WorldWideScience

Sample records for rocky mountain rivers

  1. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  2. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    Science.gov (United States)

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  3. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  4. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  5. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    Science.gov (United States)

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  6. Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Transmission Signs and Symptoms Diagnosis and Testing ...

  8. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  9. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  10. Biogeographic, cultural, and historical setting of the Northern Rocky Mountains [Chapter 2

    Science.gov (United States)

    S. Karen. Dante-Wood

    2018-01-01

    The Northern Rockies Adaptation Partnership (NRAP) includes diverse landscapes, ranging from high mountains to grasslands, from alpine glaciers to broad rivers (fig. 1.1). This region, once inhabited solely by Native Americans, has been altered by two centuries of settlement by Euro- Americans through extractive practices such as timber harvest, grazing, and mining,...

  11. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  12. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    Science.gov (United States)

    Jaime R. Goode; Charles H. Luce; John M. Buffington

    2012-01-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to...

  13. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  14. A case of Rocky Mountain spotted fever.

    Science.gov (United States)

    Rubel, Barry S

    2007-01-01

    Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.

  15. Managing Rocky Mountain spotted fever.

    Science.gov (United States)

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  16. Rocky Mountain spotted fever from an unexpected tick vector in Arizona.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc S; Nicholson, William L; Paddock, Christopher D; Blau, Dianna M; Eremeeva, Marina E; Dasch, Gregory A; Levin, Michael L; Singleton, Joseph; Zaki, Sherif R; Cheek, James E; Swerdlow, David L; McQuiston, Jennifer H

    2005-08-11

    Rocky Mountain spotted fever is a life-threatening, tick-borne disease caused by Rickettsia rickettsii. This disease is rarely reported in Arizona, and the principal vectors, Dermacentor species ticks, are uncommon in the state. From 2002 through 2004, a focus of Rocky Mountain spotted fever was investigated in rural eastern Arizona. We obtained blood and tissue specimens from patients with suspected Rocky Mountain spotted fever and ticks from patients' homesites. Serologic, molecular, immunohistochemical, and culture assays were performed to identify the causative agent. On the basis of specific laboratory criteria, patients were classified as having confirmed or probable Rocky Mountain spotted fever infection. A total of 16 patients with Rocky Mountain spotted fever infection (11 with confirmed and 5 with probable infection) were identified. Of these patients, 13 (81 percent) were children 12 years of age or younger, 15 (94 percent) were hospitalized, and 2 (12 percent) died. Dense populations of Rhipicephalus sanguineus ticks were found on dogs and in the yards of patients' homesites. All patients with confirmed Rocky Mountain spotted fever had contact with tick-infested dogs, and four had a reported history of tick bite preceding the illness. R. rickettsii DNA was detected in nonengorged R. sanguineus ticks collected at one home, and R. rickettsii isolates were cultured from these ticks. This investigation documents the presence of Rocky Mountain spotted fever in eastern Arizona, with common brown dog ticks (R. sanguineus) implicated as a vector of R. rickettsii. The broad distribution of this common tick raises concern about its potential to transmit R. rickettsii in other settings. Copyright 2005 Massachusetts Medical Society.

  17. Ongoing Cerebral Vasculitis During Treatment of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Sun, Lisa R; Huisman, Thierry A G M; Yeshokumar, Anusha K; Johnston, Michael V

    2015-11-01

    Rocky Mountain spotted fever is a tickborne infection that produces a systemic small-vessel vasculitis; its prognosis is excellent if appropriate treatment is initiated early. Because the advent of effective antirickettsial therapies predates the widespread use of brain magnetic resonance imaging, there are limited data on the effect of untreated Rocky Mountain spotted fever infection on neuroimaging studies. We describe a 7-year-old girl with delayed treatment of Rocky Mountain spotted fever who suffered severe neurological impairment. Serial brain magnetic resonance images revealed a progressive "starry sky appearance," which is proposed to result from the same small vessel vasculitis that causes the characteristic skin rash of this infection. Neurological injury can continue to occur despite specific antirickettsial therapy in Rocky Mountain spotted fever. This child's clinical features raise questions about the optimal management of this infection, particularly the utility of immune modulating therapies in cases of delayed treatment and neurological involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Rocky Mountain spotted fever: a clinician's dilemma.

    Science.gov (United States)

    Masters, Edwin J; Olson, Gary S; Weiner, Scott J; Paddock, Christopher D

    2003-04-14

    Rocky Mountain spotted fever is still the most lethal tick-vectored illness in the United States. We examine the dilemmas facing the clinician who is evaluating the patient with possible Rocky Mountain spotted fever, with particular attention to the following 8 pitfalls in diagnosis and treatment: (1) waiting for a petechial rash to develop before diagnosis; (2) misdiagnosing as gastroenteritis; (3) discounting a diagnosis when there is no history of a tick bite; (4) using an inappropriate geographic exclusion; (5) using an inappropriate seasonal exclusion; (6) failing to treat on clinical suspicion; (7) failing to elicit an appropriate history; and (8) failing to treat with doxycycline. Early diagnosis and proper treatment save lives.

  19. Rocky road in the Rockies: Challenges to biodiversity

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Baron, Jill S.

    2002-01-01

    To people worldwide, the Rocky Mountains of the United States and Canada represent a last bastion of nature in its purest and rawest form-unspoiled forests teeming with elk and deer stalked by mountain lions and grizzly bears; bald eagles nesting near lakes and rivers; fat, feisty native trout in rushing mountain streams; and dazzling arrays of wildflowers in lush meadows. In fact, the total biodiversity of the Rocky Mountains is considerable, with relatively high diversity in birds, mammals, butterflies, reptiles, and conifers (Ricketts et al. 1999) and with geographic variation in the flora and fauna of alpine, forest, foothill, and adjacent shortgrass prairie and shrub communities over more than 20 degrees of latitude and more than 10' of longitude. Although the biodiversity of most North American regions has declined because of anthropogenic influences, the perception remains that the biodiversity of the Rocky Mountains is intact. This view exists in part because the Rocky Mountains are remote from urban centers, in part because so much of the land comprises protected areas such as national parks and wilderness areas, and in part because of wishful thinking-that nothing bad could happen to the biodiversity that is so much a part of the history, national self-image, legends, nature films, and movies of the United States and Canada. Despite modern technology and the homogenization and globalization of their cities and towns, at heart North Americans still regard their land as the New World, with pristine nature and untamed landscapes epitomized by the Rockies. The reality is that the biodiversity of the Rocky Mountains has not been free of anthropogenic influences since the West was settled in the 1800s, and in fact it was altered by Native Americans for centuries prior to settlement. A number of escalating problems and consequences of management choices are currently changing Rocky Mountain ecological communities at a dizzying pace. In Order to maintain some

  20. Rocky Mountain spotted fever, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo

    2007-07-01

    We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.

  1. Kawasaki disease following Rocky Mountain spotted fever: a case report.

    Science.gov (United States)

    Bal, Aswine K; Kairys, Steven W

    2009-07-06

    Kawasaki disease is an idiopathic acute systemic vasculitis of childhood. Although it simulates the clinical features of many infectious diseases, an infectious etiology has not been established. This is the first reported case of Kawasaki disease following Rocky Mountain spotted fever. We report the case of a 4-year-old girl who presented with fever and petechial rash. Serology confirmed Rocky Mountain spotted fever. While being treated with intravenous doxycycline, she developed swelling of her hands and feet. She had the clinical features of Kawasaki disease which resolved after therapy with intravenous immune globulin (IVIG) and aspirin. This case report suggests that Kawasaki disease can occur concurrently or immediately after a rickettsial illness such as Rocky Mountain spotted fever, hypothesizing an antigen-driven immune response to a rickettsial antigen.

  2. Proceedings of the second symposium on the geology of Rocky Mountain coal, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, H. E. [ed.

    1978-01-01

    The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniques applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)

  3. Rocky Mountain spotted fever, Panama.

    Science.gov (United States)

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  4. [Rocky Mountain spotted fever in an American tourist].

    Science.gov (United States)

    de Pender, A M G; Bauer, A G C; van Genderen, P J J

    2005-04-02

    In a 28-year-old male American tourist who presented in the hospital with fever, cold shivers, headache, nausea, myalgia and arthralgia, Rocky Mountain spotted fever was suspected, partly because he came from an endemic region (the state of Georgia). The patient was treated with doxycycline, 100 mg b.i.d.; 9 days after the first appearance of the symptoms, the diagnosis was confirmed by the report of a positive antibody titre against Rickettsia rickettsii. The patient did not have exanthema. He was discharged in good general condition after two weeks of treatment. Rocky Mountain spotted fever, caused by the Gram-negative bacterium R. rickettsii, is a serious rickettsiosis. The disease is seen only sporadically in the Netherlands because the ticks in the Netherlands do not carry the bacterium. The travel history is still not a standard component of the anamnesis and is therefore often forgotten. This can lead to under-diagnosis and delayed treatment of diseases that were formerly limited to the continent. The early recognition and treatment of Rocky Mountain spotted fever is important since delayed treatment is associated with a clear increase in both morbidity and mortality.

  5. Kawasaki disease following Rocky Mountain spotted fever: a case report

    Directory of Open Access Journals (Sweden)

    Bal Aswine K

    2009-07-01

    Full Text Available Abstract Introduction Kawasaki disease is an idiopathic acute systemic vasculitis of childhood. Although it simulates the clinical features of many infectious diseases, an infectious etiology has not been established. This is the first reported case of Kawasaki disease following Rocky Mountain spotted fever. Case presentation We report the case of a 4-year-old girl who presented with fever and petechial rash. Serology confirmed Rocky Mountain spotted fever. While being treated with intravenous doxycycline, she developed swelling of her hands and feet. She had the clinical features of Kawasaki disease which resolved after therapy with intravenous immune globulin (IVIG and aspirin. Conclusion This case report suggests that Kawasaki disease can occur concurrently or immediately after a rickettsial illness such as Rocky Mountain spotted fever, hypothesizing an antigen-driven immune response to a rickettsial antigen.

  6. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    Science.gov (United States)

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  7. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  8. Rocky Mountain spotted fever in Mexico: past, present, and future.

    Science.gov (United States)

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-06-01

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Complications and cause of death in mexican children with rocky mountain spotted fever].

    Science.gov (United States)

    Martínez-Medina, Miguel Ángel; Rascón-Alcantar, Adela

    Rocky Mountain spotted fever is a life threatening disease caused by Rickettsia rickettsia, characterized by multisystem involvement. We studied 19 dead children with Rocky Mountain spotted fever. All children who were suspected of having rickettsial infections were defined as having Rocky Mountain spotted fever by serology test and clinical features. Through the analysis of each case, we identified the clinical profile and complications associated to the death of a patient. In nine (69.2%) of 13 cases that died in the first three days of admission, the associated condition was septic shock. Others complications included respiratory distress causes by non-cardiogenic pulmonary edema, renal impairment, and multiple organ damage. The main cause of death in this study was septic shock. The fatality rate from Rocky Mountain spotted fever can be related to the severity of the infection, delay in diagnosis, and delay in initiation of antibiotic therapy. Pulmonary edema and cerebral edema can be usually precipitated by administration of excess intravenous fluids.

  10. Fish assemblage structure and relations with environmental conditions in a Rocky Mountain watershed

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Isaak, D.J.

