-assembly behavior in selective solvents. The copolymers in the mixed solvents of V(trifluoroacetic acid, TFA):V(dichloromethane, DCM)=1:1 can self-assemble into polymer hollow microspheres with diameters of a few micrometers. The polymer hollow microspheres are monodisperse, and the diameters of them increase with an increased polymerization degree of the PPQ rigid-rod block. The solution concentration has no effect on the microsphere diameter, but spherical surface shows burrs when the solution concentration is too low. It has been found that the obtained dilute solution has the strongest absorption peak at 376 nm and strongest emission peak at 604 nm by the spectroscopy analysis.

  17. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi


    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045


    Jiang-feng Fan; Hai-feng He; Xin-hua Wan; Xiao-fang Chen; Qi-feng Zhou


    The synthesis and characterization of coil-rod-coil triblock oligomers, poly(ethylene oxide)-b-p-hexaphenyl-b-poly(ethylene oxide), are described. The number of repeating ethylene oxide units in each flexible block are 3 (EO3-PHP-EO3), 8 (EO8-PHP-EO8), 13 (EO13-PHP-EO13), and 17 (EO17-PHP-EO17), respectively. The structures of these oligomers are confirmed by 1H-NMR, 13C-NMR, EA, and MALDI-TOF mass spectrometry. The introduction of soluble poly(ethylene oxide) coils to the rigid p-hexaphenyl segment significantly improves the solubility of the oligomers, so they can form smooth thin films by spin-coating from their solutions. The oligomers are quite thermally stable and have 1% weight loss temperatures at above 340℃ under nitrogen. They can emit strong blue light in both solution and film state, and have fluorescence quantum yields of about 40% in chloroform. They are expected to have potential applications in optoelectronic devices.

  19. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Zhuoshi Wang


    Full Text Available In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide (PEO with a degree of polymerization (DP of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC, thermal polarized optical microscopy (POM and X-ray diffraction (XRD reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7 self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies.

  20. Polyimide Aerogel Thin Films

    Meador, Mary Ann; Guo, Haiquan


    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  1. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    Meador, Mary Ann B. (Inventor)


    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  2. Dissipative Particle Dynamics Simulation on Aggregation of Rod-Coil-Rod Triblock Copolymer in Dilute Solution%稀溶液中Rod-Coil-Rod三嵌段共聚物组装结构的耗散粒子动力学模拟

    范中相; 黄建花


    采用耗散粒子动力学方法模拟研究了rod-coil-rod三嵌段共聚物在稀溶液中的聚集行为。分别考察了rod-coil嵌段的相互作用、溶剂性质、共聚物浓度以及coil嵌段长度对聚集体形貌的影响。模拟结果发现,随着rod-coil相互排斥作用的增加,共聚物由球形转变成洋葱状、笼形和柱状结构。随着coil嵌段疏水性的增加,笼形转变成洋葱状和补丁状结构。给出了聚集体形貌随共聚物浓度和coil长度变化的相图。当浓度较小和coil嵌段较长时,共聚物形成笼状聚集体,反之,则有利于洋葱状结构的形成。%The aggregate morphology of rod-coil-rod copolymers in a dilute solution was investigated by dissipative particle dynamics simulations. The influences of the mutual compatibility between rod and coil blocks, the solvent property, the coil length, and the copolymer concentration on the aggregate structure were studied in detail. The simulation results show that the increase of the mutual compatibility between rod and coil blocks induces transformation of the aggregate morphology from spherical, to onion-like, to cage-like, and ultimately to cylindrical. With the increase in the hydrophobicity of the coil block, the cage-like aggregate changes into an onion-like aggregate, then a patchy aggregate, and then an inverted onion-like aggregate. Final y, a phase diagram of the rod-coil-rod triblock copolymers as a function of the coil length and the copolymer concentration is presented. It shows that cage aggregates are easily formed when the coil length is long and the concentration is relatively low, whereas onion-like aggregates are preferred when the coil length is short and the concentration is moderately low.

  3. Comparison of Inclusions in Cold Drawn Wire and Precursor Hot-Rolled Rod Coil in VIM-VAR Nickel-Titanium Alloy

    Sczerzenie, Frank; Paul, Graeme; Belden, Clarence


    Inclusion content is important for the mechanical behavior and performance of Nitinol wires, particularly in fatigue-rated devices. The purpose of this work was to make a quantitative comparison between inclusion populations in cold drawn wires and the precursor populations in hot-rolled rod coil. Inclusion content was examined in a series of VIM-VAR alloys with different transformation temperatures (TTR) controlled by the Ni to Ti ratio. This range of chemistry was chosen to assess the effect of Ni to Ti ratio on inclusion formation. In order to understand the differences in behavior between carbides and intermetallic oxides in wire drawing, carbides, and intermetallic oxide inclusions were measured separately using optical metallography pursuant to ASTM F2063. In VIM-VAR alloys at higher Ni to Ti ratios about 50.79 a/o Ni the formation of intermetallic oxides appears to be suppressed in the as-cast material through the presence of carbon and the precipitation of eutectic TiC in place of eutectic Ti4Ni2O x . The structure of VIM-VAR alloy also varies after hot working depending on the TTR of the alloy. Higher TTR binary alloys with lower Ni to Ti ratios tend to have more and larger intermetallic oxides and fewer and smaller carbides after hot working. Microsegregation plays a role in inclusion formation. That is, during solidification, C, O, N diffuse to the interdendritic regions. This increases the potential for the precipitation of nonmetallic species. Carbides and intermetallic oxides behave differently in hot working and cold drawing. The change in maximum carbide size from coil to wire is very near zero for all Ni to Ti ratios. The change in maximum inclusion size from coil to wire is driven mainly by the fracture of intermetallic oxides and the formation of intermetallic oxide stringers.

  4. The hydrolysis of polyimides

    Hoagland, P. D.; Fox, S. W.


    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  5. 基于横向分子间氢键的棒-线型分子自组装研究进展%Recent Progress in Rod-Coil Molecules by Self-Assembly via Lateral Intermolecular H-bonding

    张小兵; 李敏籼



  6. Lanthanide-containing polyimides

    Stoakley, D. M.; St. Clair, Anne K.


    The preparation of a variety of lanthanide-containing polyimide films is described, and results of their characterization are presented. The properties investigated include the glass transition temperature, thermooxidative stability, magnetic susceptibility, and electrical conductivity of the polymer. Films containing lanthanide chlorides, fluorides, and sulfides are flexible, but those containing lanthanide nitrates are extremely brittle. The addition of lanthanide acetates and acetylacetonates caused immediate gelation of two of the synthesis-mixture ingredients. It was found that, in general, the addition of lanthanide to the polyimide increases the density and glass transition temperature of the polymer but slightly decreases the thermooxidative stability.

  7. Preparation and characterization of polyimide/silica/silver composite films

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU


    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  8. Low Permeability Polyimide Insulation Project

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  9. Approaches to Pendent Groups' Functionalization of Polyimide


    Pendent groups' functionalization of polyimide is an optimum approach to improve its processability and achieve functionalized polyimide materials. There are two types of modification routes for pendent groups functionalization of polyimide: monomer route and macromolecular route. In this paper, various approaches for pendent groups' functionalization of polyimide are introduced. At the same time, a new method to achieve functional polyimide materials without decreasing its thermal stability and mechanical properties is mentioned.

  10. Hollow Polyimide Microspheres

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)


    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  11. Low-Toxicity PMR Polyimide

    Pater, Ruth H.; Ely, Robert M.; Stanfield, Clarence E.; Dickerson, George E.; Snoha, John J.; Srinivasan, Krishna; Hou, Tan


    New low-toxicity PMR system developed and designated LaRC-RP46. Exhibits better processability, toughness, and thermo-oxidative stability than does PMR-15. Polyimide inexpensive and readily processed into high-quality graphite-fiber-reinforced composite. Used as high-performance, high-temperature-resistant adhesive, molding, composite, film, and coating material where low toxicity desired characteristic. Significantly extends applications of PMR-type polyimides.

  12. Microstructure and Thermomechanical Properties of Polyimide-Silica Nanocomposites

    A. Al Arbash


    Full Text Available Novel polyimide-silica nanocomposites with interphase chemical bonding have been prepared using the sol-gel process. The morphology, thermal and mechanical properties were studied as a function of silica content and compared with the similar composites having no interphase interaction. The polyimide precursors, polyamic acids (PAAs with or without pendant hydroxyl groups were prepared from the reaction of pyromellitic dianhydride with a mixture of oxydianiline and 1,3 phenylenediamine or 2,4-diminophenol in dimethylacetamide. The PAA with pendant hydroxyl groups was reacted with isocyanatopropyltriethoxysilane to produce alkoxy groups on the chain. The reinforcement of PAA matrices with or without alkoxy groups on the chain was carried out by mixing appropriate amount of tetraethoxysilane (TEOS and carrying out its hydrolysis and condensation in a sol-gel process. Thin hybrid films were imidized by successive heating up to 300C∘. The presence of alkoxy groups on the polymer chain and their cocondensation with TEOS developed the silica network which was interconnected chemically with the polyimide matrix. SEM studies show a drastic decrease in the silica particle size in the chemically bonded system. Higher thermal stability and mechanical strength, improved transparency, and low values of thermal coefficient of expansion were observed in case of chemically bonded composites.

  13. Engineering vapor-deposited polyimides

    Tsai, Feng-Yu

    The vapor deposition polymerization (VDP) of PMDA-ODA polyimide was studied parametrically to produce microcapsules and thin films with desirable properties and quality for the Inertial Confinement Fusion (ICF) experiments. The mechanical properties and gas permeability were determined at temperatures from 10 to 573 K. The VDP polyimide possessed distinct properties including lower gas permeability and stronger tensile properties from those of solution-cast Kapton, which were attributed to the presence of cross-linking. Processing parameters determining the properties of the VDP polyimide were identified: (1) utilizing air instead of nitrogen as the atmosphere of imidization increased the permeability by 140%, lowered the activation energy for permeation, and reduced the tensile strength by 30% without affecting the Young's modulus; (2) imidizing at faster heating rates increased the permeability by up to 50% and reduced the activation energy for permeation with 50% lowered tensile strength and impervious Young's modulus; (3) bi-axial stretching increased the permeability by up to three orders of magnitude. Analyses via IR spectroscopy, X-ray diffraction, and density measurement revealed that the effects of the processing parameters were results of the modifications in the crystallinity and molecular weight. The VDP polyimide underwent minor degradation in the tensile strength and elongation at break with unaffected Young's modulus and permeability upon absorbing 120 MGy of beta-radiation. Substituting a fluorinated dianhydride monomer, 6FDA, for PMDA in the optimized VDP process yielded 6FDA-ODA polyimide microcapsules and films with 50-fold increased permeability and comparable mechanical properties. The results of this study enable the production of polyimide microcapsules that will greatly facilitate the ICF experiments, and will broaden the applications of vapor-deposited polyimides in other technology fields.

  14. Polyimides containing amide and perfluoroisopropylidene connecting groups

    Dezern, James F. (Inventor)


    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.


    Yoan Kim; Mingming Guo; Lei Zhu; Doyun Kim; Frank W.Harris; Stephen Z.D.Cheng


    In order to improve the processibility in thermoplastic polyimides, a new method, termed the "reactive plasticizer" approach, has been proposed. This method uses a small amount (5~15 mol%) of a less activated, weak nucleophilic diamine co-monomer as a "reactive plasticizer" to obtain copolyimide resins which possess relatively low viscosity at low temperatures and can be readily processed through the autoclave cycle at low pressures. During a high temperature treatment, the reactive plasticizers join the reaction to form high molecular weight copolyimides, and the preferred material properties are thus achieved. The most effective reactive plasticizer is aromatic heterocyclic diamines, such as 2, 6-diaminopyridine diamine (DAP),and the transimidization involved with a reactive plasticizer has been proposed to play a major role for the success of this approach. In order to understand the transimidization mechanism, three steps have been taken in this research: first, a copolyimide system of 50% of DAP and 50% 1, 4-bis[4-aminophenoxy]benzene diamine (DODA) with 100% of 2, 2'-bis[4-(3, 4-dicarboxyphenoxy)phenyl] propane dianhydride (Ultem(R)DA) is prepared. Second, several specifically designed polyimide mixture systems were used, and they consist of two homopolyimides: one is Ultem(R) DA-DODA, and the other is Ultem(R) DA-DAP. The third step is to investigate two mixture systems in which Ultem(R) DA-DODA is mixed with DAP monomer solution and Ultem(R) DA-DAP is mixed with DODA monomer solution. For all systems, with increasing degree of transimidization upon heat-treatment, the chain structures of the mixtures and their thermal and dynamic mechanical transition behaviors are investigated via one-dimensional and two-dimensional nuclear magnetic resonance, differential scanning calorimetry, and dynamic mechanical analysis experiments. Experimental results indicate that in the mixture of two homopolyimides, transimidization takes place much more efficiently in

  16. Aerospace applications of PMR polyimide composites

    Serafini, T. T.


    The current status of the novel class of processable, addition-type polyimides known as PMR (for in situ polymerization of monomer reactants) polyimides, developed by NASA at the Lewis Research Center, is reviewed. Highlights of PMR technology studies conducted at NASA Lewis are presented. Several examples of industrial applications of PMR-15 polyimide composites to aerospace structural components are examined.

  17. Polyimide Cellulose Nanocrystal Composite Aerogels

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna


    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  18. Ion bombardment of polyimide films

    Bachman, B. J.; Vasile, M. J.


    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  19. Polyimides derived from non-aromatic monomers

    Volksen, W.; Sanchez, M.I.; Cha, Hyuk-Jin; Yoon, D.Y. [IBM Almaden Research Center, San Jose, CA (United States)


    In recent years the shift in emphasis on high performance polymers, such as polyimides for microelectronic applications, has led to the search for other potential applications utilizing the unique properties of this class of polymers. In this context, polyimides incorporating non-aromatic units in the polymer backbone have been shown to exhibit excellent optical properties as well as significantly lower refractive indices. This lowering in the refractive index, of course, is also reflected in a lower dielectric constant of the material. For this reason, we have initiated a study of new polyimides, in which the traditional aromatic character is diluted with cycloaliphatic structures. One such example is the polyimide derived from hexafluoroisopropylidene diphthalic anhydride (6FDA) and 1,4-diaminocyclohexane (DACH). Preliminary data with respect to the preparation and solution behavior of the polyimide precursor as well as the characterization of relevant physical properties of the final polyimide will be presented.

  20. Study on Polyimide/Silica Hybrid Films via Directly Intermingle Method

    Bin ZHAO; Bao-Lin RAO


    @@ 1Introduction In recent years, polyimide hybrid materials have received considerable attention due to the dramatic improvements over their pristine state in thermal stabilities, mechanical properties and other special features by introducing only small fraction inorganic additives[1]. Polyimide/silica hybrid materials were studied mostly by sol-gel route[2]. However the storage stability of the sol resin is a practical problem and has not researched on it so far. On the other hand, nano-sized silica has been produced on a large scale and industrialized. In this paper, polyimide/siliea hybrid films were prepared via directly intermingle method. The storage stability of the sol resin, the thermal and mechanical properties of the resulting films were investigated.

  1. Positronium formation in various polyimides

    Okamoto, Ken-ichi; Tanaka, Kazuhiro; Katsube, Mikio; Sueoka, Osamu; Ito, Yasuo (Yamaguchi Univ., Ube (Japan). Faculty of Engineering Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology)


    Positronium (Ps) formation in various polyimides has been studied. It has been found that Ps yield is zero or small in the polyimides having pyromellitic dianhydride (PMDA) and 3,3[sup '],4,4[sup ']-benzophenonetetracarboxylic dianhydride (BTDA) as acid anhydride moiety, while those having 3,3[sup '],4,4[sup ']-biphenyltetracarboxylic dianhydride (BPDA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) form Ps with intensities up to about 20%. This difference is well correlated with the electron affinity of these moieties: PMDA > BTDA > BPDA [approx] 6FDA. In another experiment o-Ps yields and its lifetimes were measured in benzene solutions of monomeric model compounds (imide compounds prepared from n-butylamine and the acid anhydrides). It has been found that the model compounds from PMDA and BTDA both inhibit Ps formation and quench o-Ps lifetimes but that those from BPDA and 6FDA have neither the inhibition nor the quenching effects. The results show that the spur model is applicable for Ps formation in the polyimides. (Author).

  2. Positronium formation in various polyimides

    Okamoto, Ken-ichi; Tanaka, Kazuhiro; Katsube, Mikio; Sueoka, Osamu; Ito, Yasuo


    Positronium (Ps) formation in various polyimides has been studied. It has been found that Ps yield is zero or small in the polyimides having pyromellitic dianhydride (PMDA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) as acid anhydride moiety, while those having 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 2,2- bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) form Ps with intensities up to about 20%. This difference is well correlated with the electron affinity of these moieties: PMDA > BTDA > BPDA ˜ 6FDA. In another experiment o-Ps yields and its lifetimes were measured in benzene solutions of monomeric model compounds (imide compounds prepared from n-butylamine and the acid anhydrides). It has been found that the model compounds from PMDA and BTDA both inhibit Ps formation and quench o-Ps lifetimes but that those from BPDA and 6FDA have neither the inhibition nor the quenching effects. The results show that the spur model is applicable for Ps formation in the polyimides.

  3. Polyimides with pendent ethynyl groups

    Jensen, Brian J.; Hergenrother, Paul M.; Nwokogu, Godson


    Several new polyimides containing pendent ethynyl groups were prepared and characterized. The new polyimides were prepared from the following novel ethynyl containing diamines; 1,1-bis(p aminophenyl)-1-(p ethynylphenyl) 2,2,2-trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p phenylethynylphenyl)-2,2,2 trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p hexynylphenyl)-2,2,2 trifluoroethane by reacting with either 3,3',4,4' benzophenone tetracarboxylic dianhydride or 2,2-bis(3,4 dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). Inherent viscosities for the polymers ranged from 0.26 to 0.94 dL/g. Three copolymers prepared by reacting 10 mole pct. of one of the ethynyl containing diamines and 90 mole pct. of 2,2-bis-(4-(4 aminophenoxy)phenyl) hexafluoropropane with 6FDA were also prepared and characterized. Inherent viscosities for these copolymers ranged from 1.08 to 1.54 dL/g. Original polyimide glass transition temperatures were approx. 265 C while curing at 300 to 350 C for 1 hr in air increased the Tgs by approx. 10 C. Film properties and thermal stability were also measured for these copolyimides.

  4. Physical and Gas Permeation Properties of a Series of Novel Hybrid Inorganic-Organic Composites Based on a Synthesized Fluorinated Polyimide


    A series of hybrid inorganic-organic composites were fabricated from a functionalized fluorinated polyimide and tetraethoxysilane (TEOS), tetramethoxysilane, methyltrimethoxysilane (MTMOS), and phenyltrimethoxy-silane (PTMOS) employing the sol-gel process. Polyimides were synthesized from 4,4'-hexafluoroisopropylidene dianiline (6FpDA) and 4,4'-hexafluoroisopropyl-idenediphthalic anhydride (6FDA) utilizing a solution imidization technique. The hybrid materials were synthesized by in-situ so...

  5. The effect of polyimide imidization conditions on adhesion strength of thin metal films on polyimide substrates

    Yoo, S H


    The effects of Ar sup + RF plasma precleaning and polyimide curing conditions on the peel strength between Al thin films and polyimides have been studied. The BPDA-PDA polyimide precursor of PI-2611 (Du pont) was spin-coated and cured under various imidization conditions. The cured polyimide substrates were in-situ AR sup + RF plasma cleaned prior to metal deposition. Al-1 % Si-0.5 % Cu thin films were deposited onto the polyimide substrates by using DC magnetron sputtering. The peel strength was enhanced by Ar sup + RF plasma precleaning. The Al/modified PI specimen failed cohesively in the polyimide. The polyimide curing conditions strongly affect the peel strength in the Al/modified PI system.

  6. 聚酰亚胺/SiO2杂化材料的溶胶-凝胶法合成、表征及电光性能%Synthesis,Characterization and Electro-optic Properties of Polyimide/Silica Hybrid via Sol-Gel Technique

    邱凤仙; 杨冬亚; 张勤勤; 吴冬梅


    A series of the polyimide-silica NLO hybdd materials were synthesized from 4,4'-(Hexafluoroisopropylidene)-diphthalic Anhydride(6FDA),2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane(6FHP),nonlinear optical (NLO)molecule 4-(N-2-Hydroxyethyl-N-methylamino)-4'-[(6-nitroben-zothiazol-2 yl)diazenyl]azobenzene(HNBDA),coupling agent APTES and hydrolysate of TEOS via sol-gel process.The TEOS content in the hybrid films was varied from 0 to 22.5wt%.The prepared polyimide/silica hybrids were characterized by IR,thermogravimetric analysis(TGA),scanning electron microscopy(SEM),Transmission Electron Microscope(TEM),X-ray diffraction(XRD)etc.The glass transition temperature(Tg)and the decomposition temperature(Td)were in the range 216~366℃and 321~438℃respectively for materials.These results show that these hybrid materials had an excellent thermal stability.The electro-optic coefficients(γ33)at the wavelength of 832 nm for polymer thin films poled were in the range of 21~35 pm/V and the values remained well (retained>85%for more than 100 h).The experimental results suggest that the hybrid thin films have potential applications as passive films for optical devices.%采用溶胶-凝胶技术,以4,4'-(六氟异丙基)-苯二酸酐(6FDA)、5,5'-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)、非线性生色分子4-(N-2-羟乙基-N-甲基氨)-4'-[(6-硝基苯并噻唑-2-取代)二氮烯基偶氮苯(HNBDA)、偶联剂γ-氨丙基三乙氧基硅烷(APTES)和正硅酸乙酯(TEOS)水解液合成了系列的聚酰亚胺/SiO2杂化材料,其中TEOS的含量为0~22.5%.采用红外、热分析、扫描电镜、透射电镜和X射线衍射等进行表征.它们的玻璃化转变温度和热分解温度分别为216~366℃和321~438℃,表明具有较好的热稳定性.测定极化后材料832nm处的电光系数γ33为21~35 pm/V,且电光系数保持其初始值的85%以上(100 h),结果表明杂化材料在光器件上具有潜在的应用.

  7. PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants

    Serafini, T. T.


    A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.


    Xiao-hua Huang; Wei Huang; Yong-feng Zhou; De-yue Yan


    Two highly soluble aromatic polyimides were synthesized successfully from a diamine with two tert-butyl groups (MBTBA) and dianhydrides with a thioether or sulfone moiety (DTDA and DSDA). Both of them showed excellent solubility in common solvents such as chloroform, tetrahydrofuran and dioxane at the room temperature. The numberaverage molecular weight was 6.0 × 104 and 8.3 × 104 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was 1.80 and 1.82 respectively. The glass-transition temperatures of them were 286℃and 314℃ (or 315℃ and 358℃) respectively, as measured by differential scanning calorimetry (or dynamic mechanical analysis). The 5% weight loss temperature of both was near 490℃ in N2 by thermogravimetric analysis. These results indicated that the tert-butyl pendent groups reduced the interactions among polymer chains and the thioether or sulfone moiety was flexible which may improve their solubility in conventional organic solvents without the loss of thermal stability.Transparent and flexible films of the two polyimides were obtained via solution casting. The MBTBA-DTDA membrane had higher storage moduli than those of the MBTBA-DSDA membrane.

  9. Porous Cross-Linked Polyimide-Urea Networks

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)


    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  10. Partly Imidized Polyamic Acid and Its Uniaxial Stretched Polyimide Films

    MA Peng-chang; HOU Yong


    Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films.The behaviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4'-oxydianiline(ODA) and 3,Y,4,4'-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated.The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid.Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD.The effect of catalyst on imidization possessed an order of triethylamine>3-methylpyridine>pyridine>isoquinoline>2-methylpyridine.The stretching of the films greatly reduced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction.Compared to the film from polyamic acid,the partly imidized film had greater stretching ratio,so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus,but lower elongation in the stretching direction.

  11. Preparation and characterization of polyimide/silica hybrid films

    ZHANG Ming-yan; ZENG Shu-jin; DONG Tie-quan; ZHOU Sheng; FAN Yong; ZHANG Xiao-hong; LEI Qing-quan


    A kind of hybrid polyimide films was prepared by synthesizing poly( amic acid ) /Silica matrix resin through sol-gel technique and then followed by positing it on a silex glass plate and drying at high temperature.The effect of silica content on the corona-resistant property of the films was studied. The miscibility between the organic and inorganic phases and its effect on the corona-resistant property were investigated with aminopropyltriethoxysilane, which served as a coupling agent, added into the polyimide composite system. The chemical structure and the surface morphology of the films were characterized by FTIR and AFM respectively. The corona-resistant property of the films was tested by a rod-plate electrode. It proved that the corona-resistant property was enhanced with silica content. It also turned ont that the improvement of the miscibility between the two phases due to the presence of covalent force as a result of the addition of the coupling agent had, to some extent,effect on the corona-resistant property of the films. Furthermore, a theory on the corona-resistant property was put forward preliminarily.

  12. Low toxicity high temperature PMR polyimide

    Pater, Ruth H. (Inventor)


    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  13. Polyimide and polyimide/silica composites membranes for applications in gas separation: effects of preparation conditions on the structure and the permeation properties; Membranes polyimide et composites polyimide/silice pour des applications de separation gazeuse: effets des conditions de preparation sur la structure et les proprietes de permeation

    Goizet, S.


    Polyimides have been largely studied in gaseous permeation for their high selectivities and thermo-stability. Correlatively, their permeabilities are low. The aim of this work has been to study the effect of the introduction of silica particles on the gaseous permeation properties of these polymers. The studied polyimides are the ODA-PMDA (with the same chemical structure of the Kapton), a fluorinated polyimide, the 6FDA-mPDA and the Ultem. The chosen way to introduce silica in these polymers is the sol-gel process. Polyimide/silica composites containing different proportions of silica have been carried out. The materials alone and in presence of silica have been characterized by different techniques (NMR, FTIR, light diffusion, TGA, DSC, viscosimetry, X-ray diffraction, SEM and density). Auto-supported membranes (films) and membranes supported on porous materials (thin layers) have been carried out. The gas permeation tests (He, H{sub 2}, CO{sub 2}, O{sub 2}, N{sub 2}, CH{sub 4}) of these membranes and their static characterization (thickness, density, chains organization) have led us to establish correlations between the preparation of such materials, their structure and their properties. The introduction of silica allows to increase the permeabilities. Selectivities are in some case improved too. This phenomenon has been explained by the structural changes occurring during the preparation of materials, due to the used preparation mode and to the presence of silica. (O.M.)

  14. Dianhydrides, polyimides, methods of making each, and methods of use

    Ma, Xiaohua


    Embodiments of the present disclosure provide for an aromatic dianhydride, a method of making an aromatic dianhydride, an aromatic dianhydride-based polyimide, a method of making an aromatic dianhydride-based polyimide, and the like.

  15. Electrical conduction of polyimide films prepared from polyamic acid (PAA and pre-imidized polyimide (PI solution


    Full Text Available Electrical conduction characteristics in two different polyimide films prepared by the imidization of polyamic acid (PAA and pre-imidized polyimide (PI solution were investigated. It is found that the current density of the polyimide film from PAA was higher than that of the polyimide film from PI at the same electric field, even though the conduction mechanism in both polyimide films follows the ionic hopping model. The hopping distance was calculated to be 2.8 nm for PAA type and 3.2 nm for PI type polyimide film. It is also found that the decay rate of the residual electrostatic charges on the polyimide films becomes faster in the PAA type than in the PI type polyimide film.

  16. Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

    Chuang, Chun-Hua (Inventor)


    This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.

  17. Polyimides Containing Amide And Perfluoroisopropyl Links

    Dezem, James F.


    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  18. HPLC for quality control of polyimides

    Young, P. R.; Sykes, G. F.


    High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.

  19. HPLC for quality control of polyimides

    Young, P. R.; Sykes, G. F.


    High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.

  20. Durability of polyimide to titanium bonds

    Akram, M.; Jansen, K.M.B.; Bhowmik, S.; Ernst, L.J.


    Titanium and its alloys are usually bonded together using a high temperature resistant polyimide or epoxy adhesives. Such adhesives can withstand temperatures from 200°C to300°C. Earlier research work indicates that Surface modification of titanium with mechanical treatment and atmospheric pressure

  1. Nonadhesive acoustic membranes based on polyimide

    Vorob'ev A.V.


    Full Text Available The paper presents a comparison of technical characteristics of acoustic membranes with an adhesive layer and nonadhesive membranes. The authors present the manufacturing technology for acoustic membranes based on aluminum-polyimide film dielectrics and analyze the advantages of such membranes in comparison to other sound emitters.

  2. 1-D nanochannels fabricated in polyimide

    Eijkel, Jan C.T.; Bomer, Johan; Tas, Niels R.; Berg, van den Albert


    A simple method using spin-deposition and sacrificial layer etching is used to fabricate all-polyimide nanochannels (100 and 500 nm channel height). Channels are characterized using spontaneous capillary filling with water, ethanol and isopropanol, and with electroosmotic flow. The channels can be p

  3. Polyimide/metal composite films via in situ decomposition of inorganic additives - Soluble polyimide versus polyimide precursor

    Rancourt, J. D.; Porta, G. M.; Moyer, E. S.; Madeleine, D. G.; Taylor, L. T.


    Polyimide-metal oxide (Co3O4 or CuO) composite films have been prepared via in situ thermal decomposition of cobalt (II) chloride or bis(trifluoroacetylacetonato)copper(II). A soluble polyimide (XU-218) and its corresponding prepolymer (polyamide acid) were individually employed as the reaction matrix. The resulting composites exhibited a greater metal oxide concentration at the air interface with polyamide acid as the reaction matrix. The water of imidization that is released during the concurrent polyamide acid cure and additive decomposition is believed to promote metal migration and oxide formation. In contrast, XU-218 doped with either HAuCl4.3H2O or AgNO3 yields surface gold or silver when thermolyzed (300 C).

  4. Metal-Ion Additives Reduce Thermal Expansion Of Polyimides

    Stoakley, Diane M.; St. Clair, Anne K.; Emerson, Burt R., Jr.; Willis, George L.


    Polyimides widely used as high-performance polymers because of their excellent thermal stability and toughness. However, their coefficients of thermal expansion (CTE's) greater than those of metals, ceramics, and glasses. Decreasing CTE's of polyimides increase usefulness for aerospace and electronics applications in which dimensional stability required. Additives containing metal ions reduce coefficients of thermal expansion of polyimides. Reductions range from 11 to over 100 percent.

  5. Phosphorus-containing sulfonated polyimides for proton exchange membranes


    Synthesis and characterization of the novel sulfonated BAPPO monomer and its use in the synthesis of a new phosphine oxide-based sulfonated polyimide are described. BTDA, 6FDA, and DDS were used as monomers in the polyimide synthesis. Sulfonated polyimide membranes were obtained by a solution thermal imidization method. The thermal behavior of the polymers was investigated by DSC and TGA. The morphological structure of the membranes was investigated by tapping-mode AFM. The proton conductivit...

  6. Vapor Phase Deposition and Growth of Polyimide Films on Copper.


    than by spin coating procedures opens the possibility of simplified or alternate manufacturing steps in the microelectronic industry. It is necessary...the sub- strate by spin coating . The initial spin-coated layer consists of a solution of the polyimide precursor polyamic acid (PAA) dissolved in a...polyimide inter- face is spin coating the polymer precursor (PAA) onto a supported metal film, prior to curing and the formation of polyimide. Bulk

  7. Thermal bonding of polyimide to form sealed microchannels

    Mekaru, Harutaka


    Polyimide has high stability, so it is attractive for use in disposable microfluidic chips. Also, it has high resistance to soft X-ray irradiation. However, its high stability makes processing polyimide difficult. In particular, sealed microchannels are difficult to fabricate; additives are usually required. Here, a technique for sealing microchannels by thermal bonding using ordinary polyimide without any special functionalities is developed. First, as a guide to form sealed microchannels in polyimide microfluidic chips, optimum bonding conditions are determined by measuring bonding strength through tensile testing. Trench structures are formed by laser ablation on the surface of a polyimide substrate, and then the polyimide substrate is bonded thermally with a polyimide film under optimal bonding conditions. The water-tightness of the resulting chip is checked by feeding a liquid into the sealed microchannels. The bonding conditions obtained in the tensile test form sealed microchannels on the polyimide microfluidic chip. Using our technique for fabricating a polyimide chip, it will be possible to easily observe microstructures in a cell containing water in a soft X-ray microscope.

  8. Addition Polyimides from Non-Mutagenic Diamines

    Delvigs, Peter; Klopotek, David L.; Hardy-Green, DeNise; Meador, Michael A. (Technical Monitor)


    Studies were conducted to find an acceptable non-mutagenic diamine to replace 4,4'-methylenedianiline (MDA), a suspect carcinogen, which is currently being used in PMR-15 polyimide applications. Several diamines containing fluorine and trifluoromethyl substituent groups were synthesized. The diamines were polymerized with the dimethyl ester of 3,3',4,4'-benzophenone tetracarboxylic acid (BTDE), using the monomethyl ester of nadic acid (NE) as an endcap. The effect of diamine structure on rheological properties, glass transition temperature, and thermo-oxidative stability was investigated. Unidirectional laminates were fabricated from selected resins, using carbon fiber as the reinforcement. The results indicate that some of the diamines containing trifluoromethyl groups are non-mutagenic, and have potential to replace MDA in PMR polyimides for long-term applications at temperatures up to 300 C.


    Hong-yan Li; Shu-fan Ning; Hai-bing Hu; Bin Liu; Wei Chen; Shou-tian Chen


    Polyimide-alumina hybrid films were synthesized via in situ polymerization and thermal imidation process from a solution of polyimide precursor and nanosized alumina in N,N-dimethylacetamide, and the microstructure of the hybrid films was characterized by transmission electron microscope (TEM) and infra-red (IR) spectrometry. The dependence of thermal stability, tensile properties, dielectric properties and degradation endurance under corona on the nano-Al2O3 content of polyimide-alumina hybrid films was studied. The results show that with the increase of Al2O3 content, the thermal stability and the dielectric properties of the hybrids increase, while the tensile properties decrease. Better corona resistance can be achieved if the PI film is filled with α-Al2O3 nanometric particle.

  10. Thermal degradation of organo-soluble polyimides

    黄俐研; 史燚; 金熹高


    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  11. Melamine Polyimide Composite Fire Resistant Intumescent Coatings

    Satish Chandra Gupta


    Full Text Available Components of intumescent coatings acid source, carbon source and blowing agent like melamine linked together by a binder provide cumulative fire retardant properties. When temperature of the coating surface reaches a critical temperature under the heat of flame, the surface begins to melt and is converted into highly viscous liquid. Simultaneously, reactions are initiated that result in the release of inert gases with low thermal conductivity. These gases are trapped inside the viscous fluid forming insulating char. The special composite of melamine polyimide, a C source and melamine a blowing agent showed high performance heat resistance in the present study. Polyimides have excellent heat and chemical resistance, excellent adhesion to a number of substrates and superior mechanical properties, such as high flexural modulus and compressive strength. Polyimides are also known to possess outstanding dimensional stability under loads, which allows their use in high temperature environments. Effect of the monomer on chemical reactivity between the binder and the intumescent additives has been studied by thermo-gravimetric analysis, differential scanning calorimeter and FTIR analysis. Thermal insulation studies by various intumescent composite coatings, applied on aluminium plates provided useful time temperature profiles.Defence Science Journal, 2013, 63(4, pp.442-446, DOI:

  12. Melamine Polyimide Composite Fire Resistant Intumescent Coatings

    Satish Chandra Gupta


    Full Text Available Components of intumescent coatings acid source, carbon source and blowing agent like melamine linked together by a binder provide cumulative fire retardant properties. When temperature of the coating surface reaches a critical temperature under the heat of flame, the surface begins to melt and is converted into highly viscous liquid. Simultaneously, reactions are initiated that result in the release of inert gases with low thermal conductivity. These gases are trapped inside the viscous fluid forming insulating char. The special composite of melamine polyimide, a C source and melamine a blowing agent showed high performance heat resistance in the present study. Polyimides have excellent heat and chemical resistance, excellent adhesion to a number of substrates and superior mechanical properties, such as high flexural modulus and compressive strength. Polyimides are also known to possess outstanding dimensional stability under loads, which allows their use in high temperature environments. Effect of the monomer on chemical reactivity between the binder and the intumescent additives has been studied by thermo-gravimetric analysis, differential scanning calorimeter and FTIR analysis. Thermal insulation studies by various intumescent composite coatings, applied on aluminium plates provided useful time temperature profiles.

  13. An improved processible acetylene-terminated polyimide for composites

    Landis, A. L.; Naselow, A. B.


    The newest member of a family of thermosetting acetylene-substituted polyimide oligomers is HR600P. This oligomer is the isoimide version of the oligomer known as HR600P and Thermid 600. Although both types of material yield the same heat resistant end products after cure, HR600P has much superior processing characteristics. This attributed to its lower melting temperature (160 + or - 10 C, 320 + or - 20 F) in contrast to 202 C (396 F) for Thermid MC-600, its longer gel time at its processing temperature (16 to 30 minutes bvs 3 minutes), and its excellent solubility in low boiling solvents such as tetrahydrofuran, glymes, or 4:1 methyl ethyl ketone/toluene mixtures. These advantages provide more acceptable coating and impregnation procedures, allow for more complete removal at lower temperatures, provide a longer pot life or working time, and allow composite structure fabrication in conventional autoclaves used for epoxy composite curing. The excellent processing characteristics of HR600P allow its use in large area laminated structures, structural composites, and molding compositions.

  14. Synthesis of nonlinear optical fluorinated polyimide/inorganic composites for photonic devices

    LI Guo-yuan; REN Li


    A nonlinear optical (NLO) active alkoxysilane chromophore (SGDR1) was synthesized. A fluorinated polyimide/SGDR1 composite was prepared to improve the poor temporal stability of second-order NLO effects of the reported poled sol-gel film. The poled composite film was characterized by FTIR,DSC,TGA and UV-Vis. The composite displays good hydrophobic properties,high glass transition temperature (266 ℃),and high decomposition temperature (433 ℃). The second harmonic coefficient d33 of the composite was measured to be 16.77 pm/V by using maker fringe technique. The new NLO composite exhibits 85 % of the original d33 over 720 h at 100 ℃ and possesses much better stability than the reported sol-gel film.


    Yue-sheng Li; Yue-jin Tong; Kai Jing; Meng-xian Ding


    Barium titanate (BaTiO3) powders with particle sizes of 30~50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wt % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.

  16. Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film

    Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)


    A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.

  17. Atomic oxygen effects on POSS polyimides in low earth orbit.

    Minton, Timothy K; Wright, Michael E; Tomczak, Sandra J; Marquez, Sara A; Shen, Linhan; Brunsvold, Amy L; Cooper, Russell; Zhang, Jianming; Vij, Vandana; Guenthner, Andrew J; Petteys, Brian J


    Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During exposure of POSS polyimide to atomic oxygen, organic material is degraded, and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Laboratory and space-flight experiments have shown that POSS polyimides are highly resistant to atomic-oxygen attack, with erosion yields that may be as little as 1% those of Kapton. The results of all the studies indicate that POSS polyimide would be a space-survivable replacement for Kapton on spacecraft that operate in the LEO environment.

  18. Directly patternable dielectric based on fluorinated polyimide

    Dick, Andrew R.; Bell, William K.; Luke, Brendan; Maines, Erin; Mueller, Brennan; Kohl, Paul A.; Rawlings, Brandon; Willson, C. Grant


    A photosensitive polyimide system based on amine catalyzed imidization of a precursor poly(amic ester) is described. The material is based on the meta ethyl ester of pyromellitic dianhydride and 2,2' bis(trifluoromethyl)benzidine and acts as a negative tone resist when formulated with a photobase generator. The material exhibits a dielectric constant of 3.0 in the GHz range, a coefficient of thermal expansion of 6+/-2 ppm/K, and can be patterned to aspect ratios of greater than 2 when formulated with a high efficiency cinnamide type photobase generator.

  19. Liquid crystalline thermosetting polyimides. Final report

    Hoyt, A.E.; Huang, S.J. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science


    Phase separation of rodlike reinforcing polymers and flexible coil matrix polymers is a common problem in formulating molecular composites. One way to reduce phase separation might be to employ liquid crystalline thermosets as the matrix material. In this work, functionally terminated polyimide oligomers which exhibit lyotropic liquid crystalline behavior were successfully prepared. Materials based on 2,2{prime}-bis(trifluoromethyl)-4,4{prime}-diaminobiphenyl and 3,3{prime},4,4{prime}-biphenylenetetra-carboxylic dianhydride have been synthesized and characterized.

  20. Synthesis of tin-containing polyimide films

    Ezzell, S. A.; Taylor, L. T.


    A series of tin-containing polyimide films derived from either 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride or pyromellitic dianhydride and 4,4'-oxydianiline have been synthesized and their electrical properties examined. Highest quality materials (i.e., homogeneous, smooth surface, flexible) with the best electrical properties were doped with either SnCl2.2H2O or (n-Bu)2SnCl2. In all cases, extensive reactivity of the tin dopant with water, air or polyamic acid during imidization is observed. Lowered electrical surface resistivities appear to be correlatable with the presence of surface tin oxide on the film surface.

  1. End-Crosslinking Gelation of Poly(amide acid) Gels studied with Scanning Microscopic Light Scattering

    Furukawa, Hidemitsu; Kobayashi, Mizuha; Miyashita, Yoshiharu; HORIE, Kazuyuki


    Network formation in the gelation process of end-crosslinked poly(amide acid) gels, which are the precursor of end-crosslinked polyimide gels, was studied by scanning dynamic light scattering. The gelation process is essentially non-reversible due to the formation of covalent bonds. The molecular structure formed in the gelation process is controlled by varying the equivalence ratio of end-crosslinker to oligomer during the preparation. It was found that a couple of relaxation modes are obser...

  2. Understanding the strength of epoxy/polyimide interfaces

    Hoontrakul, Patraporn

    Polyimides are commonly used as organic passivation layers for microelectronic devices due to their unique combination of low dielectric constant, high thermal stability, and excellent mechanical properties. Polyimides are well known to have poor adhesion to epoxy resins. Many surface treatment methods have been developed to increase epoxy-polyimide adhesion. These include various ion beam and plasma treatments as well as wet chemical methods. Our research goal is to understand the strength of epoxy-polyimide interfaces by studying the effect of polyimide chemical structure on epoxy-polyimide adhesion. Four polyimides that were chosen in this study were commonly used in microelectronic industries: poly (pyromellitic dianhydride-oxydianiline [PMDA-ODA], poly (3,3',4,4'-biphenyltetracarboxylic dianhydride-phenylene diamine [BPDA-PDA], poly (hexafluoroisopropylidene-diphthalic anhydride-oxydianiline) [6FDA-ODA], and 5(6)-Amino-1-(4-aminophenyl)-1,3,3, trimethylindanbenzophenonetetacarboxylic dianhydride copolymer [BTDA-DAPI). The adhesive strengths between an epoxy resin and these various polyimides were characterized using interfacial fracture mechanics and the critical interfacial strain energy release rates were found to be in the range of 20 J/m 2 to 179 J/m2. The locus of failure for fractured epoxy-polyimide interfaces were analyzed using scanning electron microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FT-IR) and found to be at the interphase region for all four interfaces. The surface reactivity was analyzed using flow microcalorimetry (FMC), FT-IR, and the contact angles. Interestingly, the strength of the interfaces appeared to be related to the predicted interfacial widths from solubility parameter theory.

  3. 3F Condensation Polyimides-Review and Update


    per unit surface area basis). The results of these studies identi- fied two new 3F containing polyimides (3FDA/PPDA and 6F dianhydride ( 6FDA )/ 3FDAM...polymerized with 6FDA in the subsequent study (ref. 8). The three new dialkyl substituted 3F polyimide films were characterized for TOS by TGA and Tg...U’) NASA AVSCOM Technical Memorandum 102353 Technical Report 89-C-017 CN S1 3F Condensation Polyimides - Review and Update William B. Alston

  4. Improved PMR Polyimides For Heat-Stable Laminates

    Vannucci, R. D.; Malarik, D. C.; Papadapoulos, D. S.; Waters, John F.


    Second-generation PMR-type polyimides (PMR-II polyimides) of enhanced thermo-oxidative stability prepared by substitution of para-aminostyrene (PAS) end caps for nadic-ester (NE) end caps used in prior PMR-II polyimides. Laminates unidirectionally reinforced with graphite fibers and made with PAS-capped resins exhibited thermo-oxidative stabilities significantly greater than those of similar laminates made with NE-capped PMR-II resins. One new laminate exhibited high retention of weight and strength after 1,000 h of exposure to air at 371 degrees C.

  5. Molecular Dynamics Simulation of Glass Transition Behavior of Polyimide Ensemble


    The effect of chromophores to the glass transition temperature of polyimide ensemble has been investigated by means of molecular dynamics simulation in conjunction with barrier analysis. Simulated Tg results indicated a good agreement with experimental value. This study showed the MD simulation could estimate the effect of chromophores to the Tg of polyimide ensemble conveniently and an estimation approach method had a surprising deviation of Tg from experiment. At the same time, a polyimide structure with higher barrier energy was designed and validated by MD simulation.

  6. 3D Printing All-Aromatic Polyimides using Mask-Projection Stereolithography: Processing the Nonprocessable.

    Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E


    High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low coefficient of thermal expansion polyimides containing metal ion additives

    Stoakley, D. M.; St. Clair, A. K.


    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  8. Low dielectric polyimide aerogels as substrates for lightweight patch antennas.

    Meador, Mary Ann B; Wright, Sarah; Sandberg, Anna; Nguyen, Baochau N; Van Keuls, Frederick W; Mueller, Carl H; Rodríguez-Solís, Rafael; Miranda, Félix A


    The dielectric properties and loss tangents of low-density polyimide aerogels have been characterized at various frequencies. Relative dielectric constants as low as 1.16 were measured for polyimide aerogels made from 2,2'-dimethylbenzidine (DMBZ) and biphenyl 3,3',4,4'-tetracarbozylic dianhydride (BPDA) cross-linked with 1,3,5-triaminophenoxybenzene (TAB). This formulation was used as the substrate to fabricate and test prototype microstrip patch antennas and benchmark against state of practice commercial antenna substrates. The polyimide aerogel antennas exhibited broader bandwidth, higher gain, and lower mass than the antennas made using commercial substrates. These are very encouraging results, which support the potential advantages of the polyimide aerogel-based antennas for aerospace applications.

  9. Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides

    Alston, William B.; Gluyas, Richard E.; Snyder, William J.


    The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.

  10. Statistical Design in Isothermal Aging of Polyimide Resins

    Sutter, James K.; Jobe, Marcus; Crane, Elizabeth A.


    Recent developments in research on polyimides for high temperature applications have led to the synthesis of many new polymers. Among the criteria that determines their thermal oxidative stability, isothermal aging is one of the most important. Isothermal aging studies require that many experimental factors are controlled to provide accurate results. In this article we describe a statistical plan that compares the isothermal stability of several polyimide resins, while minimizing the variations inherent in high-temperature aging studies.

  11. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine


    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  12. Synthesis of a new aromatic dianhydride monomer and related polyimide

    Yun Xia Wei; Ming Guang Ma; Guo Hu Zhao; Sheng Ying Li; Ming Kai Chen


    A novel aromatic dianhydride monomer,3,3'-oxybis[(3,4-dicarboxyphenoxy)phenol]dianhydride,was successfully synthe-sized in three steps using 3,3'-oxybis(phenol)as starting material,which was reacted with 4,4'-oxydianiline(ODA)via a conventional thermal or chemical imidization method to produce a new polyimide.The resulting polyimide exhibited excellent solubility,and film-forming capability.

  13. Methods of preparing polyimides and artifacts composed thereof

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Wilcoxson, Anthony L. (Inventor)


    Methods of converting essentially unpolymerized precursors into polyimides in which the precursors are exposed to microwave radiation. Preheating, thermal post-curing, and other techniques may be employed to promote the development of optimum properties; and reinforcements can be employed to impart strength and rigidity to the final product. Also disclosed are processes for making various composite artifacts in which non-polymeric precursors are converted to polyimides by using the techniques described above.

  14. Heat-Resistant Composite Materials Based on Polyimide Matrix

    Vitaly Sergeyevich Ivanov


    Full Text Available Heat-resistant composite materials with a polyimide-based binder were obtained in this paper. Composites were prepared with different content of single-wall carbon nanotubes (SWCNT and nanostructured silicon carbide, and polyimides coated carbon fibers woven into the cloth. Composite materials showed high values of thermostability and resistance to thermo-oxidative degradation, as well as good mechanical properties.

  15. Tribological Property of Polyimide Porous Materials

    PU Yu-ping; L(U) Guang-shu; LI Xiao-jun; XIAO Han-cheng


    The friction performance of the polyimide (PI) porous composite materials made by moulding method with MoS2 or polytetrafluoroethylene (PTFE) appended are disserted. The result shows that all the PI-based porous composites have the performance of transfer lubrication in the friction process, and the transfer film is built between the counter friction bodies; with the increasing of the MoS2 a mount from 0 to 20%, the friction coefficient trends toward decrease, and the tr ansfer lubricate phenomenon become more obvious; when adding PTFE as synergist t o the porous PI+MoS2 composite material, the synergistic effect happens, which can improve the friction performance of the material effectively.

  16. Polyimide weld bonding for titanium alloy joints

    Vaughan, R. W.; Kurland, R. M.


    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  17. Neurite outgrowth on fluorinated polyimide film micropatterned by ion irradiation

    Okuyama, Y.; Sato, M.; Nagaoka, S.; Kawakami, H. E-mail:; Suzuki, Y.; Iwaki, M


    In this study, we investigated neurite outgrowth on a fluorinated polyimide film micropatterned by ion irradiation. We used the fluorinated polyimide because of its excellent thermal and mechanical properties and biocompatibility. Rattus norvegicus chromaphin (PC12) cells were used for in vitro studies. The polyimide films were irradiated with He{sup +}, Ne{sup +} or Kr{sup +} at 1 x 10{sup 14} ions/cm{sup 2} using an ion-beam mask. The lines in the mask were 120 and 160 {mu}m wide and 120-160 {mu}m apart. PC12 cells were selectively adhered on the polyimide film micropatterned by Kr{sup +}-irradiation. However, the neurite length on the film irradiated by Kr{sup +} was shorter than that determined in the film irradiated by He{sup +}. On the other hand, neurite outgrowth on the polyimide film micropatterned by He{sup +}-irradiation was at least 100 {mu}m in length. This initial study indicated the enhanced outgrowth of PC12 cells on the fluorinated polyimide film micropatterned by ion irradiation.

  18. Molecular modeling of PMR-15 polyimide

    Kokkada Ravindranath, Pruthul

    PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280--300°C use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

  19. Pore-filling Three-dimensionally Ordered Macroporous Polyimide Composite Proton Conducting Membranes

    DAI Xin; GENG Lei; LIU Dan; L(U) Chang-li; YANG Bai


    The silica opal templates were prepared from three silica colloids of different diameters of 230 nm,500nm and 1.5 μm by a filtration route.The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions.The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template.We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol.The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel.The proton conductivity increased with the increasing of pore cell in composite membranes.

  20. Synthesis, characterizations and electro-optical properties of nonlinear optical polyimide/silica hybrid


    Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.

  1. Roughening of Polyimide Surface for Inkjet Printing by Plasma Etching Using the Polyimide Masked with Polystyrene Nanosphere Array.

    Mun, Mu Kyeom; Park, Jin Woo; Ahn, Jin Ho; Kim, Ki Kang; Yeom, Geun Young


    Two key conditions are required for the application of fine-line inkjet printing onto a flexible substrate such as polyimide (PI): linewidth control during the inkjetting process, and a strong adhesion of the polyimide surface to the ink after the ink solidifies. In this study, the properties of a polyimide surface that was roughened through etching in a He/SF6 plasma, using a polystyrene nanosphere array as the etch mask, were investigated. The near-atmospheric-pressure plasma system of the He/SF6 plasma that was used exhibits two notable properties in this context: similar to an atmospheric-pressure plasma system, it can easily handle inline substrate processing; and, similar to a vacuum system, it can control the process gas environment. Through the use of plasma etching, the polyimide surface masked the 120-nm-diameter polystyrene nanospheres, thereby forming a roughened nanoscale polyimide surface. This surface exhibited not only a greater hydrophobicity--with a contact angle of about 150° for water and about 30° for silver ink, indicating better silver linewidth control during the silver inkjetting process--but also a stronger adhesion to the silver ink sprayed onto it when compared with the flat polyimide surface.

  2. Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use

    Ghanem, Bader


    A triptycene-based monomer, a method of making a triptycene-based monomer, a triptycene-based aromatic polyimide, a method of making a triptycene- based aromatic polyimide, methods of using triptycene-based aromatic polyimides, structures incorporating triptycene-based aromatic polyimides, and methods of gas separation are provided. Embodiments of the triptycene-based monomers and triptycene-based aromatic polyimides have high permeabilities and excellent selectivities. Embodiments of the triptycene-based aromatic polyimides have one or more of the following characteristics: intrinsic microporosity, good thermal stability, and enhanced solubility. In an exemplary embodiment, the triptycene-based aromatic polyimides are microporous and have a high BET surface area. In an exemplary embodiment, the triptycene-based aromatic polyimides can be used to form a gas separation membrane.

  3. Photoimageable Polyimide: A Dielectric Material For High Aspect Ratio Structures

    Cech, Jay M.; Oprysko, Modest M.; Young, Peter L.; Li, Kin


    Polyimide has been identified as a useful material for microelectronic packaging because of its low dielectric constant and high temperature stability. Difficulties involved with reactive ion etching (RIE), a conventional technique for patterning thick polyimide films (thickness greater than 5 microns) with vertical walls, can be overcome by using photimageable polyimide precursors. The processing steps are similar to those used with negative photoresists. EM Chemical's HTR-3 photosensitive polyimide has been spun on up to a thickness of 12 microns. Exposure with a dose of 780 mJcm-2 of ultraviolet light, followed by spin development produces clean patterns as small as 5 microns corresponding to an aspect ratio of 2.4. When the patterned precursor is heated, an imidization reaction occurs converting the patterned film to polyimide. Baking to ca. 400 degrees C results in substantial loss in the thickness and in line width. However, shrinkage occurs reproducibly so useful rules for mask design can be formulated. Near vertical wall structures can be fabricated by taking advantage of the optical and shrinkage properties of the polyimide precursor. After development, an undercut wall profile can be produced since the bottom of the film receives less exposure and is hence more soluble in the developer. During heating, lateral shrinkage pulls the top of the film inward producing a vertical wall since the bottom is fixed to the substrate by adhesion. As a result, fully cured polyimide structures with straight walls and aspect ratios greater than one can be obtained. Dielectric properties of the fully imidized films were investigated with capacitor test structures. A relative dielectric constant of 3.3 and a loss tangent of .002 were measured at 20 kHz. It was also found that the dielectric constant increases as a linear function of relative humidity.

  4. Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell

    Akbarian-Feizi, Leila; Mehdipour-Ataei, Shahram; Yeganeh, Hamid [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran)


    Studies in fuel cell membranes show that modification of polyimides by introduction of aliphatic linkages in the structure of sulfonated copolyimides, synthesis of branched/crosslinked sulfonated polyimides, and semi and fully interpenetrating polymer networks of sulfonated polyimides restrain suitable potential for Nafion substitution. (author)

  5. Area-selective atomic layer deposition of platinum using photosensitive polyimide

    Vervuurt, René H. J.; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus (Erwin M. M.; Bol, Ageeth A.


    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  6. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3

  7. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended

    Alston, William B.; Scheiman, Daniel A.


    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  8. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.


    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  9. Transfer printing of thermoreversible ion gels for flexible electronics.

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel


    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.

  10. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    Naito, Kimiyoshi


    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  11. Polyimides Derived from Novel Asymmetric Dianhydrides

    Chuang, Chun-Hua (Inventor)


    This invention relates to the compositions and processes for preparing thermoset and thermoplastic polyimides derived from novel asymmetrical dianhydrides: specifically 2,3,3',4' benzophenone dianhydride (a-BTDA), and 3,4'-(hexafluoroisopropylidene)diphthalic anhydride (a-6FDA). The a-BTDA anhydride is prepared by Suzuki coupling with catalysts from a mixed anhydride of 3,4-dimethylbenzoic acid or 2,3-dimethylbenzoic acid with 2,3-dimethylphenylboronic acid or 3,4-dimethylphenylboronic acid respectively, to form 2,3,3',4'-tetramethylbenzophenone which is oxidized to form 2,3,3',4'-benzophenonetetracarboxylic acid followed by cyclodehydration to obtain a-BTDA. The a-6FDA is prepared by nucleophilic triflouoromethylation of 2,3,3',4'-tetramethylbenzophenone with trifluoromethyltrimethylsilane to form 3,4'-(trifluoromethylmethanol)-bis(o-xylene) which is converted to 3,4'-(hexafluoroisopropylidene-bis(o-xylene). The 3,4'-(hexafluoroisopropylidene)-bis(o-xylene) is oxidized to the corresponding tetraacid followed by cyclodehydration to yield a-6FDA.

  12. Ultraviolet laser ablation of polyimide films

    Srinivasan, R.; Braren, B.; Dreyfus, R. W.


    Pulsed laser radiation at 193, 248, or 308 nm can etch films of polyimide (DuPont KaptonTM). The mechanism of this process has been examined by the chemical analysis of the condensible products, by laser-induced fluorescence analysis of the diatomic products, and by the measurement of the etch depth per pulse over a range of fluences of the laser pulse. The most important product as well as the only one condensible at room temperature is carbon. Laser-induced fluorescence analysis showed that C2 and CN were present in the ablation plume. At 248 nm, even well below the fluence threshold of 0.08 J/cm2 for significant ablation, these diatomic species are readily detected and are measured to leave the polymer surface with translational energy of ˜5 eV. These results, when combined with the photoacoustic studies of Dyer and Srinivasan [Appl. Phys. Lett. 48, 445 (1986)], show that a simple photochemical mechanism in which one photon or less (on average) is absorbed per monomer is inadequate. The ablation process must involve many photons per monomer unit to account for the production of predominantly small (<4 atoms) products and the ejection of these fragments at supersonic velocities.

  13. Polyimide-coated fiber Bragg grating for relative humidity sensing

    Lin, Yao; Gong, Yuan; Wu, Yu; Wu, Huijuan


    A fiber-optic humidity sensor has been fabricated by coating a moisture sensitive polymer film to the fiber Bragg grating (FBG). The Bragg wavelength of the polyimide-coated FBG changes while it is exposed to different humidity conditions due to the volume expansion of the polyimide coating. The characteristics of sensors, including sensitivity, temporal response, and hysteresis, were improved by controlling the coating thickness and the degree of imidization during the thermal curing process of the polyimide. In the relative humidity (RH) condition ranging from 11.3% RH to 97.3% RH, the sensitivity of the sensor was about 13.5 pm/% RH with measurement uncertainty of ±1.5% RH.

  14. Polyimide foam-like microstructures: technology and mechanical properties

    Dobrzynska, J. A.; Joris, P.; Jiguet, S.; Renaud, P.; Gijs, M. A. M.


    We report a process for the realization of polyimide films with custom-designed microporosity based on the heat-induced depolymerization of polyimide-embedded polypropylene carbonate microstructures. The foam-like microstructures are up to 40 µm thick and incorporate air cavities with a width ranging from 20 to 200 µm, a length up to 5 mm and a height of 20 µm. We model the mechanical stress-strain properties of the microcavities using both analytical and numerical methods. The simulation data are in good agreement with the results of nanoindentation and microcompression experiments, which show the reduction of the effective Young's modulus from 5.77 ± 0.06 GPa for bulk polyimide to 2.51 ± 0.03 GPa for a foam-like layer.

  15. Enhancement of electrical properties of polyimide films by plasma treatment

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.


    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  16. Thermal Properties of Polyimide Composites with Nanostructured Silicon Carbide

    Alyona Igorevna Wozniak


    Full Text Available A series of polyimide composites reinforced with different loadings of silicon carbide (SiC nanoparticles are prepared by in-situ polymerization technique. The polyimide (PI matrix resin is derived from 4,4’-oxydianiline (4,4’-ODA and pyromelliticdianhydride (PMDA. The dispersions of SiC nanoparticles are prepared via ultrasonic irradiation or mechanical homogenization. In this method, the SiC nanoparticles are dispersed in diamine solution followed by polymerization with dianhydride. The composites obtained under sonication were found to have lower thermal properties than composites prepared under homogenization.

  17. Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.


    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.

  18. Development of autoclave moldable addition-type polyimides

    Vaughan, R. W.; Jones, R. J.; Orell, M. K.; Zakrzewski, G. A.


    Chemistry and processing modifications of the poly(Diels Alder) polyimide (PDA) resin were performed to obtain structural composites suitable for 589 K (600 F) service. This work demonstrated that the PDA resin formulation is suitable for service at 589 K (600 F) for up to 125 hours when used in combination with Hercules HTS graphite fiber. Sandwich panels were autoclave molded using PDA/HTS skins and polyimide/glass honeycomb core. Excellent adhesion between honeycomb core and the facing skins was demonstrated. Fabrication ease was demonstrated by autoclave molding three-quarter scale YF-12 wing panels.

  19. Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio


    We could form lattice-shaped polymer walls in a liquid crystal (LC) layer through the thermal phase separation of an LC/polystyrene solution between substrates with polyimide films etched by short-wavelength ultraviolet irradiation using a photomask. The LC wetting difference between the polyimide and substrate surfaces caused the coalescence of growing LC droplets on patterned polyimide films with the progress of phase separation. Consequently, polymer walls were formed on substrate surface areas without polyimide films. The shape of the polymer wall formed became sharp with the use of rubbed polyimide films because the nucleation of growing LC droplets concentrated on the patterned polyimide films. It is thought that the increase in the alignment order of LC molecules in the solution near the rubbed polyimide films promotes the formation of LC molecular aggregation, which becomes the growth nuclei of LC droplets.

  20. Polyimides with improved operational by properties

    Oranova; T.; I.; Mamisheva; I.M.


    One of directions of basic researches in the field of chemical process engineerings is making new polymeric materials for electronics and aviation technique distinguished by boosted production characteristics.The value of aromatic polyimides (PI) as industrial thermally sound polymers is well-known. However alongside with a complex of valuable properties they have also series of shortages: high temperatures and difficulty of reaching of 100% conversion at ring formation polyamic acids (PAA) and their instability in time, low stability to hydrolysis, poor adhesion to line of substratums etc. all this in some cases restricts or makes to impossible application PI in practice.The complex examinations, spent by us, the solid-phase of thermal cyclyzation PAA and its model junctions have reduced in an establishment of correlation associations between a degree and velocity of ring-formation, thermal stability and reagent resistance, stregth that has allowed to govern process of deriving PI with a necessary level of production characteristics. Use of some components, for example, heterocyclic basic amines-azoles, promotes acceleration and lowering of a temperature band of ring-formation PAA, and also magnification of a degree of ring-formation, that reduces in a considerable raise thermal and chemical resistance, mechanical and dielectric parameters and insulant properties which are not varying at long-lived operation.The modes of deriving of various materials designed on the basis of industrial PAA of a lacquer consisting in introduction of azoles, plasticizing and adhesion components. It is shown, that the coats obtained from modified polymers, have boosted adhesion, high thermal, mechanical, insulant and other properties maintained in requirements of climatic trials.

  1. Influence of commercially available polyimide and formation conditions on the performance and structure of asymmetric polyimide organic solvent nanofiltration membranes

    Lopes, Mafalda Pessoa


    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Química e Bioquímica This work covers experimental and theoretical research related to the impact of the polymer structure of commercially available polyimide and polyetherimides as well as the formation conditions on the performance and structure of polyimide Organic Solvent Nanofiltration membranes. The influence in some membrane formation parame...

  2. Moisture absorption analysis of high performance polyimide adhesive

    Akram, M.; Jansen, K.M.B.; Bhowmik, S.; Ernst, L.J.


    The high temperature resistant polymers and metal composites are used widely in aviation, space, automotive and electronics industry. The high temperature resistant polymers and metals are joined together using high temperature adhesives. Polyimide and epoxy adhesives that can withstand high tempera

  3. Formation of energetic heavy ion tracks in polyimide thin films

    Deslandes, Alec, E-mail: [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2234, NSW (Australia); Murugaraj, Pandiyan; Mainwaring, David E. [Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn 3122, VIC (Australia); Ionescu, Mihail; Cohen, David D.; Siegele, Rainer [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2234, NSW (Australia)


    Highlights: •Ion tracks formed in polyimide via irradiation with high energy heavy ions. •Complementary techniques track the changes in composition of polyimide during irradiation. •Ion beam analysis aids the identification of signals from residual gas analysis. •A multi-step process of polyimide modification is observed and modelled. •The multi-step process is related to ion track density and overlap. -- Abstract: Polyimide thin films have been irradiated with a high energy beam of heavy ions to a fluence of approximately 4 × 10{sup 13} ions/cm{sup 2}. Proton backscattering spectroscopy was used to measure the composition of the films, which showed that oxygen was the element that exhibited the most rapid loss from the film. The gases evolved from the film during polymer modification were monitored using a quadrupole mass spectrometer for residual gas analysis (RGA). The fluence dependence of RGA signals were indicative of multi-step processes of gas release, whereby the passage of an ion through a region of pristine film changes the local molecular structure to one that will more readily form volatile species when subsequent ions pass.

  4. The technology of microcircuit assembly on flexible polyimide substrate

    Plis N. I.


    Full Text Available The research is devoted to technology of microcircuit assembly on flexible polyimide substrate. It is proved that such microcircuits provide high reliability and have advantage over other IC models when applied in hermetic micro-assemblies in microelectronic devices that operate under high accelerations, shocks and strong radiation.

  5. Mechanism of electrical conductivity in an irradiated polyimide

    Ries, H. R.; Harries, W. L.; Long, S. A. T.; Long, E. R., Jr.


    A polyimide was exposed to 1.0 MeV electron radiation. The radiation-induced radical density and dc conductivity were measured at various post-irradiation times. The radiation-induced radical density was found to be correlated to the increased dc conductivity through a hopping model of conductivity. The post-irradiation radical species were identified.

  6. Low-void polyimide resins for autoclave processing

    Jones, R. J.; Vaughan, R. W.


    Development of an advanced A-type polyimide, which can be used to produce autoclave molded, low-void content composites suitable for use at temperatures up to 316 C is reported. It consists of a mixture of methyl nadic anhydride, an 80:20 molar ratio of methylene dianaline and thiodianilene, and pyromellitic dianhydride.

  7. Thermoresponsive Gels

    M. Joan Taylor


    Full Text Available Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology—for example, Reversible Addition Fragmentation chain Transfer (RAFT and Atomic Transfer Radical Polymerisation (ATRP—provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.

  8. Commercialization of LARC (TradeMark) -SI Polyimide Technology

    Bryant, Robert G.


    LARC(TradeMark)-SI, Langley Research Center- Soluble Imide, was developed in 1992, with the first patent issuing in 1997, and then subsequent patents issued in 1998 and 2000. Currently, this polymer has been successfully licensed by NASA, and has generated revenues, at the time of this reporting, in excess of $1.4 million. The success of this particular polymer has been due to many factors and many lessons learned to the point that the invention, while important, is the least significant part in the commercialization of this material. Commercial LARC(TradeMark)-SI is a polyimide composed of two molar equivalents of dianhydrides: 4,4 -oxydiphthalic anhydride (ODPA), and 3,3 ,4,4 -biphenyltetracarboxylic dianhydride (BPDA) and 3,4 -oxydianiline (3,4 -ODA) as the diamine. The unique feature of this aromatic polyimide is that it remains soluble after solution imidization in high-boiling, polar aprotic solvents, even at solids contents of 50-percent by weight. However, once isolated and heated above its T(sub g) of 240 C, it becomes insoluble and exhibits high-temperature thermoplastic melt-flow behavior. With these unique structure property characteristics, it was thought this would be an advantage to have an aromatic polyimide that is both solution and melt processable in the imide form. This could potentially lead to lower cost production as it was not as equipment- or labor-intensive as other high-performance polyimide materials that either precipitate or are intractable. This unique combination of properties allowed patents with broad claim coverage and potential commercialization. After the U.S. Patent applications were filed, a Small Business Innovation Research (SBIR) contract was awarded to Imtec, Inc. to develop and supply the polyimide to NASA and the general public. Some examples of demonstration parts made with LARC(TradeMark)-SI ranged from aircraft wire and multilayer printed-circuit boards, to gears, composite panels, supported adhesive tape, composite

  9. Natural Gas Sweetening by Ultra-Microporous Polyimides Membranes

    Alghunaimi, Fahd


    Most natural gas fields in Saudi Arabia contain around 10 mol.% carbon dioxide. The present technology to remove carbon dioxide is performed by chemical absorption, which has many drawbacks. Alternatively, membrane-based gas separation technology has attracted great interest in recent years due to: (i) simple modular design, (ii) potential cost effectiveness, (iii) ease of scale-up, and (iv) environmental friendliness. The state-of-the-art membrane materials for natural gas sweetening are glassy cellulose acetate and polyimide, which were introduced in the 1980s. In the near future, the kingdom is planning to boost its production of natural gas for power generation and increase the feedstock for new petrochemical plants. Therefore, the kingdom and worldwide market has an urgent need for better membrane materials to remove carbon dioxide from raw natural gas. The focus of this dissertation was to design new polyimide membrane materials for CO2/CH4 separation exhibiting high permeability and high selectivity relative to the standard commercial materials tested under realistic mixed-gas feed conditions. Furthermore, this study provided a fundamental understanding of structure/gas transport property relationships of triptycene-based PIM-polyimides. Optimally designed intrinsically microporous polyimide (PIM-PIs) membranes in this work exhibited drastically increased CO2/CH4 selectivities of up to ~75. In addition, a novel triptycene-based hydroxyl-containing polyimide (TDA1-APAF) showed 5-fold higher permeabilities over benchmark commercial materials such as cellulose acetate. Furthermore, this polyimide had a N2/CH4 selectivity of 2.3, thereby making it possible to simultaneously treat CO2- and N2-contaminated natural gas. Also, TDA1-APAF showed a CO2 permeability of 21 Barrer under binary 1:1 CO2/CH4 mixed-gas feed with a selectivity of 72 at a partial CO2 pressure of 10 bar which are significantly better than cellulose triacetate. These results suggest that TDA1

  10. Research progress in preparation of polyimide via isocyanate method%异氰酸酯法制备聚酰亚胺的研究进展



    Polyimide is an extremely important high temperature resistant polymer with excellent heat resist-ance and oxidation resistance, and also has excellent physical and mechanical properties, flame retardant proper-ties, dielectric properties, insulation and radiation resistance. In this paper, the preparation of polyimide using iso-cyanate method was summarized, and the applications of the polyimide in foams, nanocomposites, aerogels, aero-gels and membranes were introduced in detail.%聚酰亚胺是一种极其重要的耐高温聚合物,具有优异的耐热性和抗热氧化性能,同时还具有优异的物理机械性能、阻燃性能、介电性能、绝缘性能及耐辐射性能。笔者介绍了利用异氰酸酯来制备聚酰亚胺的方法,并详细介绍了用该法制备聚酰亚胺在泡沫材料、纳米复合材料、气凝胶、膜材料等方面的应用。

  11. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming


    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  12. Transparent anti-stain coatings with good thermal and mechanical properties based on polyimide-silica nanohybrids.

    Choi, Myeon-Cheon; Sung, Giju; Nagappan, Saravanan; Han, Mi-Jeong; Ha, Chang-Sik


    In this work, we synthesized polyimide/silica hybrid materials via sol-gel method using a fluorinated poly(amic acid) silane precursor and a variety of perfluorosilane contents. We studied the influence of a hybrid coating film with the following characteristics; hydrophobicity, oleophobicity, optical transparency, and surface hardness of the coating films. The hybrid coatings with the fluorosilane contents up to 10 wt% are optically transparent and present good thermal stability with a degradation temperature of > 500 degrees C as well as a glass transition of > 300 degrees C. Both water contact angle and oil contact angle increase rapidly with introducing small amount of the fluorosilane in the hybrids and reaches the maximum of 115 degrees and 61 degrees, respectively. The hardness of the hybrid coatings increases up to 5H with an increase of the FTES content in the hybrids. These colorless, transparent, and thermally stable hybrid materials could be suitable for applications as anti-stain coatings.

  13. Radiation Abating Highly Flexible Multifunctional Polyimide Cryogenic and Thermal Insulation Project

    National Aeronautics and Space Administration — The development of highly flexible thermal insulation materials with multifunctional properties based in polyimide polymers and designed to provide significant...

  14. Synthesis of novel aromatic polyimides containing bulky side chain for vertical alignment liquid crystals

    Jian Wang; Ying Han Wang


    In this study, a novel 4-(4-octyloxybenzoyloxy)biphenyl-3',5'-diaminobenzoate and polyimides based on it were synthesized. The polyimide with mesogenic unit side chain exhibited excellent vertical alignment for nematic liquid crystal (LC). The pretilt angles of LCs above 89° were kept after the rubbing process with 220 mm rubbing strength. The polyimide films as the alignment layer were baked at 120℃ for 12 h, the vertical alignment of LCs was still uniform and stable. Meanwhile, the UV-vis spectra of the novel polyimide films showed the high transparency in a visible wave length.

  15. Photochemical Cyclopolymerization of Polyimides in Ultraviolet Ridgidizing Composites for Use in Inflatable Structures Project

    National Aeronautics and Space Administration — This innovation uses photochemical cyclopolymerization of polyimides to manufacture ultraviolet rigidizable composites for use in RIS (ridgidizing inflatable)...

  16. Chain Conformation and Local Rigidity of Soluble Polyimides(Ⅱ): Isomerized Polyimides in THF

    LIU Gui-hua; QIU Xue-peng; BO Shu-qin; JI Xiang-ling


    Two soluble isomerized polyimides(PIs)synthesized from 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA)with either 2,2′-dimethylbenzidine(2,2′-DMB)or 3,3′-DMB were investigated by means of size-exclusion chromatography coupled with multi-angle laser light scattering,a viscometer and a refractive index detector in tetrahydrofuran(THF)with tetrabutylammonium bromide(TBAB)at 35 ℃.The corresponding parameters related to conformations α and v,evaluated from the scaling relationships[η]=KηMa and Rg=KgMv,respectively,were 0.66±0.01 and 0.55±0.02 for poly(6FDA/3,3'-DMB),and 0.67±0.01 and 0.56±0.01 for poly(6FDA/2,2'-DMB),indicating a random coil conformation for both the samples in this mobile system.The persistence length lp and shift factor ML(relative molecular weight per unit contour length)were estimated from the relationship between intrinsic viscosity and molecular weight for the wormlike cylinder model proposed by Bohdanecky.Both lp and ML showed that the two PIs in THF are flexible chains and exhibit some local rigidity to some extent.

  17. Polyimide and Metals MEMS Multi-User Processes

    Arevalo, Arpys


    The development of a polyimide and metals multi-user surface micro-machining process for Micro-electro-mechanical Systems (MEMS) is presented. The process was designed to be as general as possible, and designed to be capable to fabricate different designs on a single silicon wafer. The process was not optimized with the purpose of fabricating any one specific device but can be tweaked to satisfy individual needs depending on the application. The fabrication process uses Polyimide as the structural material and three separated metallization layers that can be interconnected depending on the desired application. The technology allows the development of out-of-plane compliant mechanisms, which can be combined with six variations of different physical principles for actuation and sensing on a single processed silicon wafer. These variations are: electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception.

  18. UV Direct-Writing of Metals on Polyimide

    Ng, Jack Hoyd-Gigg; Mccarthy, Aongus; Suyal, Himanshu; Prior, Kevin; Hand, Duncan P


    Conductive micro-patterned copper tracks were fabricated by UV direct-writing of a nanoparticle silver seed layer followed by selective electroless copper deposition. Silver ions were first incorporated into a hydrolyzed polyimide surface layer by wet chemical treatment. A photoreactive polymer coating, methoxy poly(ethylene glycol) (MPEG) was coated on top of the substrate prior to UV irradiation. Electrons released through the interaction between the MPEG molecules and UV photons allowed the reduction of the silver ions across the MPEG/doped polyimide interface. The resultant silver seed layer has a cluster morphology which is suitable for the initiation of electroless plating. Initial results showed that the deposited copper tracks were in good agreement with the track width on the photomask and laser direct-writing can also fabricate smaller line width metal tracks with good accuracy. The facile fabrication presented here can be carried out in air, at atmospheric pressure, and on contoured surfaces.

  19. New Endcaps for Improved Oxidation Resistance in PMR Polyimides

    Frimer, Aryeh A.


    A polyimide is a polymer composed of alternating units of diamine and dianhydride, linked to each other via an imide bond. PMR polyimides, commonly used in the aerospace industry, are generally capped at each end by an endcap (such as the nadic endcap used in PMR 15) which serves a double function: (1) it limits the number of repeating units and, hence, the average molecular weight of the various polymer chains (oligomers), thereby improving processibility; (2) Upon further treatment (curing), the endcap crosslinks the various oligomer strands into a tough heat-resistant piece. It is this very endcap, so important to processing, that accounts for much of the weight loss in the polymer on aging in air at elevated temperatures. Understanding this degradation provides clues for designing new endcaps to slow down degradation, and prolong the lifetime of the material.


    Zhi-yuan Wang


    In the past ten years there has been a flurry of activity in the synthesis of new specialty polymers,largely as a result of the increased need for high technology materials. Interest is mainly shown in two distinct categories of polymers: a) polymers which are used in very small quantities to fulfill critical needs as a part of device systems, and b) high-performance engineering polymers which significantly extend their mechanical and thermal properties for structural applications. Polyimides and their unparalleled versatility have captured the attention and imagination of scientists and engineers. This article describes some of the recent work done by the author's group on the rational design at the molecular level and the synthesis of polyimides that have unusual structures and novel properties.

  1. Direct hot embossing of microelements by means of photostructurable polyimide

    Akin, Meriem; Rezem, Maher; Rahlves, Maik; Cromwell, Kevin; Roth, Bernhard; Reithmeier, Eduard; Wurz, Marc Christopher; Rissing, Lutz; Maier, Hans Juergen


    While automatic hot embossing systems are available for large- and small-scale productions of polymeric devices, one of the process challenges remains to be the manufacturing of precise, durable, and yet inexpensive hot embossing stamps. The use of metallic stamps manufactured by electroplating a photoresist pattern or by precision milling and their replication into silicone molds with UV-lithography, electroplating, and molding techniques is state of the art. Yet, there have been few, if any, thriving attempts to directly emboss polymers by means of bare photoresists, and in particular polyimide-based photoresists, without transferring the photoresist patterns into a different stamp material. We conduct a proof-of-concept by developing hot embossing stamps based on photosensitive polyimide. We focus primarily on the reliability of the aforementioned stamps throughout the hot embossing cycle and the fidelity of pattern transfer onto polymeric films for different microstructural patterns.

  2. Architectural engineering of rod-coil compatibilizers for producing mechanically and thermally stable polymer solar cells.

    Kim, Hyeong Jun; Kim, Jae-Han; Ryu, Ji-Ho; Kim, Youngkwon; Kang, Hyunbum; Lee, Won Bo; Kim, Taek-Soo; Kim, Bumjoon J


    While most high-efficiency polymer solar cells (PSCs) are made of bulk heterojunction (BHJ) blends of conjugated polymers and fullerene derivatives, they have a significant morphological instability issue against mechanical and thermal stress. Herein, we developed an architecturally engineered compatibilizer, poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) (P3HT-g-P2VP), that effectively modifies the sharp interface of a BHJ layer composed of a P3HT donor and various fullerene acceptors, resulting in a dramatic enhancement of mechanical and thermal stabilities. We directly measured the mechanical properties of active layer thin films without a supporting substrate by floating a thin film on water, and the enhancement of mechanical stability without loss of the electronic functions of PSCs was successfully demonstrated. Supramolecular interactions between the P2VP of the P3HT-g-P2VP polymers and the fullerenes generated their universal use as compatibilizers regardless of the type of fullerene acceptors, including mono- and bis-adduct fullerenes, while maintaining their high device efficiency. Most importantly, the P3HT-g-P2VP copolymer had better compatibilizing efficiency than linear type P3HT-b-P2VP with much enhanced mechanical and thermal stabilities. The graft architecture promotes preferential segregation at the interface, resulting in broader interfacial width and lower interfacial tension as supported by molecular dynamics simulations.