    2004-01-01

    Fish and habitat were sampled from 110 reaches in the Salt River basin (Idaho and Wyoming) during 1996 and 1997 to assess patterns in fish assemblage structure across a Rocky Mountain watershed. We identified four distinct fish assemblages using cluster analysis: (1) allopatric cutthroat trout (Oncorhynchus clarki (Richardson, 1836)); (2) cutthroat trout - brook trout (Salvelinus fontinalis (Mitchell, 1814)) - Paiute sculpin (Cottus beldingi Eigenmann and Eigenmann, 1891); (3) cutthroat trout - brown trout (Salmo trutta L., 1758) - mottled sculpin (Cottus bairdi Girard, 1850); and (4) Cyprinidae-Catostomidae. The distribution of fish assemblages was explained by thermal characteristics, stream geomorphology, and local habitat features. Reaches with allopatric cutthroat trout and the cutthroat trout - brook trout - Paiute sculpin assemblage were located in high-elevation, high-gradient streams. The other two fish assemblages were generally located in low-elevation streams. Associations between habitat gradients, locations of reaches in the watershed, and occurrence of species were further examined using canonical correspondence analysis. The results suggest that stream geomorphology, thermal conditions, and local habitat characteristics influence fish assemblage structure across a Rocky Mountain watershed, and they provide information on the ecology of individual species that can guide conservation activities. ?? 2004 NRC Canada.

  11. Rocky Mountain spotted fever in dogs, Brazil.

    Science.gov (United States)

    Labruna, Marcelo B; Kamakura, Orson; Moraes-Filho, Jonas; Horta, Mauricio C; Pacheco, Richard C

    2009-03-01

    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy.

  12. 76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization

    Science.gov (United States)

    2011-02-17

    ... Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization AGENCY: Agency for Healthcare... Organization: AHRQ has accepted a notification of voluntary relinquishment from Rocky Mountain Patient Safety Organization, a component entity of Colorado Hospital Association, of its status as a Patient Safety...

  13. Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah

    Science.gov (United States)

    Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.

    1985-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  14. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.

    Science.gov (United States)

    Munson, Seth M; Sher, Anna A

    2015-08-01

    Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions. © 2015 Botanical Society of America, Inc.

  15. Cascading effects of fire exclusion in the Rocky Mountain ecosystems: a literature review

    Science.gov (United States)

    Robert E. Keane; Kevin C. Ryan; Tom T. Veblen; Craig D. Allen; Jessie Logan; Brad Hawkes

    2002-01-01

    The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent...

  16. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  17. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  18. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  19. Why sulfonamides are contraindicated in Rocky Mountain spotted fever

    OpenAIRE

    Ren, Vicky; Hsu, Sylvia

    2014-01-01

    Sulfonamide antibiotics are not effective for the treatment of Rocky Mountain spotted fever (RMSF). Patients suspected of having RMSF based on history and physical exam should be treated with doxycycline and not a sulfonamide to avoid increased morbidity and mortality.

  20. Why sulfonamides are contraindicated in Rocky Mountain spotted fever.

    Science.gov (United States)

    Ren, Vicky; Hsu, Sylvia

    2014-02-18

    Sulfonamide antibiotics are not effective for the treatment of Rocky Mountain spotted fever (RMSF). Patients suspected of having RMSF based on history and physical exam should be treated with doxycycline and not a sulfonamide to avoid increased morbidity and mortality.

  1. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  2. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Directory of Open Access Journals (Sweden)

    Spraker Terry R

    2010-11-01

    Full Text Available Abstract Background Chronic wasting disease (CWD is a transmissible spongiform encephalopathy (TSE of cervids including white-tailed (Odocoileus virginianus and mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces. A leucine variant at position 132 (132L in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of PRNP have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk PRNP. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L. Findings This study provided genomic sequence of all exons for PRNP of Rocky Mountain elk. Many functional sites in and around the PRNP gene region were sequenced, and this report approximately doubled (to 75 the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the PRNP gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the PRNP gene region. Conclusions The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031, which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the PRNP region (P > 0.05.

  3. A history of forest entomology in the Intermountain and Rocky Mountain areas, 1901 to 1982

    Science.gov (United States)

    Malcolm M. Furniss

    2007-01-01

    This account spans the time from A.D. Hopkins' trip to the Black Hills, SD, in 1901 to my retirement in 1982. The focus is on personnel and the work of the Division of Forest Insect Investigations, USDA, and the Forest Service experiment stations in the Rocky Mountain and Intermountain areas. Information for the Intermountain and Northern Rocky Mountain station...

  4. Co-Infection of Rickettsia rickettsii and Streptococcus pyogenes: Is Fatal Rocky Mountain Spotted Fever Underdiagnosed?

    Science.gov (United States)

    Raczniak, Gregory A.; Kato, Cecilia; Chung, Ida H.; Austin, Amy; McQuiston, Jennifer H.; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S.; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J.

    2014-01-01

    Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. PMID:25331804

  5. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  6. Self-reported treatment practices by healthcare providers could lead to death from Rocky Mountain spotted fever.

    Science.gov (United States)

    Zientek, Jillian; Dahlgren, F Scott; McQuiston, Jennifer H; Regan, Joanna

    2014-02-01

    Among 2012 Docstyle survey respondents, 80% identified doxycycline as the appropriate treatment for Rocky Mountain spotted fever in patients ≥ 8 years old, but only 35% correctly chose doxycycline in patients Rocky Mountain spotted fever observed nationally. Targeted education efforts are needed. Crown Copyright © 2014. Published by Mosby, Inc. All rights reserved.

  7. [A fatal case series of Rocky Mountain spotted fever in Sonora, México].

    Science.gov (United States)

    Delgado-De la Mora, Jesús; Licona-Enríquez, Jesús David; Leyva-Gastélum, Marcia; Delgado-De la Mora, David; Rascón-Alcantar, Adela; Álvarez-Hernández, Gerardo

    2018-03-15

    Rocky Mountain spotted fever is a highly lethal infectious disease, particularly if specific treatment with doxycycline is given belatedly. To describe the clinical profile of fatal Rocky Mountain spotted fever cases in hospitalized patients in the state of Sonora, México. We conducted a cross-sectional study on a series of 47 deaths caused by Rickettsia rickettsii from 2013 to 2016. The diagnosis of Rocky Mountain spotted fever was confirmed in a single blood sample by polymerase chain reaction (PCR) or by a four-fold increase in immunoglobulin G measured in paired samples analyzed by indirect immunofluorescence. Clinical and laboratory characteristics were compared stratifying subjects into two groups: pediatric and adult. There were no differences in clinical characteristics between groups; petechial rash was the most frequent sign (96%), followed by headache (70%) and myalgia (67%). Although that doxycycline was administered before the fifth day from the onset of symptoms, death occurred in 55% of patients. In clinical laboratory, thrombocytopenia, and biomarkers of liver acute failure and acute kidney failure were the most frequent. Rocky Mountain spotted fever remains as one of the most lethal infectious diseases, which may be related not only to the lack of diagnostic suspicion and delayed administration of doxycycline, but to genotypic characteristics of Rickettsia rickettsii that may play a role in the variability of the fatality rate that has been reported in other geographical regions where the disease is endemic.

  8. Adult Onset Still's Disease and Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Paul Persad

    2010-01-01

    Full Text Available Adult Still's Disease was first described in 1971 by Bywaters in fourteen adult female patients who presented with symptoms indistinguishable from that of classic childhood Still's Disease (Bywaters, 1971. George Still in 1896 first recognized this triad of quotidian (daily fevers, evanescent rash, and arthritis in children with what later became known as juvenile inflammatory arthritis (Still, 1990. Adult Onset Still's Disease (AOSD is an inflammatory condition of unknown etiology characterized by an evanescent rash, quotidian fevers, and arthralgias. Numerous infectious agents have been associated with its presentation. This case is to our knowledge the first presentation of AOSD in the setting of Rocky Mountain Spotted Fever. Although numerous infectious agents have been suggested, the etiology of this disorder remains elusive. Nevertheless, infection may in fact play a role in triggering the onset of symptoms in those with this disorder. Our case presentation is, to our knowledge, the first case of Adult Onset Still's Disease associated with Rocky Mountain spotted fever (RMSF.

  9. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  10. Bat population monitoring and conservation at the Rocky Mountain Arsenal NWR

    Data.gov (United States)

    Department of the Interior — A study of the bat populations at Rocky Mountain Arsenal National Wildlife Refuge (RMA) was conducted from 1997–1998, which provided basic population and contaminant...

  11. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    Science.gov (United States)

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  12. Rocky Mountain Research Station invasive species visionary white paper

    Science.gov (United States)

    D. E. Pearson; M. Kim; J. Butler

    2011-01-01

    Invasive species represent one of the single greatest threats to natural ecosystems and the services they provide. Effectively addressing the invasive species problem requires management that is based on sound research. We provide an overview of recent and ongoing invasive species research conducted by Rocky Mountain Research Station scientists in the Intermountain...

  13. NPDES Permit for Rocky Mountain Arsenal Recycled Water Pipeline in Colorado

    Science.gov (United States)

    Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.

  14. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains, USA

    OpenAIRE

    Baker, W. L.; Veblen, T. T.; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  15. Climate along the crest of the US Rocky Mountains during the last glaciation: preliminary insights from numerical modeling of paleoglaciers

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.

    2012-12-01

    Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.

  16. Translating science into policy: Using ecosystem thresholds to protect resources in Rocky Mountain National Park

    International Nuclear Information System (INIS)

    Porter, Ellen; Johnson, Susan

    2007-01-01

    Concern over impacts of atmospheric nitrogen deposition to ecosystems in Rocky Mountain National Park, Colorado, has prompted the National Park Service, the State of Colorado Department of Public Health and Environment, the Environmental Protection Agency, and interested stakeholders to collaborate in the Rocky Mountain National Park Initiative, a process to address these impacts. The development of a nitrogen critical load for park aquatic resources has provided the basis for a deposition goal to achieve resource protection, and parties to the Initiative are now discussing strategies to meet that goal by reducing air pollutant emissions that contribute to nitrogen deposition in the Park. Issues being considered include the types and locations of emissions to be reduced, the timeline for emission reductions, and the impact of emission reductions from programs already in place. These strategies may serve as templates for addressing ecosystem impacts from deposition in other national parks. - A collaborative approach between scientists and policymakers is described for addressing nitrogen deposition effects to Rocky Mountain National Park, USA

  17. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CL Ndep ) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CL Ndep estimates ( −1 yr −1 ) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha −1 yr −1 ), resulting in CL Ndep exceedances ≥1.5 ± 1 kg N ha −1 yr −1 . CL Ndep and CL Ndep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO 3 − threshold at which ecological effects are thought to occur. Based on an NO 3 − threshold of 0.5 μmol L −1 , N deposition exceeds CL Ndep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations. - Highlights: ► Critical loads maps for nutrient enrichment effects of nitrogen deposition. ► Critical load estimates show spatial variability related to basin characteristics. ► Critical loads are sensitive to the nitrate threshold value for ecological effects. ► Broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition. - Critical loads maps for nutrient enrichment effects of nitrogen deposition show that broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition.

  18. Canadian Rockies Ecoregion: Chapter 4 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Canadian Rockies Ecoregion covers approximately 18,494 km2 (7,141 mi2) in northwestern Montana (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The east side of the ecoregion is bordered by the Montana Valley and Foothill Prairies Ecoregion, which also forms a large part of the western border of the ecoregion. In addition, the Northern Rockies Ecoregion wraps around the ecoregion to the northwest and south (fig. 1). As the name implies, the Canadian Rocky Mountains are located mostly in Canada, straddling the border between Alberta and British Columbia. However, this ecoregion only includes the part of the northern Rocky Mountains that is in the United States. This ecoregion is characterized by steep, high-elevation mountain ranges similar to most of the rest of the Rocky Mountains. Compared to the Northern Rockies Ecoregion, however, the Canadian Rockies Ecoregion reaches higher elevations and contains a greater proportion of perennial snow and ice (Omernik, 1987) (fig. 2). Over the years, this section of the Rocky Mountains has garnered many different names, including “Crown of the Continent” by George Bird Grinnell (Waldt, 2008) and “Backbone of the World” by the Blackfeet (Pikuni) Nation. Throughout the ecoregion, montane, subalpine, and alpine ecosystems have distinct flora and fauna elevation zones. Glaciers, permanent snowfields, and seasonal snowpack are found at the highest elevations. Spring and summer runoff fills lakes and tarns that form the headwaters of numerous streams and rivers, including the Columbia and Missouri Rivers that flow west and east, respectively, from the Continental Divide.

  19. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA

    Science.gov (United States)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.

    2017-12-01

    We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.

  20. A fatal urban case of rocky mountain spotted fever presenting an eschar in San Jose, Costa Rica.

    Science.gov (United States)

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-08-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an "eschar" (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases.

  1. Case report: Co-infection of Rickettsia rickettsii and Streptococcus pyogenes: is fatal Rocky Mountain spotted fever underdiagnosed?

    Science.gov (United States)

    Raczniak, Gregory A; Kato, Cecilia; Chung, Ida H; Austin, Amy; McQuiston, Jennifer H; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J

    2014-12-01

    Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. © The American Society of Tropical Medicine and Hygiene.

  2. Litigation Technical Support and Services, Rocky Mountain Arsenal

    Science.gov (United States)

    1989-05-01

    34 d V) W C > - d) 4- -~ 0 - - .4 ..- di L *..L 3~1 3-~ v mi a- a t - --- w- Vdi 4 - ý 0 -4 0 m~ -j m0 m’ .- us 0 Ill i to -v .4 I 4 1 t A ~ 3Ul t -4...2060. Marlow, D. J. 1979g, November 8. Pest control report, October 1979. Rocky Mountain Arsenal. Microfilm RMA182, Franes 2048 -2053 Marlow, D. J

  3. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Miranda, Jorge; Heredia, Damaris; Zambrano, Pilar; Vesga, Juan Fernando; Lizarazo, Diana; Mattar, Salim; Valbuena, Gustavo

    2011-02-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.

  4. Rocky Mountain Research Station 2008-2012 National Fire Plan Investments

    Science.gov (United States)

    Erika Gallegos

    2013-01-01

    This report highlights selected accomplishments by the USDA Forest Service Rocky Mountain Research Station's Wildland Fire and Fuels Research & Development projects in support of the National Fire Plan from 2008 through 2012. These projects are examples of the broad range of knowledge and tools developed by National Fire Plan funding beginning in 2008.

  5. Book Review :The Essential Guide to Rocky Mountain Mushrooms by Habitat

    Science.gov (United States)

    A mushroom guide book, 'The Essential Guide to Rocky Mountain Mushrooms by Habitat' by Cathy L. Cripps, Vera S. Evenson, and Michael Kou (University of Illinois Press, 260 pages), is reviewed in non-technical fashion from the standpoints of format, comprehensiveness, and clarity. Postive features (...

  6. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  7. Field guide to diseases & insects of the Rocky Mountain Region

    Science.gov (United States)

    Forest Health Protection. Rocky Mountain Region

    2010-01-01

    This field guide is a forest management tool for field identification of biotic and abiotic agents that damage native trees in Colorado, Kansas, Nebraska, South Dakota, and Wyoming, which constitute the USDA Forest Service's Rocky Mountain Region. The guide focuses only on tree diseases and forest insects that have significant economic, ecological, and/ or...

  8. Dust Allergens within Rural Northern Rocky Mountain Residences.

    Science.gov (United States)

    Weiler, Emily; Semmens, Erin; Noonan, Curtis; Cady, Carol; Ward, Tony

    2015-01-23

    To date, few studies have characterized allergens within residences located in rural areas of the northern Rocky Mountain region. In this study, we collected dust samples from 57 homes located throughout western Montana and northern Idaho. Dust samples were collected and later analyzed for dust mite allergens Der f 1 and Der p 1 , Group 2 mite allergens ( Der p 2 and Der f 2 ), domestic feline ( Fel d 1 ), and canine ( Can f 1 ). Indoor temperature and humidity levels were also measured during the sampling program, as were basic characteristics of each home. Dog (96%) and cat (82%) allergens were the most prevalent allergens found in these homes (even when a feline or canine did not reside in the home). Results also revealed the presence of dust mites. Seven percent (7%) of homes tested positive for Der p 1 , 19% of homes were positive for Der f 1 , and 5% of homes were positive for the Group 2 mite allergens. Indoor relative humidity averaged 27.0 ± 7.6% within the homes. Overall, humidity was not significantly associated with dust mite presence, nor was any of the other measured home characteristics. This study provides a descriptive assessment of indoor allergen presence (including dust mites) in rural areas of the northern Rocky Mountains, and provides new information to assist regional patients with reducing allergen exposure using in-home intervention strategies.

  9. Evaluation of episodic acidification and amphibian declines in the Rocky Mountains

    Science.gov (United States)

    Frank A. Vertucci; Paul Stephen Corn

    1996-01-01

    We define criteria for documenting episodic acidification of amphibian breeding habitats and examine whether episodic acidification is responsible for observed declines of amphibian populations in the Rocky Mountains. Anthropogenic episodic acidification, caused by atmospheric deposition of sulfate and nitrate, occurs when the concentration of acid anions increases...

  10. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  11. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia

    Directory of Open Access Journals (Sweden)

    Marylin Hidalgo

    2011-02-01

    Full Text Available Rocky Mountain spotted fever (RMSF is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.

  12. Numerical Modeling of Large-Scale Rocky Coastline Evolution

    Science.gov (United States)

    Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.

    2008-12-01

    , increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.

  13. Movements and habitat use of rocky mountain elk and mule deer.

    Science.gov (United States)

    Alan A. Ager; Haiganoush K. Preisler; Bruce K. Johnson; John G. Kie

    2004-01-01

    Understanding how ungulates use large landscapes to meet their daily needs for food, security and other resources is critical to wildlife management and conservation practices (Johnson et al. 2002). For ungulates like Rocky Mountain elk (Gems elaphui) and mule deer (Odocoileus hemionus), landscapes are a mosaic of different...

  14. What's new in Rocky Mountain spotted fever?

    Science.gov (United States)

    Chen, Luke F; Sexton, Daniel J

    2008-09-01

    Rocky Mountain spotted fever (RMSF) remains an important illness despite an effective therapy because it is difficult to diagnose and is capable of producing a fatal outcome. The pathogenesis of RMSF remains, in large part, an enigma. However, recent research has helped shed light on this mystery. Importantly, the diagnosis of RMSF must be considered in all febrile patients who have known or possible exposure to ticks, especially if they live in or have traveled to endemic regions during warmer months. Decisions about giving empiric therapy to such patients are difficult and require skill and careful judgement.

  15. A Fatal Urban Case of Rocky Mountain Spotted Fever Presenting an Eschar in San José, Costa Rica

    Science.gov (United States)

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-01-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an “eschar” (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases. PMID:22855769

  16. A Fatal Urban Case of Rocky Mountain Spotted Fever Presenting an Eschar in San José, Costa Rica

    OpenAIRE

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-01-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an “eschar” (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases.

  17. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) - also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura - is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  18. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever.

    Science.gov (United States)

    Paddock, Christopher D; Finley, Richard W; Wright, Cynthia S; Robinson, Howard N; Schrodt, Barbara J; Lane, Carole C; Ekenna, Okechukwu; Blass, Mitchell A; Tamminga, Cynthia L; Ohl, Christopher A; McLellan, Susan L F; Goddard, Jerome; Holman, Robert C; Openshaw, John J; Sumner, John W; Zaki, Sherif R; Eremeeva, Marina E

    2008-11-01

    Rickettsia parkeri rickettsiosis, a recently identified spotted fever transmitted by the Gulf Coast tick (Amblyomma maculatum), was first described in 2004. We summarize the clinical and epidemiological features of 12 patients in the United States with confirmed or probable disease attributable to R. parkeri and comment on distinctions between R. parkeri rickettsiosis and other United States rickettsioses. Clinical specimens from patients in the United States who reside within the range of A. maculatum for whom an eschar or vesicular rash was described were evaluated by > or =1 laboratory assays at the Centers for Disease Control and Prevention (Atlanta, GA) to identify probable or confirmed infection with R. parkeri. During 1998-2007, clinical samples from 12 patients with illnesses epidemiologically and clinically compatible with R. parkeri rickettsiosis were submitted for diagnostic evaluation. Using indirect immunofluorescence antibody assays, immunohistochemistry, polymerase chain reaction assays, and cell culture isolation, we identified 6 confirmed and 6 probable cases of infection with R. parkeri. The aggregate clinical characteristics of these patients revealed a disease similar to but less severe than classically described Rocky Mountain spotted fever. Closer attention to the distinct clinical features of the various spotted fever syndromes that exist in the United States and other countries of the Western hemisphere, coupled with more frequent use of specific confirmatory assays, may unveil several unique diseases that have been identified collectively as Rocky Mountain spotted fever during the past century. Accurate assessments of these distinct infections will ultimately provide a more valid description of the currently recognized distribution, incidence, and case-fatality rate of Rocky Mountain spotted fever.

  19. The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

    Science.gov (United States)

    Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad

    2018-04-01

    Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

  20. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  1. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  2. Discrepancies in Weil-Felix and microimmunofluorescence test results for Rocky Mountain spotted fever.

    Science.gov (United States)

    Hechemy, K E; Stevens, R W; Sasowski, S; Michaelson, E E; Casper, E A; Philip, R N

    1979-01-01

    Only 4.2% of 284 single specimens and 17.6% of 51 pairs of sera reactive in Weil-Felix agglutination tests for Rocky Mountain spotted fever were confirmed by a specific Rickettsia rickettsii microimmunofluorescence test. PMID:107194

  3. Logging residues in principal forest types of the Northern Rocky Mountains

    Science.gov (United States)

    Robert E. Benson; Joyce A. Schlieter

    1980-01-01

    An estimated 466 million ft 3 of forest residue material (nonmerchantable, 3 inches diameter and larger) is generated annually in the Northern Rocky Mountains (Montana, Idaho, Wyoming). Extensive studies of residues in the major forest types show a considerable portion is suited for various products. The lodgepole pine type has the greatest potential for increased...