  3. New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers

    Loos, Katja; Müller, Axel H.E.


    Hybrid block copolymers amylose-block-polystyrene were synthesized by covalent attachment of maltoheptaose derivatives to end-functionalized polystyrene and subsequent enzymatic grafting from polymerization. The maltoheptaose derivatives were attached by reductive amination or hydrosilation to amino

  4. Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging


    A series of reactive phenylethynyl endcapped imide oligomers has been prepared in either fully cyclized or amic acid precursor form. Soluble oligomers have been synthesized with controlled molecular weights ranging from 2- to 12 Kg/mol. Molecular weight characterization was performed using SEC (size exclusion chromatography) and 13C-NMR, revealing good agreement between the theoretical and experimental (Mn) values. Crosslinked polyimides were obtained by solution or melt processing the oli...

  5. Properties and Adhesion of Polyimides in Microelectronic Devices


    PMDA-ODA poly- imide films are spin coating (SC) and vapor deposition polymerisation (VDP) . They differ in the way the film pre- cursor (polyamic...where they react at room temperature to polyamic acid. Spin coating (SC) requires that the polymer precursor polyamic acid is applied in a polar...The polyimide substrates were prepared by spin coating polyamic acid onto a substrate followed by solvent extrac- tion, imidization and curing at

  6. High Temperature VARTM with LaRC Polyimides

    Cano, Roberto J.; Grimsley, Brian W.; Jensen, Brian J.; Kellen, Charles B.


    Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown potential to reduce the manufacturing cost of composite structures. In VARTM, the fibrous preform is infiltrated on a rigid tool surface contained beneath a flexible vacuum bag. Both resin injection and fiber compaction are achieved under pressures of 101.3 KPa or less. Recent studies have demonstrated the feasibility of the VARTM process for fabrication of void free structures utilizing epoxy resin systems with fiber volume fractions approaching 60%. In this work, the VARTM process has been extended to the fabrication of composite panels from polyimide systems developed at the Langley Research Center. This work has focused on processing LARC(trademark) PETI-8 (Langley Research Center Phenylethynyl Terminated Imide- 8), an aromatic polyimide based on 3,3',4,4' -biphenyltetracarboxylic dianhydride, a 50:50 molar ratio of 3,4'-oxydianiline and 1,3-bis(3-aminophenoxy)benzene, with 4-phenylethynylphthalic anhydride as the endcapping agent. Various molecular weight versions were investigated to determine their feasibility of being processed by VARTM at elevated temperatures. An injection temperature of approximately 280 C was required to achieve the necessary viscosity (VARTM pressures. Laminate quality and initial mechanical properties are presented for LARC(trademark) PETI-8 and 6k IM7 uniweave fabric.

  7. UV Direct-Writing of Metals on Polyimide

    Ng, Jack Hoyd-Gigg; Desmulliez, Marc; McCarthy, Aongus; Suyal, Himanshu; Prior, Kevin; Hand, Duncan P.


    Submitted on behalf of EDA Publishing Association (; International audience; Conductive micro-patterned copper tracks were fabricated by UV direct-writing of a nanoparticle silver seed layer followed by selective electroless copper deposition. Silver ions were first incorporated into a hydrolyzed polyimide surface layer by wet chemical treatment. A photoreactive polymer coating, methoxy poly(ethylene glycol) (MPEG) was coated on top of the substrate p...

  8. Rationally designed polyimides for high-energy density capacitor applications.

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A


    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  9. Synthesis and properties of new polyimide/clay nanocomposite films

    Yagoub Mansoori; Somayeh Shah Sanaei; Mohammad-Reza Zamanloo; Gholamhassan Imanzadeh; Seyed Vahid Atghia


    A series of polymer–clay nanocomposite (PCN) materials consisting of polyimide and typical clay were prepared by solution dispersion. Quaternary alkylammonium modified montmorillonite, Cloisite 20A, was used as organoclay. Poly(amic acid) solution was prepared fromthe reaction of benzophenone-4,4′,3,3′-tetracarboxylic dianhydride and 2-(5-(3,5-diaminophenyl)-1,3,4-oxadiazole-2-yl) pyridine in dimethylacetamide. Thermal imidization was performed on poly(amic acid)/organoclay dispersion in a regular temperature-programmed circulation oven. The study of interlayer -spacing with X-ray diffraction pattern indicates that an exfoliated structure may be present in the nanocomposite 1%. Intercalated structures were obtained at higher organoclay loadings. Nanocomposites were studied using thermogravimertic analysis and differential scanning calorimetry. Nanocomposites exhibit higher glass transition temperature and improved thermal properties compared to neat polyimide due to the interaction between polymer matrix and organoclay particles. The results are also compared with data of a similar work. Morphology study with scanning electron microscopy showed that the surface roughness in nanocomposite 1%increased with respect to pristine polyimide. Solvent uptake measurements were also carried out for the prepared materials. Maximum solvent adsorption was observed for dimethyl sulfoxide (DMSO). It was found that the solvent uptake capacity decreased with increasing clay content.

  10. Broadband dielectric spectroscopy of BPDA/ODA polyimide films

    Khazaka, R.; Locatelli, M. L.; Diaham, S.; Bidan, P.; Dupuy, L.; Grosset, G.


    Dielectric spectroscopy of a high-temperature photosensitive polyimide was investigated in wide temperature and frequency ranges during heating and cooling cycles (from -150 to 370 °C and from 0.1 to 1 MHz). During the heating phase measurements two sub-glass relaxation processes were observed, noted as γ and β relaxations. The γ relaxation appears at a low temperature (around -60 °C at 1 kHz) with an activation energy of 0.44 eV during the heating phase and disappears during the cooling one, indicating that the peak is initially related to the presence of water in the polyimide films. The β relaxation appears at higher temperatures (around 180 °C at 1 kHz) with a higher activation energy of about 1.5 eV. The β peak location and intensity for low temperatures (between 100 °C and 120 °C) change slightly on comparing the heating and cooling spectra, indicating also the effect of water molecules, which may act as a plasticizer. However, for higher temperatures, the β peak does not show any significant effect of the thermal cycle, and the relaxation is mainly attributed to the non-cooperative relaxation of the polyimide molecules. The ac conductivity (σ‧) values show that the electronic hopping process is influenced by the dynamics of the segmental and macromolecular chains of the polyimide in the γ and β relaxation regions. At high temperatures (>250 °C) a plateau region appears in the ac conductivity allowing the extraction of the dc conductivity values, which are not affected between the heating and cooling measurements. This leads us to conclude that there are no significant morphological or chemical changes in the polyimide even for temperatures higher than its glass transition one under N2 for short periods. For temperatures above 300 °C an increase in the values of relative permittivity is observed and referred to the Maxwell-Wagner-Sillars or to the electrode polarization phenomena. In this range the activation energy of the polarization peak

  11. Surface treatment of polyimide film for metal magnetron deposition in vacuum

    Petrov, V.; Vertyanov, D.; Timoshenkov, S.; Nikolaev, V.


    This paper brings forward a solution for acquisition of good quality metallization layers on the polyimide substrate by magnetron deposition in vacuum environment. Different film type structures have been analyzed after refining and activation surface treatment operations. Positive effect was shown after the application of polyimide lacquer for surface dielectric film planarization and for structural defects elimination.

  12. Synthesis and characterization of novel polyimides based on thiazole-containing diamine


    A new kind of aromatic diamine monomer containing thiazole unit, 2-amino-5-(4-aminophenyl)-thiazole (AAPT), was synthesized in three steps, starting from 4-nitroacetophenone. A novel thiazole-containing polyimide was prepared via the polycondensation of AAPT with 6FDA by one-step method. The resulting polyimide exhibits excellent solubility, film-forming capability and high thermal resistance.

  13. A study on the preparation of the exfoliated polyimide nanocomposite and its characterization

    Lyu, S.G.; Park, D.Y.; Kim, Y.S. [Yeungnam University, Kyongsan (Korea); Lee, Y.C. [Korea Institute of Industrial Technology, Chonan (Korea); Sur, G.S. [Yeungnam University, Kyongsan (Korea)


    Diamines (p-phenylenediamine, m-phenylenediamine, and n-hexamethylenediamine) were intercalated into sodium montmorillonite for the further reaction with the anhydride end groups of polyamic acid. The anhydride terminated polyamic acid was synthesized using a mole ratio of 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride = 1.50 : 1.53. The modified montmorillonite was reacted with polyamic acid terminated with anhydride group in N-methyl-2-pyrrolidone (polyamic acid/clay nanocomposite). After imidization, thin films of the polyimide/clay nanocomposite were prepared. From the results of XRD and TEM, we found that mono layered silicated were dispersed in polyimide matrix and those resultants were exfoliated nanocomposites. Mechanical properties of exfoliated polyimide nanocomposite were better than both those of pure polyimide and those of intercalated polyimide nanocomposite. (author). 13 refs., 1 tab., 5 figs.

  14. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.


    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  15. Synthesis and Characterization of Photosensitive Polyimides for Optical Applications

    Kim, Kye-Hyun


    The objective of this research was to prepare photosensitive polyimides for optical applications. The work was begun with the synthesis of a series of poly(amic esters) containing cinnamyl groups. However, these systems required high imidization temperatures where they darkened considerably. Two new photosensitive end-capping agents, i.e., 6-(4-aminophenoxy)hexyl methacrylate, and di(2-(methacryloyloxy)ethyl) 5-aminoisophthalate, for polyimides were also prepared. These agents were used along with 2,2^' -bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2^'-bis(trifluoromethyl) -4,4^' -diaminobiphenyl (PFMB) to prepare a series of methacrylate end-capped imide oligomers. However, the oligomers required long exposures to UV-radiation to affect cure. To improve their photosensitivity, multifunctional additives and photoinitiators were used. A difunctional end-capped oligomer that contained trimethylolpropane triacrylate (TMPTA) and trimethylbenzoyldiphenyl phosphine oxide (TMDPO) was highly photosensitive and displayed good photo-patterning properties. The third approach involved the synthesis of a diamine monomer in which methacrylate moieties were attached to the 2- and 2^ '-positions of biphenyl structures. The monomer, i.e., 2,2^'-dimethacryloyloxy -4,4^'-diaminobiphenyl (DMB), was polymerized with commercially available dianhydrides such as 6FDA and 4,4^' -oxydiphthalic anhydride (ODPA). The polyimides obtained were optically transparent and soluble in common organic solvents such as acetone and chloroform. The polymers were highly photosensitive and displayed good photo-patterning properties. The polymers, which afforded high-resolution patterns, did not develop color or shrink during UV-exposure and thermal curing.

  16. An Investigation of the Structure-Property Relationships for High Performance Thermoplastic Matrix, Carbon Fiber Composites with a Tailored Polyimide Interphase

    Gardner, Slade Havelock II


    The aqueous suspension prepregging technique was used to fabricate PEEK and PPS matrix composites with polyimide interphases of tailored properties. The structure-property relationships of Ultem-type polyimide and BisP-BTDA polyimide which were made from various water soluble polyamic acid salts were studied. The molecular weight of the polyimides was shown to be dependant upon the selection of the base used for making the polyamic acid salt. The development of an Ultem-type polyimide with...

  17. New aromatic polyamides and polyimides having an adamantine bulky group


    Producción Científica This paper reports the synthesis and characterization of a new rigid diamine monomer, having a spiro carbon moiety and an adamantane bulky group in its structure; namely spiro-(adamantane-2,9′(2',7'-diamino)-fluorene) (SADAF). After its synthesis, using a straightforward methodology, a novel family of aromatic polyimides (PIs) and polyamides (PAs) has been attained by reaction of SADAF with three aromatic dianhydrides and two diacid chlorides, respectively. Two of the...

  18. Separation of hydrogen isotopes from nitrogen with polyimide membrane

    Labrune, D.; Limacher, B.; Guidon, H. [Commissariat a l`Energie Atomique, Bruyeres-le-Chatel (France); Moll, G. [Societe Generale des Techniques Nouvelles, Saint Quentin Yvelines (France)


    Gas separation tests were performed with nitrogen containing small concentrations of deuterium or tritium on a small-scale polyimide membrane module purchased from Ube Industries, similar to that developed at the Japan Atomic Energy Research Institute (JAERI). Experimental results showed that this separation process could be potentially applied to tritium removal systems used in tritium handling facilities. It would permit reducing significantly the gas volume to be treated by the conventional oxidation-adsorption process, and, therefore, the number or size of associated equipment. Hazards from handling highly toxic tritiated water vapor due to conversion of elemental tritium would hence be lowered. 3 refs., 10 figs., 1 tab.

  19. Processable Polyimides Containing APB and Reactive End Caps

    Jensen, Brian J.


    Imide copolymers that contain 1,3- bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and that are terminated with appropriate amounts of reactive end caps have been invented. The reactive end caps investigated thus far include 4-phenylethynyl phthalic anhydride (PEPA), 3- aminophenoxy-4-phenylethynylbenzop henone (3-APEB), maleic anhydride (MA), and 5-norbornene-2,3-dicarboxylic anhydride [also known as nadic anhydride (NA)]. The advantage of these copolyimides terminated with reactive groups, relative to other polyimides terminated with reactive groups, is a combination of (1) higher values of desired mechanical-property parameters and (2) greater ease of processing into useful parts.

  20. Addition-type polyimides from solutions of monomeric reactants

    Delvigs, P.; Serafini, T. T.; Lightsey, G. R.


    The monomeric reactants approach was used to fabricate addition-type polyimide/graphite fiber composites with improved mechanical properties and thermal stability characteristics over those of composites derived from addition-type amide acid prepolymers. A screening study of 24 different monomer combinations was performed. The results of a more extensive investigation of a selected number of monomer combinations showed that the combination providing the best thermomechanical properties was 5-norbornene-2,3-dicarboxylic acid monomethyl ester/4,4'-methylenedianiline/3,3'4,4'-benzophenone tetracarboxylic acid dimethyl ester at a molar ratio of 2/3.09/2.09.

  1. Testosterone Nasal Gel

    Testosterone nasal gel is used to treat symptoms of low testosterone in men who have hypogonadism (a condition in which the ... does not produce enough natural testosterone). Testosterone nasal gel is used only for men with low testosterone ...

  2. Physical and gas permeation properties of a series of novel hybrid inorganic-organic composites based on a synthesized fluorinated polyimide

    Cornelius, Christopher James


    A series of hybrid inorganic-organic composites were fabricated from a functionalized fluorinated polyimide and tetraethoxysilane (TEOS), tetramethoxysilane, methyltrimethoxysilane (MTMOS), and phenyltrimethoxy-silane (PTMOS) employing the sol-gel process. Polyimides were synthesized from 4,4'-hexafluoroisopropylidene dianiline (6FpDA) and 4,4'-hexafluoroisopropyl-idenediphthalic anhydride (6FDA) utilizing a solution imidization technique. The hybrid materials were synthesized by in-situ sol-gel processing of the aforementioned alkoxides and a fully imidized polyimide that was functionalized with 3-aminopropyltriethoxysilane. The gas permeability, diffusivity, and selectivity were evaluated for He, O2, N2, CH4, and CO2, while the physical properties of these hybrid materials were evaluated using several analytical techniques. The results from this study revealed that gas transport and physical properties were dependent on the type of alkoxide employed in the hybrid inorganic-organic material. Gas permeability was observed to increase with increasing gas penetrant size for MTMOS and PTMOS based hybrids, while TEOS based hybrids decreased gas permeability at all compositions. In general, MTMOS based hybrid materials had the largest increases in permeability, which was attributed to an increase in free volume. The TEOS based hybrid materials had the largest decreases in permeability, while PTMOS based hybrid materials had performance in between these alkoxides. Decreased permeability for the TEOS based hybrids was attributed to the formation of lower permeable material at a particle interface and coupled with increasing tortuosity. Results of PALS studies suggested that there was an increase in free volume and pore size for MTMOS based hybrids, while both TEOS and PTMOS based hybrids had decreases in both average pore size and free volume. The temperature dependence of permeation, diffusivity, and sorption were evaluated from 35°C to 125°C. These results suggested

  3. Soluble Polyimides Bearing Long-Chain Alkyl Groups on Their Side Chain via Polymer Reaction

    Yusuke Tsuda


    Full Text Available Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesized via polymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxybenzoic acid (12GA using N,N′-dicyclohexylcarbodiimide (DCC as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA, 4,4′-hexafluoroisopropylidendi(phthalic anhydride (6FDA, and 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA and aromatic diamines such as 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB. The polymer reactions were carried out in NMP and the progresses of polymer reactions were quantitatively monitored by 1H NMR measurements (conversion; 12.2–98.7%. The obtained polyimides bearing long-chain alkyl groups have enough molecular weights, good film-forming ability, good solubility for various organic solvents, and enough thermal stability. The water contact angles of the polyimide films were investigated, and it is noted that the introduction of long-chain alkyl groups increases the hydrophobicity of polyimide surface. These polyimides are expected to be applicable as the functional materials for microelectronics such as the alignment layers of LCDs.

  4. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail:


    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  5. Magnetism of FePt Nanoclusters in Polyimide

    Mircea Chipara


    Full Text Available FePt nanoclusters have been implanted onto polyimide films and subjected to thermal annealing in order to obtain a special magnetic phase (L10 dispersed within the polymer. SQUID measurements quantified the magnetic features of the as-prepared and annealed hybrid films. As-implanted FePt nanoparticles in polyimide films exhibited a blocking temperature of 70 ± 5 K. Thermal annealing in zero and 10 kOe applied magnetic field increased the magnetic anisotropy and coercivity of the samples. Wide Angle X-Ray Scattering confirmed the presence of FePt and L10 phase. All samples (as deposited and annealed exhibited electron spin resonance spectra consisting of two overlapping lines. The broad line was a ferromagnetic resonance originating from FePt nanoparticles. Its angular dependence indicated the magnetic anisotropy of FePt nanoparticles. SEM micrographs suggest a negligible coalescence of FePt nanoparticles, supporting that the enhancement of the magnetic properties is a consequence of the improvement of the L10 structure. The narrow ESR line was assigned to nonmagnetic (paramagnetic impurities within the samples consistent with graphite-like structures generated by the local degradation of the polymer during implantation and annealing. Raman spectroscopy confirmed the formation of graphitic structures in annealed KHN and in KHN-FePt.


    Budiyono Budiyono


    Full Text Available Biogas has become an attractive alternative energy source due to the limitation of energy from fossil. In this study, a new type of mixed matrix membrane (MMM consisting of polyimide-zeolite was synthesized and characterized for biogas purification. The MMM consists of medium concentration of polymer (20% wt polyimide, 80% N-Methyl-2-pyrrolidone (NMP and 25% zeolite 4A in total solid were prepared by a dry/wet phase inversion technique.  The fabricated MMM was characterized using SEM, DSC, TGA and gas permeation. Post treatment coating procedure was also conducted. The research showed that surface coating by 3% silicone rubber toward MMM PI 20% gave the significant effect to improve membrane selectivity. The ideal selectivity for CO2/CH4 separation increased from 0.99 for before coating to 7.9 after coating for PI-Zeolite MMM, respectively. The results suggest that PI-Zeolite MMM with good post treatment procedure will increase the membrane selectivity and permeability with more saver polymer requirement as well as energy saving due to low energy for mixing.

  7. Processing of continuous fiber composites using thermoplastic polyimide matrix resins

    Kranjc, M.D.


    Composites have been produced which contain a solvent resistant polyimide matrix with favorable physical properties. The polyimide matrix resin has been designated as P12. The prepegs used to produce the composite contain a low molecular weight resin which is the polyamic acid precursor to P12. Polymerization and imidization of the precursor resin occurs in-situ during processing. Similar commercial systems are often processed in an autoclave and pressure is used at high temperatures to obtain consolidation between prepreg laminates. Pressure is generally applied after polymerization and imidization are complete and at temperatures above the melting point of the polymer. In this research a significant decrease in composite void content was obtained by applying pressure earlier in the cure. Obtaining composites with low void content with these types of systems can be difficult. This is due in part to the generation of low molecular weight reaction by products, water and methanol. High void content results in a decrease in the physical properties of the composite structure. This is especially true for fracture properties. An empirical equation was used to describe the rate of resin removal from the composite to the bleeder cloth during processing. This equation is based on Springer-Loos resin flow model. The conditions in which this model does not apply were also determined. Determining resin removal rates is helpful in producing composites with consistent fiber/resin ratios. In addition, conditions which favor void growth can be prevented.

  8. Polyimide/Glass Composite High-Temperature Insulation

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon


    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  9. Soluble Polyimides Bearing Long-Chain Alkyl Groups on Their Side Chain via Polymer Reaction


    Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesized via polymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxy)benzoic acid (12GA) using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA), 4,4′-hexafluoroisoprop...

  10. Transport Phenomena in Gel

    Masayuki Tokita


    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  11. Sol-Gel Glasses

    Mukherjee, S. P.


    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  12. In situ deposits of copper and copper oxide containing condensation polyimide films

    Porta, G. M.; Taylor, L. T.


    Novel copper-polyimide composites have been synthesized via simultaneous thermal decomposition of solid solutions of bis (trifluoroacetylacetonato) copper (II) and thermal cyclodehydration of polyimide acid. In contrast to conventional filled polymer composites which are prepared by dispersion of particles or fibers in a polymer matrix this study has yielded in general uniform Cu or CuO dispersions of very small particle size that reside near the film surface that was exposed to the atmosphere during curing. The nature of the copper deposit, the thickness of the copper deposit, and the polyimide overlayer which bonds the copper to the polymer substrate depend on the curing atmosphere used. A variety of analytical surface methods along with thermogravimetric analysis and variable temperature (surface and volume) electrical resistivity measurements have been used to characterize these thin, flexible copper doped polyimide films.

  13. Alumina/Polyimide Composite Porous Nanosolid:Dielectric Characteristics and Compressive Strength

    LUAN Chun-hong; GENG Yu-jing; YU Qin-qin; CAO Li-li; LIAN Gang; CUI De-liang


    Al2O3 porous nanosolid was prepared via solvothermal hot-press(SHP) method.The dielectric constant of Al2O3 porous nanosolid is as low as 2.34,while its compressive strength is very poor.In order to improve the compressive strength and maitain low dielectric constant,polyimidc was introduced to prepare Al2O3/polyimide composite porous nanosolid.Compared to Al2O3 porous nanosolid,Al2O3/polyimide composite porous nanosolid possesses much higher compressive strength,which reaches its saturation value when the mass loading of polyimide is 7.75%.In addition,the in situ Fourier transformation infrared(FTIR) monitoring result reveals that Al2O3/polyimide composite porous nanosolid is stable up to 400 ℃.

  14. Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides

    Maruo, Yasuko Yamada; Sasaki, Sigekuni; Tamamura, Toshiaki


    A new-channel-waveguide-fabrication process for use with polyimide is described. The new technique uses an electron-beam-induced effect to alter the refractive index of the polyimides directly. Channel waveguides with an 8- mu m-wide, 8- mu m-deep core have been fabricated on a polyimide film by the use of electron-beam irradiation. Only one kind of polyimide (6FDA/TFDB) was used in this waveguide. The difference in refractive index between the core and the cladding was approximately 0.30% for both TE-and TM-polarized incident light when the dose was 1500 mu C/cm2, which was sufficient to produce waveguides. The optical properties of the waveguide are also demonstrated.

  15. Functionally Graded Polyimide Nanocomposite Foams for Ablative and Inflatable/Flexible/Deplorable Structures Project

    National Aeronautics and Space Administration — The objective of the proposed research is to develop functionally graded polyimide foams as light-weight, high performance thermal protection systems (TPS) for...

  16. Polyimide/graphene nanocomposite materials to construct a low resistive RPC

    Han, R.; Yan, J. Y.; Tian, G. F.; shen, Z. C.; Liao, B.; Liu, Q.


    The development of low resistivity material to increase the rate capability of Resistive Plate Chambers (RPCs) has been attracting more and more attention recently. This paper presents a new type of such a material. The new material is based on polyimide doped with carbon. The electrical volume resistivity of this material could be controlled using different percentages of the doping carbon. The standard thickness of polyimide carbon films is around 40 μm which does not allow to use it as such to build the RPC electrodes. To overcome this, we developed a new stress method to make the gap between two polyimide carbon films. In this paper we will introduce the new detector material, the new type of RPC and the cosmic bench test results. In the future, if the polyimide is widely used in RPCs, the electrical properties changed by high energy particles should be well-studied.

  17. Study of copper diffusion into polyimides by optical second harmonic generation

    Zhang, J.Y.; Shen, Y.R. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA)); Soane, D.S.; Pauschinger, D. (California Univ., Berkeley, CA (USA). Dept. of Chemical Engineering Lawrence Berkeley Lab., CA (USA))


    Formation of Cu clusters deposited on polyimide and their diffusion into polyimide have been studied in-situ by the surface-sensitive second harmonic generation technique. The diffusion coefficients of Cu clusters were measured and compared with those for atomic Cu. The effectiveness of a titanium (Ti) intermediate layer in preventing Cu diffusion into Pl was also investigated. It was found that an atomic layer of Ti was already sufficient for arresting the diffusion process. 15 refs., 5 figs.


    LI Baozhong; HE Tianbai; DING Mengxian


    The disadvantages of Normally White Twisted Nematic Liquid Crystal Display (NW-TN-LCD) were discussed. The reason that the negative birefringent polyimide thin films were used to compensate NW-TN-LCD to decrease off-axis leakage, improve contrast ratios and enlarge viewing angles' was explained in this paper. A certain polyimide thin film was taken as an example to show compensation effect on NW-TN-LCD.

  19. Synthesis and characterization of polyimides containing 4,4'-hexafluoroisopropylidene-bisphthalic


    This paper presents the synthesis and characterization of polyimides, which contain a 4,4'-hexafluoroisopropylidene-bisphthalic anhydride (6FDA) unit in the backbone. These polyimides are a result of the use of the traditional method of "one step". The reactions occur between equimolar of a dianhydride and an aromatic diamine in presence of the solvent dimethylacetamide (DMAc), then cyclo-dehydrided by adding the acetic anhydride and pyridine. In this work, the 6FDA was used as the dianhydrid...

  20. Synthesis of Aromatic Polyhedral Oligomeric Silsesquioxane (POSS) Dianilines for Use in High-Temperature Polyimides


    anhydrous THF over a period of ½ h. The reaction mixture was stirred overnight followed by filtration . The filter cake was washed with distilled H2O...used in the production of Kapton-like polyimides, which were shown to exhibit excellent resistance to the atomic oxygen flux that plagues the use of...While each of these compounds has been shown to improve oxidation resistance in the host polyimide polymers, interest in materials with superior

  1. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)


    Information. The materials were characterized by wide-angle X-ray scattering ( WAXS ), dynamic mechanical analysis (DMA), and UV−vis spec- troscopy to... Synthetic Procedure for Linear Polyimides Chemistry of Materials Article | Chem. Mater. 2014, 26, 5223−52305224 2...Scheme 2. Synthetic Procedure for Cross-Linked Polyimides Chemistry of Materials Article | Chem. Mater. 2014, 26, 5223

  2. Determination of Selected Material Properties of Castable Thin Film Polyimides for Applications in Solar Thermal Propulsion

    Paxton, James P.


    Partial contents; This Study will, WHat is a thin film?, An application of Thin Film polyimides, Typical Solar Thermal Rocket Configuration, Benefits of 6FDA +APB Thin Films, Design Parameters for Articles constructed with thin film polyimides, theory, thin film test apparatus, unlaxial test appartus, toggle grip design, computer test panel, experimental procedure, Modulus of Elasticity results, Coefficient of Thermal Expansion results, Conclusions and Recommendations, Acknowledgement.

  3. Study on process and characterization of high-temperature resistance polyimide composite

    Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang; Cui, Chao; Guo, Hong-Jun


    A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred. The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ˜305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (Pi) during the imidization. The second-stage pressure (P2) and the temperature for applying the P2 (T2) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.

  4. A review of dynamic mechanical characterization of high temperature PMR polyimides and composites

    Pater, Ruth H.


    This paper reviews the applications of dynamic mechanical characterization for high-temperature PMR polyimides and their graphite-fiber-reinforced composites. This characterization technique provides insights into the processability, performance, and structure property relationships of the polyimides and composites. The dynamic mechanical properties of various molding powders, commercially obtained prepregs, neat resins, and as-fabricated as well as aged composites are presented. Some applied aspects of the dynamic mechanical data are discussed.

  5. Polyimide membranes for alcohols dehydration: from basic aspects to separation applications

    Leo, Mariangela


    The first part of this work aimed to the determination of the absorption and desorption kinetics of an alcohol (methanol) inside a commercial polyimide (PMDA ODA) and to the identification of the interactions with polymeric network. The understanding of the molecular mechanisms of diffusion can be helpful in designing the chemical structure of future polymers for optimal transport properties. The diffusion of methanol into polyimide films was studied by in situ FTIR spectroscopy, one of th...

  6. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.


    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  7. Synthesis of a New Aromatic Dianhydride Containing Pyridine Ring and Related Polyimide


    A new aromatic dianhydride monomer containing pyridine moiety, 2,6-bis[4'-(3",4"dicarboxyphenoxy)benzoyl]-pyridine dianhydride (Md), was synthesized in four steps, starting from 2,6-pyridinedicarboxyl chloride. A novel pyridine-containing polyimide was prepared via polycondensation of Md with ODA by two-step method. The resulting polyimide exhibits excellent solubility, film-forming capability and high thermal resistance.

  8. Synthesis of a new pyridine-containing diamine and related polyimide


    A new kind of aromatic diamine monomer containing pyridine unit,2,6-bis[4-(4-aminophenoxy)phenoxy]pyridine(BAPP),was synthesized in three steps,using hydroquinone as starting material.A novel pyridine-containing polyimide was prepared from the resulting diamine BAPP with 4,4'-oxydiphthalic anhydride(ODPA) via a conventional two-step thermal imidization method.The resulting polyimide exhibits excellent solubility,film-forming capability and high thermal resistance.

  9. Study on process and characterization of high-temperature resistance polyimide composite

    Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang; Cui, Chao; Guo, Hong-Jun [Aerospace Research Institute of Materials & Processing Technology (No.1 Nan Da Hong Men Road, Fengtai District, Beijing, 100076, P.R., China) (China)


    A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred. The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.

  10. Ductility of copper films on sandblasting polyimide substrates


    Different surface morphologies of polyimide(PI)foils widely applied in flexible electronics were obtained using the technique of sandblasting.Copper(Cu)films were subsequently deposited on the treated surface of PI substrates.Upon tensile loading, the critical strain,crack density and count of cracks were measured to examine the ductility of Cu films on PI substrates.Obtained results show that after sandblasting treatment,the critical strain of Cu film decreases from 8.0%to 6.9%and,in comparison with the case without sandblasting,its surface crack density decreases remarkably,with no saturation of the crack density.The reduced crack density is attributed to the increase of contact area and interfacial adhesion after sandblasting,and whether the crack density is saturated or not is dependent upon the morphology of the cracks formed as a function of tensile strain.

  11. Optical study of dye-containing fluorinated polyimide thin films

    Quaranta, A.; Carturan, S.; Maggioni, G.; Della Mea, G.; Ischia, M.; Campostrini, R.

    Thin films of dye-containing fluorinated polyimide have been obtained by adding the dye powder to the polyamic acid resin and by spin coating the resulting solution on silica and silicon substrates. 6FDA (4,4'-hexafluoroisopropylidene diphthalic anhydride) and DAB (diaminobenzophenone) have been used as precursor monomers and rhodamine B as dye. The influence of the rhodamine-B molecule on the completeness of the imidization process has been studied by coupled thermogravimetric and mass-spectrometric analyses (TG-MS) of pure and doped polyamic acid resin and by FT-IR analysis of samples before and after curing. Optical emission, excitation and absorption spectra have been collected in order to study spectroscopic and aggregation characteristics of rhodamine as a function of the deposition parameters.

  12. Ion beam modification of polyimide membranes for gas permeation

    Escoubes, M.; Dolveck, J. Y.; Davenas, J.; Xu, X. L.; Boiteux, G.


    The irradiation of 6FDA (hexafluorodianhydrid) polyimide films, produced for gas separation, with ion beams leads to dramatic modifications of their permeability to hydrogen and methane. The irradiation of the PI membranes with 2 MeV α particles induces a permeability increase for both gases, whereas a reduction of the permeability to CH 4 is obtained for a bombardment of the films with 170 keV N + at fluences larger than 10 15 cm -2. The modification of the diffusion through the membranes has been interpreted using a multilayer model, which enabled the calculation of the intrinsic permeabilities of the irradiated layers. The second irradiation regime induces a significant selectivity enhancement. The improvement of the selective properties of the irradiated membranes is interpreted in terms of modification of the elementary free volumes involving the reduction of the mean size.

  13. Effects of Nanoparticles on Properties of Modified Polyimide Epoxy Adhesive

    BA De-ma; MA Shi-ning; QIAO Yu-lin; ZHANG Shi-tang


    Polyimide modified epoxy adhesive(J-27H)/nano-SiOx and nano-Al2 O3 nanocomposite were prepared by ball milling treating method. Differential Scanning Calorimetry(DSC)was used to study effects of nanoparticles on curing speed of nanocomposited adhesive, and dynamic mechanical analyzer (DMA) was utilized to analyze the glass transition temperature.Results showed a increase in curing speed of nanocomposites in comparision with the neat J-27H, the curing speed of SiOx/J -27H nanocompositeis higher than Al2O3/J-27H nanocomposite. The curing speed of 6wt% SiOx/ J-27H nanocomposite is six times that of neat J-27H. Glass transition temperature measured for SiOx/ J-27H nanocomposite showed a slight increase compared to the neat J-27H.

  14. Crosslinking-property relationships in PMR polyimide composites. I

    Pater, R. H.; Whitley, K.; Morgan, C.; Chang, A.


    The thermooxidatively-induced crosslinking/ physical and mechanical property relationships of graphite fiber-reinforced PMR polyimide-matrix composites were studied during isothermal exposure of the composite specimens at 288 C in air for periods of up to 5000 hr. The crosslinking densities due to this treatment were estimated on the basis of the kinetic theory of rubber elasticity and shifts in the glass transition temperature T(g). Several linear relationships are noted between crosslink density and physical and mechanical properties: T(g), initial weight loss, and elevated temperature interlaminar shear strength increase with crosslink density, while initial moisture absorption decreases. After achieving the highest crosslink density, several of the composite properties begin to decrease from their maximum values.


    Rui Lei; Chuan-qing Kang; Yun-jie Huang; Xue-peng Qiu; Xiang-ling Ji; Wei Xing; Lian-xun Gao


    A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA),4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM).The resulting copolymers displayed good solubility in common organic solvents.Flexible,transparent,tough membranes were obtained via solution casting.All the films showed high thermal stability with desulfonation temperature over 300℃.They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa.High proton conductivity (0.23 S/em at 100% RH) was also observed.More importantly,the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability,which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.

  16. Formation of energetic heavy ion tracks in polyimide thin films

    Deslandes, Alec; Murugaraj, Pandiyan; Mainwaring, David E.; Ionescu, Mihail; Cohen, David D.; Siegele, Rainer


    Polyimide thin films have been irradiated with a high energy beam of heavy ions to a fluence of approximately 4 × 1013 ions/cm2. Proton backscattering spectroscopy was used to measure the composition of the films, which showed that oxygen was the element that exhibited the most rapid loss from the film. The gases evolved from the film during polymer modification were monitored using a quadrupole mass spectrometer for residual gas analysis (RGA). The fluence dependence of RGA signals were indicative of multi-step processes of gas release, whereby the passage of an ion through a region of pristine film changes the local molecular structure to one that will more readily form volatile species when subsequent ions pass.

  17. Polyimide Humidity Integrated Sensor Fabricated Using the MEMS Process

    Dianzhong Wen


    This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor, based on that, a new integrated circuit of humidity measurement has been designed. It is a novel capacitive-type systems on a chip structure using the MEMS process. The results show that the new sensor presents sensing characteristics over a humidity range from 10%~70% RH at 20℃, and the sensor is able to fabricated together with Ics technology. The result shows that integration of humidity sensor with integrated circuit of humidity measurement is considerably easier when they are built in sensing groove. The appeal of a new structure like this brings the possibility of applications that would require the flexibility of simple screen printing.

  18. Polyimides and their derivatives for gas separation applications

    J. R. Klaehn; C.J. Orme; T.J. Luther; E.S. Peterson; Jagoda M. Urban-Klaehn


    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers (VTEC, RBI Inc.) has been identified as a material class containing the potential building blocks needed for a successful membrane capture material. The VTEC polyimides possess the desired thermal properties (up to 500 °C) and are robust and flexible even after multiple thermal cycles (up to 400 °C). A critical variable when working with the glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (either as hydration molecules attached to salts in the polymer, left over solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  19. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Yoshimoto Akifumi


    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  20. Effect of ion implantation upon erosion resistance of polyimide films in space environment

    DUO Shu-wang; LI Mei-shuan; ZHOU Yan-chun


    The atomic oxygen (AO) resistance of Si ion implanted polyimide films in the ground-based AO simulation facility was investigated by scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The results show that at the initial stage of AO exposure the implanted sample has a small mass change,and then is stabilized. The erosion yield of the implanted polyimide film decreases by about two orders of magnitude compared with that of the polyimide film. The analysis through XPS and AES indicates that a continuous high-quality protective oxide-based (SiO2) surface layer is formed on the implanted polyimide films after the AO exposure. It can provide high-quality erosion protection for these materials. The implanted polyimide fully restores its original color and the carbonization effect disappears on the whole after AO exposure. Thermal-optical properties and surface morphology of the implanted polyimide materials are not altered. The modified materials have a markedly increased erosion resistance in AO environment.

  1. Influence of the Viscoelastic Properties of the Polyimide Dielectric Coating on the Wafer Warpage

    Zhu, Chunsheng; Ning, Wenguo; Xu, Gaowei; Luo, Le


    Polyimide is widely used as the dielectric material in wafer level packaging. One potential problem with its application is the warpage and stress generated in the curing process. This paper investigated the material properties of polyimide and its influence on the wafer warpage. The viscoelastic properties of polyimide film were measured and a mathematical model of the properties was developed. Finite element analysis of the wafer warpage was performed and this indicates that the viscoelastic material model gave the best prediction. To better understand the causation of the warpage, curvature evolution of the polyimide-coated silicon wafer during its curing process was measured by a multi-beam optical sensor system. It was found that the warpage was mainly induced by the coefficient of thermal expansion mismatch and that the cure shrinkage of polyimide had little effect. Additionally, the effect of the cooling rate on the wafer warpage was also studied. Both simulation and experiment results showed that a slower cooling rate in the temperature range around the glass transition temperature ( T g) of polyimide will help to reduce the final wafer warpage.

  2. Internal acetylene unit as a cross-link site for polyimides

    Takeichi, T.; Tanikawa, M. [Toyohashi Univ. of Technology (Japan)


    We have been studying on the cross-linking behavior of internal acetylenes linked meta-meta to aromatic connecting units which were introduced into the polyimide backbone utilizing 3,3`-diaminodiphenylacetylene (m-intA). In this study, we studied on the cross-linking behavior of internal acetylenes linked para-para to aromatic connecting units. The internal acetylene units were introduced into the polyimide backbone by the reaction of 4,4`-diaminodiphenylacetylene (p-intA) with such acid anhydrides as biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA). The polyimides showed exotherm on DSC: The onset of the exotherm of p-intA appeared at around 330-390{degrees}C, which is 10-50{degrees}C higher than that of m-intA. The exotherm disappeared after thermal treatment at 400{degrees}C, suggesting the progress of crosslinking between acetylene units. The polyimides cured at 350{degrees}C or 400{degrees}C showed increased Tg and improved physical properties at high temperatures as confirmed by viscoelastic analyses. It was also made clear that polyimides containing p-intA showed higher modulus compared with polyimides containing m-intA, especially when coupled with BPDA and PMDA.