  4. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    OpenAIRE

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  5. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Cherisse Baldeo

    2017-10-01

    Full Text Available Primary immune thrombocytopenia (ITP – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  6. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa

    2018-03-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and

  7. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa

    2018-01-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and

  8. Rocky Mountain spotted fever acquired in Florida, 1973-83.

    Science.gov (United States)

    Sacks, J J; Janowski, H T

    1985-01-01

    From 1973 to 1983, 49 Florida residents were reported with confirmed Rocky Mountain spotted fever (RMSF), 25 of whom were considered to have had Florida-acquired disease. Although there was no history of tick exposure for six of these 25 persons, all had contact with dogs or outdoor activities during the incubation period. The tick vectors of RMSF are widely distributed throughout Florida. We conclude that RMSF, although rare in Florida, can be acquired in the state. PMID:4061716

  9. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    Science.gov (United States)

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  10. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  11. [Rocky Mountain regional low-level waste compact development and establishment of disposals

    International Nuclear Information System (INIS)

    1986-01-01

    This Compact Issue Study was intended to determine if state institutions in the Rocky Mountain region could reduce low-level radioactive waste shipping and disposal costs through jointly shipping their low-level radioactive wastes. Public institutions in the state of Colorado were used as a test case for this study

  12. Good Days on the Trail, 1938-1942: Film Footage of the Rocky Mountains, Colorado

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents student hiking trips conducted by the University of Colorado at Boulder in the Rocky Mountains, Colorado, USA during the summers of 1938-1942....

  13. William L. Baker: Fire ecology in Rocky Mountain landscapes [book review

    Science.gov (United States)

    Daniel. Yaussy

    2010-01-01

    Every so often, we need something to make us question our beliefs and views of the natural order of things, to open our minds to different versions of reality so that we become better informed and open to new avenues of thought. The author comes across as slightly antagonistic in his attempt to set the record straight concerning fires in the Rocky Mountains.

  14. New assay of protective activity of Rocky Mountain spotted fever vaccines.

    Science.gov (United States)

    Anacker, R L; Smith, R F; Mann, R E; Hamilton, M A

    1976-01-01

    Areas under the fever curves of guinea pigs inoculated with Rocky Mountain spotted fever vaccine over a restricted dose range and infected with a standardized dose of Rickettsia rickettsii varied linearly with log10 dose of vaccine. A calculator was programmed to plot fever curves and calculate the vaccine dose that reduced the fever of infected animals by 50%. PMID:823177

  15. [Rocky mountain spotted fever: report of two cases].

    Science.gov (United States)

    Martínez-Medina, Miguel Angel; Padilla-Zamudio, Guillermo; Solís-Gallardo, Lilia Patricia; Guevara-Tovar, Marcela

    2005-01-01

    Rocky Mountain spotted fever (RMSF) is an acute febrile illness caused by infection with Ricketsia Rickettsii, characterized by the presence of petechial rash. Even though the etiology, clinical characteristics and availability of effective antibiotics are known, RMSF related deaths have a prevalence of 4%. In its early stages RMFS can resemble many others infectious conditions and the diagnosis can be difficult. The present paper reports two patients with RMSF; these cases underscore the importance of prompt diagnosis and appropriate antimicrobial therapy, and consider RMSF as a differential diagnosis in any patient who develops fever and rash in an endemic area.

  16. Management of spruce-fir in even-aged stands in the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander; Carleton B. Edminster

    1980-01-01

    Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.

  17. Estimating aboveground tree biomass for beetle-killed lodgepole pine in the Rocky Mountains of northern Colorado

    Science.gov (United States)

    Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...

  18. Studies on ’Macaca mulatta’ Infected with Rocky Mountain Spotted Fever

    Science.gov (United States)

    1976-09-10

    Mountain spotted fever (RMSF) rickettsiae. The LD50 in monkeys of the yolk-sac-grown seed stock was 10 to the 1.35th power plaque-forming units. Blood...acid glycoprotein, haptoglobin and albumin) were measured during a study in 16 male rhesus monkeys to determine the median lethal dose (LD50) of Rocky

  19. Diseases of whooping cranes seen during annual migration of the Rocky Mountain flock

    Science.gov (United States)

    Snyder, S. Bret; Richard, Michael J.; Drewien, Roderick C.; Thomas, Nancy J.; Thilsted, John P.; Junge, Randall E.

    1991-01-01

    Diagnosis and treatment of ill whooping cranes of the Rocky Mountain flock was provided by a zoological facility. Cases of avian cholera, lead poisoning and avian tuberculosis were encountered. The zoo efforts were an adjunct to the U.S. Fish and Wildlife Service, Whooping Crane Recovery Plan.

  20. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  1. Faunal characteristics of the Southern Rocky Mountains of New Mexico: implications for biodiversity analysis and assessment

    Science.gov (United States)

    Rosamonde R. Cook; Curtis H. Flather; Kenneth R. Wilson

    2000-01-01

    To define the faunal context within which local and regional resource management decisions are made, conservation of biological diversity requires an understanding of regional species occurrence patterns. Our study focused on the Southern Rocky Mountains of New Mexico and included the San Juan, the Sangre de Cristo, and the Jemez Mountains. Across this region, we...

  2. Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1

    Science.gov (United States)

    Graeber, Aimee; Gunther, Gregory

    2017-01-01

    The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.

  3. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    Science.gov (United States)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  4. Sustaining Rocky Mountain landscapes: Science, policy and management for the Crown of the Continent ecosystem

    Science.gov (United States)

    Prato, Tony; Fagre, Daniel B.

    2007-01-01

    Prato and Fagre offer the first systematic, multi-disciplinary assessment of the challenges involved in managing the Crown of the Continent Ecosystem ( CCE), an area of the Rocky Mountains that includes northwestern Montana, southwestern Alberta, and southeastern British Columbia. The spectacular landscapes, extensive recreational options, and broad employment opportunities of the CCE have made it one of the fastest growing regions in the United States and Canada, and have lead to a shift in its economic base from extractive resource industries to service-oriented recreation and tourism industries. In the process, however, the amenities and attributes that draw people to this “New West” are under threat. Pastoral scenes are disappearing as agricultural lands and other open spaces are converted to residential uses, biodiversity is endangered by the fragmentation of fish and wildlife habitats, and many areas are experiencing a decline in air and water quality. Sustaining Rocky Mountain Landscapes provides a scientific basis for communities to develop policies for managing the growth and economic transformation of the CCE without sacrificing the quality of life and environment for which the land is renowned. This forthcoming edited volume focuses on five aspects of sustaining mountain landscapes in the CCE and similar regions in the Rocky Mountains. The five aspects are: 1) how social, economic, demo graphic and environmental forces are transforming ecosystem structure and function, 2) trends in use and conditions for human and environmental resources, 3) activating science, policy and education to enhance sustainable landscape management, 4) challenges to sustainable management of public and private lands, and 5) future prospects for achieving sustainable landscapes.

  5. Assessment of Mechanisms Impacting N-Nitrosodimethylamine Fate Within the North Boundary Containment System, Rocky Mountain Arsenal

    National Research Council Canada - National Science Library

    Gunnison, Douglas

    1997-01-01

    Rocky Mountain Arsenal (RMA) was for many years a site of military chemical weapons manufacturing activities, including manufacture and assembly of weapons containing intermediate and toxic chemical end-products, incendiary...

  6. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  7. Self-Reported Treatment Practices by Healthcare Providers Could Lead to Death from Rocky Mountain Spotted Fever

    OpenAIRE

    Zientek, Jillian; Dahlgren, F. Scott; McQuiston, Jennifer H.; Regan, Joanna

    2013-01-01

    Among 2012 Docstyle survey respondents, 80% identified doxycycline as the appropriate treatment for Rocky Mountain spotted fever in patients ≥8 years old, but only 35% correctly chose doxycycline in patients

  8. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    Science.gov (United States)

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  9. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    Science.gov (United States)

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  10. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    Science.gov (United States)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  11. Rocky Mountain spotted fever in Argentina.

    Science.gov (United States)

    Paddock, Christopher D; Fernandez, Susana; Echenique, Gustavo A; Sumner, John W; Reeves, Will K; Zaki, Sherif R; Remondegui, Carlos E

    2008-04-01

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003-2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.

  12. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires

    Science.gov (United States)

    Jonathan D. Coop; Anna W. Schoettle

    2009-01-01

    Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...

  13. Between a Rock and a Blue Chair: David Hockney’s Rocky Mountains and Tired Indians (1965

    Directory of Open Access Journals (Sweden)

    Martin Hammer

    2017-04-01

    Full Text Available Travel and cultural exchange between the United Kingdom and the United States of America became a key feature of the 1960s, shaping the world view of many a British artist, curator, architect, writer, film-maker, and academic. Against that wider backdrop, I offer here a focused reading of David Hockney’s 1965 painting, Rocky Mountains and Tired Indians. With its faux-naive idiom and overt but quirkily un-modern American theme, the work conveys the artist’s singular take on what it felt like to be a Brit at large in the US, an environment at once wondrously exotic and at times strikingly banal. Close analysis discloses Hockney’s rich repertoire of artistic and literary allusions in Rocky Mountains, and the meanings and associations these may have encapsulated.

  14. Patterns of resistance to Cronartium ribicola in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    A. W. Schoettle; R. A. Sniezko; A. Kegley; R. Danchok; K. S. Burns

    2012-01-01

    The core distribution of Rocky Mountain bristlecone pine, Pinus aristata Engelm., extends from central Colorado into northern New Mexico, with a disjunct population on the San Francisco Peaks in northern Arizona. Populations are primarily at high elevations and often define the alpine treeline; however, the species can also be found in open mixed conifer stands with...

  15. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  16. Development of State Interindustry Models for Rocky Mountain Region and California

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Kunin, Leonard

    1976-02-01

    Interindustry tables have been developed for the eight Rocky Mountain States and California. These tables are based on the 367-order 1967 national interindustry table. The national matrix was expanded to 404 sectors by disaggregating the seven minerals industries to 44 industries. The state tables can be used for energy and other resource analysis. Regional impacts of alternate development strategies can be evaluated with their use. A general computer program has been developed to facilitate construction of state interindustry tables.

  17. Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate

    Science.gov (United States)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.

    2016-12-01

    Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation

  18. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the northern Rocky Mountains

    Science.gov (United States)

    Samuel A. Cushman; Erin L. Landguth; Curtis H. Flather

    2012-01-01

    Aim: The goal of this study was to evaluate the sufficiency of the network of protected lands in the U.S. northern Rocky Mountains in providing protection for habitat connectivity for 105 hypothetical organisms. A large proportion of the landscape...

  19. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    Science.gov (United States)

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  20. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Science.gov (United States)

    R. A. Short Bull; Samuel Cushman; R. Mace; T. Chilton; K. C. Kendall; E. L. Landguth; Michael Schwartz; Kevin McKelvey; Fred W. Allendorf; G. Luikart

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation,...

  1. Biochar effects on the nursery propagation of 4 northern Rocky Mountain native plant species

    Science.gov (United States)

    Clarice P. Matt; Christopher R. Keyes; R. Kasten Dumroese

    2018-01-01

    Biochar has emerged as a promising potential amendment of soilless nursery media for plant propagation. With this greenhouse study we used biochar to displace standard soilless nursery media at 4 rates (0, 15, 30, and 45% [v:v]) and then examined media chemistry, irrigation frequency, and the growth of 4 northern Rocky Mountain native plant species: Clarkia pulchella...

  2. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  3. 76 FR 7875 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-02-11

    ... the central Idaho and Yellowstone area nonessential experimental populations of gray wolves in the...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the Lolo Elk Management Zone of Idaho; Draft Environmental Assessment AGENCY: Fish...

  4. Assessment of Climate Change and Freshwater Ecosystems of the Rocky Mountains, USA and Canada

    Science.gov (United States)

    Hauer, F. Richard; Baron, Jill S.; Campbell, Donald H.; Fausch, Kurt D.; Hostetler, Steve W.; Leavesley, George H.; Leavitt, Peter R.; McKnight, Diane M.; Stanford, Jack A.

    1997-06-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month spring runoff period, rivers frequently discharge > 70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow.Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Niño-Southern Oscillation) forcing.Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  5. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  6. Rocky Mountain Spotted Fever in a patient treated with anti-TNF-alpha inhibitors.

    Science.gov (United States)

    Mays, Rana M; Gordon, Rachel A; Durham, K Celeste; LaPolla, Whitney J; Tyring, Stephen K

    2013-03-15

    Rocky Mountain Spotted Fever (RMSF) is a tick-bourne illness, which can be fatal if unrecognized. We discuss the case of a patient treated with an anti-TNF-alpha inhibitor for rheumatoid arthritis who later developed a generalized erythematous macular eruption accompanied by fever. The clinical findings were suggestive of RMSF, which was later confirmed with serology. Prompt treatment with doxyclycine is recommended for all patients with clinical suspicion of RMSF.

  7. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  8. Nonnative trout invasions combined with climate change threaten persistence of isolated cutthroat trout populations in the southern Rocky Mountains

    Science.gov (United States)

    Roberts, James J.; Kurt D. Fausch,; Hooten, Mevin B.; Peterson, Douglas P.

    2017-01-01

    Effective conservation of Cutthroat Trout Oncorhynchus clarkii lineages native to the Rocky Mountains will require estimating effects of multiple stressors and directing management toward the most important ones. Recent

  9. Association between sepsis and Rocky Mountain spotted fever.

    Science.gov (United States)

    Bacci, Marcelo Rodrigues; Namura, José Jorge

    2012-12-06

    Rocky Mountain spotted fever (RMSF) is a disease caused by the Gram-negative coccobacillus Rickettsia ricketsii which has been on the rise since the last decade in the USA. The symptoms are common to the many viral diseases, and the classic triad of fever, rash and headache is not always present when RMSF is diagnosed. It may progress to severe cases such as renal failure, disseminated intravascular coagulation and septicaemia. This report aims to present a fulminant case of RMSF associated with sepsis. It describes a female patient's case that quickly progressed to sepsis and death. The patient showed non-specific symptoms for 5 days before being admitted to a hospital. The fact that she lived in an area highly infested with Amblyomma aureolatum ticks was unknown to the medical staff until the moment she died.

  10. Evaluating the role of river-floodplain connectivity in providing beneficial hydrologic services in mountain landscapes

    Science.gov (United States)

    Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.

    2017-12-01

    River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous

  11. 76 FR 17439 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-03-29

    ... nonessential experimental population areas for the gray wolf under section 10(j) of the ESA: the Yellowstone...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the West Fork Elk Management Unit of Montana; Draft Environmental Assessment AGENCY...

  12. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  13. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    Science.gov (United States)

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  14. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  15. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  16. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    International Nuclear Information System (INIS)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U 3 O 8 (3.32 million pounds U 3 O 8 ). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed

  17. Tick testing as a method of controlling Rocky Mountain spotted fever.

    Science.gov (United States)

    Sacks, J J; Pinner, T A; Parker, R L

    1983-01-01

    In South Carolina, 1974-1980, only two matches were found between 536 Rocky Mountain spotted fever (RMSF) cases and 965 individuals who submitted ticks that tested rickettsial antigen positive. In neither case did the positive test prevent RMSF. Tick rickettsial positivity rates varied inversely with human RMSF attack rates in different geographic areas. A physician survey established it as unlikely that RMSF occurred in positive tick submitters (PTS), and that although not recommended, 34 per cent of asymptomatic PTS received prophylactic treatment. Only 18 per cent of positive ticks were engorged. Tick testing appears ineffective in preventing RMSF. PMID:6869643

  18. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  19. A Concept for a Long Term Hydrologic Observatory in the South Platte River Basin

    Science.gov (United States)

    Ramirez, J. A.

    2004-12-01

    The intersection between: (1) the Rocky Mountains and developments occurring in high altitude fragile environments; (2) the metropolitan areas emerging at the interface of the mountains and the plains; (3) the irrigation occurring along rivers as they break from the mountains and snake across the Great Plains; and (4) the grasslands and the dryland farming that covers the vast amount of the Great Plains, represents a dynamic, complex, highly integrated ecosystem, stretching from Montana and North Dakota to New Mexico and Texas. This swath of land, and the rivers that cross it (headwaters of the Missouri , the Yellowstone, the North Platte , the South Platte, the Arkansas , the Cimarron, the Red and the Pecos Rivers ), represent a significant percentage of the landmass of the United States. Within this large area, besides tremendous increases in population in metropolitan areas, there are new energy developments, old hard rock mining concerns, new recreation developments, irrigation farms selling water to meet urban demands, new in-stream flow programs, struggling rural areas, and continued "mining" of ground water. The corresponding impacts are creating endangered and threatened species conflicts which require new knowledge to fully understand the measures needed to mitigate harmful ecosystem conditions. Within the Rocky Mountain/Great Plains interface, water is limiting and land is plentiful, presenting natural resource managers with a number of unique problems which demand a scale of integrated science not achieved in the past. For example, water is imported into a number of the streams flowing east from the Rocky Mountains. Nitrogen is deposited in pristine watersheds that rise up high in the Rocky Mountains. Cities capture spring runoff in reservoirs to use at a steady rate over the entire year, putting water into river systems normally moving low flows in the winter. Irrigation of both urban landscapes and farm fields may be at a scale that impacts climate

  20. Rapid differentiation of rocky mountain spotted fever from chickenpox, measles, and enterovirus infections and bacterial meningitis by frequency-pulsed electron capture gas-liquid chromatographic analysis of sera.

    Science.gov (United States)

    Brooks, J B; McDade, J E; Alley, C C

    1981-01-01

    Normal sera and sera from patients with Rocky Mountain spotted fever, chickenpox, enterovirus infections, measles, and Neisseria meningitidis infections were extracted with organic solvents under acidic and basic conditions and then derivatized with trichloroethanol or heptafluorobutyric anhydride-ethanol to form electron-capturing derivatives of organic acids, alcohols, and amines. The derivatives were analyzed by frequency-pulsed electron capture gas-liquid chromatography (FPEC-GLC). There were unique differences in the FPEC-GLC profiles of sera obtained from patients with these respective diseases. With Rocky Mountain spotted fever patients, typical profiles were detected as early as 1 day after onset of disease and before antibody could be detected in the serum. Rapid diagnosis of Rocky Mountain spotted fever by FPEC-GLC could permit early and effective therapy, thus preventing many deaths from this disease. PMID:7276147

  1. Grizzly bears as a filter for human use management in Canadian Rocky Mountain national parks

    Science.gov (United States)

    Derek Petersen

    2000-01-01

    Canadian National Parks within the Rocky Mountains recognize that human use must be managed if the integrity and health of the ecosystems are to be preserved. Parks Canada is being challenged to ensure that these management actions are based on credible scientific principles and understanding. Grizzly bears provide one of only a few ecological tools that can be used to...

  2. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  3. Carbon pools along headwater streams with differing valley geometry in Rocky Mountain National Park, Colorado (Abstract)

    Science.gov (United States)

    Kathleen A. Dwire; Ellen E. Wohl; Nicholas A. Sutfin; Roberto A. Bazan; Lina Polvi-Pilgrim

    2012-01-01

    Headwaters are known to be important in the global carbon cycle, yet few studies have investigated carbon (C) pools along stream-riparian corridors. To better understand the spatial distribution of C storage in headwater fluvial networks, we estimated above- and below-ground C pools in 100-m-long reaches in six different valley types in Rocky Mountain National Park,...

  4. Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA

    Science.gov (United States)

    Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.

    2016-01-01

    "Aim: Ponderosa pine (Pinus ponderosa) experienced one of the most extensive and rapid post-glacial plant migrations in western North America. We used plant macrofossils from woodrat (Neotoma) middens to reconstruct its spread in the Central Rocky Mountains, identify other vegetation changes coinciding with P. ponderosa expansion at the same sites, and relate P. ponderosa migrational history to both its modern phylogeography and to a parallel expansion by Utah juniper (Juniperus osteosperma).

  5. Rocky Mountain Spotted Fever and Pregnancy: Four Cases from Sonora, Mexico.

    Science.gov (United States)

    Licona-Enriquez, Jesus David; Delgado-de la Mora, Jesus; Paddock, Christopher D; Ramirez-Rodriguez, Carlos Arturo; Candia-Plata, María Del Carmen; Hernández, Gerardo Álvarez

    2017-09-01

    We present a series of four pregnant women with Rocky Mountain spotted fever (RMSF) that occurred in Sonora, Mexico, during 2015-2016. Confirmatory diagnoses were made by polymerase chain reaction or serological reactivity to antigens of Rickettsia rickettsii by using an indirect immunofluorescence antibody assay. Each patient presented with fever and petechial rash and was treated successfully with doxycycline. Each of the women and one full-term infant delivered at 36 weeks gestation survived the infection. Three of the patients in their first trimester of pregnancy suffered spontaneous abortions. RMSF should be suspected in any pregnant woman presenting with fever, malaise and rash in regions where R. rickettsii is endemic.

  6. Rocky mountain spotted fever hospitalizations among American Indians.

    Science.gov (United States)

    Demma, Linda J; Holman, Robert C; Mikosz, Christina A; Curns, Aaron T; Swerdlow, David L; Paisano, Edna L; Cheek, James E

    2006-09-01

    To describe the epidemiology of Rocky Mountain spotted fever (RMSF) among American Indians/Alaska Natives (AI/ANs), we conducted a retrospective analysis of hospitalization records with an RMSF diagnosis using Indian Health Service (IHS) hospital discharge data for calendar years 1980-2003. A total of 261 RMSF hospitalizations were reported among AIs, for an average annual hospitalization rate of 1.21 per 100,000 persons; two deaths were reported (0.8%). Most hospitalizations (88.5%) occurred in the Southern Plains region, where the rate was 4.23 per 100,000 persons. Children 1-4 years of age had the highest age-specific hospitalization rate of 2.50 per 100,000 persons. The overall annual RMSF hospitalization rate declined during the study period. Understanding the epidemiology of RMSF among AI/ANs and educating IHS/tribal physicians on the diagnosis of tick-borne diseases remain important for the prompt treatment of RMSF and the reduction of the disease occurrence among AI/ANs, particularly in high-risk areas.

  7. 78 FR 7852 - Notice of Intent To Rule on Request To Release Airport Property at the Rocky Mountain...

    Science.gov (United States)

    2013-02-04

    ... To Release Airport Property at the Rocky Mountain Metropolitan Airport, Broomfield, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... Metropolitan Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  8. DETERMINATION OF CHARACTERISTICS MAXIMAL RUNOFF MOUNTAIN RIVERS IN CRIMEA

    Directory of Open Access Journals (Sweden)

    V. A. Ovcharuk

    2016-05-01

    Full Text Available This article has been examined maximum runoff of the rivers of theCrimeanMountains. The rivers flow through the western and eastern part of the northern slope Crimean Mountains, and on its southern coast. The largest of them: Belbek, Alma, Salgir, Su-Indol and others. To characterize the maximum runoff of rain floods (the layers of rain floods and maximum discharge of water on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation.