  3. Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process

    Yang, Chii-Rong; Hsieh, Yu-Sheng; Hwang, Guang-Yeu; Lee, Yu-Der


    The photoablation properties of two soluble polyimides DMDB/6FDA and OT/6FDA with thicknesses of over 300 µm, synthesized by the polycondensation of a hexafluoropropyl group contained in a dianhydride with two kinds of diamines, are investigated using a 248 nm krypton fluoride (KrF) laser. The incorporation of the hexafluoropropyl group into the chemical structure gives these two polyimides higher etching rates than Kapton (a commercial polyimide film which is difficult to dissolve). The etching rates of synthesized polyimides are about 0.1-0.5 µm/pulse over a fluence range of 0.25-2.25 J cm-2. The photothermal mechanism for DMDB/6FDA contributes about 19% of etching depth at a laser fluence of 0.82 J cm-2. Moreover, the number of laser pulses seriously affects the taper angle of microstructures, especially at low fluence. Near-vertical side-wall structures can be built at high fluence (~2 J cm-2). Fresnel patterns with a thickness of 300 µm and a linewidth of 10 µm were fabricated, with an attainable aspect ratio of around 30. After photoablation, the complementary metallic microstructures were also fabricated by a sequential electroplating procedure. Then, those two new polyimides could be dissolved easily in most common solvents (such as THF, DMSO, NMP and DMF). These results indicate that these two soluble polyimides are highly suitable for use in the KrF laser LIGA process.

  4. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    Xu, Sheng


    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2\\'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3\\',4,4\\'-benzophenone tetracarboxylic dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  5. Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides.

    Nazarychev, V M; Lyulin, A V; Larin, S V; Gurtovenko, A A; Kenny, J M; Lyulin, S V


    The results of atomistic molecular-dynamics simulations of mechanical properties of heterocyclic polymer subjected to uniaxial deformation are reported. A new amorphous thermoplastic polyimide R-BAPO with a repeat unit consisting of dianhydride 1,3-bis-(3',4,-dicarboxyphenoxy)diphenyl (dianhydride R) and diamine 4,4'-bis-(4''-aminophenoxy)diphenyloxide (diamine BAPO) was chosen for the simulations. Our primary goal was to establish the impact of various factors (sample preparation method, molecular mass, and cooling and deformation rates) on the elasticity modulus. In particular, we found that the elasticity modulus was only slightly affected by the degree of equilibration, the molecular mass and the size of the simulation box. This is most likely due to the fact that the main contribution to the elasticity modulus is from processes on scales smaller than the entanglement length. Essentially, our simulations reproduce the logarithmic dependence of the elasticity modulus on cooling and deformation rates, which is normally observed in experiments. With the use of the temperature dependence analysis of the elasticity modulus we determined the flow temperature of R-BAPO to be 580 K in line with the experimental data available. Furthermore, we found that the application of high external pressure to the polymer sample during uniaxial deformation can improve the mechanical properties of the polyimide. Overall, the results of our simulations clearly demonstrate that atomistic molecular-dynamics simulations represent a powerful and accurate tool for studying the mechanical properties of heterocyclic polymers and can therefore be useful for the virtual design of new materials, thereby supporting cost-effective synthesis and experimental research.

  6. Dense film polyimide membranes for aggressive sour gas feed separations

    Kraftschik, Brian


    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  7. Pulse Field Gel Electrophoresis.

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G


    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.


    Randall S. Seright


    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the

  9. Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors

    Pyo, Seungmoon; Son, Hyunsam; Choi, Kil-Yeong; Yi, Mi Hye; Hong, Sung Kwon


    We have fabricated organic thin-film transistors (OTFTs) on polyethersulfone substrate using low-temperature processable, inherently photosensitive polyimide as the gate insulator and pentacene as the active material. The polyimide was prepared through two-step reaction. The polyimide precursor, poly(amic acid), was prepared from a dianhydride and aromatic diamine through a polycondensation reaction, and subsequently converted to its corresponding polyimide by a chemical imidization. Photolithographic properties of the polyimide are investigated. The pattern resolution of the cured polyimide was about 50μm. The pentacene OTFTs with the patterned polyimide were obtained with a carrier mobility of 0.1cm2/Vs and ION/IOFF of 5×105. The OTFT characteristics are discussed in more detail with respect to the electrical properties of the photosensitive polyimide thin film. This low-temperature photopatternable polyimide paves the way for the easy and low-cost fabrication of OTFT arrays without expensive and complicated photolithography and dry etching processes.

  10. GelTouch

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David


    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...... a tablet with 6x4 tactile areas, enabling a tactile numpad, slider, and thumbstick. We show that the gel is up to 25 times stiffer when activated and that users detect tactile features reliably (94.8%)....

  11. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion {sup registered}

    Pan, Haiyan; Pu, Hongting; Wan, Decheng; Jin, Ming; Chang, Zhihong [Institute of Functional Polymers, School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)


    A series of reinforced composite membranes as proton exchange membranes were prepared from Nafion {sup registered} 212 and crosslinkable fluorine-containing polyimides (FPI). FPI was prepared from the polymerization of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), and 3,5-diaminobenzoic acid (DABA). Then FPI was thermally crosslinked during the membrane preparation and formed the semi-interpenetrating polymer networks (semi-IPN) structure in the composite membranes. The thermal properties of the composite membranes were characterized by thermogravimetric analysis. The crosslinking density of FPI in the composite membranes was evaluated by the gel fraction. These membranes showed excellent thermal stabilities and good oxidative stabilities. Compared with Nafion {sup registered} 212, the obtained composite membranes displayed much improved mechanical properties and dimensional stabilities. The tensile strength of the composite membranes was more than twice that of Nafion {sup registered} 212. The composite membranes exhibited high proton conductivity, which ranged from 2.3 x 10{sup -2} S cm{sup -1} to 9.1 x 10{sup -2} S cm{sup -1}. All membranes showed an increase in proton conductivity with temperature elevation. (author)

  12. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion ®

    Pan, Haiyan; Pu, Hongting; Wan, Decheng; Jin, Ming; Chang, Zhihong

    A series of reinforced composite membranes as proton exchange membranes were prepared from Nafion ®212 and crosslinkable fluorine-containing polyimides (FPI). FPI was prepared from the polymerization of 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2‧-bis(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), and 3,5-diaminobenzoic acid (DABA). Then FPI was thermally crosslinked during the membrane preparation and formed the semi-interpenetrating polymer networks (semi-IPN) structure in the composite membranes. The thermal properties of the composite membranes were characterized by thermogravimetric analysis. The crosslinking density of FPI in the composite membranes was evaluated by the gel fraction. These membranes showed excellent thermal stabilities and good oxidative stabilities. Compared with Nafion ®212, the obtained composite membranes displayed much improved mechanical properties and dimensional stabilities. The tensile strength of the composite membranes was more than twice that of Nafion ®212. The composite membranes exhibited high proton conductivity, which ranged from 2.3 × 10 -2 S cm -1 to 9.1 × 10 -2 S cm -1. All membranes showed an increase in proton conductivity with temperature elevation.

  13. Fabrication and evaluation of dispersed-Ag nanoparticles-in-polyimide thin films

    Sonehara, Makoto; Watanabe, Yuki; Yamaguchi, Sota; Kato, Takanori; Yoshisaku, Yasuaki; Sato, Toshiro; Itoh, Eiji


    A thin-film common-mode filter (TF-CMF) for cell phones in the UHF band was fabricated and evaluated. The TF-CMF consisted of multiple metal–insulator–metal (MIM) capacitors and inductors. The sizes of the 0.70–1.0 GHz band-type and 1.8–2.0 GHz band-type TF-CMFs are 1,140 × 1,260 × 10.5 µm3, and 1,060 × 1,060 × 10.5 µm3, respectively. The footprint in both types of TF-CMFs is over 1 mm2. In order to miniaturize the TF-CMF, we proposed to change a polyimide-only to a polyimide with dispersed Ag nanoparticles with high permittivity in the insulator layer for the MIM capacitor of the TF-CMF. A polyimide (\\text{polyimide precursor}:\\text{toluene with dispersed Ag nanoparticles} = 100:1) thin film with dispersed high-density Ag nanoparticles has a relative permittivity of about 8, which is twice as high as that of the polyimide-only thin film. If the capacitance and distance between electrodes are the same, then the capacitor footprint may be halved.

  14. Synthesis of aromatic polyimides with sulfone diamine moieties for a novel membrane oxygenator.

    Kawakami, H; Nagaoka, S


    The authors have synthesized soluble aromatic polyimides derived from 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3'- or 4,4'-diamino-diphenylsulfone (m-DDS or p-DDS) to develop a novel membrane oxygenator. Asymmetric gas exchange membranes for the oxygenator were prepared by a dry/wet phase inversion process. The resulting membrane structure consisted of an ultrathin, selective, and defect free skin layer supported by a porous substructure. The membranes exhibited extremely high gas flux and selectivity. CO2 flux through the polyimide membranes used in this study increased with a decrease in CO2 pressure and was in accordance with the dual mode transport described by a combination of the Henry and Langmuir modes. This indicates that CO2 is selectively removed from the membranes at low CO2 pressure as compared with presently available materials for membrane oxygenators, such as polydimethylsiloxane and polypropylene. The number of platelets adherent to the surface of the polyimide were significantly smaller than those on polydimethylsiloxane and polypropylene, and the deformation and aggregation of platelets on polyimide were not observed. These findings suggest that aromatic polyimides with sulfone diamine moieties are promising membrane materials for an oxygenator.

  15. Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process

    Carturan, S.; Quaranta, A.; Bonafini, M.; Vomiero, A.; Maggioni, G.; Mattei, G.; de Julián Fernández, C.; Bersani, M.; Mazzoldi, P.; Della Mea, G.


    Silver nanoclusters embedded in two transparent fluorinated polyimides, 4,4'-hexafluoroisopropylidene diphthalic anhydride 2,3,5,6-tetramethyl paraphenylene diamine (6FDA-DAD) and 3,3',4,4' biphenyltetracarboxylic acid dianhydride 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (BPDA-3F), have been produced by surface modification with KOH aqueous solution followed by K-assisted Ag doping and thermal reduction in hydrogen atmosphere. The reaction rate of the nucleophilic hydrolysis in KOH, studied by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectrometry (RBS), depends on the polyimide chemical structure. After ion-exchange in AgNO{3} solution and subsequent annealing, the polyimide structure recovery was monitored by FT-IR whereas the characteristic surface plasmon absorption band of silver nanoparticles was evidenced by optical absorption measurements. The structure of silver nanoclusters as related to size and size distribution in the different polyimide matrices was thoroughly investigated by Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The collected data evidenced a uniform distribution of Ag clusters of nanometric size after thermal treatment at 300 circC in both polyimides. For the same ion-exchange treatment parameters and annealing temperature, XRD analyses evidenced the presence of crystallites with similar sizes.

  16. The effect of simulated low earth orbit radiation on polyimides (UV degradation study)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.


    UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.


    Hong Ye; Ji-ding Li; Yang-zheng Lin; Jian Chen; Cui-xian Chen


    Five kinds of polyimides were synthesized using five dianhydrides (including 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA), 3,3',4,4'-diphenyisulfone-tetracarboxylic dianhydride (DSDA), 4,4'(hexafluoroisopropylidene)-diphthalic anhydride (6FDA),1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA),and 4,4'-oxydiphthlic dianhydride (ODPA)) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane (BDAF) via the twostep method that included polyaddition to form the polyamic acid and subsequent chemical imidization at ambient temperature.The structures of polyimides were characterized by FTIR and NMR.The thermal properties were characterized by DSC and TGA.All five kinds of polyimides showed good thermal properties and solubility in organic solvents such as DMF,DMAc,NMP and THF at room temperature.The pervaporation (PV) experiments of polyimides for toluene/n-heptane mixture were carried out,and all the polyimides showed selective permeation towards toluene.The fluxes of 6FDA-BDAF,DSDA-BDAF,HQDPA-BDAF and ODPA-BDAF at 80℃ were 1.08,0.96,1.77 and 0.10 kg-μm/(m2.h),and the separation factors were 5.44,1.64,1.28 and 11.44,respectively.The increasing feed temperature resulted in higher flux and lower separation factor of the 6FDA-BDAF membrane.

  18. Suitability of Different Polyimide Capsule Materials for Use as ICF Targets

    Knight, A.K.; Tsai, F.-Y.; Bonino, M.J.; Harding, D.R.


    OAK-B135 Previous research efforts to fabricate direct-drive polyimide shells have focused on identifying processes that maximize the mechanical and permeation properties of the polyimide material. A strong correlation exists between these properties and the processing conditions, which is ascribed to the crystallinity and segmental mobility of the polyimide chains. This correlation, together with the range of properties that have been demonstrated, will be reported. For example, the permeability of biaxially strained polyimide is three orders of magnitude higher than that of the normal Kapton formulation, decreasing the necessary fill time from 320 h to 0.66 h for an OMEGA target. Current research efforts focus on improving the smoothness of polyimide shells. The approach is to model the effect of different configurations of the equipment and processing parameters on the impinging mass flux of reactants onto the shell substrates. This is done using both computational fluid dynamics (FLUENT) and Monte Carlo codes to cover the relevant pressure regimes. Both molecular gas dynamics and surface chemistry are included in the models. These models are then cross-referenced to the measured smoothness of the shells.

  19. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4,4'-Diaminotriphenylmethane

    Diego Guzmán-Lucero


    Full Text Available A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180–200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0–1.3 dL/g. All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.

  20. Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering

    Tan, G.; Shimada, K.; Nozawa, Y.; Kaneko, S.; Urakami, T.; Koyama, K.; Komura, M.; Matsuda, A.; Yoshimoto, M.


    Typical thermostable and flexible polyimide polymers exhibit many excellent properties such as strong mechanical and chemical resistance. However, in contrast to single-crystal substrates like silicon or sapphire, polymers mostly display disordered and rough surfaces, which may result in instability and degradation of the interfaces between thin films and polymer substrates. As a step toward the development of next-generation polymer substrates, we here report single-atom-layer imprinting onto the polyimide sheets, resulting in an ultrasmooth 0.3 nm high atomic step-and-terrace surface on the polyimides. The ultrasmooth polymer substrates are expected to be applied to the fabrication of nanostructures such as superlattices, nanowires, or quantum dots in nanoscale-controlled electronic devices. We fabricate smooth and atomically stepped indium tin oxide transparent conducting oxide thin films on the imprinted polyimide sheets for future use in organic-based optoelectronic devices processed with nanoscale precision. Furthermore, toward 2D polymer substrate nanoengineering, we demonstrate nanoscale letter writing on the atomic step-and-terrace polyimide surface via atomic force microscopy probe scratching.

  1. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4,4'-Diaminotriphenylmethane

    Guzmán-Lucero, Diego; Froylán Palomeque-Santiago, Jorge; Camacho-Zúñiga, Claudia; Ruiz-Treviño, Francisco Alberto; Guzmán, Javier; Galicia-Aguilar, Alberto; Aguilar-Lugo, Carla


    A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180–200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0–1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing. PMID:28788041

  2. Study of dynamics of diffusion and cluster formation of copper deposition on polyimide by optical second-harmonic generation

    Zhang, J.Y.; Shen, Y.R. (Department of Physics, University of California, Berkeley, California 94720 (United States)); Soane, D.S. (Department of Chemical Engineering, University of California, Berkeley, California 94720 (United States))


    We demonstrate that optical second-harmonic generation (SHG) can be successfully used for {ital in} {ital situ} study of metal/polymer interfaces. With this SHG technique, Cu cluster formation on polyimide by surface diffusion and Cu diffusion into polyimide have been investigated. The diffusion coefficients of Cu clusters into polyimide at various temperatures have been determined from the measured decay of SHG signal with time. The effects of temperature, cluster size, and surface modification on diffusion have also been examined. For {ital T} {lt} {ital T}{sub {ital g}}, the surface diffusion of Cu on polyimide to form clusters dominates over the diffusion into the bulk. The latter process becomes competitive with increasing temperature. When {ital T} {gt} {ital T}{sub {ital g}}, few large-size Cu clusters can be formed on the polyimide surface. Cu diffusion into polyimide bulk can be greatly impeded by either a monolayer of Ti or by Cu clusters implanted in polyimide beforehand. In this case, Cu can wet the modified surface and form an interface between Cu and polyimide with good adhesion.

  3. Mechanically induced gel formation

    van Herpt, Jochem T.; Stuart, Marc C. A.; Browne, Wesley R.; Feringa, Ben L.


    Mechanical triggering of gelation of an organic solution by a carbazole-based bisurea organogelator is described. Both the duration of the mechanical stimulation and the gelator concentration control the gelation process and the characteristics of the gel obtained.

  4. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.


    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  5. Fabrication of polyimide based microfluidic channels for biosensor devices

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria


    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  6. Degradation Mechanism of Polyimide Film Under Square Impulse Voltages

    LUO Yang; WU Guangning; XIA Jinfeng; ZHU Guangya; WANG Peng; CAO Kaijiang


    Partial discharge (PD) under a sequence of high-repetition-rate square pulses is one of the key factors leading to premature failure of insulation systems of inverter-fed motors.Polyimide (PI) film is an important type of insulating material used in the inverter-fed motors.In this paper,micro-morphology and structure change of PI film aged by bipolar continuous square impulse voltage (BCSIV) with amplitude above partial discharge inception voltage (PDIV) are investigated by scanning electron microscope (SEM).The chemical bonds of PI chain are analyzed through Fourier transform infrared spectroscopy (FTIR).The results show that the degradation mechanism of PI film is the fracturing of chemical bonds caused by the erosion from PDs.Three layers are displayed in both 100 HN film and 100 CR film.The degradation path of PI film is initiated from surface and then gradually extends to the interior with continuous aging.Nano-fillers can retard the degradation of PI film and prolong its lifetime.

  7. Photomechanically coupled viscoelasticity of azobenzene polyimide polymer networks

    Roberts, Dennice; Worden, Matt; Chowdhury, Sadiyah; Oates, William S.


    Polyimide-based azobenzene polymer networks have demonstrated superior photomechanical performance over more conventional azobenzene-doped pendent and cross-linked polyacrylate networks. These materials exhibit larger yield stress and glass transition temperatures and thus provide robustness for active control of adaptive structures directly with polarized, visible light. Whereas photochemical reactions clearly lead to deformation, as indicated by a rotation of a linear polarized light source, temperature and viscoelasticity can also influence deformation and complicate interpretation of the photostrictive and shape memory constitutive behavior. To better understand this behavior we develop a rate-dependent constitutive model and experimentally quantify the material behavior in these materials. The rate dependent deformation induced in these materials is quantified experimentally through photomechanical stress measurements and infrared camera measurements. Bayesian uncertainty analysis is used to assess the role of internal polymer network evolution and azobenzene excitation on both thermomechanical and photomechanical deformation in the presence polarized light of different orientations. A modified Arrhenius relation is proposed and validated using Bayesian statistics which provide connections between free volume, shape memory, and polarized light.

  8. UV-radiation-induced degradation of fluorinated polyimide films

    Chang, Li-Hsin; Saha, Naresh C.


    Fully cured fluorinated polyimide (FPI) films with low dielectric constants ( less than or equal to 3.0) have been found to be chemically altered when exposed to UV radiation during a process integration study. This chemical modification is manifested in the loss of film thickness after it is subjected to UV radiation followed by photoresist stripping. The UV-radiation-induced surface modifications of the FPI film have been characterized by X-ray photoelectron spectroscopy (XPS). The XPS data show the presence of C=O and COO(-) sites in the FPI molecule following UV exposure. Under prolonged UV exposure in a stepper, the FPI film acts as a positive working photoresist. However, a 2 kA plasma enhanced chemically vapor-deposited oxide mask and/or a typical 12 kA photoresist mask effectively shields the FPI from UV-radiation-induced degradation. The effects of FPI on UV radiation present during other normal wafer processing steps such as plasma deposition and reactive ion-etching were also studied and found to be negligible.

  9. Adhesion measurement of a buried Cr interlayer on polyimide

    Marx, Vera M.; Kirchlechner, Christoph; Zizak, Ivo; Cordill, Megan J.; Dehm, Gerhard


    A fundamental knowledge and understanding of the adhesion behaviour of metal-polymer systems is important as interface failure leads to a complete breakdown of flexible devices. A combination of in situ atomic force microscopy for studying topological changes and in situ synchrotron based stress measurements both during film tensile testing were used to estimate the adhesion energy of a thin bilayer film. The film systems consisted of 50-200 nm Cu with a 10 nm Cr adhesion layer on 50 μm thick polyimide. If the Cu film thickness is decreased to 50 nm the Cr interlayer starts dominating the system behaviour. An apparent transition from plastic to predominantly brittle deformation behaviour of the Cu can be observed. Then, compressive stresses in the transverse direction are high enough to cause delamination and buckling of the Cr interlayer from the substrate. This opens a new route to induce buckling of a brittle interlayer between a ductile film and a compliant substrate which is used to determine the interfacial adhesion energy.

  10. Novel reusable porous polyimide fibers for hot-oil adsorption.

    Tian, Lidong; Zhang, Chongyin; He, Xiaowei; Guo, Yongqiang; Qiao, Mingtao; Gu, Junwei; Zhang, Qiuyu


    The development of oil sorbents with high thermal stability, adsorption capacity, reusability and recoverability is of great significance for hot oil leakage protection, especially for oil spillage of oil refinery, petrochemical industry and cars. In our work, highly efficient hot oil adsorption of polyimide (PI) fibers with excellent thermal stability was successfully prepared by a facile electrospinning method followed by post-treatment. The corresponding morphologies, structures and oil adsorption properties of as-prepared PI fibers at different temperatures were analyzed and characterized. Results showed that PI fibers presented a stable morphology and pore structure at 200°C. The oil adsorption capacity of porous PI fibers for hot motor oil (200°C) was about 57.4gg(-1), higher than that of PI fibers (32.7gg(-1)) with non-porous structure for the motor oil at room temperature. Even after ten adsorption cycles, porous PI fibers still maintained a comparable oil sorption capacity (oil retention of 4.2%). The obtained porous PI fibers exhibited excellent hot oil adsorption capacity, reusability and recoverability, which would broaden the application of electrospun fibers in oil spill cleanup and further provide a versatile platform for exploring the technologies of nanofibers in hot oil adsorption field. Copyright © 2017. Published by Elsevier B.V.

  11. Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide

    Brown, J. J.; Moore, N. C.; Supekar, O. D.; Gertsch, J. C.; Bright, V. M.


    The recent development of low-temperature (sound production from thermoacoustic loudspeakers fabricated from suspended tungsten nanobridges formed by ALD. Additionally, this paper develops an approach to lumped-element modeling for design of thermoacoustic nanodevices and relates the near-field plane wave model of individual transducer beams to the far-field spherical wave sound pressure that can be measured with standard experimental techniques. Arrays of suspended nanobridges with 25.8 nm thickness and sizes as small as 17 μm × 2 μm have been fabricated and demonstrated to produce audible sound using the thermoacoustic effect. The nanobridges were fabricated by ALD of 6.5 nm Al2O3 and 19.3 nm tungsten on sacrificial polyimide, with ALD performed at 130 °C and patterned by standard photolithography. The maximum observed loudspeaker sound pressure level (SPL) is 104 dB, measured at 20 kHz, 9.71 W input power, and 1 cm measurement distance, providing a loudspeaker sensitivity value of ∼64.6 dB SPL/1 mW. Sound production efficiency was measured to vary proportional to frequency f 3 and was directly proportional to input power. The devices in this paper demonstrate industrially feasible nanofabrication of thermoacoustic transducers and a sound production mechanism pertinent to submicron-scale device engineering.

  12. Electromigration study of Al thin films deposited on low dielectric polyimide and SiO sub 2 ILD

    Eun, B S


    The electromigration characteristics of Al-1 %Si-0.5 %Cu films deposited onto three kinds of polyimides (PI-2734, PI-2611, and BG-2480) and onto SiO sub 2 prepared by low pressure chemical vapor deposition have been investigated. The Al lines deposited onto SiO sub 2 showed about a one-order higher electromigration lifetime than those deposited onto polyimide interlayer dielectrics (ILDs). The electromigration characteristics degraded as the polyimide thickness increased. Joule heat which accumulated at the Al/polyimide interface was the main cause of the decrease in the electromigration reliability because the thermal conductivity of the polyimides was about one order lower than that of SiO sub 2.

  13. Conformance Improvement Using Gels

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent


    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  14. Crystallization from Gels

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  15. Preparation of chitosan gel

    Lagerge S.


    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  16. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho


    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al2O3), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al2O3-deposited KPI film. After the surface treatment by ODPA/α-Al2O3, the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10), was increased. Ph-BTBT-C10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm(2) V(-1) s(-1) to 1.26 ± 0.06 cm(2) V(-1) s(-1), after the surface treatment. The surface treatment of α-Al2O3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO2 gate insulators.


    Randall S. Seright


    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate

  18. Polyimide analysis using diffuse reflectance-FTIR. [Fourier Transform IR Spectroscopy

    Young, P. R.; Chang, A. C.


    The thermal imidization of a number of polyimide precursors in the form of powders, films, and prepregs was examined by an in situ diffuse reflectance-FTIR technique where infrared spectra were determined while the material was being heated. An analysis of these spectra revealed that, with the exception of one water soluble adhesive, each precursor developed an anhydride band around 1850 cm/cu during imidization. This band diminished in intensity during final stages of cure. Efforts were made to quantify the amount of anhydride in several samples. Evidence obtained could be interpreted to mean that poly(amic acid) resins undergo an initial reduction in molecular weight during imidization before recombining to achieve their ultimate molecular weights as polyimides. Several reports in the literature are cited to support this interpretation. This report serves both to document anhydride formation during imidization and to increase our fundamental understanding of how polyimides cure.

  19. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation

    Qiu, Wulin


    Seven polyimides based on (4,4′-hexafluoroisopropylidene) diphthalic anhydride, 6FDA, with different chemical structures were synthesized in a single pot two-step procedure by first producing a high molecular weight polyamic acid (PAA), followed by reaction with acetic anhydride to produce polyimide (PI). The resulting polymers were characterized using thermal analysis techniques including TGA, derivative weight analysis, TGA-MS, and DSC. The decarboxylation-induced thermal cross-linking, ester cross-linking through a diol, and ion-exchange reactions of selected polyimide membranes were investigated. Cross-linking of polymer membranes was confirmed by solubility tests and CO 2 permeability measurements. The thermal analysis provides simple and timesaving opportunities to characterize the polymer properties, the ability to optimize polymer cross-linking conditions, and to monitor polymer functionalization to develop high performance polymeric membranes for gas separations. © 2011 Elsevier Ltd. All rights reserved.

  20. Investigation on the radiation induced conductivity of space-applied polyimide under cyclic electron irradiation

    Yue, Long; Wu, Yiyong; Sun, Chengyue; Xiao, Jingdong; Shi, Yaping; Ma, Guoliang; He, Shiyu


    Radiation induced conductivity (RIC) is an important property of dielectric materials to evaluate the charge/discharge effect in orbit-service spacecraft. RIC of space-applied polyimide film was in situ measured and studied under continuous and cyclic electron irradiation in this paper. The results indicate that, for cyclic electron irradiation, there is a similar increasing-mode of RIC to those for continuous irradiation with the electron irradiation time. However, under the cyclic electron irradiation, the RIC of polyimide shows an obvious irradiation-history characteristic, namely preliminary irradiation dose effect (PIDE). In this case, the steady RIC value presents an "overshoot" behavior in the first few irradiation cycles and then decrease to a stable one as that under continuous irradiation. Prolonging the initial irradiation duration may avoid occurrence of overshoot phenomenon. The behaviors of irradiation-induced free radicals in polyimide could be applied to explain the RIC evolution processes.

  1. Optically transparent fluoro-containing polyimide films with low dielectric permeability

    Kravtsova, V.; Umersakova, M.; Iskakov, R.; Prikhodko, O.; Korobova, N.


    Optical, dielectric, thermal, physico-mechanical properties of new fluoro-containing alicyclic polyimides were investigated. High optical transparency in visible and UV ranges of the films with thickness 10-25 μm, which lower boundary was registered at 125-260 nm; as well as reflectivity index being 1.492-1.515 were recorded. Dielectric permeability was characterized with low rates and stability up to 300 °C depending on chemical structure. Polyimides were stable with heating in air up to 320-380 °C. Prepared films show break tensile at 145 MPa with elongation up to 50% due to the excellent film-forming properties. Films based on polyimides with polyaniline composition demonstrates reflectivity index 1.60.

  2. Facile and efficient route to polyimide-TiO2 nanocomposite coating onto carbon fiber.

    He, Shuqing; Lu, Chunxiang; Zhang, Shouchun


    Polyamic acid-TiO(2) hybrid colloid emulsion with an average particle size of 200 nm was formed by dispersing nano-TiO(2) into polyamic acid colloidal emulsion. The polyimide-TiO(2) nanocomposite was coated onto carbon fiber by electrophoretic deposition. The primary properties of polyamic acid-TiO(2) hybrid colloid emulsion and polyimide-TiO(2) nanocomposite coating onto carbon fiber were characterized using laser scattering, ZetaPlus particle sizing, transmission electron microscopy, field-emission scanning electron microscope, Fourier transforms infrared spectroscopy, and X-ray Diffraction analysis. The results indicated that the small amount of nano-TiO(2) would be effectively dispersed in polyamic acid colloidal particles. The polyimide-TiO(2) hybrid nanocomposite coating carbon fiber sheet displayed an excellent photodegradation performance of methyl orange, which could be degraded more than 70 wt % after 10 cycles.

  3. Fabricating fluorinated polyimide optical waveguide by CO2 laser direct-writing

    Jin, Xi; Zhu, Daqing; Zeng, Xiaoyan


    Fluorinated polyimide waveguides were fabricated by CO2 laser direct-writing. The poly(amic acid) micro-region exposed by CO2 laser beam was measured with FT-IR micro-spectroscopy. The FT-IR spectra indicated that the laser imidized polyimide was semicrystalline, and the imidization degree of scanned micro-region increased with the rising of output laser power. The increased aspect ratio of waveguide and smoothness of surface can be achieved by increasing the pre-cured temperature (below 120 °C) and writing rate, and optimizing laser power and the distance between the lens and the annular aperture. The guided light was clearly confined to the core of the fabricated waveguide, which means this technique can be used for fluorinated polyimide waveguide fabrication.

  4. A High T(sub g) PMR Polyimide Composites (DMBZ-15)

    Chuang, Kathy C.; Bowles, Kenneth J.; Papadopoulos, Demitrios S.; Hardy-Green, DeNise; Mccorkle, Linda


    A high T(sub g) thermosetting PMR-type polyimide, designated as DMBZ-15, was developed by replacing methylene dianline (MDA) in PMR-15 with 2,2'-dimethylbenzidine. Polyimide/carbon fiber (T650-35) composites were fabricated from a formulation of 3,3', 4,4'-benzophenonetetracarboxylic acid dimethyl ester (BTDE) and 2,2'-dimethylbenzidine (DMBZ), along with nadic ester (NE) as the endcap. DMBZ-15 displays a higher glass transition temperature (T(sub g) = 414 C) than PMR-15 (T(sub g) = 345 C), and thus retains better mechanical properties for brief exposure above 400 C. The physical properties and longterm thermo-oxidative stability of the DMBZ-15 polyimide/carbon fiber composites are also compared to that of PMR-15.

  5. Gas separation performance of 6FDA-based polyimides with different chemical structures

    Qiu, Wulin


    This work reports the gas separation performance of several 6FDA-based polyimides with different chemical structures, to correlate chemical structure with gas transport properties with a special focus on CO2 and CH 4 transport and plasticization stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied include 6FDA-DAM, 6FDA-mPDA, 6FDA-DABA, 6FDA-DAM:DABA (3:2), 6FDA-DAM:mPDA (3:2) and 6FDA-mPDA:DABA (3:2). Both pure and binary gas permeation were investigated. The packing density, which is tunable by adjusting monomer type and composition of the various samples, correlated with transport permeability and selectivity. The separation performance of the polyimides for various gas pairs were also plotted for comparison to the upper bound curves, and it was found that this family of materials shows attractive performance. The CO 2 plasticization responses for the un-cross-linked polyimides showed good plasticization resistance to CO2/CH4 mixed gas with 10% CO2; however, only the cross-linked polyimides showed good plasticization resistance under aggressive gas feed conditions (CO 2/CH4 mixed gas with 50% CO2 or pure CO 2). For future work, asymmetric hollow fibers and carbon molecular sieve membranes based on the most attractive members of the family will be considered. © 2013 Elsevier Ltd. All rights reserved.

  6. Preparation and characterization of novel thermoset polyimide and polyimide-peo doped with LiCF3SO3

    M. H. Ugur


    Full Text Available This paper deals with the synthesis and characterization of a new type of anhydrous ionic conducting lithium doped membranes consist of polyimide (PI, poly (ethylene oxide (PEO and lithium trifluoromethanesulfonate (LiCF3SO3 for solid polymer electrolyte (SPE. For this purpose, different molar ratios of lithium salt (Li-salt solution are added into poly (amic acid (PAA intermediate prepared from the reaction of 3,3',4,4'-benzophenon tetracarboxylic dianhydride (BTDA and 4,4'-oxydianiline (ODA. PEO is incorporated into PAA since it forms more stable complexes and possess high ionic conductivities. Then, Li-salt containing PAA solutions are imidized by thermal process. The effect of interaction between host polymer and Li-salt is characterized by FT-IR (Fourier Transform Infrared spectroscopy and SEM (scanning electron micrsocopy. The conductivities of Li-salt and PEO containing PI composite membranes are in the range of 10–7–10–5 S•cm–1. The conductivity increases with incorporation of PEO. Thermogravimetric analysis results reveal that the PI/PEO/LiCF3SO3 composite polymer electrolyte membranes are thermally stable up to 500°C.

  7. Surface modified Al2O3 in fluorinated polyimide/Al2O3 nanocomposites: Synthesis and characterization

    Zivar Ghezelbash; Davoud Ashouri; Saman Mousavian; Amir Hossein Ghandi; Yaghoub Rahnama


    Organic–inorganic hybrid materials consisting of inorganic materials and organic polymers are a new class of materials, which have received much attention in recent years. In the present investigation, at first, the surface of nano-alumina (Al2O3) was treated with a silane coupling agent of -aminopropyltriethoxysilane (KH550), which introduces organic functional groups on the surface of Al2O3 nanoparticles. Then fluorinated polyimide (PI) was synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride and 4,4'-diaminodiphenylsulfone. Finally, PI/modified Al2O3 nanocomposite films having 3, 5, 7 and 10% of Al2O3 were successfully prepared by an in situ polymerization reaction through thermal imidization. The obtained nanocomposites were characterized by fourier transform infrared spectroscopy, thermogravimetry analysis, X-ray powder diffraction, UV-Vis spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The results show that the Al2O3 nanoparticles were dispersed homogeneously in PI matrix. According to thermogravimetry analysis results, the addition of these nanoparticles improved thermal stability of the obtained hybrid materials.

  8. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia


    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are

  9. Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation


    Computer aided molecular modelling is used to visualize the motion of CO2 gas molecules inside a polyimide polymer matrix. The polymers simulated are two 6FDA-bases polyimides, 6FDA-4PDA and 6FDA-44ODA. These polymers have also been synthesized in our laboratory, and thus the simulated properties could directly be compared with “real-world” data. The simulation experiments have been performed using the GROMOS1 package. The polymer boxes were created using the soft-core method, with short (11 ...

  10. A versatile multi-user polyimide surface micromachinning process for MEMS applications

    Carreno, Armando Arpys Arevalo


    This paper reports a versatile multi-user micro-fabrication process for MEMS devices, the \\'Polyimide MEMS Multi-User Process\\' (PiMMPs). The reported process uses polyimide as the structural material and three separate metallization layers that can be interconnected depending on the desired application. This process enables for the first time the development of out-of-plane compliant mechanisms that can be designed using six different physical principles for actuation and sensing on a wafer from a single fabrication run. These principles are electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception. © 2015 IEEE.

  11. Photoluminescence and Exciton Energy Transfer of A Novel Perylene-Containing Polyimide

    Shengang Xu; Mujie Yang; Shaokui Cao


    @@ 1Introduction Peryleneimides are well known chromophores combining high quantum yields of photoluminescence with outstanding photochemical and thermal stability. Due to their useful electroactive and photoactive properties many potential applications in optoelectronics have attracted increasing interest.Previously, we reported a kind of diphenylfluorene-based cardo polyimide containing perylene units in the backbone[1,2], which possessed high thermal stability, excellent solubility and good film formability. In the present work, the photoluminescence and exciton energy transfer of this novel polyimide were reported.

  12. Flexible Substrates with Polyimide Buffer Layers for Organic Light-Emitting Diodes

    常春; 王立铎; 李扬; 段炼; 邱勇


    We report a new method to enhance the properties of the polyethyleneterephthalate (PET) substrates for flexible organic light-emitting diodes (OLEDs). By spin-coating a polyimide (PI) film between the PET and the indiumtin-oxide anode, the flexible substrate with a smooth surface, high transmission over the visible spectrum and good adhesion are achieved. We also compare the flexible OLEDs on different substrates. The diodes on the substrates with polyimide buffer layers exhibit a brightness of 7280cd/m2 at 15 V and the maximum efficiency of 2.64 cd/A.

  13. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    Hanson, M. P.


    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  14. Synthesis and Characterization of Novel Polyimides Based on Pyridine-containing Diamine


    A new aromatic diamine monomer containing pyridine unit, 2,6-bis (4-aminophenoxy4′-benzoyl)pyridine(BABP), was synthesized in three steps, starting from 2,6-pyridinedicarboxyl chloride. A series of novel pyridine-containing polyimides were prepared via the polycondensation of BABP with various aromatic dianhydrides through poly(amic acid) precursors, and thermal or chemical imidization of the precursors. The polyimides exhibit desirable properties,e.g., good solubility in N-methyl-2-pyrrolidone and m-cresol, excellent thermal stability and ftlm-forming capability, as well as high inherent viscosity, indicating high molecular weight.

  15. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.


    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.


    Shahram Mehdipour-Ataei; Leila Akbarian-Feizi


    A diamine was synthesized by two successive reactions. Nucleophilic reaction of 4-hydroxybenzoic acid with terephthaloyl chloride yielded terephthaloyl bis(4-oxybenzoic) acid. Then reaction of this compound with 1,8-diamino-3,6dioxaoctane via Yamazaki method resulted in preparation of diamine named terephthalic acid bis(4-{2-[2-(2-amino ethoxy)ethoxy]ethyl carbamoyl}phenyl) ester. After fully characterization it was used to prepare new polyimides through polycondensation with different dianhydrides using trimethylchlorosilane. Characterization of polymers was achieved by common methods and their physical properties including inherent viscosity, thermal behavior, thermal stability, crystallinity and solubility were studied. Prepared polyimides showed improved solubility and good thermal stability.

  17. Design of Autonomous Gel Actuators

    Shuji Hashimoto


    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  18. Solution Based Deposition of Polyimide Ablators for NIF Capsules

    Cook, R


    Between June 1997 and March 2002 Luxel Corporation was contracted to explore the possibility of preparing NIF scale capsules with polyimide ablators using solution-based techniques. This work offered a potential alternative to a vapor deposition approach talking place at LLNL. The motivation for pursuing the solution-based approach was primarily two-fold. First, it was expected that much higher strength capsules (relative to vapor deposition) could be prepared since the solution precursors were known to produce high strength films. Second, in applying the ablator as a fluid it was expected that surface tension effects would lead to very smooth surfaces. These potential advantages were offset by expected difficulties, primary among them that the capsules would need to be levitated in some fashion (for example acoustically) during coating and processing, and that application of the coating uniformly to thicknesses of 150 pm on levitated capsules would be difficult. Because of the expected problems with the coupling of levitation and coating, most of the initial effort was to develop coating and processing techniques on stalk-mounted capsules. The program had some success. Using atomizer spray techniques in which application of {approx}5 {micro}m fluid coatings were alternated with heating to remove solvent resulted in up to 70 {micro}m thick coatings that were reasonably smooth at short wavelengths, and showed only about a 1 {micro}m thickness variation over long wavelengths. More controlled deposition with an inkjet devise was also developed. However difficult technical problems remained, and these problems coupled with the relative success of the vapor deposition approach led to the termination of the solution-based work in 2002. What follows is a compilation of the progress reports submitted by Luxel for this work which spanned a number of separate contracts. The reports are arranged chronologically, the last report in the collection has a modest summary of what

  19. Gel electrolytes and electrodes

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.