  9. Rocky Mountain spotted fever in Panama: a cluster description.

    Science.gov (United States)

    Tribaldos, Maribel; Zaldivar, Yamitzel; Bermudez, Sergio; Samudio, Franklyn; Mendoza, Yaxelis; Martinez, Alexander A; Villalobos, Rodrigo; Eremeeva, Marina E; Paddock, Christopher D; Page, Kathleen; Smith, Rebecca E; Pascale, Juan Miguel

    2011-10-13

    Rocky Mountain spotted fever (RMSF) is a tick-borne infection caused by Rickettsia rickettsii. We report a cluster of fatal cases of RMSF in 2007 in Panama, involving a pregnant woman and two children from the same family.  The woman presented with a fever followed by respiratory distress, maculopapular rash, and an eschar at the site from which a tick had been removed.  She died four days after disease onset.  This is the second published report of an eschar in a patient confirmed by PCR to be infected with R. rickettsii.  One month later, the children presented within days of one another with fever and rash and died three and four days after disease onset. The diagnosis was confirmed by immunohistochemistry, PCR and sequencing of the genes of R. rickettsii in tissues obtained at autopsy. 

  10. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    Science.gov (United States)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  11. Response of six non-native invasive plant species to wildfires in the northern Rocky Mountains, USA

    Science.gov (United States)

    Dennis E. Ferguson; Christine L. Craig

    2010-01-01

    This paper presents early results on the response of six non-native invasive plant species to eight wildfires on six National Forests (NFs) in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density. Data for this report are from 219 stands...

  12. One-dimensional models for mountain-river morphology

    NARCIS (Netherlands)

    Sieben, A.

    1996-01-01

    In this report, some classical and new simplifications in mathematical and numerical models for river morphology are compared for conditions representing rivers in mountainous areas (high values of Froude numbers and relatively large values of sediment transport rates). Options for simplification

  13. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  14. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  15. Atypical Rocky Mountain spotted fever with polyarticular arthritis.

    Science.gov (United States)

    Chaudhry, Muhammad A; Scofield, Robert Hal

    2013-11-01

    Rocky Mountain spotted fever (RMSF) is an acute, serious tick borne illness caused by Rickettsia rickettsi. Frequently, RMSF is manifested by headache, a typical rash and fever but atypical disease is common, making diagnosis difficult. Inflammatory arthritis as a manifestation is rare. The purpose of this study is to describe a patient with serologically proven RMSF who presented in an atypical manner with inflammatory arthritis of the small joints of the hands and to review the previously reported patients with rickettsial infection and inflammatory arthritis. An 18-year-old woman presented with a rash that began on the distal extremities and spread centrally, along with hand pain and swelling. She had tenderness and swelling of the metacarpophlangeal joints on examination in addition to an erythematosus macular rash and occasional fever. Acute and convalescent serology demonstrated R rickettsi infection. She was successfully treated with doxycycline. Inflammatory arthritis is a rare manifestation of RMSF or other rickettsial infection with 8 previously reported patients, only 1 of whom had RMSF. Physician must have a high index of suspicion for RMSF because of atypical presentations.

  16. Determination of characteristics maximal runoff Mountain Rivers

    African Journals Online (AJOL)

    Ovcharuk V and Todorova O

    Odessa State Environmental University, Ukraine. Received: 03 December 2015 / Accepted: 23 April 2016 / Published online: 01 May 2016. ABSTRACT. This article has been examined maximum runoff of the rivers of the Crimean Mountains. The rivers flow through the western and eastern part of the northern slope Crimean ...

  17. VULNERABILITY OF MOUNTAIN RIVERS TO WASTE DUMPING FROM NEAMT COUNTY, ROMANIA

    Directory of Open Access Journals (Sweden)

    FLORIN-CONSTANTIN MIHAI

    2012-11-01

    Full Text Available Lack of waste management facilities from mountain region often lead to uncontrolled disposal of waste on river banks polluting the local environment and damaging the tourism potential. Geographical conditions influences the distribution of human settlements which are located along the rivers and its tributaries. This paper aims to estimate the amounts of household waste generated and uncollected disposed into mountain rivers, taking into account several factors such as:proximity of rivers to the human settlements, the morphology of villages, length of river that crosses the locality(built up areas, local population, the access to waste collection services and waste management infrastructure. Vulnerability of rivers to illegal dumping is performed using GIS techniques, highlighting the localities pressure on rivers in close proximity. For this purpose, it developed a calculation model for estimation the amounts of waste (kg that are dumped on a river section (m that crosses a locality (village or it is in close proximity. This estimation is based on the “principle of proximity and minimum effort” it can be applied in any mountainous region that are lacking or partially access to waste collection services. It is an assessment tool of mountain rivers vulnerability to waste dumping,taking into account the geographical and demographic conditions of the study area. Also the current dysfunctions are analyzed based on field observations.

  18. Wilderness experience in Rocky Mountain National Park 2002: Report to RMNP

    Science.gov (United States)

    Schuster, Elke; Johnson, S. Shea; Taylor, Jonathan G.

    2004-01-01

    Approximately 250,000 acres of backcountry in Rocky Mountain National Park (RMNP or the Park) may be designated as wilderness use areas in the coming years. Currently, over 3 million people visit RMNP each year; many drive through the park on Trail Ridge Road, camp in designated campgrounds, or hike in front-country areas. However, visitors also report much use of backcountry areas that are not easily accessible by roads or trails. Use of the backcountry is growing at RMNP and is accompanied by changing visitor expectations and preferences for wilderness management. For these reasons it is of great importance for the Park to periodically assess what types of environments and conditions wilderness users seek, to help them facilitate a quality wilderness experience.

  19. Climatology of summer midtropospheric perturbations in the US northern plains. Part II: large-scale effects of the Rocky Mountains on genesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Yu. [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Utah State University, Utah Climate Center, Logan, UT (United States); Chen, Tsing-Chang [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Takle, Eugene S. [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Iowa State University, Department of Agronomy, Ames, IA (United States)

    2011-04-15

    Propagating convective storms across the US northern plains are often coupled with preexisting midtropospheric perturbations (MPs) initiated over the Rocky Mountains. A companion study (Part I) notes that such MPs occur most commonly at 12 UTC (early morning) and 00 UTC (late afternoon). Using a regional reanalysis and a general circulation model (GCM), this study investigates how such a bimodal distribution of the MP frequency is formed. The results point to two possible mechanisms working together while each has a different timing in terms of maximum effect. The diurnal evolutions between the midtropospheric flows over the Rockies and over the Great Plains are nearly out-of-phase due to inertial oscillation. During the nighttime, the westerly flows at 700-500 mb over the Rockies intensify while flows at the same level over the Great Plains turn easterly. These two flows converge over the eastern Rockies and induce cyclonic vorticity through vortex stretching. After sunrise, the convergence dissipates and the cyclonic vorticity is redistributed by horizontal vorticity advection, moving it downstream. This process creates a climatological zonally propagating vorticity signal which, in turn, facilitates the early-morning MP genesis at 12 UTC. The analysis also reveals marked dynamic instability conducive to subsynoptic-scale disturbances in the midtroposphere over the Rockies. Strong meridional temperature gradients appear over the north-facing slopes of the Rockies due to terrain heating to the south and the presence of cooler air to the north. This feature, along with persistent vertical shear, creates a Charney-Stern type of instability (i.e. sign changes of the meridional potential vorticity gradient). Meanwhile, the development of terrain boundary layer reduces the Rossby deformation radius which, subsequently, enhances the likelihood for baroclinic short waves. Such effects are most pronounced in the late afternoon and therefore are supportive to the MP

  20. Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho

    Science.gov (United States)

    Michael K. Schwartz; Nicholas J. DeCesare; Benjamin S. Jimenez; Jeffrey P. Copeland; Wayne E. Melquist

    2013-01-01

    The fisher (Pekania pennanti; formerly known as Martes pennanti) is a North American endemic mustelid with a geographic distribution that spans much of the boreal forests of North America. In the Northern Rocky Mountain (NRM) fishers have been the focus of Endangered Species Act (ESA) listing decisions. Habitat studies of West Coast fishers in California have...

  1. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  2. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    Science.gov (United States)

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  3. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    Science.gov (United States)

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  4. Characterization of meltwater 'ingredients' at the Haig Glacier, Canadian Rockies: the importance of glaciers to regional water resources

    Science.gov (United States)

    Miller, K.; Marshall, S.

    2017-12-01

    With rising temperatures, Alberta's glaciers are under stresses which change and alter the timing, amount, and composition of meltwater contributions to rivers that flow from the Rocky Mountains. Meltwater can be stored within a glacier or it can drain through the groundwater system, reducing and delaying meltwater delivery to glacier-fed streams. This study tests whether the glacier meltwater is chemically distinct from rain or snow melt, and thus whether meltwater contributions to higher-order streams that flow from the mountains can be determined through stream chemistry. Rivers like the Bow, North Saskatchewan, and Athabasca are vital waterways for much of Alberta's population. Assessing the extent of glacier meltwater is vital to future water resource planning. Glacier snow/ice and meltwater stream samples were collected during the 2017 summer melt season (May- September) and analyzed for isotope and ion chemistry. The results are being used to model water chemistry evolution in the melt stream through the summer season. A chemical mixing model will be constructed to determine the fractional contributions to the Haig meltwater stream from precipitation, surface melt, and subglacial meltwaters. Distinct chemical water signatures have not been used to partition water sources and understand glacier contributions to rivers in the Rockies. The goal of this work is to use chemical signatures of glacial meltwater to help assess the extent of glacier meltwater in Alberta rivers and how this varies through the summer season.

  5. [Rocky Mountain spotted fever in children: clinical and epidemiological features].

    Science.gov (United States)

    Martínez-Medina, Miguel Angel; Alvarez-Hernández, Gerardo; Padilla-Zamudioa, José Guillermo; Rojas-Guerra, Maria Guadalupe

    2007-01-01

    To report the clinical features of the Rocky Mountain spotted fever (RMSF) in children of southern Sonora, Mexico. Nine cases were studied at the Sonora State Children's Hospital. One case was defined by clinical features and positive serological tests (indirect immunofluorescence assay or reaction to Proteus OX 19). Demographic and clinical characteristics of the patients were registered. The study subjects were children from two to twelve years ofage. All patients have had contact with tick-infested dogs and had fever, as well as petechial rash. Laboratory findings included high levels of hepatic aminotransferase, hyponatremia and thrombocytopenia. Therapy with chloramphenicol and doxyciclyne was administered after the first seven days of the onset of illness. The mortality rate was 22%. This study supports the presence of RMSF in the state of Sonora, Mexico, which should be considered as a public health hazard, requiring immediate actions for prevention and control.

  6. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Toth, W.J. (comps.)

    1982-05-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  7. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C. (ed.)

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  8. Trends in Rocky Mountain amphibians and the role of beaver as a keystone species

    Science.gov (United States)

    Hossack, Blake R.; Gould, William R.; Patla, Debra A.; Muths, Erin L.; Daley, Rob; Legg, Kristin; Corn, P. Stephen

    2015-01-01

    Despite prevalent awareness of global amphibian declines, there is still little information on trends for many widespread species. To inform land managers of trends on protected landscapes and identify potential conservation strategies, we collected occurrence data for five wetland-breeding amphibian species in four national parks in the U.S. Rocky Mountains during 2002–2011. We used explicit dynamics models to estimate variation in annual occupancy, extinction, and colonization of wetlands according to summer drought and several biophysical characteristics (e.g., wetland size, elevation), including the influence of North American beaver (Castor canadensis). We found more declines in occupancy than increases, especially in Yellowstone and Grand Teton national parks (NP), where three of four species declined since 2002. However, most species in Rocky Mountain NP were too rare to include in our analysis, which likely reflects significant historical declines. Although beaver were uncommon, their creation or modification of wetlands was associated with higher colonization rates for 4 of 5 amphibian species, producing a 34% increase in occupancy in beaver-influenced wetlands compared to wetlands without beaver influence. Also, colonization rates and occupancy of boreal toads (Anaxyrus boreas) and Columbia spotted frogs (Rana luteiventris) were ⩾2 times higher in beaver-influenced wetlands. These strong relationships suggest management for beaver that fosters amphibian recovery could counter declines in some areas. Our data reinforce reports of widespread declines of formerly and currently common species, even in areas assumed to be protected from most forms of human disturbance, and demonstrate the close ecological association between beaver and wetland-dependent species.

  9. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA

    Science.gov (United States)

    T. N. Wasserman; S. A. Cushman; A. S. Shirk; E. L. Landguth; J. S. Littell

    2012-01-01

    We utilize empirically derived estimates of landscape resistance to assess current landscape connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA, and project how a warming climate may affect landscape resistance and population connectivity in the future. We evaluate the influences of five potential future temperature scenarios...

  10. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  11. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    Science.gov (United States)

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  12. Relationships between nutritional condition of adult females and relative carrying capacity for rocky mountain Elk

    Science.gov (United States)

    Piasecke, J.R.; Bender, L.C.

    2009-01-01

    Lactation can have significant costs to individual and population-level productivity because of the high energetic demands it places on dams. Because the difference in condition between lactating and dry Rocky Mountain elk (Cervus elaphus nelsoni) cows tends to disappear as nutritional quality rises, the magnitude of that difference could be used to relate condition to habitat quality or the capability of habitats to support elk. We therefore compared nutritional condition of ???2.5-yr-old lactating and dry cows from six free-ranging RockyMountain elk populations throughout the United States.Our goal was to quantify differential accrual of body fat (BF) reserves to determine whether the condition of dry and lactating cows could be used to define relevant management thresholds of habitat quality (i.e., relative carrying capacity) and consequently potential performance of elk populations. Levels of BF that lactating cows were able to accrue in autumn and the proportional difference in BF between dry and lactating cows in autumn were related (F 1-2,10???16.2, Plogistic model to predict relative proximity to ecological carrying capacity (ECC), our population-years ranged from3-97%ofECCand proportion of the population lactating (an index of calf survival) was negatively related to proportion of ECC. Results indicate that the proportional difference in accrual of BF between lactating and dry cows can provide a sensitive index to where elk populations reside relative to the quality of their range.

  13. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    Science.gov (United States)

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  14. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  15. Myocardial involvement in rocky mountain spotted fever: a case report and review.

    Science.gov (United States)

    Doyle, Amy; Bhalla, Karan S; Jones, James M; Ennis, David M

    2006-10-01

    Rocky Mountain Spotted Fever (RMSF), caused by Rickettia rickettsii, is a serious tickborne illness that is endemic in the southeastern United States. Although it is most commonly known as a cause of fever and rash, it can have systemic manifestations. The myocardium may rarely be involved, with symptoms that can mimic those of acute coronary syndromes. This report describes a case of serologically proven RMSF causing symptomatic myocarditis, manifested by chest pain, elevated cardiac enzyme levels, and decrease myocardial function. After treatment with antibiotics, the myocarditis resolved. Thus, although unusual, the clinician should be aware of myocardial disease in patients with appropriate exposure histories or other clinical signs of RMSF. Close monitoring and an aggressive approach are essential to reduce mortality rates.

  16. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  17. Developing a university-workforce partnership to address rural and frontier MCH training needs: the Rocky Mountain Public Health Education Consortium (RMPHEC).

    Science.gov (United States)

    Taren, Douglas L; Varela, Frances; Dotson, Jo Ann W; Eden, Joan; Egger, Marlene; Harper, John; Johnson, Rhonda; Kennedy, Kathy; Kent, Helene; Muramoto, Myra; Peacock, Jane C; Roberts, Richard; Sjolander, Sheila; Streeter, Nan; Velarde, Lily; Hill, Anne

    2011-10-01

    The objective of the article is to provide the socio-cultural, political, economic, and geographic conditions that justified a regional effort for training maternal and child health (MCH) professionals in the Rocky Mountain region, describe a historical account of factors that led to the development of the Rocky Mountain Public Health Education Consortium (RMPHEC), and present RMPHEC as a replicable model developed to enhance practice/academic partnerships among state, tribal, and public health agencies and universities to enhance public health capacity and MCH outcomes. This article provides a description of the development of the RMPHEC, the impetus that drove the Consortium's development, the process used to create it, and its management and programs. Beginning in 1997, local, regional, and federal efforts encouraged stronger MCH training and continuing education in the Rocky Mountain Region. By 1998, the RMPHEC was established to respond to the growing needs of MCH professionals in the region by enhancing workforce development through various programs, including the MCH Certificate Program, MCH Institutes, and distance learning products as well as establishing a place for professionals and MCH agencies to discuss new ideas and opportunities for the region. Finally over the last decade local, state, regional, and federal efforts have encouraged a synergy of MCH resources, opportunities, and training within the region because of the health disparities among MCH populations in the region. The RMPHEC was founded to provide training and continuing education to MCH professionals in the region and as a venue to bring regional MCH organizations together to discuss current opportunities and challenges. RMPHEC is a consortium model that can be replicated in other underserved regions, looking to strengthen MCH training and continuing education.

  18. Wild mountains, wild rivers: Keeping the sacred origins

    Science.gov (United States)

    Linda Moon Stumpff

    2007-01-01

    For many indigenous peoples in North America, wild mountains and rivers and other natural formations exist as physical beings formed as part of a whole by forces that interconnect people with them. This perspective frames a discussion around an idea that expresses time and space as wrapped up in the mountain. If time is within the being of place and space within the...

  19. An ecosystem services framework for multidisciplinary research in the Colorado River headwaters

    Science.gov (United States)

    Semmens, D.J.; Briggs, J.S.; Martin, D.A.

    2009-01-01

    A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can

  20. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in Rocky Mountain savannas invaded and un-invaded by an exotic forb, spotted knapweed

    Science.gov (United States)

    Allison K. Hansen; Yvette K. Ortega; Diana L. Six

    2009-01-01

    We compared ground beetle (Carabidae) assemblages between spotted knapweed (Centaurea maculosa Lam.) -invaded (invaded) and un-invaded (native) habitats in Rocky Mountain savannas. Carabids play important roles in biotic communities and are known as a good indictor group of environmental change. Carabid species activity-abundance and diversity were estimated, and...

  1. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  2. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  3. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  4. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  5. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA.

    Science.gov (United States)

    Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert

    2018-01-01

    Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Rocky Mountain spotted fever in Mexican children: Clinical and mortality factors].

    Science.gov (United States)

    Álvarez-Hernández, Gerardo; Candia-Plata, María Del Carmen; Delgado-de la Mora, Jesús; Acuña-Meléndrez, Natalia Haydeé; Vargas-Ortega, Anabel Patricia; Licona-Enríquez, Jesús David

    2016-06-01

    Characterize clinical manifestations and predictors of mortality in children hospitalized for spotted fever. Cross-sectional study in 210 subjects with a diagnosis of Rocky Mountain spotted fever (RMSF) in a pediatric hospital in Sonora, from January 1st, 2004 to June 30th, 2015. Data were analyzed using descriptive statistics and multivariate logistic regression. An upward trend was observed in RMSF morbidity and mortality. Fatality rate was 30%.Three predictors were associated with risk of death: delay ≥ 5 days at the start of doxycycline (ORa= 2.95, 95% CI 1.10-7.95), acute renal failure ((ORa= 8.79, 95% CI 3.46-22.33) and severe sepsis (ORa= 3.71, 95% CI 1.44-9.58). RMSF causes high mortality in children, which can be avoided with timely initiation of doxycycline. Acute renal failure and severe sepsis are two independent predictors of death in children with RMSF.

  7. Rocky Mountain spotted fever: a disease in need of microbiological concern.

    Science.gov (United States)

    Walker, D H

    1989-01-01

    Rocky Mountain spotted fever, a life-threatening tick-transmitted infection, is the most prevalent rickettsiosis in the United States. This zoonosis is firmly entrenched in the tick host, which maintains the rickettsiae in nature by transovarian transmission. Although the incidence of disease fluctuates in various regions and nationwide, the problems of a deceptively difficult clinical diagnosis and little microbiologic diagnostic effort persist. Many empiric antibiotic regimens lack antirickettsial activity. There is neither an effective vaccine nor a generally available assay that is diagnostic during the early stages of illness, when treatment is most effective. Microbiology laboratories that offer only the archaic retrospective Weil-Felix serologic tests should review the needs of their patients. Research microbiologists who tackle these challenging organisms have an array of questions to address regarding rickettsial surface composition, structure-function analysis, and pathogenic and immune mechanisms, as well as laboratory diagnosis. PMID:2504480

  8. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  9. The Rocky Mountain population of the western Canada goose: its distribution, habitats, and management

    Science.gov (United States)

    Krohn, William B.; Bizeau, Elwood G.