    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  20. Active Polymer Gel Actuators

    Shuji Hashimoto


    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  1. Dendronized Polyimides Bearing Long-Chain Alkyl Groups and Their Application for Vertically Aligned Nematic Liquid Crystal Displays

    Yusuke Tsuda


    Full Text Available Polyimides having dendritic side chains were investigated. The terphenylene diamine monomer having a first-generation monodendron, 3,4,5-tris(n-dodecyloxy-benzoate and the monomer having a second-generation monodendron, 3,4,5-tris[-3’,4’,5’-tri(n-dodecyloxybenzyloxy]benzoate were successfully synthesized and the corresponding soluble dendritic polyimides were obtained by polycondensation with conventional tetracarboxylic dianhydride monomers such as benzophenone tertracarboxylic dianhydride (BTDA. The two-step polymerizations in NMP that is a general method for the synthesis of soluble polyimides is difficult; however, the expected dendritic polyimides can be obtained in aromatic polar solvents such as m-cresol and pyridine. The solubility of these dendoronized polyimides is characteristic; soluble in common organic solvents such as dichloromethane, chloroform, toluene and THF. These dendronized polyimides exhibited high glass transition temperatures and good thermal stability in both air and under nitrogen. Their application as alignment layers for LCDs was investigated, and it was found that these polyimides having dendritic side chains were applicable for the vertically aligned nematic liquid crystal displays (VAN-LCDs.

  2. Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage

    Mimoun, B.A.Z.; Pham, H.T.M.; Henneken, V.; Dekker, R.


    The authors have found that patterning polyimide coatings containing organosilane adhesion promoter using pure oxygen plasma resulted in a thin silicon-rich residue layer. They show in this paper that adding small amounts of fluorine-containing gas to the etching gas mixture is necessary in order to

  3. CO2 Plasticization of Polyethersulfone/Polyimide Gas-Separation Membranes

    Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias; Kaldis, S.P.; Sakellaropoulos, G.P.


    This work reports the CO2 plasticization of gas-separation hollow-fiber membranes based on polyimide and polyethersulfone blends. The feed pressure effect on the permeance of pure gases (CO2, N2) and the separation performance of a gaseous mixture (CO2/N2, 55/45%) is examined. Contrary to dense

  4. Effect of Atmospheric Pressure Plasma Modification on Polyimide and Adhesive Joining with Titanium

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.; Ajeesh, G.; Ahmed, S.; Chakraborty, D.


    This investigation highlights the effect of surface modification on polyimide by atmospheric pressure plasma treatment with different exposure time. Surface modification of polymer by plasma treatment essentially creates physical and chemical changes such as cross-linking and formation of free

  5. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    Alaslai, Nasser Y.


    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  6. Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends

    Kapantaidakis, G.C.; Koops, G.H.; Wessling, M.


    In this work the preparation and characterization of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends are reported. Scanning Electron Microscopy (SEM) was used to investigate the morphological characteristics and structure of the asymme

  7. Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage

    Mimoun, B.A.Z.; Pham, H.T.M.; Henneken, V.; Dekker, R.


    The authors have found that patterning polyimide coatings containing organosilane adhesion promoter using pure oxygen plasma resulted in a thin silicon-rich residue layer. They show in this paper that adding small amounts of fluorine-containing gas to the etching gas mixture is necessary in order to

  8. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A


    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS.

  9. Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure

    Wessling, M.; Huisman, I.; Boomgaard, van den Th.; Smolders, C.A.


    The time-dependent permeation behavior of a glassy polyimide is studied above and below the plasticization pressure with carbon dioxide as the permeating gas. The work particularly focuses on the quantification of the slow increase in permeability at feed pressures above the plasticization pressure.

  10. Diffraction filters based on polyimide and poly(ethylene naphthalate) track membranes

    Mitrofanov, A. V.; Apel, P. Yu.; Blonskaya, I. V.; Orelovitch, O. L.


    The problem of optical filters for soft x rays and extreme ultraviolet that provide a high degree of blocking ultraviolet and visible background radiations is considered. The subject of discussion is the filter based on a track membrane, a polymer film with micrometer and submicrometer pores, rather than the standard thin-film system. It is proposed that the membranes be made of poly(ethylene naphthalate) or polyimide, the UV absorption edge of which lies near the boundary of the visible range. The properties of poly(ethylene naphthalate) and polyimide membranes are contrasted with those of conventional porous poly(ethylene terephthalate) films, which are obtained by ion track etching. The spectral characteristics of poly(ethylene naphthalate) and polyimide films, as well as the formation of “track” pores when the specimens are successively treated by fast ions and chemicals, are studied. The basic parameters of the resulting porous structures are examined, and treatment conditions under which desired optical properties of the membranes are achieved are found. Filters based on poly(ethylene naphthalate) and polyimide track membranes may be applied in x-ray astronomy as constituents of detectors incorporated into solar telescopes and in experiments with the laboratory plasma.

  11. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil

    Nag, M.; Bhoolokam, A.; Smout, S.; Willegems, M.; Muller, R.; Myny, K.; Schols, S.; Ameys, M.; Genoe, J.; Ke, T.H.; Vicca, P.; Ellis, T.; Cobb, B.; Kumar, A.; Steen, J.L.P.J. van der; Gelinck, G.; Fukui, Y.; Obata, K.; Groeseneken, G.; Heremans, P.; Steudel, S.


    A process to make self-aligned top-gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) on polyimide foil is presented. The source/drain (S/D) region's parasitic resistance reduced during the SiN interlayer deposition step. The sheet resistivity of S/D region after exposure

  12. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Guo, Haiquan; Meador, Mary Ann B.


    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  13. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.


    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  14. Ag-functionalized carbon molecular-sieve membranes based on polyelectrolyte/polyimide blend precursors

    Barsema, Jonathan N.; Vegt, van der Nico F.A.; Koops, Geert Henk; Wessling, Matthias


    We prepared dense flat-sheet Ag-functionalized carbon molecular-sieve (CMS) membranes from blends of P84 co-polyimide and a sulfonated poly(ether ether ketone) with a Ag+ counterion (AgSPEEK). These blends offer the possibility of producing new functionalized precursor structures, which were previou

  15. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.


    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  16. Effect of using polyimide capillaries during thermal experiments on the particle size distribution of supported Pt nanoparticles

    Gámez-Mendoza, Liliana; Resto, Oscar; Martínez-Iñesta, María


    Kapton HN-type polyimide capillaries are commonly used as sample holders for transmission X-ray experiments at temperatures below 673 K because of their thermal stability, high X-ray transmittance and low cost. Using high-angle annular dark field scanning high-resolution transmission electron microscopy and thermogravimetric analysis, this work shows that using polyimide capillaries leads to the overgrowth of supported Pt nanoparticles during reduction at temperatures below the glass transition temperature (Tg= 658 K) owing to an outgassing of water from the polyimide. Quartz capillaries were also studied and this overgrowth was not observed.

  17. Investigation of the Periodic Microstructure Induced by a 355 nm UV Polarized Laser on a Polyimide Surface

    李梅; 路庆华; 印杰; 罗售余; 王宗光


    We investigate a periodic microstructure induced by a 355 nm ultraviolet polarized laser on a polyimide surface and the dependence of the structures on laser parameters. Laser-induced periodic surface structures (LIPSS) of sub-micrometre size were generated on three kinds of polyimide films by a polarized Nd:YAG laser of 355nm within a wide range of laser fluence. The chemical structure of the polyimide, the film-making process, the number of laser pulses and the laser fluence greatly influenced the formation of LIPSS. The periodicity of LIPSS was decided by the wavelength, the incidence angle of the laser beam and the apparent refractive index of the material.

  18. gonarthrosis; therapy; Karmolis gel.

    B. V. Zavodovsky


    Full Text Available Objective: to evaluate the efficacy, tolerance, and safety of Carmolis topical gel in patients with gonarthrosis. Subjects and methods. The investigation enrolled 60 patients with knee osteoarthrosis (OA who were divided into two groups: 1 40 patients received Carmolis topical gel in addition to nonsteroidal anti-inflammatory drugs (NSAIDs; 2 20 patients took NSAIDS only (a control group. The treatment duration was 2 weeks. In both groups, therapeutic effectiveness was evaluated from changes in the WOMAC index, pain intensity at rest and during movement by the visual analog scale (VAS. The disease activity was also assessed by a physician and a patient (a Likert scale, local swelling and hyperthermia of the affected joint, the efficiency of treatment, and daily needs for NSAIDs were deter- mined. Results. The performed treatment in both patent groups showed positive clinical changes. Combination therapy involving Carmolis gel displayed greater reductions in WOMAC pain and resting and movement pain than in the con- trol group (as assessed by VAS. On completion of the investigation, considerable improvement was, in the physicians' opinion, noted in 38 (95% patients using Carmolis, which coincided with self-evaluations of the patients. During Carmolis application, the starting dose of NSAIDs could be reduced in 18 (45% patients. Adverse reactions occurred infrequently and required no therapy discontinuation. Conclusion. Carmolis topical gel is effective in relieving clinical symptoms in patients with gonarthrosis, well tolerated, and safe, which can recommend its use in the combination treatment of knee OA.

  19. Etude préliminaire de la stabilité à l'hydrolyse des polyimides 6F Preliminary Study of the Hydrolysis Stability of 6f Polyimides

    Mileo J. C.


    Full Text Available L'évaluation comparative du comportement en solution des polylmides 6F fait ressortir que ces nouveaux polymères, doués d'une stabilité thermique élevée par référence à l'analyse thermogravimétrique, ont, par contraste, une résistance beaucoup plus limitée aux influences ioniques et que l'hydrolyse, qui entraîne une réduction substantielle de leur masse moléculaire, est, dans leur cas, un processus de dégradation d'importance majeure. Despite its importance, particularly during the phase-inversion creation of asymmetrical gaseous-permeation membranes, the behavior in solution of polyImides derived from 4,4'-hexafluoroisopropylidenediphthalic anhydride has not, to our knowledge, been the subject of any published report. The present project was thus undertaken to assess the hydrolysis resistance of such polymers. This article describes and interprets some results highlighting the influence of structural factors. The products, which differ in the nature of both the initial diamine and dianhydride, were prepared by thermal polyheterocyclization in a single stage in different solvents at 200°C, and their stability was determined by the variations in their intrinsic viscosity after aging in a sealed tube at 90°C. Hydrolysis does not affect all 6F polyImides in a uniform way but seems to be governed by differences in the chemical affinity and in the morphology of the chains. Polymers having an increasing number of alkyl groups on the aminated remainder show a less and less marked susceptibility. A more specific fragility, however, affects polyImides having a carboxylic acid group. Other polar substituents have a stabilizing influence. A comparison with other polyImides is undeniably unfavorable to 6F derivatives. Degradation is very marked in dipolar aprotic solvents, whereas it appears quite limited in m-cresol. It apparantly cannot be blamed on the possible presence of uncyclized acid-amide units. The influence of the amount of

  20. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler


    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  1. Performance of laser bonded glass/polyimide microjoints in cerebrospinal fluid.

    Mian, A; Newaz, G; Georgiev, D G; Rahman, N; Vendra, L; Auner, G; Witte, R; Herfurth, H


    In this paper, laser bonded microjoints between glass and polyimide is considered to examine their potential applicability in encapsulating neural implants. To facilitate bonding between polyimide and glass, a thin titanium film with a thickness of 2 microm was deposited on borosilicate glass plates by a physical vapor deposition (PVD) process. Titanium coated glass was then joined with polyimide by using a cw fiber laser emitting at a wavelength of 1.1 microm (1.0 W) to prepare several tensile samples. Some of the samples were exposed to artificial cerebrospinal fluid (aCSF) at 37 degrees C for two weeks to assess long-term integrity of the joints. Both the as-received and aCSF soaked samples were subjected to uniaxial tensile loads for bond strengths measurements. The bond strengths for the as-received and aCSF soaked samples were measured to be 7.31 and 5.33 N/mm, respectively. Although the long-term exposure of the microjoints to aCSF has resulted in 26% reduction of bond strength, the samples still retain considerably high strength as compared with the titanium-polyimide samples. The failed glass/polyimide samples were also analyzed using optical microscopy, and failure mechanisms are discussed. In addition, a two dimensional finite element analysis (FEA) was conducted to understand the stress distribution within the substrate materials while the samples are in tension. The FEA results match reasonably well with the experimental load-displacement curves for as-received samples. Detailed discussion on various stress contours is presented in the paper, and the failure mechanisms observed from the experiment are shown in good agreement with the FEA predicted ones.

  2. PI/AlO(OH)-SiO2纳米杂化薄膜的制备及热性能、电性能分析%Preparation of polyimide/AlO(OH)-SiO2 nano hybrid film and analysis on its thermal properties and electrical properties



    以聚酰亚胺作为高聚物反应基体,通过正硅酸乙酯(TEOS)和异丙醇铝的水解缩合反应,使之和聚酰胺酸发生溶胶-凝胶反应,从而制备出不同比例AlO(OH)-SiO2的聚酰亚胺杂化薄膜。利用原子力显微镜、热失重分析、介电谱和击穿试验对其表观形貌和热性能、电性能进行表征和测试,考察结构与性能之间的关系。%Using polyimide as the matrix resin, polyimide hybrid film with various proportion of AlO(OH)- SiO2 was prepared through the sol- gel reaction of polyimide after the hydrolysis condensation reac⁃tion of traethoxysilane (TEOS) and heteropropyl- aluminium. The surface morphology, thermal property and electrical property of the film were characterized by atomic force microscope (AFM), thermal weight loss and dielectric spectroscope and break down test, and the relationship between the structures and properties of the films were investigated.

  3. Fabrication of fast, highly sensitive all-printed capacitive humidity sensors with carbon nanotube/polyimide hybrid electrodes

    Itoh, Eiji; Takada, Akinori


    We have developed capacitive humidity sensors with highly gas permeable carbon nanotube top electrodes using solution techniques. The hydrophobic, porous carbon nanotube (CNT) network with polyimide as a binder was suitable for gas permeation, and the response of the capacitive humidity sensors was faster than that of the device with a 20-nm-thick Au top electrode. The capacitance change of the polymide capacitive humidity sensor with the printed CNT top electrode was almost proportional to the relative humidity and the capacitance was almost independent of the environmental temperature. The CNT electrodes strongly adhered to the partially fluorinated polyimide when CNT/polyimide nanocomposites were used as top electrodes. The response time was almost proportional to the square of the thickness of the polyimide dielectric layer, d, and the sensitivity was inversely proportional to d. The response time and sensitivity respectively decreased to less than 1 s and 1 pF/%RH in the device with d less than 1 µm.

  4. Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides

    Ma, Xiaohua


    A novel o-hydroxyl-functionalized spirobifluorene-based diamine monomer, 2,2′-dihydroxyl-9,9′-spiro-bifluorene- 3,3′-diamine (HSBF), was successfully prepared by a universal synthetic method. Two o-hydroxyl-containing polyimides, denoted as 6FDA-HSBF and SPDA-HSBF, were synthesized and characterized. The BET surface areas of 6FDA-HSBF and SPDA-HSBF are 70 and 464 m2 g-1, respectively. To date, SPDA-HSBF exhibits the highest CO2 permeability (568 Barrer) among all hydroxyl-containing polyimides. The HSBF-based polyimides exhibited higher CO2/CH4 selectivity than their spirobifluorene (SBF) analogues (42 for 6FDA-HSBF vs. 27 for 6FDA-SBF) due to an increase in their diffusivity selectivity. Polybenzoxazole (PBO) membranes obtained from HSBF-based polyimide precursors by thermal rearrangement showed enhanced permeability but at the cost of significantly decreased selectivity.

  5. Active Polymer Gel Actuators

    Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda


    Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...

  6. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    Xie, Jianfei; Qiu, Yiping


    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  7. Surface characteristics and adhesive strengths of metal on O{sub 2} ion beam treated polyimide substrate

    Park, Sung C. [Department of Polymer Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of)], E-mail:; Yoon, Seong S.; Nam, J.D. [Department of Polymer Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of)


    A polyimide surface was modified by oxygen ion beam bombardment to improve its adhesion to a subsequently deposited NiCr (nickel-chromium alloy) overlayer. The changes in the chemical composition, morphology and adhesion property of the modified polyimide surface were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and the 90{sup o} peel test. The results show that the oxygen ion beam treatment of the polyimide induces the formation of oxygen functional groups and the rearrangement of the imide groups in the polyimide substrate film. An increase in its surface roughness resulted in a substantial improvement in the adhesion strength between the polyimide and NiCr overlayer. The improved adhesion strength, however, was found to be reduced after thermal aging at 150 deg. C for 168 hrs, which was attributed to the thermal oxidative degradation of the polyimide at the interface. We also observed that the ion beam treatment was effective in retarding the adhesion loss caused by the thermal aging.

  8. Study on the enrichment of Sulfur Hexafluoride in the tmosphere through polyimide hollow fiber membrane

    Wang Weixian


    Full Text Available Sulfur hexafluoride is per molecule the strongest greenhouse gas know, the features have brought SF6 into the climatic impact discussion aimed at reduction of emissions. The separation effects of sulfur hexafluoride in the atmosphere are studied through polyimide hollow fiber membrane with different conditions on pressure drop, gas flow and temperature. The sulfur hexafluoride concentration increased with increased pressure drop of the membrane, increased temperature and decreased non-filtrate flow flux; the recovery of sulfur hexafluoride exceeds 93%, enrichment coefficient was 18.5; sulfur hexafluoride is not detected at the flux of the filtrate flow, which means sulfur hexafluoride is riddled by membrane. The results showed that polyimide hollow fiber membrane can effectively separate sulfur hexafluoride from mixed gas

  9. Fabrication of carbon nanotube-polyimide composite hollow microneedles for transdermal drug delivery.

    Lyon, Bradley J; Aria, Adrianus I; Gharib, Morteza


    We introduce a novel method for fabricating hollow microneedles for transdermal drug delivery using a composite of vertically-aligned carbon nanotubes and polyimide. Patterned bundles of carbon nanotubes are used as a porous scaffold for defining the microneedle geometry. Polyimide resin is wicked through the carbon nanotube scaffold to reinforce the structure and provide the prerequisite strength for achieving skin penetration. The high aspect ratio and bottom-up assembly of carbon nanotubes allow the structure of the microneedles to be created in a single step of nanotube fabrication, providing a simple, scalable method for producing hollow microneedles. To demonstrate the utility of these microneedles, liquid delivery experiments are performed. Successful delivery of aqueous methylene blue dye into both hydrogel and swine skin in vitro is demonstrated. Electron microscopy images of the microneedles taken after delivery confirm that the microneedles do not sustain any structural damage during the delivery process.

  10. Study on the mechanical property of polyimide film in space radiation environments

    Shen, Zicai; Mu, Yongqiang; Ding, Yigang; Liu, Yuming; Zhao, Chunqing


    Polyimide films are widely used in spacecraft, but their mechanical properties would degrade in space environments, such as electron, proton, near ultraviolet or far ultraviolet, etc. The mechanical property and mechanism of polyimide film in electron, proton, near ultraviolet and far ultraviolet was studied by Φ800 combined space radiation test facility of Beijing Institute of Space Environment Engineering (BISSE. Rupture elongation of Kapton film decrease with the increase of the tensile deformation rate. The tensile strength and the rupture elongation of Kapton film decrease with the increase of electron and proton radiation, while tensile strength and the rupture elongation of Kapton film decrease firstly and then increase with near ultraviolet and far ultraviolet.

  11. Effects of Forming Pressure on the Porosity of Polyimide Porous Materials

    PU Yu-ping; L(U) Guang-shu; ZHAO Peng; XIAO Han-cheng


    Based on a series of experiments,the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time.On the study of relation between normal pressure and porosity,experience model of polyimide porous materials was proposed which is similar to the traditional experience model of the metal porous material.While being pressed.polyimide was found soon to come into elastoplastic deformation progress in this paper,so the theory model of metal porous material based on Hooker's law Was not fit for the polymer any more.A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.

  12. Electrical and Dielectric Properties of Exfoliated Graphite/Polyimide Composite Films with Low Percolation Threshold

    Yu, Li; Zhang, Yi-He; Shang, Jiwu; Ke, Shan-Ming; Tong, Wang-shu; Shen, Bo; Huang, Hai-Tao


    Exfoliated graphite/polyimide composite films were synthesized by in situ polymerization. The electrical and dielectric properties of composite films with different volume fraction of exfoliated graphite were investigated over the frequency range from 103 Hz to 3 × 106 Hz. The dielectric behavior of the composite films was investigated by percolation theory and a microcapacitor model. A low percolation threshold f c ≈ 3.1 vol.% was obtained due to the high aspect ratio of the exfoliated graphite. Both the dielectric constant and alternating-current (AC) conductivity showed an abrupt increase in the vicinity of the percolation threshold. The ultralarge enhancement of the dielectric constant near and beyond the percolation threshold was due to Maxwell-Wagner-Sillars (MWS) interfacial polarization between the exfoliated graphite and polyimide and interface polarization between the composite film and electrode.

  13. Direct correlation between free volume and dielectric constant in a fluorine-containing polyimide blend

    Ramani, R.; Ramachandran, R.; Amarendra, G.; Alam, S.


    The dielectric constant of fluorinated polyimides and their blends is known to decrease with increase in free volume due to decrease in the number of polarizable groups per unit volume. Interestingly, we report here a polyimide which when blended with a fluoro- polymer showed a positive deviation of dielectric constant with free volume. In our experiment, we have used a blend of poly(ether imide) and poly(vinylidene fluorine-co-hexafluoropropylene) and the interaction between them was studied using FTIR, XRD, TGA and SEM. The blend was investigated by PALS, DB and DEA. Surprisingly, with the increase in the free volume content in this blend, the dielectric constant also increases. This change is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field.

  14. Wide temperature polyimide/ZrO2 nanodielectric capacitor film with excellent electrical performance

    Zou, C.; Kushner, D.; Zhang, S.


    In this letter, wide temperature dielectric properties and corona resistance of Upilex-S® polyimide (PI) films filled with Zirconium dioxide (ZrO2) nanoparticles were investigated. ZrO2/PI nanodielectrics exhibited the stable dielectric properties, high energy density and high charge-discharge efficiency below 300 °C. Testing of corona resistance showed even a small amount of nanofillers can improve the lifetime of PI significantly. Scanning electron microscopy with x-ray microanalysis (SEM-EDS) analysis suggested the higher thermal conductivity and evaporation of ZrO2 nanoparticles may induce this improvement. These high performance features make polyimide nanocomposites attractive for high energy density capacitor applications at high temperature.

  15. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.


    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  16. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol


    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  17. Spontaneous fracture of an implanted posterior chamber polyimide intraocular lens haptic: A case report

    Haemin Kang


    Full Text Available A 57-year-old male patient visited our clinic for decreased visual acuity in the right eye for 10 days. He denied any trauma history, but recalled that the symptom developed after straining. He had undergone uncomplicated phacoemulsification and posterior chamber intraocular lens (IOL implantation in the bag of the right eye 11 years ago. The IOL was a three-piece silicone polyimide-haptics design. On slit-lamp examination, the IOL optic and proximal part of nasal fractured haptic were found in the anterior chamber. The distal part of fractured haptic was observed in the capsular bag. He underwent IOL exchange. The fracture site of the haptic was near the optic-haptic junction. This is the unique case report of a spontaneous fracture of an implanted posterior chamber polyimide IOL haptic, which implies the possibility of IOL haptic fracture in various haptic materials.

  18. Matrix-assisted pulsed laser evaporation of polyimide thin films and the XPS study

    WANG Wei; LI ChengXiang; ZHANG GuoBin; SHENG LiuSi


    Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is obvious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.

  19. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology

    Metz, S.; Trautmann, C.; Bertsch, A.; Renaud, Ph


    This paper reports on polyimide microfluidic devices fabricated by photolithography and a layer transfer lamination technology. The microchannels are sealed by laminating an uncured polyimide film on a partially cured layer and subsequent imidization. Selected areas of the microchannels were irradiated with heavy ions of several hundred MeV and the generated ion tracks are chemically etched to submicron pores of high aspect ratio. The ion beam parameters and the track etching conditions define density, length, diameter and shape of the pores. Membrane permeability and separation performance is demonstrated in cross-flow filtration experiments. The devices can be used for selective delivery or probing of fluids to biological tissue, e.g. drug delivery or microdialysis. For chip-based devices the filters can be used as a sample pre-treatment unit for filtration or concentration of particles or molecules.

  20. Formation of separating layers under conditions of the thermal aging of sorbents modified by fluorinated polyimide

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.; Vaganova, T. A.


    Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study the effect of the content of perfluorinated polyimide when used as a stationary phase for modifying Chromosorb P NAW diatomite supports and aluminum oxide, and the effect of thermal aging conditions on changes in their texture and chromatographic characteristics. It is shown that Chromosorb P NAW + 5 wt % of polyimide (PI) adsorbent thermally aged at 700°C in a flow of inert gas exhibits properties of carbon molecular sieves, while aluminum oxide impregnated with 10 wt % of PI and thermally aged at 250°C allows us to selectively separate permanent and organic gases, as well separate saturated and unsaturated hydrocarbons.

  1. Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates

    Cano, Robert J.; Jensen, Brian J.


    The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.

  2. Matrix-assisted pulsed laser evaporation of polyimide thin films and the XPS study


    Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is ob-vious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.

  3. Factors influencing alginate gel biocompatibility.

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine


    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  4. Effects of imidization and rubbing of polyimides on their surface free energy

    Borycki, Jerzy; Okulska-Bozek, Malgorzata


    According to classical method polyimides were obtained in two-step polycondensation process via 10% solutions of poly(amic acid)s in dimethylformamide (DMF). Poly(amic acid)s were synthesized from chosen tetracarboxylic acids dianhydrides: pyromellitic (PMDA), 4,4'- (hexafluoroisopropylidene)diphthalic (6FDA), 4,4'- oxydiphthalic (ODPA) and aromatic diamines: 4,4'- oxydianiline (ODA), 1,4-phenylenediamine (PPD), 4,4'- ethylenedianiline (DAB), 4,4'-diaminodiphenylmethane (MDA), 4-methyl-1,3-phenylenediamine (MMPD) and 2,3,5,6- tetramethyl-1,4-phenylenediamine (DAD) in the first step of this reaction. The indium tin oxide (ITO)-glass plates or glass plates were spin-coated with the poly(amic acid)s solutions and dried. The polyimide layers were prepared by gradual heating in various temperatures (100 degree(s)C, 150 degree(s)C, 180 degree(s)C, 200 degree(s)C, 220 degree(s)C and 250 degree(s)C). The degree of imidization was estimated by means of IR spectroscopy. Obtained PI layers were mechanically modified by rubbing. Three various rubbing materials were used: cotton, silk and chamois leather. Surface free energy and its components of polymer layers were evaluated on the basis of their wet ability by standard liquids (diiodomethane, 1- bromonaphthalene, formamide, ethylene glycol, water). It was found that decrease of intensity of rubbing process yields to increase of contact angle for each of rubbing materials. Polyimide layers rubbed with chamois leather were characterized by the best wet ability. The rubbing process increase surface free energy of tested polyimide films.

  5. Small-Angle X-Ray Scattering Study on Nanostructures of Polyimide Films

    LIU Xiao-Xu; YIN Jing-Hua; SUN Dao-Bin; BU Wen-Bin; CHENG Wei-Dong; WU Zhong-Hua


    @@ Inorganic nanohybrid polyimide(PI)is widely applied in electrical and electronic devices for its outstanding insulating properties.Samples 100CR and 100NH are made in Dupont.Among them,100NH is a kind of pure PI films; however,100CR is a kind of inorganic nanohybrid PI/films with excellent corona-resistance.The nanostructure of PI films is investigated with small-angle x-ray scattering technique and transmission electron microscopy(TEM).

  6. Impact of Backbone Rigidity on the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides (Postprint)


    filter cake was washed with ethyl acetate, and then the filtrate was evaporated to dryness on a rotary evaporator to afford 4.214 g (95%) of off...5−8 Polyimides represent an important class of heat- resistant polymers useful in a variety of applications deriving from their excellent combination...h and filtered. The filtrate was diluted with ethyl acetate (1200 mL), and the organic layer was separated. The organic layer was washed three times

  7. Catalytic trimerization of aromatic nitriles for synthesis of polyimide matrix resins

    Hsu, L.-C.


    Aromatic nitriles may be trimerized at moderate temperature and pressure with p-toluenesulfonic acid as catalyst. Studies were conducted to establish the effect of the reaction temperature, pressure, time, and catalyst concentration on yield of the trimerized product. Trimerization studies were also conducted to establish the effect of substituting electron donating or withdrawing groups on benzonitrile. Preliminary results of using the catalytic trimerization approach to prepare s-triazine cross-linked polyimide/graphite fiber composites are presented.

  8. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation

    Ghanem, Bader


    A highly permeable and highly selective polyimide of intrinsic microporosity is prepared using a 9,10-diisopropyl-triptycene contortion center. The three-dimensionality and shape-persistence of triptycene afford exceptional sieving-based gas separation performance transcending the latest permeability/selectivity trade-offs for industrial gas separations involving oxygen and hydrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoinduced changes in refractive index of nanostructured shungite-containing polyimide systems

    Kamanina, N. V.; Serov, S. V.; Shurpo, N. A.; Rozhkova, N. N.


    Photoinduced changes in the refractive index of a conjugate polyimide (PI) matrix sensitized by shungite carbon nanoparticles have been studied for the first time. The results are compared to the data of previous investigations of the photorefractive properties of PI matrices doped with fullerenes, carbon nanotubes, and quantum dots. The nonlinear refractive index of the proposed material has been determined using the dynamic holography techniques. The position of conjugate polymer materials of this type among the other nonlinear optical systems is considered.

  10. Fabrication of pentacene organic field-effect transistors with polyimide gate dielectric layer


    The organic field effect transistors had been fabricated using the pentacene by vacuum evaporation as the active layer, the polyimide by spin coating as insulator layer, and aluminum by vacuum evaporation as gate, source and drain electrodes respectively. The field-effect mobility of 0.079 cm2/V.s was tested at Vds=70 V, and on/off radio up to 1.7×104.

  11. Prediction of the response of a polyimide concentrator for solar thermal propulsion

    Gierow, Paul Armin; Moore, James D.


    Solar Thermal propulsion requires the use of large solar collectors to focus solar energy into an absorber which heats a propellant gas that is expanded through a nozzle creating thrust. The solar thermal rocket offers specific heat impulse (Isp) on the order of 900-1000 seconds at moderate thrust levels for orbiter transfer vehicles. These Isp and thrust levels are contingent on proper design, fabrication and operation of large solar collectors. Thin film polyimide materials developed by NASA Langley Research Center (LaRC) have been used to construct large inflatable concentrators for space deployable collectors. Concentrators of sizes up to five meters in diameter have been cast and cured in the laboratory with a 0.0254mm (0.001 in) film thickness. The films are cast on double curvature mandrels in solution form and cured, resulting in a large one piece parabolic concentrator without seams. The polyimide films do not exhibit orthotropic material properties when fabricated using these processes. An analytical model of a uniformly loaded parabolic membrane was developed to predict the deflection of the membrane under prescribed loading conditions and varying material properties. A symmetrical parabolic and off-axis geometry concentrator have been modeled. The analytical model uses finite element analysis of a membrane material under a variety of stress conditions. Prediction of the deformations of the membrane as a result of material properties and loading conditions is required to select and develop appropriate polyimide materials. The predicted membrane deflections are also integrated into an optical ray trace program to estimate the solar flux distribution at the focal point of the primary collector. The edge effects of inflatable concentrators can greatly affect the flux distribution at the focal plane of the concentrator. The overall concentration ratio of a primary collector directly relates to the achievable working fluid temperatures. This paper will

  12. Atomic-Oxygen Effects on POSS Polyimides in Low Earth Orbit


    Marquez, Linhan Shen, 5d. PROJECT NUMBER Amy L. Brunsvold, Russell Cooper, Jianming Zhang, Vandana Vij, Andrew J. Guenthner, Brian J. Petteys 5f...passivation layer becomes damaged. Multiple samples of Kapton H, 8.8 wt% Si8O11 MC POSS polyimide, and silica-coated Kapton HN (provided by Astral was supported by the Defense Advanced Research Projects Agency (DARPA), the Air Force Office of Scientific Research (Grant Nos. F49620-01-1-0276


    Clark, E; Kirk Shanahan, K


    Samples of ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and the polyimide Vespel{reg_sign} were exposed to tritium gas in closed containers initially at 101 kPa (1 atmosphere) pressure and ambient temperature for various times up to 2.3 years. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period.

  14. Empirical Formula for the Relationship between Compressive Strength and Test Temperature of Carbon/Polyimide Composites

    濱口, 泰正; Hamaguchi, Yasumasa


    T800H/PMR-15 carbon/polyimide composite possesses good specific strength and specific rigidity in the high-temperature region around 300C. This material is an advanced structural composite for use in elevons and other secondary structures of the unmanned space reentry vehicle HOPE-X. The author carried out basic strength evaluation tests on this material. Compressive strength data is especially important for structural design using composite materials. Compressive strength data was therefore ...

  15. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.


    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely different than the inner surface, as expected. On the inner surface nodule aggregates were aligned in rows, may be towards the direction of the bore fluid flow. On the outer surface, alignment of nodu...

  16. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion

    Shi, XinWei, E-mail: [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Lian, Hong; Yan, XiaoSheng; Qi, Ruiqiong; Yao, Ning [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Li, Tao [Department of Technology & Physics, Zhengzhou University of Lightindustry, 5th Dongfeng Road, Zhengzhou 450002 (China)


    Negative thermal expansion Zr{sub 2}WP{sub 2}O{sub 12} (ZWP) powder prepared by hydrothermal method was used as fillers to tailor the thermal expansion coefficient (TEC) of the polyimide (PI)-based composites. A series of PI-based composites containing different loading (0–40 wt% or 0–19.6 vol%) of ZWP powder were fabricated by the in-situ polymerization technique. Their structures and properties were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Impedance meter, Thermal mechanical analysis (TMA) and Thermogravimetric analysis (TGA). The additions of ZWP steadily reduced the TEC of the PI matrix at all loadings studied. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of TEC. The thermal stability of the ZWP/PI composites can be enhanced with the increment of ZWP powder. The independence of the dielectric constant on frequency is improved by introduction of ZWP particles to PIs. The dielectric loss displays good stability, which indicates that the ZWP/PI composites show potential applications in microelectronic and aerospace industries. - Graphical abstract: With increasing of ZWP in the composites, the CTEs of the ZWP/PI were reduced. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of CTE of the composite. - Highlights: • Zr{sub 2}P{sub 2}WO{sub 12} was firstly used as filler to tune the TEC of polyimides. • The TECs of polyimides were reduced by introduction of Zr{sub 2}P{sub 2}WO{sub 12} powders. • Polyimides with reduced TECs have favorable thermal and dielectric properties.

  17. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei


    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  18. Device-level vacuum packaged uncooled microbolometer on a polyimide substrate

    Ahmed, Moinuddin; Butler, Donald P.; Celik-Butler, Zeynep


    Uncooled infrared detectors (IR) on a polyimide substrate have been demonstrated where amorphous silicon (a-Si) was used as the thermometer material. New concepts in uncooled microbolometers were implemented during the design and fabrication, such as the integration of a germanium long-pass optical filter with the device-level vacuum package and a double layer absorber structure. Polyimide was used for this preliminary work towards vacuum-packaged flexible microbolometers. The detectors were fabricated utilizing a carrier wafer and low adhesion strength release layer to hold the flexible polyimide substrate during fabrication in order to increase the release yield. The IR detectors showed a maximum detectivity of 4.54 × 106 cm Hz1/2/W at a 4 Hz chopper frequency and a minimum noise equivalent power (NEP) of 7.72 × 10-10 W/Hz1/2 at a biasing power of 5.71 pW measured over the infrared wavelength range of 8-14 μm for a 35 μm × 35 μm detector. These values are comparable to other flexible microbolometers with device-level vacuum packaging which are found in literature.

  19. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    T. Csizmadia


    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  20. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.


    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  1. Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications

    Ma, Xiaohua


    Two series of novel intrinsically microporous polyimides were synthesized from 9,9′-spirobifluorene-2,2′-diamine (SBF) and its bromine-substituted analogue 3,3′-dibromo-9,9′-spirobifluorene-2, 2′-diamine (BSBF) with three different dianhydrides (6FDA, PMDA, and SPDA). All polymers exhibited high molecular weight, good solubility in common organic solvents, and high thermal stability. Bromine-substituted polyimides showed significantly increased gas permeabilities but slightly lower selectivities than the SBF-based polyimides. The CO2 permeability of PMDA-BSBF (693 Barrer) was 3.5 times as high as that of PMDA-SBF (197 Barrer), while its CO2/CH4 selectivity was similar (19 vs 22). Molecular simulations of PMDA-SBF and PMDA-BSBF repeat units indicate that the twist angle between the PMDA and fluorene plane changes from 0 in PMDA-SBF to 77.8 in PMDA-BSBF, which decreases the ability of the polymer to pack efficiently due to severe steric hindrance induced by the bromine side groups. © 2013 American Chemical Society.

  2. LARC(tm) RP46 Polyimide Low Cost High Temperature Technology

    Pater, Ruth H.


    The LARC(tm) RP46 polyimide was developed in 1991 at NASA Langley Research Center as an ultra-high-performance composite matrix resin for use in aircraft engine components, as well as a more environmentally friendly alternative to commercially available high temperature matrix resins. The LARC(tm) RP46 polyimide is prepared with non-toxic 3,4'-oxyldianiline(ODA). This chemistry has led to several improved performance characteristics over similar high temperature polyimides. These improvements include: (1) 700 F use temperature; (2) Significantly less moisture absorption; (3) Better chemical corrosion resistance; (4) Greater microcracking resistance; (5) Higher structural durability. The 700 F use temperature LARC(tm) RP46 is 150 F higher than that of commonly used PMR-type high temperature resins. In addition, it features significantly less moisture absorption and is therefore less susceptible to moisture induced damage. It also has better corrosion resistance to chemicals, greater microcracking resistance, and higher durability with regard to structural integrity.

  3. Investigation of the interfacial reaction between metal and fluorine-contained polyimides

    Yang, Ching-Yu; Chen, J. S.; Hsu, S. L. C.


    In this work, thin metal films (Cr and Ta) were deposited on fluorine-contained polyimides, 6FDA-BisAAF, and 6FDA-PPD. The chemical states of the metal/polyimide samples were characterized by using x-ray photoelectron spectroscopy (XPS). XPS analysis reveals that metal-C, C-O, and metal-O bondings are present in metallized 6FDA-BisAAF and 6FDA-PPD. C-F bonds are observed in bare 6FDA-BisAAF and 6FDA-PPD however, they are not seen in the metallized samples. Disappearance of the C-F bonding is attributed to the disruption of CF3 side groups from the main chains of 6FDA-BisAAF and 6FDA-PPD when the chains are exposed to the plasma during the metal deposition. Nevertheless, the disruption of CF3 side groups also creates sites for the formation of metal-C or C-O bondings, which provide a positive adhesion strength at the metal/polyimide interface, as revealed by the tape test.

  4. Flexible Polyimide Aerogel Cross-linked by Poly(maleic Anhydride-alt-alkylene)

    Guo, Haiquan; Meador, Mary Ann B.; Wilkewitz, Brittany Marie


    Aerogels are potential materials for aerospace applications due to their lower thermal conductivity, lighter weight, and low dielectric constant. However, silica aerogels are restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extreme aerospace environments. In order to fit the needs of aerospace applications, developing new thermal insulation materials that are flexible, and moisture resistant is needed. To this end, we fabricated a series of polyimide aerogels crosslinked with different poly(maleic anhydride-alt-alkylene)s as seen in Scheme 1. The polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA), and different diamines or diamine combinations. The resulting aerogels have low density (0.06 gcm3 to 0.16 gcm3) and high surface area (240-440 m2g). The effect of the different backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed. These novel polyalkylene-imide aerogels may be potential candidates for applications such as space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Scheme 1. Network of polyimide aerogels crosslinked with deifferent poly(maleic anhydride).

  5. Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures.

    Nautiyal, Pranjal; Boesl, Benjamin; Agarwal, Arvind


    Graphene foam-based hierarchical polyimide composites with nanoengineered interface are fabricated in this study. Damping behavior of graphene foam is probed for the first time. Multiscale mechanisms contribute to highly impressive damping in graphene foam. Rippling, spring-like interlayer van der Waals interactions and flexing of graphene foam branches are believed to be responsible for damping at the intrinsic, interlayer and anatomical scales, respectively. Merely 1.5 wt% graphene foam addition to the polyimide matrix leads to as high as ≈300% improvement in loss tangent. Graphene nanoplatelets are employed to improve polymer-foam interfacial adhesion by arresting polymer shrinkage during imidization and π-π interactions between nanoplatelets and foam walls. As a result, damping behavior is further improved due to effective stress transfer from the polymer matrix to the foam. Thermo-oxidative stability of these nanocomposites is investigated by exposing the specimens to glass transition temperature of the polyimide (≈400 °C). The composites are found to retain their damping characteristics even after being subjected to such extreme temperature, attesting their suitability in high temperature structural applications. Their unique hierarchical nanostructure provides colossal opportunity to engineer and program material properties.

  6. Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet

    Wang, Fangcheng; Wang, Kedian; Dong, Xia; Mei, Xuesong; Zhai, Zhaoyang; Zheng, Buxiang; Lv, Jing; Duan, Wenqiang; Wang, Wenjun


    The cost of effective preparation of graphene-based nanomaterials is a challenge in high-performance flexible electrodes. We demonstrated the formation of hierarchical porous graphene (HPG) films with defects from polyimide (PI) sheets using a high repetition rate nanosecond fiber laser. The honeycomb structure with mesopores and macropores can be rapidly induced on the polyimide by the localized focused laser beam in air atmosphere. Employing laser direct writing method, the one-step synthesis and patterning of conductive HPG films were achieved directly on the surface of polyimide sheets. The results show that the unique honeycomb porous structure on HPG film is composed of few-layer graphene or graphene stacks. The lattice structure of graphene nanoplatelets contains the Stone-Wales defects. Furthermore, there are a lot of small-size graphene nanoplatelets on the surface of HPG films with high content of edge defects. These two defects can not only enhance the adsorption without compromising on high diffusivity of ions, but also contribute to the infiltration and flow of electrolyte on the surface of electrode. The proposed one-step laser direct writing technique with highly valuable suitable for developing large-scale fabrication of conductive HPG based flexible electrodes at low-cost.

  7. Viscoelastic and Mechanical Properties of Thermoset PMR-type Polyimide-Clay Nanocomposites

    Abdalla, Mohamed O.; Dean, Derrick; Campbell, Sandi


    High temperature thermoset polyimide-clay nanocomposites were prepared by blending 2.5 and 5 wt% of an unmodified Na(+-) montmorillonite (PGV) and two organically modified FGV (PGVCl0COOH, PGVC12) with a methanol solution of PMR-15 precursor. The methanol facilitated the dispersal of the unmodified clay. Dynamic mechanical analysis results showed a significant increase in the thermomechanical properties (E' and E") of 2.5 wt% clay loaded nanocomposites in comparison with the neat polyimide. Higher glass transition temperatures were observed for 2.5 wt% nanocomposites compared to the neat polyimide. Flexural properties measurements for the 2.5 wt% nanocomposites showed a significant improvement in the modulus and strength, with no loss in elongation. This trend was not observed for the 5 wt% nanocomposites. An improvement in the CTE was observed for the PGV/PMR-15 nanocomposites, while a decrease was observed for the organically modified samples. This was attributed to potential variations in the interface caused by modifier degradation.

  8. Origin and prevention of high contact resistance in multilevel metal-polyimide structures

    Day, David R.; Senturia, Stephen D.


    When polyimide is used as the insulating dielectric in multilevel-metal structures, a high contact resistance can result within the interconnecting vias. This paper examines the particular case of oxygen plasma patterning of the polyimide using a photoresist mask. Auger analysis in combination with compositional depth profiling was employed on a series of samples to measure surface composition of etched vias in polyimide. Results show two effects which, together, can account for high contact resistance: first, there is a thicker than normal aluminum oxide layer on the first level metal surface (due to exposure to the oxygen plasma); second, there is a thin, etch-resistant carbonaceous film (due to redeposition of organic material during plasma etching) that prevents oxide thinning through chemical means. It was found that by lowering the plasma pressure to 50 mTorr near the end of the etch, the organic film can be removed. In the absence of the carbonaceous layer, the oxide can then be chemically thinned to produce clean aluminum surfaces within the vias.

  9. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Tutuk Djoko Kusworo


    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  10. Crack-resistant polyimide coating for high-capacity battery anodes

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.


    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.


    Grubnik I.M., Gladukh Ye.V., Chernyaev S.V.


    Full Text Available The article presents the results of studies on the functional properties of carrageenan, depending on the concentration of sodium chloride and xanthan in gels. It is established that the main factors in the syneresis of carrageenan gels are its concentration, the presence of ions and gums in solution. If using sodium chloride there is a change in the structure of mesh of the resulting gel, which leads to an increase in syneresis.

  12. Gel polymer electrolytes for batteries

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William


    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at C.

  13. Scanning protein analysis of electrofocusing gels using X-ray fluorescence.

    Matsuyama, Satoshi; Matsunaga, Akihiro; Sakamoto, Shinichi; Iida, Yutaka; Suzuki, Yoshinari; Ishizaka, Yukihito; Yamauchi, Kazuto; Ishikawa, Tetsuya; Shimura, Mari


    Recently, "metallomics," in addition to genomics and proteomics, has become a focus as a novel approach to identify sensitive fluctuations in homeostasis that accompany metabolic processes, such as stress responses, differentiation, and proliferation. Cellular elements and associated protein behavior provide important clues for understanding cellular and disease mechanism(s). It is important to develop a system for measuring the native status of the protein. In this study, we developed an original freeze-dried electrofocusing native gel over polyimide film (native-gel film) for scanning protein analysis using synchrotron radiation excited X-ray fluorescence (SPAX). To our knowledge, this is the first report detailing the successful mapping of metal-associated proteins of electrofocusing gels using X-ray fluorescence. SPAX can provide detection sensitivity equivalent to that of LA-ICP-MS. In addition to this increased sensitivity, SPAX has the potential to be combined with other X-ray spectroscopies. Our system is useful for further applications in proteomics investigating cellular element-associated protein behaviors and disease mechanisms.

  14. DMBZ Polyimides Provide an Alternative to PMR-15 for High-Temperature Applications


    PMR-15, a high-temperature polyimide developed in the mid-1970's at the NASA Lewis Research Center, offers the combination of ease of processing, low cost, and good stability and performance at temperatures up to 288 C (500 F). This material is widely regarded as one of the leading high-temperature matrix resins for polymer-matrix-composite aircraft engine components. PMR-15 is widely used in both military and civilian aircraft engines. The current worldwide market for PMR-15 is on the order of 50,000 lb, with a total sales of around $5 to $10 million. However, PMR-15 is made from methylene dianiline (MDA), a known animal mutagen and a suspected human mutagen. Recent concerns about the safety of workers involved in the manufacture and repair of PMR-15 components have led to the implementation of costly protective measures to limit worker exposure and ensure workplace safety. In some cases, because of safety and economic concerns, airlines have eliminated PMR-15 components from engines in their fleets. Current efforts at Lewis are focused on developing suitable replacements for PMR-15 that do not contain mutagenic constituents and have processability, stability, and mechanical properties comparable to that of PMR-15. A recent development from these efforts is a new class of thermosetting polyimides based on 2,2'-dimethylbenzidine (DMBZ). Autoclave processing developed for PMR-15 composites was used to prepare low-void-content T650-35 carbon-fiber-reinforced laminates from DMBZ-15 polyimides. The glass transition temperatures of these laminates were about 50 C higher than those of the T650- 35/PMR-15 composites (400 versus 348 C). In addition, DMBZ-15 polyimide composites aged for 1000 hr in air at 288 C (500 F) had weight losses close to those of comparable PMR-15 laminates (0.9 versus 0.7 percent). The elevated (288 C) and room temperature mechanical properties of T650-35-reinforced DMBZ-15 polyimide and PMR-15 laminates were comparable. Standard Ames tests are

  15. Influence of Steric Hindrance Between Hydrogen Atoms of Linkage Groups and Adjacent Phenyls on Properties of Polyimide

    PANG Yu-wei; LUO Long-bo; CHEN Yi; ZHANG Peng; WANG Xu; PENG Chao-rong; LIU Xiang-yang


    A diamine monomer 4,4'-methylenedianiline(MDA) was introduced to modify the polyimide of pyromellitic dianhydride(PMDA) and 4,4'-oxydianiline(ODA) by polycondensation.A series of polyamic acids was synthesized from MDA and ODA of different molar ratios with PMDA of sum mole of moles of MDA and ODA,and polyimide films were obtained by thermal imidization.Polyimide(PI) films were characterized by tensile testing,dynamic mechanical analysis(DMA),thermal gravimetry analysis(TGA),Fourier transform infrared spectroscopy (FTIR),wide X-ray diffraction(WAXD) and molecular simulation.With the increase of MDA content,the tensile strength and thermal decomposition temperature remained generally stable compared with those of PMDA/ODA polyimide.Unexpectedly,the glass transition temperature(Tg) and Young's modulus increased from 388.7 ℃ and 2.37 GPa to 408.3 ℃ and 5.74 GPa,respectively.The results of WAXD and molecular simulation indicate the steric hindrance among hydrogen atoms of the linkage groups and adjacent phenyls enhanced the properties of the polyimide modified with MDA.

  16. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures

    Verker, R. [Space Environment Group, Soreq NRC, Yavne 81800 (Israel); School of Mechanical Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978 (Israel)], E-mail:; Grossman, E. [Space Environment Group, Soreq NRC, Yavne 81800 (Israel); Eliaz, N. [School of Mechanical Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978 (Israel)


    Low Earth orbital debris impacts on the external surfaces of satellites have increased dramatically in recent years. Polyimides are used as the outer layer of thermal control insulation blankets, covering most of the external spacecraft surfaces that are exposed to the space environment. A recently developed material, named polyhedral oligomeric silsesquioxane (POSS)-polyimide, shows significant enhancement in withstanding the space environment. In this work, the combined effect of ground-simulated hypervelocity space debris impacts and atomic oxygen (AO) on the erosion of POSS-containing polyimide films was investigated. During such hypervelocity impacts, elevated temperatures, on the order of hundreds degrees, are formed. A laser-driven flyer system was used to accelerate aluminum flyers to impact velocities of up to 3 km s{sup -1}. The impacted films were exposed to an oxygen RF plasma environment, simulating the effect of AO in the low Earth orbit. Impacted polyimide films exposed to AO revealed synergistic erosion effect, while impacted POSS-containing samples showed improved erosion resistance. The increased erosion rate of the impacted polyimide film is explained by formation of residual stresses that affect the oxidation mainly by increasing the diffusivity of oxygen into the subsurface layers. Mechanical properties of the POSS-containing samples performed at 450 deg. C and fractographic examination supports the above hypothesis.

  17. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H. [Metal and Material Technology Group, R and D Center, LS Mtron Ltd., Gyeonggi 431-080 (Korea, Republic of); Seol, Jae-Bok, E-mail: [Max-Planck-Insititut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany)


    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength.

  18. Fabrication of polyimide micro/nano-structures based on contact-transfer and mask-embedded lithography

    Chiu, Cheng-Yu; Lee, Yung-Chun


    Polyimide materials are well known for their excellent mechanical and chemical stability which, as an adverse consequence, makes their fabrication processes much more difficult, especially in micro- and nano-scales. In this paper, we demonstrate an innovative and powerful method for fabricating micro/nano-structures on polyimides. The proposed method first adopts an imprinting approach to transfer a patterned metal film from a mold to a polymer layer coated on a polyimide layer. The patterned double polymer layers are then dry etched using the transferred metal pattern as an etching mask. Finally, polyimide structures are obtained by lifting off the top polymer layer and the metal film through wet etching. Experiments have been carried out and important parameters to achieve high pattern-transformation fidelity are determined. Fine structures of polyimides with a feature size of 500 nm and a total patterned area of 8 × 8 mm2 are demonstrated. Advantages of the proposed method include low-temperature, low contact pressure, small feature size, high throughput and ease of in implementation. Most importantly, it is applicable for a large number of tough polymers which are difficult to deal with by other methods in terms of micro/nano-fabrication.

  19. Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3ʹ-dimethylnaphthidine

    Ghanem, Bader


    Two intrinsically microporous polyimides were obtained by high-temperature, one-pot poly-condensation reaction of novel triptycene-based dianhydrides containing dimethyl- or diisopropyl-bridgehead groups with a commercially available highly sterically hindered 3,3 \\'-dimethylnaphthidine (DMN) diamine monomer. The dimethyl bridgehead groups in the triptycene building block provided the DMN-based polyimide (TDA1-DMN) with larger surface area (760 m(2) g(-1)) than the diisopropyl-based polyimide (TDA1-DMN) (680 m(2) g(-1)), greater fraction of ultramicroporosity, as observed from N-2 and CO2 NLDFT adsorption analysis, and higher gas permeability and selectivity. Wide-angle X-ray diffraction (WAXD) measurements demonstrated that TDA1-DMN and TDAi3-DMN exhibited a bimodal pore size distribution, where TDA1-DMN showed smaller d-spacing values and broader intensity peaks. Both TDADMN-based polyimides showed very high gas permeabilities with moderate selectivities. For example, fresh TDA1-DMN exhibited an O-2 permeability of 783 Barrer coupled with an O-2/N-2 selectivity of 4.3 and H-2 permeability of 3050 Barrer with H-2/N-2 selectivity of 16.7, values that surpassed the 2008 Robeson permeability/selectivity upper bounds. Physical aging of the TDA-DMN polyimide films over a period of 250 days showed relatively small changes in permeability (similar to 20%) and selectivity (similar to 5%). (C) 2016 Elsevier Ltd. All rights reserved.

  20. Erosion effects of atomic oxygen on polyhedral oligomeric silsesquioxane-polyimide hybrid films in low earth orbit space environment.

    Duo, Shuwang; Song, Mimi; Liu, Tingzhi; Hu, Changyuan; Li, Meishuan


    A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) had been prepared by copolymerization of trisilanolphenyl-POSS, 4,4'-oxydianiline (ODA), and pyromellitic dianhydride (PMDA). The AO resistance of these PI/POSS hybrid films was tested in the ground-based AO simulation facility. Exposed and unexposed surfaces were characterized by SEM and X-ray photoelectron spectroscopy. SEM images showed that the surface of the 20 wt% PI/POSS became much less rough than that of the pristine polyimide. Mass measurements of the samples showed that the erosion yield of the PI/POSS (20 wt.%) hybrid film was 1.2 x 10(-25) cm3/atom, and reduced to 4% of the polyimide film. The XPS data indicated that the carbon content of the near-surface region was decreased from 60.1 to 13.2 at% after AO exposure. The oxygen and silicon concentrations in the near-surface region increased to 1.96 after AO exposure. The nanometer-sized structure of POSS, with its large surface area, had led AO-irradiated samples to form a SiO2 passivation layer, which protected the underlying polymer from further AO attack. The incorporation of POSS into the polyimide could dramatically improve the AO resistance of polyimide films in low earth orbit environment.

  1. Rheology and structure of milk protein gels

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.


    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown th

  2. Rheology and structure of milk protein gels

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.


    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  3. Nanocrystal/sol-gel nanocomposites

    Petruska, Melissa A.; Klimov, Victor L.


    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  4. Sucrose release from polysaccharide gels.

    Nishinari, Katsuyoshi; Fang, Yapeng


    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  5. Electrochemical Light-Emitting Gel

    Nobuyuki Itoh


    Full Text Available Light-emitting gel, a gel state electroluminescence material, is reported. It is composed of a ruthenium complex as the emitter, an ionic liquid as the electrolyte, and oxide nanoparticles as the gelation filler. Emitted light was produced via electrogenerated chemiluminescence. The light-emitting gel operated at low voltage when an alternating current was passed through it, regardless of its structure, which is quite thick. The luminescence property of the gel is strongly affected by nanoparticle materials. TiO2 nanoparticles were a better gelation filler than silica or ZnO was, with respect to luminescence stability, thus indicating a catalytic effect. It is demonstrated that the light-emitting gel device, with quite a simple fabrication process, flashes with the application of voltage.

  6. Synthesis and characterization of thermally stable second-order nonlinear optical side-chain polyimides containing thiazole and benzothiazole push-pull chromophores

    Tambe, S. M.; Kittur, A. A.; Inamdar, S. R.; Mitchell, G. R.; Kariduraganavar, M. Y.


    Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 °C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d33 values range between 35.15 and 45.20 pm/V at 532 nm.

  7. Reduced operating voltage and grey-to-grey response time in a vertically aligned liquid crystal display using a mixture of two polyimide alignment materials

    Lee, Ji-Hoon; Choi, Young Eun; Lee, Jun Hee; Lee, Byeong Hoon; Song, Won Il; Jeong, Kwang-Un; Lee, Gi-Dong; Lee, Seung Hee


    We proposed a method to reduce the operating voltage and the grey-to-grey switching time of a vertically aligned liquid crystal display using a mixture of planar and vertical polyimide alignment materials. The surface anchoring energy of the two-polyimide mixture was smaller than that of the pure vertical polyimide and consequently, liquid crystal molecules were easily switched to a planar state with an electric field, resulting in a greater maximum retardation than that of the pure polyimide at the same applied voltage. Rising time was also significantly reduced due to the suppressed optical bouncing effect in the mixed planar polyimide, and the decaying time showed negligible change. With the proposed approach, we can reduce the cell gap to obtain half-wave retardation allowing for faster response time while keeping a low operating voltage.

  8. Preparation of nanoporous polyimide thin films via layer-by-layer self-assembly of cowpea mosaic virus and poly(amic acid)

    Peng Bo; Wu Guojun; Lin Yuan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 (United States); Su Zhaohui, E-mail: [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)


    Low dielectric (low-{kappa}) materials are of key importance for the performance of microchips. In this study, we show that nanosized cowpea mosaic virus (CPMV) particles can be assembled with poly(amic acid) (PAA) in aqueous solutions via the layer-by-layer technique. Then, upon thermal treatment CPMV particles are removed and PAA is converted into polyimide in one step, resulting in a porous low-{kappa} polyimide film. The multilayer self-assembly process was monitored by quartz crystal microbalance and UV-Vis spectroscopy. Imidization and the removal of the CPMV template was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy respectively. The dielectric constant of the nanoporous polyimide film thus prepared was 2.32 compared to 3.40 for the corresponding neat polyimide. This work affords a facile approach to fabrication of low-{kappa} polyimide ultrathin films with tunable thickness and dielectric constant.

  9. New polyimide-polyoxometalate nanocomposite materials with nanoporous structure and ultra-low dielectric constant, formed in supercritical carbon dioxide

    Keshtov, Mukhamed; Said-Galiev, Ernest; Kochurov, Vitaliy; Khokhlov, Alexei


    Vinyltrimethoxysilane interaction with K8(SiW11O39) obtained polyoxometalate (Bu4N)4[SiW11O39{(CH2 = CH-Si)2O}](SiW11-CH = CH2). Synthesized two new fluorinated aromatic polyimide in two stages with a dielectric constant (k) in the range 2.70-2.75. On the basis of poly(amic acids) and a mixture of thermal imidization polyoxometalate obtained polyimide/polyoxometalate composite film. It was found that with increasing polyoxometalate in a mixture of 0 to 20 wt% the dielectric constant decreases from 2,75 to 1,70. Nanoporous materials with ultra-low dielectric constant in the range 1.31-1.64 in combination with high thermal (T10% = 536-570°C in N2) and mechanical characteristics using supercritical carbon dioxide have been developed on the basis of the obtained polyimide/polyoxometalate composite films.

  10. Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

    Fusaro, R. L.


    A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.

  11. sol-gel

    Humberto A. Monreal


    Full Text Available En este trabajo sintetizamos nanocilindros de dióxido de titanio de 30 a 400 nm por medio de ADN del plásmido pBR322 de 4,362 pares de bases y el uso de isopropóxido de titanio como precursor por medio del proceso sol-gel. Los geles resultantes fueron calcinados y los polvos caracterizados por medio de Microscopio Electrónico de Barrido (MEB, Espectroscopía de Energía Dispersiva, Microscopio Electrónico de Transmisión (MET y Difracción de Rayos X. Los resultados muestran que la síntesis in vitro de nanorods en presencia de ADN, puede ser activada. Muchas otras moléculas sintéticas pueden producirse por medio del uso de sistemas orgánicos, es así como reportamos la síntesis de híbridos hechos de ácidos nucleicos en materiales inorgánicos que pueden tener diversas aplicaciones en sistemas catalíticos, biomateriales y materiales nanoestructurados.

  12. Mechanical Failure in Colloidal Gels

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  13. Surface grafted chitosan gels. Part II. Gel formation and characterization

    Liu, Chao; Thormann, Esben; Claesson, Per M.


    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against......-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels...

  14. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity

    Yang, Yang; Zhu, Ben-Peng; Lu, Zhi-Hong; Wang, Zi-Yu; Fei, Chun-Long; Yin, Di; Xiong, Rui; Shi, Jing; Chi, Qing-Guo; Lei, Qing-Quan


    This work reports the high dielectric permittivity of polyimide (PI) embedded with CaCu3Ti4O12 (CCTO) nanoparticles. The dielectric behavior has been investigated over a frequency of 100 Hz-1 MHz. High dielectric permittivity (ɛ = 171) and low dielectric loss (tan δ = 0.45) at 100 Hz have been observed near the percolation threshold. The experimental results fit well with the Percolation theory. We suggest that the high dielectric permittivity originates from the large interface area and the remarkable Maxwell-Wagner-Sillars effect at percolation in which nomadic charge carriers are blocked at internal interfaces between CCTO nanoparticles and the polyimide matrix.

  15. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)


    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  16. Synthesis of a Novel Diamine 4-[(4'-Butoxyphenoxy)carbonyl]-phenyl-3", 5"-diaminobenzoate and Corresponding Polyimides

    Li Gang REN; Xiang Yang LIU; Yi GU


    A novel diamine 4-[(4'-butoxyphenoxy)carbonyl]phenyl-3",5"-diaminobenzoate (BCDA)was synthesized from 4-butoxyphenol, 4-hydroxybenzoic acid and 3,5-dinitrobenzoic acid through four main intermediates, and a series of polyimides were also synthesized. All the intermediates and the final product were characterized by FTIR and 1H-NMR. The key step in synthesis route is selective hydrolyzation of two ester groups in 4-butoxyphenyl-4'-acetoxybenzoate, by adjusting the reaction temperature and the concentration of ammonia, shorteding the reaction time. The properties of the novel polyimides, such as the aggregation structures, glass transition temperature,solubility and the pretilt angles, were carried out.

  17. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)


    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  18. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser

    Tianxian Feng; Dong Mao; Xiaoqi Cui; Mingkun Li; Kun Song; Biqiang Jiang; Hua Lu; Wangmin Quan


    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N-methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP–PI film was obtained after evaporating the mixture in a petri dish. The BP–PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser...

  19. Novel organosoluble polyimide based on an asymmetric bis(ether amine): 3, 4'-Bis(4-aminophenoxy)-benzophenone

    Qian Qian Bu; Shu Jiang Zhang; Hui Li; Yan Feng Li


    A new kind of asymmetrical ether diamine,3,4'-bis(4-aminophenoxy)benzophenone (BABP),was synthesized from the nucleophilic substitution reaction of 4-chloronitrobenzene and 3,4'-dihydroxybenzophenone in the presence of potassium carbonate,followed by catalytic reduction with SnCl2-6H2O and concentrated hydrochloric acid.The prepared diamine was employed in the preparation of a novel polyimide containing asymmetrical diaryl ether segments via the polycondensation of it with BTDA by a two-step method.The resulting polyimide exhibits excellent solubility,film-forming capability and high thermal resistance.

  20. Effects of Surface Treatments on the Performances of Al2 O3 Nano-Particle/Polyimide adhesive

    MA Shi-ning; ZHANG Shi-tang; QIAO Yu-lin


    The nano-Al2O3/polyimide composite adhesive was prepared by high-energy chemical and mechanical handing in this paper. The thermally curing process was preliminary determined, furthermore, the effects of n-Al2 O3 on the performance of polyimide adhesive were investigated using SEM. The results were showed that n-Al2 O3 particles were segregated from adhesive to the interface, especially bulk structural defect, which may be the reason why the performance of n-Al2O3/PI adhesive becomes better. However, the detailed mechanism is still to be discussed.

  1. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    Wang, Wei; Liu, Jinsong; Wang, Kejia


    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  2. Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED

    Xu, Zhiping; Li, Min; Xu, Miao; Zou, Jianhua; Gao, Zhuo; Pang, Jiawei; Guo, Ying; Zhou, Lei; Wang, Chunfu; Fu, Dong; Peng, Junbiao; Wang, Lei; Cao, Yong


    We report a flexible amorphous Lanthanide doped In-Zn-O (IZO) thin-film transistor (TFT) backplane on polyimide (PI) substrate. In order to de-bond the PI film from the glass carrier easily after the flexible AMOLED process, a special inorganic film is deposited on the glass before the PI film is coated. The TFT exhibited a field-effect mobility of 6.97 cm2V-1 s-1, a subthreshold swing of 0.248 V dec-1, and an Ion/Ioff ratio of 5.19×107, which is sufficient to drive the OLEDs.

  3. Frequency-dependent dielectric response model for polyimide-poly(vinilydenefluoride) multilayered dielectrics

    Di Lillo, Luigi; Bergamini, Andrea; Albino Carnelli, Dario; Ermanni, Paolo


    A physical model for the frequency-dependent dielectric response of multilayered structures is reported. Two frequency regimes defined by the relative permittivities and volume resistivities of the layers have been analytically identified and experimentally investigated on a structure consisting of polyimide and poly(vinilydenefluoride) layers. The relative permittivity follows an effective medium model at high frequency while showing a dependence on the volume resistivity at low frequency. In this regime, relative permittivities exceeding those expected from effective medium model are recorded. These findings provide insights into inhomogeneous dielectrics behavior for the development of high energy density dielectric films.

  4. Electromigration in Gold Films on Flexible Polyimide Substrates as a Self-healing Mechanism.

    Putz, Barbara; Glushko, Oleksandr; Cordill, Megan J


    The study of electromigration (EM) in metallisations for flexible thin film systems has not been a major concern due to low applied current densities in today's flexible electronic devices. However, the trend towards smaller and more powerful devices demands increasing current densities for future applications, making EM a reliability matter. This work investigates EM in 50 nm Au thin films with a 10 nm Cr adhesion layer on a flexible polyimide substrate at high current densities. Results indicate that EM does occur and could be used as a self-healing mechanism for flexible electronics.

  5. High molecular weight first generation PMR polyimides for 343 C applications

    Malarik, D. C.; Vannucci, R. D.


    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  6. Coupling between Microstrip Lines Embedded in Polyimide Layers for 3D-MMICs on Si

    Ponchak, George E.; Tentzeris, Emmanouil M.; Papapolymerou, John


    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing SilSiGe monolithic microwavdmillimeter-wave integrated circuits on CMOS (low resistivity) Si wafers. However, the closely spaced transmission lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and measured characteristics of novel shielding structures that significantly reduce coupling between embedded microstrip lines are presented. A discussion of the electric and magnetic field distributions for the coupled microstrip lines is presented to provide a physical rationale for the presented results.

  7. Applicability of Polyimide Films as Etched-Track Detectors for Ultra-Heavy Cosmic Ray Components

    Yamauchi, Tomoya; Matsukawa, Kenya; Mori, Yutaka; Kanasaki, Masato; Hattori, Atsuto; Matai, Yuri; Kusumoto, Tamon; Tao, Akira; Oda, Keiji; Kodaira, Satoshi; Konishi, Teruaki; Kitamura, Hisashi; Yasuda, Nakahiro; Barillon, Rémi


    The track registration property in polyimide Kapton has been examined for heavy ions, including 2.3 GeV Fe and 24 GeV Xe ions. Conventional track formation criteria fail to predict the thresholds of etch pit formation, while a chemical criterion stating that etchable tracks are formed when two adjacent diphenyl ethers are broken in the vicinity of the ion's trajectory should be more appropriate. Discriminative detections of ultra-heavy components in cosmic rays, such as Bi, Th, and U ions, are possible by measuring the recorded track length.

  8. Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer layer

    WANG Liduo; LI Yang; CHANG Chun; DUAN Lian; QIU Yong


    A layer of polyimide is adopted to improve the adhesive ability between common flexible PET (poly(ethylene terephthalate)), generally used in the FOLEDs (flexible organic light-emitting diodes), and ITO anode. It has been demonstrated by the scrape method that great improvement of the critical load value of flexible conductive substrate and lots of melioration of the substrate's flexibility has been made. Moreover, using such a complex substrate the current density and luminescence of the OLED device are approximately four times as much as those by using common PET substrate.

  9. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis

    Morikawa, Junko; Hashimoto, Toshimasa


    The heat transport properties of aromatic polyimide thin films have become more important in the use for the electric insulation in the microelectronic devices with highly integrated circuits. The various kinds of measuring methods have been applied to obtain the anisotropic thermal conductivity and thermal diffusivity of thin films, however, if the specimens are soft and transparent, the conventional methodology requires highly advanced technology in preparing the specimens for the measurement and the results obtained vary widely. The purpose of this study is to apply the temperature wave analysis (TWA) method to measure the thermal diffusivity of thin films and spin-coated layers of aromatic polyimide in the thickness direction at various temperatures. The TWA is an absolute method to determine the thermal diffusivity by using the phase shift of temperature wave. We have performed measurements on the five different chemical structures of aromatic polyimide, including polyimide isoindoloquinazolinedione (PIQ), pyromellitic dianhydride and 4,4'-oxydianiline (PMDA/ODA), 3,3',4,4',-biphenyltetracarboxylic dianhydride and p-phenylenediamine (BPDA/PPDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline (BPDA/ODA), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 3,3'-diaminobenzophenone (BTDA/DAB). As a result, thermal diffusivity of thin films in a thickness range from 0.1 to 300 μm at a temperature range from 10 to 570 K is obtained. The thickness dependence of thermal diffusivity of spin-coated layers of PIQ exhibits a good coincidence with the tendency of molecular anisotropy observed by attenuated total reflection Fourier transform infrared spectroscopy. In the low temperature below 20 K the amorphous PMDA/ODA film exhibits a substantial increase, which can be understood by considering the phonon mean free path of amorphous systems as first noted by Kittel for inorganic glasses. The glass transition of BTDA/DAB is observed as a rapid

  10. Development and demonstration of manufacturing processes for fabricating graphite/PMR-15 polyimide structures

    Sheppard, C. H.; Hoggatt, J. T.; Hunter, A. B.


    The work included establishing controls on the polymer, the prepreg, composite fabrication, and quality assurance, as well as fabrication of structural elements to demonstrate the developed materials and processes. The fabricated structures were hat sections, I-beam sections, honeycomb sandwich structures, and molded graphite-reinforced fittings. The graphite/PMR-15 polyimide system was shown to be well suited for use in the 550-600 F temperature range; the processing techniques developed were proved and found potentially useful for other commercially available systems.

  11. Development and demonstration of manufacturing processes for fabricating graphite/LARC 160 polyimide structural elements

    Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.


    The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.

  12. Low void content autoclave molded titanium alloy and polyimide graphite composite structures.

    Vaughan, R. W.; Jones, R. J.; Creedon, J. F.


    This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.

  13. Laser printed graphene on polyimide electrodes for magnetohydrodynamic pumping of saline fluids

    Khan, Mohammed Asadullah


    An efficient, scalable pumping device is reported that avoids moving parts and is fabricated with a cost-effective method. The magnetohydrodynamic pump has electrodes facilely made by laser printing of polyimide. The electrodes exhibit a low sheet resistance of 22.75 Ω/square. The pump is implemented in a channel of 240 mm2 cross-section and has an electrode length of 5 mm. When powered by 7.3 V and 12.43 mA/cm2, it produces 13.02 mm/s flow velocity.

  14. Fluoride Rinses, Gels and Foams

    Twetman, Svante; Keller, Mette K


    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  15. Colloidal gels: Clay goes patchy

    Kegel, Willem K.; Lekkerkerker, Henk N. W.


    Empty liquids and equilibrium gels have so far been only theoretical possibilities, predicted for colloids with patchy interactions. But evidence of both has now been found in Laponite, a widely studied clay.

  16. Silica reinforced triblock copolymer gels

    Theunissen, E.; Overbergh, N.; Reynaers, H.


    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  17. Surface grafted chitosan gels. Part II. Gel formation and characterization.

    Liu, Chao; Thormann, Esben; Claesson, Per M; Tyrode, Eric


    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels with respect to pH changes was probed by quartz crystal microbalance with dissipation (QCM-D) and TIRR. Highly cross-linked gels show a small and fully reversible behavior when the solution pH is switched between pH 2.7 and 5.7. In contrast, low cross-linked gels are more responsive to pH changes, but the response is fully reversible only after the first exposure to the acidic solution, once an internal restructuring of the gel has taken place. Two distinct pKa's for both chitosan and poly(acrylic acid), were determined for the cross-linked structure using TIRR. They are associated with populations of chargeable groups displaying either a bulk like dissociation behavior or forming ionic complexes inside the hydrogel film.

  18. Performance of 6FDA–6FpDA polyimide for propylene/propane separations

    Das, Mita


    This work addresses the challenges faced by previous researchers with 6FDA-6FpDA polyimide for propylene/propane separations due to plasticization. A study of film annealing temperature is reported to optimize plasticization suppression in elevated temperature permeation on properly annealed dense films made with high molecular weight polymer. A detailed analysis of pure and mixed gas results using different permeability models is shown in this work. The annealing effects in terms of plasticization suppression and permeability and selectivity changes are discussed in detail. According to our best knowledge, this is for the first time plasticization suppression for propylene/propane has been reported with any polyimide dense film membrane. Results of pure gas sorption experiments using a pressure decay method with un-annealed and annealed films are discussed and used to analyze the permeation data using the dual-mode model. Mixed gas permeation results also are explained with dual mode and bulk flow transport models. © 2010 Elsevier B.V.

  19. Release of MEMS devices with hard-baked polyimide sacrificial layer

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.


    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  20. A facile method for preparing highly conductive and reflective surface-silvered polyimide films

    Liao, Yuan; Cao, Bing; Wang, Wen-Cai; Zhang, Liqun; Wu, Dezhen; Jin, Riguang


    A novel method was developed for the preparation of reflective and electrically conductive surface-silvered polyimide (PI) films. The polyimide films were functionalized with poly(dopamine), simply by dipping the PI films into aqueous dopamine solution and mildly stirring at room temperature. Electroless plating of silver was readily carried out on the poly(dopamine) deposited PI (PI-DOPA) surface. The surface compositions of the modified PI films were studied by X-ray photoelectron spectroscopy (XPS). XPS results show that the PI-DOPA surfaces were successfully deposited with ploy(dopamine) and were ready for electroless deposition of silver. The poly(dopamine) layer was used not only as the chemi-sorption sites for silver particles during the electroless plating of silver, but also as an adhesion promotion layer for the electrolessly deposited silver. The as-prepared silvered PI films show high conductivity and reflectivity, with a surface resistance of 1.5 Ω and a reflectivity of 95%, respectively.

  1. A facile method for preparing highly conductive and reflective surface-silvered polyimide films

    Liao Yuan; Cao Bing [State Key Laboratory of Chemical Resource Engineering, and the Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029 (China); Wang Wencai, E-mail: [State Key Laboratory of Chemical Resource Engineering, and Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029 (China); Zhang Liqun; Wu Dezhen; Jin Riguang [State Key Laboratory of Chemical Resource Engineering, and Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029 (China)


    A novel method was developed for the preparation of reflective and electrically conductive surface-silvered polyimide (PI) films. The polyimide films were functionalized with poly(dopamine), simply by dipping the PI films into aqueous dopamine solution and mildly stirring at room temperature. Electroless plating of silver was readily carried out on the poly(dopamine) deposited PI (PI-DOPA) surface. The surface compositions of the modified PI films were studied by X-ray photoelectron spectroscopy (XPS). XPS results show that the PI-DOPA surfaces were successfully deposited with ploy(dopamine) and were ready for electroless deposition of silver. The poly(dopamine) layer was used not only as the chemi-sorption sites for silver particles during the electroless plating of silver, but also as an adhesion promotion layer for the electrolessly deposited silver. The as-prepared silvered PI films show high conductivity and reflectivity, with a surface resistance of 1.5 {Omega} and a reflectivity of 95%, respectively.

  2. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating.

    Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo


    Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.

  3. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings.

    Chang, Kung-Chin; Lu, Hsin-I; Peng, Chih-Wei; Lai, Mei-Chun; Hsu, Sheng-Chieh; Hsu, Min-Hsiang; Tsai, Yuan-Kai; Chang, Chi-Hao; Hung, Wei-I; Wei, Yen; Yeh, Jui-Ming


    Nanocasting technique was used to obtain a biomimetic superhydrophobic electroactive polyimide (SEPI) surface structure from a natural Xanthosoma sagittifolium leaf. An electroactive polyimide (EPI) was first synthesized through thermal imidization. An impression of the superhydrophobic Xanthosoma sagittifolium leaf was then nanocasted onto the surface of the EPI so that the resulting EPI was superhydrophobic and would prevent corrosion. Polydimethylsiloxane (PDMS) was then used as a negative template to transfer the impression of the superhydrophobic surface of the biomimetic EPI onto a cold-rolled steel (CRS) electrode. The superhydrophobic electroactive material could be used as advanced coatings that protect metals against corrosion. The morphology of the surface of the as-synthesized SEPI coating was investigated using scanning electron microscopy (SEM). The surface showed numerous micromastoids, each decorated with many nanowrinkles. The water contact angle (CA) for the SEPI coating was 155°, which was significantly larger than that for the EPI coating (i.e., CA = 87°). The significant increase in the contact angle indicated that the biomimetic morphology effectively repelled water. Potentiodynamic and electrochemical impedance spectroscopic measurements indicated that the SEPI coating offered better protection against corrosion than the EPI coating did.

  4. Polyimide-etalon all-optical ultrasound transducer for high frequency applications

    Sheaff, Clay; Ashkenazi, Shai


    We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz ). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

  5. Fluorinated polyimide gate dielectrics for the advancing the electrical stability of organic field-effect transistors.

    Baek, Yonghwa; Lim, Sooman; Yoo, Eun Joo; Kim, Lae Ho; Kim, Haekyoung; Lee, Seung Woo; Kim, Se Hyun; Park, Chan Eon


    Organic field-effect transistors (OFETs) that operated with good electrical stability were prepared by synthesizing fluorinated polyimide (PI) gate dielectrics based on 6FDA-PDA-PDA PI and 6FDA-CF3Bz-PDA PI. 6FDA-PDA-PDA PI and 6FDA-CF3Bz-PDA PI contain 6 and 18 fluorine atoms per repeat unit, respectively. These fluorinated polymers provided smooth surface topographies and surface energies that decreased as the number of fluorine atoms in the polymer backbone increased. These properties led to a better crystalline morphology in the semiconductor film grown over their surfaces. The number of fluorine atoms in the PI backbone increased, the field-effect mobility improved, and the threshold voltage shifted toward positive values (from -0.38 to +2.21 V) in the OFETs with pentacene and triethylsilylethynyl anthradithiophene. In addition, the highly fluorinated polyimide dielectric showed negligible hysteresis and a notable gate bias stability under both a N2 environment and ambient air.

  6. Superhydrophilic Antireflective Periodic Mesoporous Organosilica Coating on Flexible Polyimide Substrate with Strong Abrasion-Resistance.

    Wang, Jing; Zhang, Cong; Yang, Chunming; Zhang, Ce; Wang, Mengchao; Zhang, Jing; Xu, Yao


    Superhydrophilic antireflective periodic mesoporous organosilica (PMO) coating was prepared on flexible polyimide substrate via solvent-evaporation-induced self-assembly (SEISA) method, in which tetraethoxysilane (TEOS) and a special bridged silsesquioxane were used as reactants. The bridged silsesquioxane, EG-BSQ, was synthesized through the stoichiometric reaction between 3-glycidoxyporpyltrimethoxysilane (GPTMS) and ethylene diamine (EDA). Under the influence of surfactant, TEOS and EG-BSQ co-condensed and enclosed the ordered mesporous in the coating. The results of grazing-incidence small-angle X-ray scattering (GISAXS) and the transmission electron microscope (TEM) indicated that the mesopores belonged to a Fmmm orthorhombic symmetry structure. With increasing EG-BSQ concentration, the mesoporous structure in the PMO coating becomes more and more disordered because silica mesopore walls shrunk or collapsed during calcination and consequently the refractive index of PMO coating became larger. The antireflective (AR) PMO coating showed an optical transmittance of 99.54% on polyimide (PI) much higher than the 88.68% of bare PI. The water contact angle of PMO coating was less than 9.0°, which indicated the AR PMO coating was superhydrophilic. Moreover, the PMO coating showed an excellent mechanical property, the transmittance of the PMO coating displayed a very low loss of 0.1% after abrasion of 25 cycles by CS-10F wearaser.

  7. Formation of a 6FDA-based ring polyimide with nanoscale cavity evaluated by DFT calculations

    Fukuda, Mitsuhiro; Takao, Yoshimi; Tamai, Yoshinori


    The computer-aided molecular design of a rigid ring molecule has been performed. As a candidate molecule, the polyimide derived from 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) with m-phenylenediamine (MDA) has been used. The optimized structures of the 6FDA-MDA model compounds including a precursor type amic acid model were investigated using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level. Using the optimized structures of the model compounds, the probable combinations to form a flat ring polyimide are considered by taking the spatial angles between the respective aromatic groups into consideration. We selected several combinations with different conformations and the number of monomer units. We showed that the dimer, trimer and tetramer of not only the 6FDA-based ring imide but also the corresponding ring amic acid can have a stable geometry. Each of them contains a cavity of sub-nanometer size and characteristic shape. Among them, the interaction energy with some guest molecules are evaluated for the smallest ring imide constructed from two units of 6FDA-MDA using the DFT calculations.

  8. Correlation between surface free energy and anchoring energy of 6CHBT on polyimide surface

    Borycki, Jerzy; Okulska-Bozek, Malgorzata; Kedzierski, Jerzy; Kojdecki, Marek A.


    Polyimides were prepared in the classical two-step method via poly(amic acids). Poly(amic acids) were obtained from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 4,4'- (hexafluoroisopropylidene)diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA), 3,3',4,4'- diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'- oxydiphthalic anhydride (ODPA) and amines 4,4'-oxydianiline (ODA), 1,3-phenylenediamine (MPD), 1,4-phenylenediamine (PPD), 4,4'-diaminodiphenylmethane (MDA), 4,4'- ethylenedianiline (DAB), 2,4,6-trimethyl-1,3- phenylenediamine (TMPD), 4-methyl-1,3-phenylenediamine (MMPD) and 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD) in dimethylformamide. The indium tin oxide (ITO)-glass plates were spin-coated with the poly(amic acids) solutions and dried. A thermal imidization process was then carried out at 250 degree(s)C for 4 h. In this study the anchoring energies of 6CHBT molecules were evaluated on rubbing aligning layers of PI films. The polar anchoring energy coefficient was determined by wedge cell method. The surface free energy and its components of polyimide layers were determined by measuring the contact angles of water, ethylene glycol, formamide and diiodomethane drops on the rubbing polymer surfaces. The Lifshitz-van der Waals and acidic-basic components of surface free energies were found from van Oss equation.

  9. Gas Permeation and Physical Aging Properties of Iptycene Diamine-Based Microporous Polyimides

    Alghunaimi, Fahd


    The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA-DAT1) and its extended iptycene analog (6FDA-DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA–DAT2 increases the free volume over 6FDA-DAT1 and reduces the chain packing efficiency. The BET surface area based on nitrogen adsorption in 6FDA-DAT2 (450 m2g−1) is ~40% greater than that of 6FDA-DAT1 (320 m2g−1). 6FDA-DAT1 shows a CO2 permeability of 120 Barrer and CO2/CH4 selectivity of 38, whereas 6FDA-DAT2 exhibits a 75% increase in CO2 permeability to 210 Barrer coupled with a moderate decrease in selectivity (CO2/CH4=30). Interestingly, minimal physical aging was observed over 150 days for both polymers and attributed to the high internal free volume of the shape-persistent iptycene geometries. The aged polyimides maintained CO2/CH4 selectivities of 25-35 along with high CO2 permeabilities of 90-120 Barrer up to partial CO2 pressures of 10 bar of an aggressive 50:50 CO2:CH4 mixed-gas feed, suggesting potential application in membranes for natural gas sweetening.

  10. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity

    Ma, Xiaohua


    A newly designed diamine monomer, 3,3,3′,3′-tetramethyl-1, 1′-spirobisindane-5,5′-diamino-6,6′-diol, was successfully used to synthesize two types of polyimides for membrane-based gas separation applications. The novel polymers integrate significant microporosity and polar hydroxyl groups, showing the combined features of polymers of intrinsic microporosity (PIMs) and functional polyimides (PIs). They possess high thermal stability, good solubility, and easy processability for membrane fabrication; the resulting membranes exhibit good permeability owing to the intrinsic microporosity introduced by the highly contorted PIM segments as well as high CO 2/CH 4 selectivity that arises from the hydroxyl groups. The membranes show CO 2/CH 4 selectivities of >20 when tested with a 1:1 CO 2/CH 4 mixture for feed pressures up to 50 bar. In addition, the incorporation of hydroxyl groups and microporosity in the polymers enhances their affinity to water, leading to remarkable water sorption capacities of up to 22 wt % at 35 °C and 95% relative humidity. © 2012 American Chemical Society.



    A kind of highly organsoluble polyimide and copolyimides were successfully synthesized from bicyclo(2.2.2)-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), the commercial diamine 4,4'-methylenedianiline (MDA) and the designed diamine 4,4'-methylenebis-(2-tert-butylaniline) (MBTBA). The polyimide from BCDA and MBTBA is highly soluble in convenfonal low boiling point solvents (such as chloroform, tetrahydrofuran) at room temperature. But the solubility of the copolyimides in conventional solvents decreased with the molar ratio of MBTBA and MDA decreased. When the molar ratio of MBTBA and MDA was larger than 7/3, the copolyimides can be soluble in low boiling point solvents at room temperature to form a transparent, flexible, tough film by solution casting. When the molar ratio of MBTBA and MDA was between 7/3 and 1/9, they can only be soluble in hot dipolar aprotic solvents (such as DMF, NMP etc.) and form films too. The copolyimide was only soluble in m-cresol when the molar ratio of MBTBA and MDA was lower than 1/9. The number-average molecular weights of the soluble copolyimides were larger than 5.8 × 104 g/mol by GPC and their polydispersity indices were higher than 1.4. Only one glass transition temperature of these copolyimides was detected around 400℃ by DMA. The copolyimides did not show appreciable decomposition up to 430℃ in N2.

  12. Postimplantation pressure testing and characterization of laser bonded glass/polyimide microjoints.

    Mian, Ahsan; Sultana, Taslema; Georgiev, Daniel; Witte, Reiner; Herfurth, Hans; Auner, Greg; Newaz, Golam


    The stability of the laser bonded titanium coated glass/polyimide microjoints were studied in vivo by implanting on a rat brain surface for 10 days. In the current state, the strength of the joints were measured by a specially designed instrument called "pressure test" equipment where the samples were subjected to a variable pressure load (using high pressure nitrogen) controlled by a pressure regulator. The strength of the joints seems to degrade by about 28% as a result of soaking in rat brain. The bond degradation in rat brain implants is similar compared with those soaked in artificial cerebrospinal fluid (CSF) solution. Polyimide uptakes water through existing pores in it and also water gets in the joint region through the edges of the samples. Water might have caused oxidation of the chemical bonds which are thought to have formed by the laser fabrication process. A separate set of samples were created using same parameters for testing the hermeticity of the laser bonds. The samples were also exposed to rat brain CSF and were tested for hermiticity at the end of 10 days exposure time. It was observed that the implanted samples retained their hermeticity although the bond strength degraded by about 28%.

  13. Dynamic mechanical properties of N-phenylnadimide modified PMR polyimide composites

    Pater, Ruth H.


    Temperature-frequency dependence of alpha, beta, and gamma transitions was determined using a Rheometrics dynamic spectrometer on a series of unidirectional Celion 6000/N-phenylnadimide (PN) modified PMR polyimide composites. The objective was to see if any correlations exist between crosslinked network structure and dynamic mechanical properties. Variation in crosslinked network structures was achieved by altering the polyimide formulation through addition of various quantities of PN into the standard PMR-15 composition. As a control, PMR-15 composite system exhibited well-defined alpha, beta, and gamma transitions in the regions of 360, 100, and -120 C, respectively. Their activation energies were estimated to be 232, 60, and 14 kcal/mole, respectively. Increasing the amount of PN concentration caused lowering of the activation energies of the three relaxations, a decrease of the glass transition temperature, and increasing intensities of the three damping peaks, compared to the control PMR-15 counterpart. These dynamic mechanical responses were in agreement with formation of a more flexible copolymer from PN and PMR-15 prepolymer.

  14. Generation of Air Microplasma Jet and Its Application to Local Etching of Polyimide Films

    Yoshiki, Hiroyuki


    An air microplasma jet (air μ-PJ) was generated at the tip of a stainless steel surgical needle with outer diameters of 0.4-0.7 mm at air flow rates of 0.3-1.0 l/min and RF (13.56 MHz) powers of 4-14 W, in which the air μ-PJ was operated without generating arc discharge at atmospheric pressure. The needle acts as both a powered electrode and a narrow gas nozzle. The peak-to-peak voltages Vpp were 1.5-1.7 kV and the temperatures of the plasma-irradiated spot (φetching of polyimide films with a thickness of 0.025 mm. A polyimide etch rate of approximately 5 μm/s was attained using a 0.4-mm-φ needle electrode at a RF power of 8 W. The etching mechanism was not based on a thermal effect but on a chemical reaction of oxygen atoms. Furthermore, the local removal of a polyamide-imide insulator film coated on a copper winding wire (φfilm to a copper wire was achieved at a RF power of 7 W and plasma irradiation times of 5-20 s.

  15. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Chuang, CHun-Hua (Inventor)


    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  16. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column.

    Vaz, Fernando Antonio Simas; de Castro, Patrícia Mendonça; Molina, Celso; Ribeiro, Sidney José Lima; Polachini, Ferminio César; Messaddeq, Younes; Nunes, Adriana Palombo; de Oliveira, Marcone Augusto Leal


    Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 microm i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximately 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene.

  17. Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes

    Swaidan, Raja


    Highly ultramicroporous, solution-processable polyimides bearing 9,10-bridgehead-substituted triptycene demonstrated the highest BET surface area reported for polyimides (840 m2 g-1) and several new highs in gas selectivity and permeability for hydrogen (1630-3980 barrers, H2/CH4 ∼ 38) and air (230-630 barrers, O 2/N2 = 5.5-5.9) separations. Two new dianhydrides bearing 9,10-diethyl- and 9,10-dipropyltriptycenes indicate that the ultramicroporosity is optimized for fast polymeric sieving with the use of short, bulky isopropyl bridgeheads and methyl-substituted diamines (TrMPD, TMPD, and TMBZ) that increase intrachain rigidity. Mechanically, the triptycene-based analogue of a spirobisindane-based polyimide exhibited 50% increases in both tensile strength at break (94 MPa) and elastic modulus (2460 MPa) with corresponding 90% lower elongations at break (6%) likely due to the ability of highly entangled spiro-based chains to unwind. To guide future polyimide design, structure/property relationships are suggested between the geometry of the contortion center, the diamine and bridgehead substituent, and the mechanical, microstructural, and gas transport properties. © 2014 American Chemical Society.

  18. An asymmetric membrane of polyimide 6FDA-BDAF and its pervaporation desulfurization for n-heptane/thiophene mixtures

    YANG Xiang-dong; YE Hong; LI Yan-ting; LI Juan; LI Ji-ding; ZHAO Bing-qiang; LIN Yang-zheng


    Polyimide (PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4´-(hexalfuoroisopro-pylidene) diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexalfuoropropane (BDAF) by the two-step polymerization method. The polymer was proved to be polyimide 6FDA-BDAF by the Fourier transform infrared (FT-IR), the1H-NMR and19F-NMR spectra. An asymmetric membrane was prepared with the synthesized polyimide 6FDA-BDAF, it was porous in the 50 μm height bulk and dense in a 3–5 μm height surface. The membrane was used to separate n-hep-tane/thiophene mixtures by pervaporation with sulfur (S) contents from 50 to 900 μg g–1. The total lfux was enlarged from 7.96 to 37.61 kg m–2 h–1 with temperature increasing from 50 to 90°C. The membrane’s enrichments factor for thiophene were about 3.13 and dependent on the experimental conditions. The experimental results demonstrated that polyimide 6FDA-BDAF would be a potential membrane material for desulfurization and controled release of the S-containing fertilizer.

  19. Surface modification of polyimide by atmospheric pressure plasma for adhesive bonding with titanium and its application to aviation and space

    Akram, M.; Bhowmik, S.; Jansen, K.M.B.; Ernst, L.J.


    It is noted that in search of long term and efficient service performance in the context of future generation of aerospace materials, there is increasing need of metal-high performance polymer composite. Based on these considerations, high temperature resistant polymeric sheet such as Polyimide

  20. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Horikawa K.


    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  1. Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric.

    Sung, Sujin; Park, Sungjun; Lee, Won-June; Son, Jongho; Kim, Chang-Hyun; Kim, Yoonhee; Noh, Do Young; Yoon, Myung-Han


    In this letter, we report that high-performance insulating films can be generated by judicious control over the microstructure of sol-gel-processed titanium dioxide (TiO2) films, typically known as wide-bandgap semiconductors. The resultant device made of 23 nm-thick TiO2 dielectric layer exhibits a low leakage current density of ∼1 × 10(-7) A cm(-2) at 2 V and a large areal capacitance of 560 nF cm(-2) with the corresponding dielectric constant of 27. Finally, low-voltage flexible organic thin-film transistors were successfully demonstrated by incorporating this versatile solution-processed oxide dielectric material into pentacene transistors on polyimide substrates.

  2. Thixotropic gel for vadose zone remediation

    Riha, Brian D.


    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  3. Thixotropic gel for vadose zone remediation

    Rhia, Brian D.


    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  4. Thixotropic gel for vadose zone remediation

    Riha, Brian D.; Looney, Brian B.


    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  5. Sol-gel derived sorbents

    Sigman, Michael E.; Dindal, Amy B.


    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  6. Copolymers For Capillary Gel Electrophoresis

    Liu, Changsheng; Li, Qingbo


    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  7. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    Thompson, David W.


    Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on

  8. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications

    Tuckerman, David B.; Hamilton, Michael C.; Reilly, David J.; Bai, Rujun; Hernandez, George A.; Hornibrook, John M.; Sellers, John A.; Ellis, Charles D.


    We describe progress and initial results achieved towards the goal of developing integrated multi-conductor arrays of shielded controlled-impedance flexible superconducting transmission lines with ultra-miniature cross sections and wide bandwidths (dc to >10 GHz) over meter-scale lengths. Intended primarily for use in future scaled-up quantum computing systems, such flexible thin-film niobium/polyimide ribbon cables could provide a physically compact and ultra-low thermal conductance alternative to the rapidly increasing number of discrete coaxial cables that are currently used by quantum computing experimentalists to transmit signals between the several low-temperature stages (from ˜4 K down to ˜20 mK) of a dilution refrigerator. We have concluded that these structures are technically feasible to fabricate, and so far they have exhibited acceptable thermo-mechanical reliability. S-parameter results are presented for individual 2-metal layer Nb microstrip structures having 50 Ω characteristic impedance; lengths ranging from 50 to 550 mm were successfully fabricated. Solderable pads at the end terminations allowed testing using conventional rf connectors. Weakly coupled open-circuit microstrip resonators provided a sensitive measure of the overall transmission line loss as a function of frequency, temperature, and power. Two common microelectronic-grade polyimide dielectrics, one conventional and the other photo-definable (PI-2611 and HD-4100, respectively) were compared. Our most striking result, not previously reported to our knowledge, was that the dielectric loss tangents of both polyimides, over frequencies from 1 to 20 GHz, are remarkably low at deep cryogenic temperatures, typically 100× smaller than corresponding room temperature values. This enables fairly long-distance (meter-scale) transmission of microwave signals without excessive attenuation, and also permits usefully high rf power levels to be transmitted without creating excessive dielectric


    Jin-gang Liu; Yang-xi Peng; Hong-shen Li; Lin Fan; Shi-yong Yang


    Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,αbis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides. The one-step polymerization polyimides could be soluble not only in polar aprotic solvents, such as N-methyl-2-pyrrolidinone, and N,Ndimethylacetamide, but also in common organic solvents, such as chloroform, cyclopentanone, m-cresol and so on. The polyimide films show excellent transparency with the UV-Vis cut-off lengths of 310-360 nm and light transmittances of higher than 80% in the visible region. In addition, the polyimides exhibit good thermal stability with an initial decomposition temperature (Td) higher than 530℃ and have more than 60% of residual weight retentions at 700 ℃.

  10. Interfacial microstructure and reaction at the spin-coated fluorinated polyimide/Al interface: surface-enhanced X-ray diffraction and TEM studies

    Tong, H. Y.; Shi, F. G.; Zhao, B.; Wang, S.-Q.; Brongo, M.; Vasudev, P. K.

    Fluorinated polyimides (FPIs) are being investigated as interlevel dielectrics (ILDs) in future multilevel interconnect technologies because of their low intrinsic dielectric constant. This study investigates the effect of thermal treatment in a pure nitrogen atmosphere on the interfacial microstructure and chemistry at the interface between a FPI thin film and its contacted Al layer in FPI/Al/Ti/SiO2 multilayers by means of X-ray diffraction, transmission electron microscopy, and an ellipsometer. The FPI precursor, a solution of PMDA/6FDA/TFMOB/PPD was spin-coated onto the Al layer and then cured at 400 °C for one hour. It is found that the moisture and oxygen from the FPI layer released during thermal treatment can lead to the oxidation of the interface between the Al and the FPI. The TEM cross-sectional images and the electron diffraction patterns indicate that the oxidized interface is amorphous. The oxidation product is identified to be Al2O3. The oxidation onset temperature is determined to be 415 °C, which is slightly higher than the curing temperature. The oxidation of the FPI/Al interface results in an increase in the electrical resistance of the Al layer, and thus may lead to a reduction in its effective electrical thickness.

  11. Composites for Advanced Space Transportation Systems - (CASTS). [graphite fiber/polyimide matrix composites and polyimide adhesives for the space shuttle orbiter

    Davis, J. G., Jr.


    The CASTS Project initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K operational capability for aerospace vehicles is described. Near term tasks include screening composites and adhesives for 589K service, developing fabrication procedures and specifications, developing design allowables test methods and data, design and test of structural elements, and construction of a full scale aft body flap for the space shuttle orbiter vehicle for ground testing. Far term tasks include research efforts directed at new materials, manufacturing procedures and design/analysis methodology. Specific results discussed include: (1) identification of four GR/PI composites and three PI adhesives with 589K service potential for periods ranging from 125 to 500 hours; (2) development of an adhesive formulation suitable for bonding reusable surface insulation (RSI) titles to 589K (GR/PI) substructure; (3) the capability to fabricate and nondestructively inspect laminates, hat section shaped stiffeners, honeycomb sandwich panels, and chopped fiber moldings; and (4) test methods for measuring design allowables at 117K.

  12. Screening effect on nanostructure of charged gel

    Sugiyama, M; Annaka, M; Hino, M


    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  13. Preparation and characterization of crystalline titania film on polyimide substrate by SILAR

    Shi, Yaping; Wu, Yiyong; Sun, Chengyue; Huo, Mingxue


    Crystalline titania films were prepared on the flexible polyimide (Kapton) substrates using the successive ionic layer adsorption and reaction (SILAR) technique modified with mixed organic amine template agents at room temperature. The titania film with the organic amine template agents presents orderly stacked morphology with cross linked V-shaped strips, and it composes of mainly anatase and minor rutile phases with N doping. Structural and morphology analysis indicates that there includes two parallel deposition growth processes: One is adsorption of the template agents and reaction with Ti4+ ions on the constraint region; and the other is a normal SILAR process of including the adsorption of Ti4+ ions and reaction with hydroxyl groups. The organic amine templates and their specific adsorption induce and direct the crystallization of the titania films. Crystal structure of the titania film was confirmed by its excellent photo catalytic property of the films, detected by the degradation test of MB.

  14. Dielectric property of polyimide/barium titanate composites and its influence factors (Ⅱ)

    Weidong LIU; Baoku ZHU; Shuhui XIE; Zhikang XU


    Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/barium titanate composite films were successfully prepared by a direct mixing method and in situ process. The influence of processing factors, such as particle size, distribution mode and polymerization method on dielectric prop-erties was studied. Results revealed that the dielectric constant (ε) of the composite film increased by using bigger fillers or employing in situ polymerization and bimodal distribution. When the composite film contain-ing 50 Vol-% of BaTiO3 with size in 100 nm was pre-pared via in situ process, its dielectric constant reached 45 at 10 kHz.

  15. Improving the Performance of Lithium-Sulfur Batteries by Employing Polyimide Particles as Hosting Matrixes.

    Gu, Pei-Yang; Zhao, Yi; Xie, Jian; Binte Ali, Nursimaa; Nie, Lina; Xu, Zhichuan J; Zhang, Qichun


    Sulfur cathodes with four polyimide (PI) compounds as hosting matrixes have been prepared through a simple one-step approach. These four PIs-S composites exhibited higher sulfur utilization and better cycling stability than pure sulfur. At a current rate of 300 mA g(-1), the initial discharge capacities of PI-1S, PI-2S, PI-3S, and BBLS reached 1120, 1100, 1150, and 1040 mAh g(-1), respectively. After the 30th cycle, PI-1S, PI-2S, PI-3S, BBLS and pristine sulfur powder still remained discharge capacities of 715, 673, 729, 643, and 550 mAh g(-1). Especially, PI-1S and PI-3S cathodes exhibit excellent cycling stability with the discharge capacities of 522 and 574 mAh g(-1) at the 450th cycle, respectively.

  16. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin


    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  17. Synthesis and characterization of novel sulfonated polyimide containing phthalazinone moieties as PEM for PEMFC

    Hai Yan Pan; Yong Fang Liang; Xiu Ling Zhu; Xi Gao Jian


    A novel sulfonated diamine monomer, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]phthalazin1-one (S-DHPZDA), was successfully synthesized by direct sulfonation of diamine 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]-phthalazin- 1-one (DHPZDA). A series of sulfonated polyimides (SPIs), which can be used as the material of the proton exchange membrane (PEM) for the proton exchange membrane fuel cell (PEMFC), were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA. The structure of the monomer and polymers were characterized by FT-IR and 1H NMR. The solubility of the S-DHPZDA-based SPIs has been improved due to the induction of the phthalazione moiety. The SPIs membranes have high thermo-stability, predominant swelling resistance with high ion exchange capacity.

  18. Study of palladium catalyzation for electroless copper plating on polyimide film.

    Kim, Bin; Jung, Sang Hee; Suh, Seung Wook; Park, Byung Ki


    In order to form flexible printed circuits through inkjet printing technique, the Pd(ll) catalyst ink was printed on the surface of polyimide film modified with KOH solution and then reduced with NaBH4 solution to extract the Pd(O) catalyst nuclei. The concentration of the Pd(ll) catalyst ink and reduction time showed a significant influence on the microstructure of the Pd(O) catalyst nuclei and the formation of Cu patterns through electroless plating. When reduction time exceeded 1 minute, and as the concentration of the Pd(II) catalyst ink increased above 0.02 M, the catalyst nuclei began aggregation, resulting in Cu patterns with thick and more defects.

  19. Dielectric and Thermal Properties of Polyimide-Poly(ethylene oxide) Nanofoamed Films

    Zhang, Yi-He; Yu, Li; Zhao, Li-Hang; Tong, Wang-Shu; Huang, Hai-Tao; Ke, Shan-Ming; Chan, H. L. W.


    Polyimide nanofoamed films have been prepared by incorporating poly(ethylene oxide) (PEO) into poly(amide acid) (PAA) precursors with subsequent imidization of PAA precursors at high temperature. The porous structure, thermal decomposition temperature, and dielectric property of nanofoamed films were investigated by scanning electron microscopy, thermogravimetric analysis, and impedance spectroscopy. Nanopores with sizes around 40 nm to 200 nm were formed in nanofoamed films by pyrolysis of PEO during the imidization progress. The decomposition temperature of nanofoamed films decreased slightly with increasing volume fraction of nanopores and maintained the high decomposition temperature of 499.7 °C when the volume fraction of nanopores was 10.9 %. The dielectric constant of nanofoamed films decreased from 3.4 for pure PI to 2.4 at 103 Hz through the introduction of nanopores with volume fraction of 10.9 %.

  20. Thermal runaway in polyimide at high electric field probed by infrared thermography

    Diaham, Sombel; Belijar, Guillaume; Locatelli, Marie-Laure; Lebey, Thierry


    An original way for characterizing dielectrics under high electric field and high temperature based on the coupling between electric current measurements and real-time fast infrared (IR) thermography is demonstrated. Particularly, the Joule heating phenomenon at high field is quantified by 2D-temperature cartography in a polyimide (PI) film set at an initial temperature of 300 °C through IR observations of the polarized electrode. 2D-temperature cartography highlights the temperature increase with increasing the electric field. The thermal runway occurs prior to the dielectric breakdown from an electric field threshold of 140-150 V/μm. This corresponds to a dissipated volume power density between 2 and 5 mW/μm3. Such values report the limit of the electro-thermal equilibrium in PI film.

  1. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure

    Peng, Shi; Li, Lingjun; Li, Wei; Wang, Chaoliang; Guo, Ying; Shi, Jianjun; Zhang, Jing


    In this paper, polyimide (PI) films are modified using an atmospheric pressure plasma generated by a dielectric barrier discharge (DBD) in argon. Surface performance of PI film and its dependence on exposure time from 0 s to 300 s are investigated by dynamic water contact angle (WCA), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (FTIR-ATR). The study demonstrates that dynamic WCA exhibits a minimum with 40 s plasma treatment, and evenly distributed nano-dots and shadow concaves appeared for 40 s and 12 s Ar plasma treatment individually. A short period of plasma modification can contribute to the scission of the imide ring and the introduction of C-O and C=O (-COOH) by detailed analysis of FTIR-ATR.

  2. Thermal assisted ion shrinkage (TAIS) of fluorinated polyimide for optical telecommunication devices

    Trigaud, T.; Moliton, J. P.; Quillat, M.; Chiron, D.


    In the framework of the development of low cost optical devices for telecommunications, here is studied the shrinkage of 6FDA-ODA polyimide films by ion irradiation as a function of five parameters: the ion fluence, the ion fluence rate, the ion energy, the ion nature and the target temperature. In the 30-350 keV energy range for impinging ions, the shrinkage remains constant whatever the tested fluence rate is. An upper limit appears for fluences above 10 16 ions cm -2. The etching is linearly dependent on the ion beam energy and reaches a maximum around 1 μm by thermal assisted ion shrinkage (TAIS) with Na + irradiations.

  3. Electrical Bistability and Erasable Memory Effect of a Functional Polyimide Film: Synthesis and Investigation of Mechanism

    Tian, Guofeng; Jia, Nanfang; Qi, Shengli; Wu, Dezhen


    A functional polyimide (PI) film, (hexafluoroisopropylidene)diphthalic anhydride-2-(9 H-carbazol-9-yl)ethyl 3,5-diaminobenzoate (6FDA-DADBC), in which DADBC serves as electron donor and 6FDA as electron acceptor, was synthesized in this work. The PI has electrical bistability and the sandwich device ITO‖6FDA-DADBC-PI‖Au made by using this functional PI as the active layer has nonvolatile memory-storage properties. It can be changed between the insulating state (Off state) and the conducting state (On state) by application of potentials of approximately 0.5 V and -2.5 V, respectively, with an On/Off current ratio of approximately 102, which is suitable for use as flash memory. Mechanisms of the charge transfer occurring in the materials were investigated, and are thoroughly discussed on the basis of molecular simulation. The PI has good thermal stability up to 400°C.

  4. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim


    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  5. Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced with Zinc Oxide Nanoparticles

    Liwen Mu


    Full Text Available ZnO nanoparticle reinforced polytetrafluoroethylene/polyimide (PTFE/PI nanocomposites were prepared and their corresponding tribological and mechanical properties were studied in this work. The influences of ZnO loading, sliding load, and velocity on the tribological properties of ZnO/PTFE/PI nanocomposites were systematically investigated. Results reveal that nanocomposites reinforced with 3 wt% ZnO exhibit the optimal tribological and mechanical properties. Specifically, the wear loss decreased by 20% after incorporating 3 wt% ZnO compared to unfilled PTFE/PI. Meanwhile, the impact strength, tensile strength, and elongation-at-break of 3 wt% ZnO/PTFE/PI nanocomposite are enhanced by 85, 5, and 10% compared to pure PTFE/PI blend. Microstructure investigation reveals that ZnO nanoparticles facilitate the formation of continuous, uniform, and smooth transfer film and thus reduce the adhesive wear of PTFE/PI.

  6. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

    Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang, E-mail: [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)


    A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

  7. Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides

    Long, Edward R., Jr.; Long, Sheila Ann T.


    The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.

  8. The piezoelectric effect on zinc oxide nano on polyimide substrate by spray pyrolysis

    Idris, A. A. M.; Arsat, R.; Ahmad, M. K.


    This paper reports the effect of the deposition conditions crystal quality and film thickness of the Zinc Oxide (ZnO) film on the polyimide substrate. The ZnO film has been deposited by using the spray pyrolysis technique. This technique needs Zinc Nitrate Hexahydrate with the mixture of deionized water. At 350 °C, a higher c-axis preferred orientation at peak 0002 crystal orientation, which is critical for piezoelectric applications in ZnO thin films are obtained with the thickness of thin film is 300ηm. It also produces the 204.8 Hz of frequency which is higher than other frequency obtained by lower growth temperature.

  9. Inlfuence of Curing Accelerators on the Imidization of Polyamic Acids and Properties of Polyimide Films

    XU Yong; ZHAO Anlu; WANG Xinlong; XUE Hui; LIU Feilong


    In order to lower the imidization temperature of polyamic acids (PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid (PHA), quinoline (QL), benzimidazole (BI), benzotriazole (BTA), triethylamine (Et3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene (DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide (PI) iflms was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180℃, but also maintain the mechanical properties and thermal stability of the ordinary PI iflm. Any residual quinoline could be removed from PI iflms by heating at 250℃ for 4 h.

  10. Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model

    Cordill, M.J., E-mail: [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversitaet Leoben, Leoben 8700 (Austria); Fischer, F.D. [Institute of Mechanics, Montanuniversitaet Leoben, Leoben 8700 (Austria); Rammerstorfer, F.G. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna 1040 (Austria); Dehm, G. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversitaet Leoben, Leoben 8700 (Austria)


    For the realization of flexible electronic devices, the metal-polymer interfaces upon which they are based need to be optimized. These interfaces are prone to fracture in such systems and hence form a weak point. In order to quantify the interfacial adhesion, novel mechanical tests and modeling approaches are required. In this study, a tensile testing approach that induces buckling of films by lateral contraction of the substrate is employed to cause delamination of the film. Based on a newly developed energy balance model, the adhesion energy of Cr films on polyimide substrates is determined by measuring the buckle geometry induced by the tensile test. The obtained minimum values for the adhesion energy (about 4.5 J m{sup -2}) of 50-190 nm thick films compare well to those found in the literature for metal films on polymer substrates.

  11. Ultrathin Polyimide-Stainless Steel Heater for Vacuum System Bake-out

    Rathjen, Christian; Henrist, Bernard; Kölemeijer, Wilhelmus; Libera, Bruno; Lutkiewicz, Przemyslaw


    Space constraints in several normal conducting magnets of the LHC required the development of a dedicated permanent heater for vacuum chamber bake-out. The new heater consists of stainless steel bands inside layers of polyimide. The overall heater thickness is about 0.3 mm. The low magnetic permeability is suitable for applications in magnetic fields. The material combination allows for temperatures high enough to activate a NEG coating. Fabrication is performed in consecutive steps of tape wrapping. Automation makes high volume production at low costs possible. About 800 m of warm vacuum system of the long straight sections of the LHC will be equipped with the new heater. This paper covers experience gained at CERN from studies up to industrialization.

  12. Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks

    Jang, Bor Z.


    High-performance thermoset resins and composites are critical to the future growth of space, aircraft, and defense industries in the USA. However, the processing-structure-property relationships in these materials remain poorly understood. In the present ASEE/NASA Summer Research Program, the plastic deformation modes and toughening mechanisms in single-phase and multiphase thermoset resins were investigated. Both thermoplastic and thermoset polyimide resins and their interpenetrating networks (IPNs and semi-IPNs) were included. The fundamental tendency to undergo strain localization (crazing and shear banding) as opposed to a more diffuse (or homogeneous) deformation in these polymers were evaluated. Other possible toughening mechanisms in multiphase thermoset resins were also examined. The topological features of network chain configuration/conformation and the multiplicity of phase morphology in INPs and semi-IPNs provide unprecedented opportunities for studying the toughening mechanisms in multiphase thermoset polymers and their fiber composites.

  13. Crosslinking-property relationships in PMR polyimide composites. I. [polymerization of monomer reactants

    Pater, R. H.; Whitley, K.; Morgan, C.; Chang, A.


    The effect of the crosslink density of the matrix on physical and mechanical properties of a graphite-fiber-reinforced PMR (for polymerization of monomer reactants) polyimide composites during isothermal aging was investigated in experiments where unidirectional composite specimens of Celion 6000/PMR-P1 were isothermally exposed at 288 C in air for various time periods up to 5000 hrs. It was found that, as the crosslink density increased, the glass transition temperature, density, and elevated-temperature interlaminar shear strength of a composite increased, while the initial moisture absorption and the coefficient of thermal expansion decreased. However, after reaching the highest possible matrix crosslink density, several of the composite properties began to deteriorate rapidly.

  14. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.


    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  15. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim


    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.


    SUN Zhenhua; ZHUANG Yugang; LI Shichun; DING Mengxian; FENG Zhiliu


    The strain induced crystallization behaviour in polyimide from 1 , 4-bis (3 ', 4 '- dicarboxyphenoxy)benzene and 4,4'-oxydianiline (PEI-E)has been investigated by WAXD, DSC and FTIR. The results obtained show that crystallization in PEI-E did take place just after tensile yielding. Meanwhile, the effect of strain induced crystallization on the thermomechanical properties was studied by DMA and TMA, the results of which indicate that the crystallization and hot stretching have a certain influence on the dynamic mechanical properties, such as weakening the β relaxation and decreasing the glass transition temperature. The TMA results confirm the shifting of glass transition temperature to lower temperature region after hot stretching. This phenomenon could be well explained by the effect of residual stress according to Eyring's theory.

  17. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries

    Miao, Yue-E.; Zhu, Guan-Nan; Hou, Haoqing; Xia, Yong-Yao; Liu, Tianxi


    Polyimide (PI) nanofiber-based nonwovens have been fabricated via electrospinning for the separators of lithium-ion batteries (LIBs). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and hot oven tests show that the PI nanofiber-based nonwovens are thermally stable at a high temperature of 500 °C while the commercial Celgard membrane exhibits great shrinkage at 150 °C and even goes melting over 167 °C, indicating a superior thermal stability of PI nanofiber-based nonwovens than that of the Celgard membrane. Moreover, the PI nanofiber-based nonwovens exhibit better wettability for the polar electrolyte compared to the Celgard membrane. The PI nanofiber-based nonwoven separators are also evaluated to have higher capacity, lower resistance and higher rate capability compared to the Celgard membrane separator, which proves that they are ideal candidates for separators of high-performance rechargeable LIBs.

  18. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki


    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  19. Monopole quasi-Yagi antenna on polyimide substrate for flexible electronics

    Liu, Jianying; Dai, Fang; Zhang, Yichen; Yu, Xin; Cai, Lulu; Zuo, Panpan; Wang, Mengjun


    In this paper, a flexible monopole quasi-Yagi antenna printed on 50um thick polyimide substrate is designed for integration within modern flexible electronic devices. The antenna has a wide working band (5.22-6.6 GHz) that covers WLAN 5.8GHz (5.725-5.825GHz). Parameters changes of proposed modeling are analyzed to achieve desired impedance matching and resonant frequency. The reflection coefficient, gain and radiation efficiency are indicated to be still robust when the proposed antenna is under various bending directions. It is worth noting that radiation patterns have an effect when antenna is bent in the y-axis direction. The antenna prototype is fabricated and tested where the simulated results agree with measured ones.

  20. Polyimide Aerogels and Porous Membranes for Ultrasonic Impedance Matching to Air

    Swank, Aaron J.; Sands, Obed S.; Meador, Mary Ann B.


    This work investigates acoustic impedance matching materials for coupling 200 kHz ultrasonic signals from air to materials with similar acoustic properties to that of water, flesh, rubber and plastics. Porous filter membranes as well as a new class of cross-linked polyimide aerogels are evaluated. The results indicate that a single impedance matching layer consisting of these new aerogel materials will recover nearly half of the loss in the incident-to-transmitted ultrasound intensity associated with an air/water, air/flesh or air/gelatin boundary. Furthermore, the experimental results are obtained where other uncertainties of the "real world" are present such that the observed impedance matching gains are representative of real-world applications. Performance of the matching layer devices is assessed using the idealized 3-layer model of infinite half spaces, yet the experiments conducted use a finite gelatin block as the destination medium.

  1. Solid state polymerization and crystallography of polyimide precursors. Ph.D. Thesis - Va. Univ.

    Wakelyn, N. T.


    Although the production of crystallinity in a polymeric system has historically led to commerically useful properties, the polyimides, prized for their high temperature characteristics, as customarily synthesized by melt or solution casting, are amorphous. It is shown that polymide containing residual crystallinity can be synthesized by isothermal annealing of crystals of the salt of the diisopropyl ester of pyromellitic acid and phenylene diamine. The reaction is topochemical in that the geometry of the polymer product is dependent upon that of the crystalline precursor. Infrared spectroscopy reveals the presence of imide absorption in the polymer, while powder diffractometry suggests residual crystallinity. Single crystal X-ray analysis of the monomer yields a structure of chains of alternating acid and base suggesting that the monomer is amenable to polymerization with a minimum of geometrical disruption.

  2. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho


    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  3. A unique 3D ultramicroporous triptycene-based polyimide framework for efficient gas sorption applications

    Ghanem, Bader


    A novel 3D ultramicroporous triptycene-based polyimide framework with high surface area (1050 m2 g−1) and thermal stability was synthesized. It exhibits relatively high CO2 (3.4 mmol g−1 at 273 K and 1 bar), H2 (7 mmol g−1 at 77 K and 1 bar), and olefin sorption capacity, good CO2/N2 (45) and CO2/CH4 (9.6) selectivity at 273 K and 1 bar, as well as promising C2H4/CH4 and C3H6/CH4 selectivities at 298 K, making it a potential candidate for CO2 capture, H2 storage, and hydrocarbon gas separation applications.

  4. A novel porphyrin-containing polyimide nanofibrous membrane for colorimetric and fluorometric detection of pyridine vapor.

    Lv, Yuanyuan; Zhang, Yani; Du, Yanglong; Xu, Jiayao; Wang, Junbo


    A novel zinc porphyrin-containing polyimide (ZPCPI) nanofibrous membrane for rapid and reversible detection of trace amounts of pyridine vapor is described. The membrane displays a distinct color change, as well as dramatic variations in absorption and fluorescent emission spectra, upon exposure to pyridine vapor. This condition allows the detection of the analyte at concentrations as low as 0.041 ppm. The vapochromic and spectrophotometric responses of the membrane are attributed to the formation of the ZPCPI-pyridine complex upon axial coordination. From surface plasmon resonance analysis, the affinity constant of ZPCPI-pyridine complex was calculated to be (3.98 ± 0.25) × 104 L · mol(-1). The ZPCPI nanofibrous membrane also showed excellent selectivity for pyridine vapor over other common amines, confirming its applicability in the manufacture of pyridine-sensitive gas sensors.

  5. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah


    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  6. Physicochemical behaviour of chitin gels.

    Vachoud, L; Zydowicz, N; Domard, A


    Syneresis of chitin gels formed in the course of N-acetylation of chitosan in hydroalcoholic media has been studied. A critical cross-linking density related to a critical acetylation degree for which the gel undergoes weak syneresis and swells in water was shown (degree of acetylation (DA) 88%). Above this value, the weight loss during syneresis increases with DA. Conversely, syneresis decreases on increasing the polymer concentration, but disappears at a macroscopic level for a polymer concentration close to the critical concentration of entanglement in the initial solution. An increase in temperature favours the formation of hydrophobic interactions and new inter- and intramolecular hydrogen bondings. Due to the weak polyelectrolyte character of chitin, the weight of the gel depends on the pH and ionic strength of the media. Swelling-deswelling experiments show that the swelling of the gel is not fully reversible in relation with the formation of new cross-links during the depletion of the network. Our results reveals that the balance between segment-segment and segment-solvent interactions as well as the molecular mobility play the major role.

  7. Fluoride Rinses, Gels and Foams

    Twetman, Svante; Keller, Mette K


    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after an el...... brushing with fluoride toothpaste....

  8. Nonlinear elasticity of alginate gels

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  9. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.


    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  10. Irradiation of Polyimide and Neutron Poison Materials by Using a HANARO Capsule

    Choo, K. N.; Cho, M. S.; Shin, Y. T.; Kim, B. G.; Seo, C. G.; Kim, Y. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A material capsule system has been developed for an irradiation test of non-fissile materials in HANARO (High flux Advanced Neutron Application ReactOr).This capsule system has been actively utilized for the various material irradiation tests requested by users from research institutes, universities, and the industries. The capsules were mainly designed for an irradiation of the RPV (Reactor Pressure Vessel) and reactor core materials, and Zr-based alloys of parts of nuclear fuel assembly. Recently, irradiation tests of neutron poison materials and Polyimide were requested by Westinghouse Electric Company (WEC) and Hanyang University, respectively. As a candidate material of control rod of AP1000 reactor, Ag and Ag-In-Cd alloys were requested to be irradiated in HANARO by WEC. Polyimide has been studied as a shielding material against thermal and fast neutrons. The irradiation of these new materials which might affect the safety of a reactor was carried out for the first time in HANARO. As a preliminary test, small amount of these materials were determined to be inserted in a KNF (Korea Nuclear Fuel) irradiation capsule of 07M-13N. Due to the new materials, the irradiation test of the 07M-13N capsule was examined and approved by the 'HANARO Safety Review Committee'. The 07M-13N capsule was safely irradiated for 95.19 days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 230{approx}420 .deg. C. The specimens of these new materials were irradiated up to a maximum fast neutron fluence of 1.13x1021(n/cm{sup 2}) (E>1.0MeV) and the dpa of the irradiated specimens were evaluated as 1.87.

  11. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix.

    Liu, Ye; Peng, Dongdong; He, Guangwei; Wang, Shaofei; Li, Yifan; Wu, Hong; Jiang, Zhongyi


    In this study, polyzwitterion is introduced into a CO2 separation membrane. Composite particles of polyzwitterion coated carbon nanotubes (SBMA@CNT) are prepared via a precipitation polymerization method. Hybrid membranes are fabricated by incorporating SBMA@CNT in polyimide matrix and utilized for CO2 separation. The prepared composite particles and hybrid membranes are characterized by transmission electron microscopy (TEM) with element mapping, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and an electronic tensile machine. Water uptake and water state of membranes are measured to probe the relationship among water uptake, water state and CO2 transport behavior. Hybrid membranes show significantly enhanced CO2 permeability compared to an unfilled polyimide membrane at a humidified state. A hybrid membrane with 5 wt % SBMA@CNT exhibits the maximum CO2 permeability of 103 Barrer with a CO2/CH4 selectivity of 36. The increase of CO2 permeability is attributed to the incorporation of the SBMA@CNT composite particles. First, SBMA@CNT form interconnected channels for CO2 transport due to the facilitated transport effect of the quaternary ammonium in repeat unit of pSBMA. Second, SBMA@CNT improve water uptake and adjust water state of membrane, which further increases CO2 permeability. Meanwhile, the variation of CO2/CH4 selectivity is dependent on the bound water portion in the membrane. A gas permeation test at a dry state and a pressure test are conducted to further probe the membrane separation performance.

  12. Yield stress determination of a physical gel

    Hvidt, Søren


    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  13. Hybrid Materials of Polymer Gels with Surfactants

    Hu Yan; Kaoru Tsujii


    @@ 1 Introduction Polymer gels have been extensively studied[1~17] since the discovery of volume phase-transition of a gel by Tanaka[1~5]. As a unique soft material, gels attract much attention and are tried to be applied for drug-delivery systgems[6], actuators or chemo-mechanical devices[7~9] and so on. In particular, controlled-release of small molecules from a gel is now a subject of special interest[10].

  14. Study of Fricke gel dosimeter response for different gel quality

    Cavinato, C. C.; Campos, L. L.


    The Fricke xylenol gel (FXG) dosimeter has been studied for application in radiotherapy because it is capable of to measure the spatial distribution of radiation doses. The dosimetry is based on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions radiation induced, related to the radiation dose. The gel material usually employed is the 300 Bloom gelatin, which is imported and very expensive in Brazil. Aiming to analyze the viability of to use a locally produced and low cost gel material, in this work the spectrophotometric responses of FXG solutions prepared using 270 Bloom gelatin commercially available and 300 Bloom gelatin imported were compared. The absorption spectra of solutions prepared with 5% by weight 270 and 300 Bloom gelatins non-irradiated and irradiated with 60Co gamma radiation in the dose range between 0.5 and 100 Gy were analysed, the dose-response curves were evaluated and the useful dose range was established. The obtained results indicate that the FXG solution prepared with 270 Bloom gelatin presents good performance, similar to that presented by the FXG solution prepared with 300 Bloom gelatin and its use can be recommended owing to the low cost and the availability in local market.

  15. The research progress of polyimide microspheres%聚酰亚胺微球的研究进展

    方雪; 苏桂明; 马宇良; 陈明月; 张晓臣


    聚酰亚胺微球是一类具有耐高温、耐溶剂性以及较低的介电性能的高比表面积的高分子材料,具有广阔的应用前景。通过探讨几类聚酰亚胺实心微球、中空微球、多孔微球以及复合微球的研究,发现这些方法仍然存在各种不同的缺点和问题。%Polyimide microspheres were considered as a class of polymer materials with high temperature resistance, solvent resistance and low dielectric properties and high specific surface area. In this article, the research progress of various polyimide microspheres including solid microspheres, hollow microspheres, porous microspheres and composite microspheres were reviewed.

  16. Advances in High Temperature Polyimide Materials%耐高温聚酰亚胺材料研究进展

    杨士勇; 范琳; 冀棉; 胡爱军; 杨海霞; 刘金刚; 何民辉


    Advanced polyimide materials have been extensively used in aerospace, aviation ant. microelectronie industries due to their outstanding thermal and cryogenic resistance, high mechanical and electrical insulating properties,and low dielectric constant and dissipation factor, etc. A review will be given in the progress of the high temperature polyimide materials developed in this Laboratory.%聚酰亚胺树脂具有出众的耐高温、耐低温性能,以及优异的力学、电绝缘、介电性能,在航天、航空、空间等高新技术领域具有重要的应用价值。本文主要介绍中国科学院化学研究所近年来在聚酰亚胺树脂领域的研究进展。

  17. Mechanical strength of low-tempepvature-irradiated polyimides: A five-to-tenfold improvement in dose-resistance over epoxies

    Coltman, R. R.; Klabunde, C. E.

    Neutronics calculations by Engholm [1] show that without additional shielding even the first fusion test reactors such as the Fusion Engineering Device may produce lifetime doses at magnet insulator locations that exceed the radiation tolerance of glass-fabric-filled (gff) epoxies now used. To explore the possible use of an alternative insulator, the mechanical strength of pure and recently available gff polyimides was studied as a function of gamma-ray irradiation at 4.9 K to 100 MGy (10 10 rads). After a postirradiation anneal at 307 K the flexure and compressive strengths of the gff materials measured at 77 K were reduced by up to 40% for 100 MGy while the pure material changed little. Testing done at 300 K gave similar results, but all stress values were about 40% less. Compared to earlier epoxy studies [2] we find that, overall, the gff polyimides are 5 to 10 times more radiation resistant than comparably prepared gff epoxies.

  18. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    Soliman Abdalla


    Full Text Available Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of four highly pure amorphous polymer films: polymethyl methacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher breakdown performance is a character of polyimide (PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  19. Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers.

    Wang, Shanshan; Liao, Yipeng; Yang, Hongjuan; Wang, Xin; Wang, Jing


    The salinity and temperature of seawater are important parameters in oceanography. Based on the directional coupler assembled by polyimide-coated micro/nanofibers, optical sensors with high sensitivity for simultaneous salinity and temperature sensing in seawater are proposed. Dependences of sensitivities on wavelength, salinity, and temperature are investigated theoretically, with which performances of such sensor under general sea conditions can be evaluated. Results show that salinity and temperature sensitivities can reach levels of nm/‰ and nm/°C, which are much higher than those of fiber Bragg gratings, knot resonators, and photonic crystal fibers. Other considerations for system design such as the length of the coupling area, the diameter difference between two fibers, and the thickness of polyimide coatings are also discussed. Sensors proposed here suggest a simple approach to realize high-sensitivity micro/nanofiber optical sensing of salinity and temperature in seawater simultaneously and may find applications in developing miniature sensors used in seawater.

  20. Development and demonstration of manufacturing processes for fabricating graphite/PMR-15 polyimide structural elements. [space shuttle aft body flap

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.


    The processing requirements for graphite/PMR-15 polyimide composites developed to demonstrate the structural integrity of polyimide composite structural elements at temperatures up to 589K (600 F) are described. Major tasks included: quality assurance development; materials and process development; specification verification; flat panel fabrication; stiffened panel fabrication; honeycomb panel fabrication; chopped fiber moldings; and demonstration component fabrication. Materials, processing, and quality assurance documents were prepared from experimentally derived data. Structural elements consisting of flat panels, corrugated stiffeners, I-beams, hat stiffeners, honeycomb panels, and chopped fiber moldings were made and tested. Property data from 219K (-65 F) to 589K (600 F) were obtained. All elements were made in a production environment. The size of each element was sufficient to insure production capability and structural component applicability. Problems associated with adhesive bonding, laminate and structural element analysis, material variability, and test methods were addressed.

  1. Development and demonstration of manufacturing processes for fabricating graphite/PMR-15 polyimide structural elements. [space shuttle aft body flap

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.


    The processing requirements for graphite/PMR-15 polyimide composites developed to demonstrate the structural integrity of polyimide composite structural elements at temperatures up to 589K (600 F) are described. Major tasks included: quality assurance development; materials and process development; specification verification; flat panel fabrication; stiffened panel fabrication; honeycomb panel fabrication; chopped fiber moldings; and demonstration component fabrication. Materials, processing, and quality assurance documents were prepared from experimentally derived data. Structural elements consisting of flat panels, corrugated stiffeners, I-beams, hat stiffeners, honeycomb panels, and chopped fiber moldings were made and tested. Property data from 219K (-65 F) to 589K (600 F) were obtained. All elements were made in a production environment. The size of each element was sufficient to insure production capability and structural component applicability. Problems associated with adhesive bonding, laminate and structural element analysis, material variability, and test methods were addressed.

  2. 21 CFR 520.1452 - Moxidectin gel.


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Moxidectin gel. 520.1452 Section 520.1452 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1452 Moxidectin gel. (a) Specifications. Each milliliter of gel contains 20 milligrams (2 percent) moxidectin. (b) Sponsor. See No....

  3. 21 CFR 866.4900 - Support gel.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and... IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a) Identification. A support gel for clinical use is a device that consists of an agar or agarose preparation...

  4. Permeability of gels is set by the impulse applied on the gel

    Urbonaite, V.; Jongh, de H.H.J.; Linden, van der E.; Pouvreau, L.A.M.


    To better understand sensory perception of foods, water exudation studies on protein-based gels are of a high importance. It was aimed to study the interplay of gel coarseness and gel stiffness on water holding (WH) and water flow kinetics from the gel once force is applied onto the material. Ovalbu

  5. 微孔聚酰亚胺的研究进展%Research Progress of Microporous Polyimide

    张海玲; 许云书


    微孔聚酰亚胺不仅具有聚酰亚胺的低介电、耐高低温等特性,而且兼备了微孔材料的密度小、质轻等诸多优点,起始分解温度一般在250℃以上,介电常数一般在2.5左右,平均密度一般小于0.3g/cm3,在航空航天、微电子领域都有应用前景.综述了微孔聚酰亚胺的制备方法,结合耐热性能、力学性能、介电常数、吸声性能等的表征,总结了微孔聚酰亚胺的研究方法,并展望了微孔聚酰亚胺的应用前景.%Microporous polyimide not only has the properties of polyimide such as low dielectric, high temperature resistance, but also has low density, light weight, and many other advantages of the microporous materials. Its starting decomposition temperature is above 25O℃ commonly, dielectric constant is about 2. 5 in general and the average density is less than 0. 3g/cm3. In addition, it has application prospect in aerospace and microelectronics area. The preparation method of the microporous polyimide is reviewed, the characterization methods of the properties such as heat resistance, mechanical strength, dielectric constant, sound absorption and other aspects are summarized, and the application prospect of microporous polyimide is discussed.

  6. Polyimide Dielectric Layer on Filaments for Organic Field Effect Transistors: Choice of Solvent, Solution Composition and Dip-Coating Speed

    Rambausek Lina


    Full Text Available In today’s research, smart textiles is an established topic in both electronics and the textile fields. The concept of producing microelectronics directly on a textile substrate is not a mere idea anymore and several research institutes are working on its realisation. Microelectronics like organic field effect transistor (OFET can be manufactured with a layered architecture. The production techniques used for this purpose can also be applied on textile substrates. Besides gate, active and contact layers, the isolating or dielectric layer is of high importance in the OFET architecture. Therefore, generating a high quality dielectric layer that is of low roughness and insulating at the same time is one of the fundamental requirements in building microelectronics on textile surfaces. To evaluate its potential, we have studied polyimide as a dielectric layer, dip-coated onto copper-coated polyester filaments. Accordingly, the copper-coated polyester filament was dip-coated from a polyimide solution with two different solvents, 1-methyl-2-pyrrolidone (NMP and dimethylformaldehyde. A variety of dip-coating speeds, solution concentrations and solvent-solute combinations have been tested. Their effect on the quality of the layer was analysed through microscopy, leak current measurements and atomic force microscopy (AFM. Polyimide dip-coating with polyimide resin dissolved in NMP at a concentration of 15w% in combination with a dip-coating speed of 50 mm/min led to the best results in electrical insulation and roughness. By optimising the dielectric layer’s properties, the way is paved for applying the subsequent semi-conductive layer. In further research, we will be working with the organic semiconductor material TIPS-Pentacene

  7. Coupling Between Microstrip Lines and Finite Ground Coplanar Lines Embedded in Polyimide Layers for 3D-MMICs on Silicon

    Ponchak, G. E.; Bushyager, N.; Papapolymerou, J.; Tentzeris, E. M.; Laskar, J.


    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/mm-wave integrated circuits on CMOS (low resistivity) Si wafers. It is expected that these circuits will replace the ones fabricated on GaAs and reduce the overall system cost. However, the closely spaced transmission lines that are required for a high-density circuit environment are susceptible to high levels of cross-coupling, which degrades the overall circuit performance. In this paper, theoretical and experimental results on coupling and ways to reduce it are presented for two types of transmission lines: a) the microstrip line and b) the Finite Ground Coplanar (FGC) line. For microstrip lines it is shown that a fence of metalized via-holes can significantly reduce coupling, especially in the case when both lines are on the same polyimide layer or when the shielding structure extends through several polyimide layers. For closely spaced microstrip lines, coupling is lower for a metal filled trench shield than a via-hole fence. Coupling amongst microstrip lines is dependent on the ratio of line separation to polyimide thickness and is primarily due to magnetic fields. For FGC lines it is shown that they have in general low coupling that can be reduced significantly when there is even a small gap between the ground planes of each line. FGC lines have approximately 8 dB lower coupling than coupled coplanar waveguides (CPW). In addition, forward and backward characteristics of the FGC lines do not resemble those of other transmission lines such as microstrip. Therefore, the coupling mechanism of the FGC lines is different compared to thin film microstrip lines.

  8. Development and demonstration of manufacturing processes for fabricating graphite/Larc-160 polyimide structural elements, part 4, paragraph B


    Progress in the development of processes for production of Celion/LARC-160 graphite-polyimide materials, quality control, and the fabrication of Space Shuttle composite structure components is reported. Liquid chromatographic analyses of three repeatibility batches were performed and are compared to previous Hexcel standard production and to variables study LARC-160 intermediate resins. Development of processes for chopped fiber molding are described and flexural strength, elastic modulus, and other physical and mechanical properties of the molding are presented.

  9. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices.

    Jiao, Wenmei; Ban, Yujie; Shi, Zixing; Jiang, Xuesong; Li, Yanshuo; Yang, Weishen


    Carbon molecular sieve membranes (CMSMs) were fabricated by pyrolysis of MOF-doped polyimide mixed matrix membranes. ZIF-108 (Zn(2-nitroimidazolate)2) was used as a dopant to tailor the micropores of the as-prepared CMSMs into narrow ultramicropores, providing a remarkable combination of permeability and selectivity of membranes in CO2/CH4, O2/N2 and N2/CH4 separation.

  10. Estimation of the impurity levels in polyimide foils and the life-time of the foils irradiated by charged projectiles

    Jaskóła, M.; Korman, A.; Stolarz, A.


    The life-time of thin polyimide foils (prepared by in-situ polymerisation) in beams of 2.0 MeV helium ions and 1.5 MeV protons has been studied, irradiating foils with beams of different intensities. The impurity levels of the foils measured by PIXE and RBS were found to be in order of ng/cm 2.

  11. Fluoride Rinses, Gels and Foams

    Twetman, Svante; Keller, Mette K


    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... an electronic search for literature published in English between 2003 and 2014. The included papers were assessed for their risk of bias and the results were narratively synthesized due to study heterogeneity. The quality of evidence was expressed according to GRADE. RESULTS: A total of 19 papers were included...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse...

  12. Gel dosimetry for conformal radiotherapy

    Gambarini, G. [Department of Physics of the University and INFN, Milan (Italy)]. e-mail:


    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  13. Sol-gel derived ceramics


    The synthesis of ceramic raw materials has become an important factor in ceramic technologies. The increasing demands to the performance of ceramic compounds has caused increased activities for the preparation of tailor-made raw materials. Amongst a variety of new syntheses like flame pyrolysis, reactive spray drying, plasma or laser assisted techniques, the sol-gel process plays an important and increasing role. The process describes the building up of an inorganic (in general an oxide) netw...

  14. The Sol-Gel Process

    Khalid Suliman Aboodh


    Abstract An increasingly important application of liquid jets is the disintegration of the jet to form droplets of liquid containing nuclear fuel. These droplets are then dried and sintered to form ceramic micro spheres for use in fuel elements in nuclear reactors. The total operations required to form the droplets convert them to solids and fire them to ceramic bodies comprise what are known as Sol-Gel processes Reference 13.

  15. Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

    Lizardo, Ernesto B.


    Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS applications brought the need of a wider catalog of materials, including polymers, now being used to fabricate MEMS. Polyimide is a very attractive polymer for MEMS fabrication due to its high temperature stability compared to other polymers, low coefficient of thermal expansion, low film stress and low cost. The goal of this thesis is to expand the Polyimide usage as structural material for MEMS by the development of a multi-user fabrication process for the integration of this polymer along with multiple metal layers on a silicon substrate. The process also integrates amorphous silicon as sacrificial layer to create free-standing structures. Dry etching is used to release the devices and avoid stiction phenomena. The developed process is used to fabricate platforms for micro-hotplate gas sensors. The fabrication steps for the platforms are described in detail, explaining the process specifics and capabilities. An initial testing of the micro-hotplate is presented. As the process was also used as educational tool, some designs made by students and fabricated with the Polyimide-MEMS process are also presented.

  16. Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone.

    Mrsevic, Miroslav; Düsselberg, David; Staudt, Claudia


    Soluble functional (co)polyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (co)polyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4'-(hexafluoroisopropylidene)di(phthalic anhydride) (6FDA), 3,5-diaminobenzoic acid (DABA), 4,4'-diaminodiphenylsulfide (4,4'-SDA) and 3,3'-diaminodiphenylsulfone (3,3'-DDS) were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (co)polyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials.

  17. Contact angle hysteresis: study by dynamic cycling contact angle measurements and variable angle spectroscopic ellipsometry on polyimide.

    Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K


    The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.

  18. Aromatic Polyimide and Crosslinked Thermally Rearranged Poly(benzoxazole-co-imide) Membranes for Isopropanol Dehydration via Pervaporation

    Ming Xu, Yi


    Novel crosslinked thermally rearranged polybenzoxazole (C-TR-PBO) membranes, which show impressive results for isopropanol dehydration, have been obtained via in-situ thermal conversion of hydroxyl-containing polyimide precursors. The polyimide precursors are synthesized by the polycondensation of three monomers; namely, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 3,3′-dihydroxybenzidine diamine (HAB) and 3,5-diaminobenzoic acid (DABA). Due to the incorporation of the carboxylic-group containing diamine DABA into an ortho-hydroxypolyimide precursor, the thermal induced crosslinking reaction can be achieved together with the thermal rearrangement process. Consequently, a synergistic effect of high permeability and high selectivity can be realized in one step. The resultant C-TR-PBO membrane exhibits an unambiguous enhancement in permeation flux compared to their polyimide precursors. Moreover, the newly developed C-TR-PBO membrane displays stable isopropanol dehydration performance at 60 °C throughout the continuous 200 hours. The promising preliminary results achieved in this study may offer useful insights for the selection of membrane materials for pervaporation and new methods to molecularly design next-generation pervaporation membranes.

  19. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation

    Alaslai, Nasser Y.


    An intrinsically microporous polyimide is synthesized in m-cresol by a one-pot high-temperature condensation reaction of 4,4\\'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and newly designed 2,6 (7)-dihydroxy-3,7(6)-diaminotriptycene (DAT1-OH). The 6FDA-DAT1-OH polyimide is thermally stable up to 440 °C, shows excellent solubility in polar solvents, and has moderately high Brunauer-Teller-Emmett (BET) surface area of 160 m2 g-1 , as determined by nitrogen adsorption at -196 °C. Hydroxyl functionalization applied to the rigid 3D triptycene-based diamine building block results in a polyimide that exhibits moderate pure-gas CO2 permeability of 70 Barrer combined with high CO2 /CH4 selectivity of 50. Mixed-gas permeation studies demonstrate excellent plasticization resistance of 6FDA-DAT1-OH with impressive performance as potential membrane material for natural gas sweetening with a CO2 permeability of 50 Barrer and CO2 /CH4 selectivity of 40 at a typical natural gas well partial pressure of 10 atm.

  20. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation.

    Alaslai, Nasser; Ma, Xiaohua; Ghanem, Bader; Wang, Yingge; Alghunaimi, Fahd; Pinnau, Ingo


    An intrinsically microporous polyimide is synthesized in m-cresol by a one-pot high-temperature condensation reaction of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and newly designed 2,6 (7)-dihydroxy-3,7(6)-diaminotriptycene (DAT1-OH). The 6FDA-DAT1-OH polyimide is thermally stable up to 440 °C, shows excellent solubility in polar solvents, and has moderately high Brunauer-Teller-Emmett (BET) surface area of 160 m(2) g(-1) , as determined by nitrogen adsorption at -196 °C. Hydroxyl functionalization applied to the rigid 3D triptycene-based diamine building block results in a polyimide that exhibits moderate pure-gas CO2 permeability of 70 Barrer combined with high CO2 /CH4 selectivity of 50. Mixed-gas permeation studies demonstrate excellent plasticization resistance of 6FDA-DAT1-OH with impressive performance as potential membrane material for natural gas sweetening with a CO2 permeability of 50 Barrer and CO2 /CH4 selectivity of 40 at a typical natural gas well partial pressure of 10 atm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R


    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  2. Gel fire suppressants for controlling underground heating

    HU Sheng-gen; XUE Sheng


    One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines.CSIRO researchers have developed a number of polymer gels suitable for controlling heatings in coal mines.These gels were developed to meet strict selection criteria including easy preparation,no or low toxicity,controllable gelation time,adaptable to mine water chemistry,adjustable viscosity,relatively long gel life,thermally and chemically stable and low cost.The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in underground coal mines.These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.

  3. Consolidation of Inorganic Precipitated Silica Gel

    Matthias Kind


    Full Text Available Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case of precipitated silica gels, this consolidation process depends on temperature and pH, among other parameters. It is shown that these dependencies can be characterized by oedometer measurements. Originally, the oedometer test (one-dimensional compression test stemmed from soil mechanics. It has proven to be an interesting novel examination method for gels. Quantitative data of the time-dependent shrinkage of gel samples can be obtained. The consolidation of the gels shows a characteristic dependence on the above parameters.

  4. Analysis of the Effect of Surface Modification on Polyimide Composites Coated with Erosion Resistant Materials

    Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)


    The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the

  5. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Hiromitsu Kozuka


    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.


    Prima Astuti Handayani


    Full Text Available Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahanCH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl. Rice hull ash (RHA is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH and siloxan (Si-O-Si group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59

  7. Thermal, optical and photoinduced properties of a series of homo and co-polyimides with two kinds of covalently bonded azo-dyes and their supramolecular counterparts

    Konieczkowska, Jolanta; Wojtowicz, Magdalena; Sobolewska, Anna; Noga, Joanna; Jarczyk-Jedryka, Anna; Kozanecka-Szmigiel, Anna; Schab-Balcerzak, Ewa


    The paper describes the synthesis and characterization of new aromatic polyimides with one or two different moieties of the azo-dyes covalently attached to the polymer backbone and their supramolecular analogues. Azo-functionalized polyimides were prepared using post-polymerization method including the introduction of Disperse Red 13 and/or 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine to homo and co-polyimides containing hydroxyl groups via Mitsunobu reaction. The degree of functionalization of polymers with chromophores was estimated by UV-Vis spectroscopy. Polyimides containing hydroxyl groups were applied as matrixes to create supramolecular systems based on hydrogen bonds. Hydrogen-bond interactions in azosystems were studied by FTIR spectroscopy. The polymers were characterized by 1H NMR, FTIR, X-ray, UV-Vis, DSC and TGA methods. The photoisomerization process was investigated in supramolecular systems. The light-induced anisotropy was studied in a holographic gratings recording experiment and by photoinduced birefringence measurements. The polymer films were investigated by atomic force microscopy (AFM) after the diffraction grating recording to confirm formation of surface relief gratings (SRGs). To the best of our knowledge, that the first time photoinduced anisotropy has been studied by birefringence measurements in polyimides containing two different azo-dyes.

  8. 聚酰亚胺泡沫吸声性能与理论分析%Acoustic Absorption Properties and Theoretics of Polyimide Foams

    潘丕昌; 詹茂盛; 沈燕侠; 王凯


    采用前驱体微球法制备闭孔聚酰亚胺泡沫,并对其吸声性能进行了研究.结果表明,闭孔聚酰亚胺泡沫具有共振吸声特点;对闭孔聚酰亚胺泡沫的吸声系数进行了理论推导,研究了泡沫厚度对泡沫吸声性能的影响,分析了聚酰亚胺泡沫的吸声理论;采用闭孔泡沫与开孔泡沫组合后,泡沫整体吸声性能显著提高.%The closed cell polyimide foams were fabricated by foaming the precursor balloons, and the foams' acoustic absorption properties were tested. The results show that the acoustic absorption properties of closed cell polyimide foams have the typical resonance acoustic absorption characteristic. The acoustic absorption properties of polyimide foams were researched, and the influence of thickness and density on its acoustic absorption properties were also studied, the acoustic absorption theoretics of polyimide foams was analyzed. The combination of closed cell and open cell polyimide foams can notable enhance the acoustic absorption coefficient.

  9. Analysis of interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide diodes by electroluminescence spectroscopy and electric-field-induced optical second-harmonic generation measurement

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa


    By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.

  10. Metal-silica sol-gel materials

    Stiegman, Albert E. (Inventor)


    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  11. Sol-gel electrochromic device


    All solid state electrochromic devices have potential applications in architectural and automotive fields to regulate the transmission and reflection of radiant energy. We present the optical and electrochemical characteristics of two solid state windows having the configuration glass/ITO/TiO2-CeO2/TiO2/TiO2-CeO2/ITO/glass and glass/ITO/WOa/TiO2/TiO2-CeO2/ITO/glass where the three internal layers have been prepared by sol gel methods. The preparation of the individual sols and some physical p...

  12. Motility initiation in active gels

    Recho, Pierre; Truskinovsky, Lev


    Motility initiation in crawling cells requires a symmetry breaking mechanism which transforms a symmetric state into a polarized state. Experiments on keratocytes suggest that polarization is triggered by increased contractility of motor proteins. In this paper we argue that contraction can be responsible not only for the symmetry breaking transition but also for the incipient translocation of the segment of an active gel mimicking the crawling cell. Our model suggests that when the contractility increases sufficiently far beyond the motility initiation threshold, the cell can stop and re-symmetrizes. The proposed theory reproduces the motility initiation pattern in fish keratocytes and the behavior of keratocytes prior to cell division.

  13. The Study of Electroluminescence and Reliability of Polyimide Films in High DC Fields

    Jiaqi LIN


    Full Text Available Electroluminescence (EL intensity of the polyimide (PI films was tested under dc high electric field by home-made experimental device. The results showed that the EL intensity of PI films increased along with the electric field. EL intensity is approximately to background intensity when the electric-field intensity was less than 2.00 MV/cm. EL intensity increases along with increasing the electric field when electric-field intensity greater than 2.00 MV/cm. When electric-field at 2.80 MV/cm, EL intensity increasing strongly suggests that the excitation process related to hot electrons accelerated by the field approaching a critical threshold. Meanwhile, this work elaborates a method to deal with identical samples get different experimental data by using Weibull distribution method, and the concept of the reliability was presented. The nine groups of EL experimental data were analyzed, and the result showed that the lifetime of mid-value (t = 164.9 min. Mid-value of the breakdown field is E = 2.76 MV/cm.DOI:

  14. A new high-performance ionic polymer-metal composite based on Nafion/polyimide blends

    Nam, Jungsoo; Hwang, Taeseon; Kim, Kwang Jin; Lee, Dong-Chan


    For the first time, we report ion-exchange membranes based on Nafion and polyimide (PI, Kapton) blends to fabricate ionic polymer-metal composites (IPMCs). Polyamic acid [PAA, poly(pyromellitic dianhydride-co-4,4‧-oxydianiline), as a precursor of PI] solution was blended with Nafion solution using physical blending method to provide PAA-Nafion blend membrane. This work demonstrates that, by simple physical blending method, the thermal and mechanical properties of Nafion can be improved while maintaining the excellent actuating performance. After thermal imidization, PAA converted into PI, resulting in PI-Nafion blend membrane. Optimum conditions to cast PAA-Nafion blends and thermal imidization have been established, and blend membranes with PI wt% of 6, 12, 18, and 30 were prepared. Fourier transform infrared spectroscopy confirmed the incorporation of PI in the Nafion matrix. Thermal decomposition unique to the PI became more noticeable as the content of PI increased, which was measured by thermogravimetric analysis. Dynamic mechanical analysis showed that the storage modulus (E‧) increased as a function of PI content while loss modulus (E″) exhibited only a minor change, which resulted in the decrease in the damping properties (tan δ). The blend membranes were fabricated into IPMCs by deposition of platinum electrode onto the membrane surface through electroless plating process. Among tested, NPI-18 IPMC actuator, which has 18 wt% of PI in Nafion, showed comparable electromechanical performance to the commercially available Nafion 117 IPMC actuator.

  15. Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries

    Lee, Yunju; Lee, Hoogil; Lee, Taejoo; Ryou, Myung-Hyun; Lee, Yong Min


    To improve the safety of lithium-ion batteries (LIBs), co-polyimide (PI) P84 was introduced as a polymeric binder for Al2O3/polymer composite surface coatings on polypropylene (PP) separators. By monitoring the dimensional shrinkage of the PP separators at high temperatures, we verified a synergistic thermal stabilization effect between the Al2O3 ceramic and the PI polymeric binder. Although PI was thermally stable up to 300 °C, a coating consisting solely of PI did not impede the PP separator dimensional changes (-22% at 150 °C). On the other hand, the Al2O3/PI-coated PP separators efficiently impeded the thermal shrinkage (-10% at 150 °C). In contrast, an Al2O3/poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) combination lowered the thermal stability of the PP separators (-33% at 150 °C). As a result, the Al2O3/PI-coated PP separators remarkably suppressed the internal short-circuit of the unit half-cells associated with separator thermal shrinkage (100 min at 160 °C), whereas the PVdF-HFP retained only 40 min under identical conditions. The Al2O3/PI-coated PP separators achieved rate capabilities and cell performances similar to those of the bare PP separators.

  16. Cell fouling resistance of PEG-grafted polyimide film for neural implant applications

    Heo, Dong Nyoung; Yang, Dae Hyeok; Lee, Jung Bok; Bae, Min Su; Park, Ha Na; Kwon, Il Keun


    Recently, neural prosthetic electrodes covered with polyimide (PI) have been developed for chronic recording and stimulation of nervous system function. However, when these devices are implanted onto the nerve trunk, nerves might be damaged by the presence of the electrode due to the mechanical mismatch between the stiff probe and the soft biological tissue. Consequently, newly formed tissue layer may isolate the electrode from neural tissue, resulting in poor signal detection. In this study, we found a method to solve this problem. As the method, we designed and prepared poly(ethylene glycol) (PEG)-grafted PI film to function cell fouling resistance. The PEG-grafted PI film was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. Protein adsorption experiment was carried out to evaluate protein fouling resistance because protein adsorption is closely related to cell adhesion. In vitro cell behavior on PEG-grafted PI film was evaluated by confocal laser scanning microscopy (CLSM) and CCK assays. The results showed that PEG-grafted PI film has characteristics of protein and cell fouling resistances as compared to bare and hydrolyzed PI films under in vitro. We suggested that PEG-grafted PI film can be useful for a neural implantable electrode.

  17. Preparation,structure and properties of porous polyimide films via PAA/PU alloy

    LIU Jiugui; JIANG Lizhong; ZHAN Jiayu; WU Dezhen; JIN Riguang


    A new route to porous polyimide(PI)films with pore sizes in the nanometer regime was developed.A polyamic acid(PAA)/polyurethane(PU)blend with PU as the disperse phase was first prepared via in situ polymerization of pyromellitic dianhydride and 4,4-oxydianiline in PU solutions.Porous PI films were obtained from PAAJPU films by thermolysis of PU at 360℃ and imidization of PAA at 300℃,respectively.Fourier transform infrared spectroscopy and thermal gravimetric analysis were used to detect the imidization and thermolysis processes of PAA/PU blends under thermal treatment.The microporous structure of the PI films was observed by transmission electron microscopy.It was found that the size and content of pores increased with an increase in the PU mass fraction in the PAA/PU blend up to 20%.Because of the existence of nanopores,the dielectric constant of PI films decreased by a wide margin and was less than 2.0 at a PU mass fraction of 20%.It implies that this is an effective means to reduce the dielectric constant of PI,but it also causes the decrease of tensile strength and the rise of water absorption.

  18. The effects of high electronic energy loss on the chemical modification of polyimide

    SunYouMei; Jin Yun Fan; Liu Chang Long; LiuJie; Wang Zhi Guang; Zhang Qi; Zhu Zhi Yong


    In order to observe the role of electronic energy loss (dE/dX) sub e on chemical modification of polyimide (PI), the multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.37 GeV Ar sup 4 sup 0 , 1.98 GeV Kr sup 8 sup 4 , 1.755 GeV Xe sup 1 sup 3 sup 6 and 2.636 GeV U sup 2 sup 3 sup 8) under vacuum and room temperature. The chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/Vis) absorption spectroscopy. The degradation of PI was investigated in the fluence range from 1x10 sup 1 sup 0 to 5.5x10 sup 1 sup 2 ions/cm sup 2 and different electronic energy loss from 0.77 to 11.5 keV/nm. The FTIR results show the absorbance of the typical function group decrease exponentially as a function of fluence. The alkyne end group was found after irradiation and its formation radii were 5.6 and 5.9 nm corresponding to 8.8 and 11.5 keV/nm Xe irradiation respectively. UV/Vis analysis indicates the radiation induced...

  19. Huge nanodielectric effects in polyimide/boron nitride nanocomposites revealed by the nanofiller size

    Diaham, S.; Saysouk, F.; Locatelli, M.-L.; Lebey, T.


    The dielectric properties of polyimide/boron nitride (PI/BN) nanocomposite films are investigated as a function of the BN nanofiller size from 20 to 350 °C and at low filler content (1-2 vol.%). The role of the BN nanofiller size on the large reduction of the electrode polarization relaxation phenomenon due to ionic movements is reported. For the two smallest BN nanoparticles (95 nm and 35 nm), the permittivity, dielectric losses and dc conductivity are strongly attenuated above 200 °C by a factor of 10 to 1000 compared to neat PI. Thus, the dc conductivity at 350 °C is reduced from 4   ×   10-8 Ω-1 cm-1 for neat PI to 3   ×   10-11 Ω-1 cm-1 for PI/BN (35 nm). Moreover, a further decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent which improves the grafting of PI chains on those latter nanoparticles. These results highlight the trapping efficiency in the interphase region introduced by the small BN nanofillers (<100 nm) and provides evidence as to the huge nanodielectric effects on the charge carrier transport controlled by the nanoparticle diameter. This finding should be of great importance for advanced high temperature electrical insulation in the future.

  20. Improved performances of AlN/polyimide hybrid film and its application in redistribution layer

    Liu, Zhe; Ding, Guifu; Luo, Jiangbo; Lu, Wen; Zhao, Xiaolin; Cheng, Ping; Wang, Yanlei


    The AlN/polyimide (PI) hybrid film was studied as the dielectric layer in the redistribution layer (RDL) in this work. The incorporation of the AlN into the PI matrix was achieved by mechanical ball-milling process. The spin-coating process was used to fabricate the AlN/PI hybrid film, which is compatible with micro-electro-mechanical system (MEMS) technology for fabricating RDL. The AlN/PI hybrid film was characterized by Fourier transform infrared (FTIR) spectrum and thermogravimetric analysis (TGA). The effect of the AlN content on the thermal stability, thermal expansion coefficient, hardness and water adsorption of the AlN/PI hybrid film was studied. The results indicated that the addition of AlN nanoparticles improved the thermal stability and hardness, but decreased the thermal expansion coefficient and water absorption of the pure PI film. As an example of its typical application, the AlN/PI hybrid film with 8 wt.% AlN was patterned using micromachining technology and used as the dielectric layer in RDL successfully.