    1980-01-01

    The western Canada goose (Branta canadensis moffitti) was divided into a Rocky Mountain population (RMP) and a Pacific population (PP) on the basis of band recovery patterns examined in this study and recovery data from other investigators. Habitat information obtained from nine cooperating wildlife agencies within the RMP's range provided a base line for evaluating future changes in nesting, molting, and wintering areas. The habitat inventory indicated that none of the seasonal habitats were currently limiting the size of the RMP. The RMP's range is divided into 15 reference areas and these are briefly described. Past studies of Canada geese in the Intermountain Region are reviewed. Topics covered in the discussion of breeding biology are nesting chronology, spring population composition, breeding age, clutch size, nesting success. artificial nesting structures, and gosling survival. Much of the mortality of Canada geese occurs before the birds are fledged. Man-made nesting structures reduce losses during incubation. but research is needed on the relations between brooding sites and gosling survival. Some western Canada geese, mainly prebreeders and unsuccessful nesters, make molt migrations to and from molting areas during and after the brood-rearing season. More than half of these molt-migrants are yearlings too young to nest; there are indications that even some successful nesters leave nesting areas to molt before the fledging of their offspring. Geese 2 years old or older may serve as guides to traditional molting areas for the first-time migrants (i.e., yearlings). Lack of disturbance appears to influence selection of specific molting areas within the nesting range of moffitti, whereas movements of molters out of the Intermountain Region may be related to the evolution of this subspecies. Apparently. molters of both the PP and RMP that leave the Region go to the Northwest Territories of Canada. Although the taxonomic status of moffitti as related to the

  10. Archaeological Investigations on the East Fork of the Salmon River, Custer County, Idaho.

    Science.gov (United States)

    1984-01-01

    coniferous environment in addition to pine marten (Martes americana), red squirrel (Tamiasciurus hudsonicus), porcupine (Erithizon dorsatum), mountain vole...can be seen in small herds throughout the East Fork valley from the Salmon River to Big Boulder Creek. Two bands of Rocky Mountain bighorn sheep...utilize the Challis Planning Unit, one on the East Fork and the other in the Birch Creek area. The East Fork herd is comprised of approximately 50-70

  11. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    Science.gov (United States)

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Flood discharge measurement of a mountain river – Nanshih River in Taiwan

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2013-05-01

    Full Text Available This study proposes a more efficient method of flood discharge measurement in mountain rivers that accounts for personal safety, accuracy, and reliability. Because it is based on the relationships between mean and maximum velocities and between cross-sectional area and gauge height, the proposed method utilizes a flood discharge measurement system composed of an acoustic Doppler profiler and crane system to measure velocity distributions, cross-sectional area, and water depths. The flood discharge measurement system can be used to accurately and quickly measure flood data that is difficult to be collected by the conventional instruments. The measured data is then used to calibrate the parameters of the proposed method for estimating mean velocity and cross-sectional area. Then these observed discharge and gauge height can be used to establish the water stage–discharge rating curve. Therefor continuous and real-time estimations of flood discharge of a mountain river can become possible. The measurement method and system is applied to the Nanshih River at the Lansheng Bridge. Once the method is established, flood discharge of the Nanshih River could be efficiently estimated using maximum velocity and the water stage. Results of measured and estimated discharges of the Nanshih River at the Lansheng Bridge differed only slightly from each other, demonstrating the efficiency and accuracy of the proposed method.

  13. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    Science.gov (United States)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of

  14. Rocky Mountain High.

    Science.gov (United States)

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  15. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    Science.gov (United States)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  16. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    Science.gov (United States)

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  17. Rocky Mountain spotted fever in Mexican children: Clinical and mortality factors.

    Directory of Open Access Journals (Sweden)

    Gerardo Álvarez-Hernández

    2016-05-01

    Full Text Available Objective. Characterize clinical manifestations and predictors of mortality in children hospitalized for spotted fever. Materials and methods. Cross-sectional study in 210 subjects with a diagnosis of Rocky Mountain spotted fever (RMSF in a pediatric hospital in Sonora, from January 1st, 2004 to June 30th, 2015. Data were analyzed using descriptive statistics and multivariate logistic regression. Results. An upward trend was observed in RMSF morbidity and mortal- ity. Fatality rate was 30%. Three predictors were associated with risk of death: delay ≥ 5 days at the start of doxycycline (ORa = 2.95, 95% CI 1.10-7.95, acute renal failure ((ORa = 8.79, 95% CI 3.46-22.33 and severe sepsis (ORa = 3.71, 95% CI 1.44-9.58. Conclusions. RMSF causes high mortality in children, which can be avoided with timely initiation of doxycycline. Acute renal failure and severe sepsis are two independent predictors of death in children with RMSF.

  18. Fatal Rocky Mountain spotted fever in the United States, 1999-2007.

    Science.gov (United States)

    Dahlgren, F Scott; Holman, Robert C; Paddock, Christopher D; Callinan, Laura S; McQuiston, Jennifer H

    2012-04-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999-2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children less than 10 years of age (RR=5.1) [corrected] and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice.

  19. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  20. Use of acepromazine and medetomidine in combination for sedation and handling of Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus).

    Science.gov (United States)

    Wolfe, Lisa L; Johnson, Heather E; Fisher, Mark C; Sirochman, Michael A; Kraft, Benjamin; Miller, Michael W

    2014-10-01

    We opportunistically evaluated a combination of acepromazine maleate and medetomidine HCl for use in sedating Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus) as an alternative to scheduled drug combinations. This combination was safe and effective with limitations inherent in its sedative rather than anesthetic properties.

  1. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  2. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    Science.gov (United States)

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  3. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Vatin Nikolai

    2016-01-01

    Full Text Available In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphometric characteristics of the mountain rivers is given. Complex hydraulic researches of kinematic characteristics and carrying ability of a two-phase stream on water intake structures are executed. Bases of a technique of engineering calculation of the offered designs of water intake structures and the recommendation of their designing and maintenance in various hydrological regimes are developed.

  4. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models

    Science.gov (United States)

    Meador, E.; Morrill, C.

    2017-12-01

    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  5. Rocky Mountain spotted fever at Koair Children's Hospital, 1990-2002.

    Science.gov (United States)

    Hayden, Amy M; Marshall, Gary S

    2004-05-01

    The reported average annual incidence of Rocky Mountain spotted fever (RMSF) in Kentucky is less than 5 per million population, although seroprevalence studies suggest that exposure to Rickettsia riskettsii, the causative agent, is relatively common among children. The experience with RMSF at Kosair Children's Hospital over a 12-year period was reviewed. Fifteen cases were identified (5 boys and 10 girls). Illness onset ranged from April to October, and 4 patients resided in Jefferson County. The classic triad of fever, rash, and headache was present in only 60% of cases, and tick attachment was reported in only 40%. On average, 6 days elapsed from onset of symptoms to initiation of appropriate antibiotic therapy. One patient suffered splenic infarction and necrosis of the digits due to shock and disseminated intravascular coagulopathy, and 2 patients died. RMSF is a significant cause of pediatric morbidity and mortality in this region of Kentucky. Affected children may reside in relatively urban parts of the state. Initial clinical features may be nonspecific. This, as well as decreased awareness of disease and (unjustified) reluctance to use doxycycline may contribute to delays in initiating therapy.

  6. Rocky Mountain spotted fever in the United States, 1997-2002.

    Science.gov (United States)

    Chapman, Alice S; Murphy, Staci M; Demma, Linda J; Holman, Robert C; Curns, Aaron T; McQuiston, Jennifer H; Krebs, John W; Swerdlow, David L

    2006-01-01

    Rocky Mountain spotted fever (RMSF) is the most commonly reported fatal tick-borne disease in the United States. During 1997-2002, 3,649 cases of RMSF were reported to the Centers for Disease Control and Prevention via the National Electronic Telecommunications System for Surveillance; 2,589 case report forms, providing supplemental information, were also submitted. The average annual RMSF incidence during 1997-2002 was 2.2 cases/million persons. The annual incidence increased during 1997-2002 to a rate of 3.8 cases/million persons in 2002. The incidence was lowest among persons aged<5 and 10-29 years, and highest among adults aged 60-69 years. The overall case-fatality rate was 1.4%; the rate peaked in 1998 at 2.9% and declined to 0.7% in 2001 and 2002. Children<5 years of age had a case-fatality rate (5%) that was significantly greater than the rates for age groups<60 years of age, except for that for 40-49 years of age. Continued national surveillance is needed to assess the effectiveness of prevention efforts and early treatment in decreasing severe morbidity and mortality associated with RMSF.

  7. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B. C.; Toth, W. J. [comps.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  8. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    Science.gov (United States)

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  9. Middle Rockies Ecoregion: Chapter 5 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Middle Rockies Ecoregion—characterized by steep, high-elevation mountain ranges and intermountain valleys—is a disjunct ecoregion composed of three distinct geographic areas: the Greater Yellowstone area in northwest Wyoming, southwest Montana, and eastern Idaho; the Bighorn Mountains in north-central Wyoming and south-central Montana; and the Black Hills in western South Dakota and eastern Wyoming (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion covers approximately 90,160 km2 (34,881 mi2), and its three distinct geographic sections are bordered by several other ecoregions (fig. 1). The Yellowstone section abuts the Montana Valley and Foothill Prairies and the Northern Rockies Ecoregions to the north, the Snake River Basin and the Central Basin and Range Ecoregions to the west, and the Wyoming Basin Ecoregion to the south and east. The Bighorn Mountains section lies between the Wyoming Basin Ecoregion to the west and the Northwestern Great Plains Ecoregion to the east, and it abuts the Montana Valleys and Foothill Prairies Ecoregion to the north. The Black Hills section is entirely surrounded by the Northwestern Great Plains Ecoregion. The Continental Divide crosses the ecoregion from the southeast along the Wind River Range, through Yellowstone National Park, and west along the Montana-Idaho border. On both sides of the divide, topographic relief causes local climate variability, particularly the effects of aspect, exposure to prevailing wind, thermal inversions, and rain-shadow effects, that are reflected in the wide variety of flora and fauna within the ecoregion (Ricketts and others, 1999).

  10. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  11. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  12. Medical knowledge related to Rocky Mountain spotted fever in Sonora, Mexico.

    Science.gov (United States)

    Alvarez-Hernandez, Gerardo; Ernst, Kacey; Acuña-Melendrez, Natalia Haydee; Vargas-Ortega, Anabel Patricia; Candia-Plata, Maria Del Carmen

    2018-03-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease with a high case-fatality rate unless diagnosed promptly and treated timely with doxycycline. Physician knowledge about presentation and treatment can improve outcomes of RMSF in endemic regions, such as Sonora in northern Mexico, where RMSF has caused 1348 non-fatal cases and 247 deaths from 2003 to 2016. A cross-sectional study was conducted with 343 physicians working in medical facilities in Sonora, Mexico. A 25-item questionnaire explored physician knowledge of clinical, epidemiological and preventive aspects of RMSF. Only 62% of physicians agreed that doxycycline should be used as the first choice treatment for children under 8 years with suspected RMSF. Additionally, 40% of primary care physicians correctly identified the time to initiate doxycycline, and 32% correctly identified the case-fatality rate of untreated RMSF in all patients. Inadequate medical knowledge may adversely affect how patients infected with Rickettsia rickettsii are diagnosed and treated. Educational programs that improve the risk perception and medical knowledge about RMSF should be targeted at physicians most likely to have initial contact with diseased patients.

  13. Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever.

    Science.gov (United States)

    Paddock, Christopher D; Denison, Amy M; Lash, R Ryan; Liu, Lindy; Bollweg, Brigid C; Dahlgren, F Scott; Kanamura, Cristina T; Angerami, Rodrigo N; Pereira dos Santos, Fabiana C; Brasil Martines, Roosecelis; Karpathy, Sandor E

    2014-09-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. © The American Society of Tropical Medicine and Hygiene.

  14. Fatal Rocky Mountain Spotted Fever in the United States, 1999–2007

    Science.gov (United States)

    Dahlgren, F. Scott; Holman, Robert C.; Paddock, Christopher D.; Callinan, Laura S.; McQuiston, Jennifer H.

    2012-01-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999–2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children 5–9 years of age (RR = 6.0) and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice. PMID:22492159

  15. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    Science.gov (United States)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual

  16. Measurement and Estimation of Riverbed Scour in a Mountain River

    Science.gov (United States)

    Song, L. A.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Mountains are steep with rapid flows in Taiwan. After installing a structure in a mountain river, scour usually occurs around the structure because of the high energy gradient. Excessive scouring has been reported as one of the main causes of failure of river structures. The scouring disaster related to the flood can be reduced if the riverbed variation can be properly evaluated based on the flow conditions. This study measures the riverbed scour by using an improved "float-out device". Scouring and hydrodynamic data were simultaneously collected in the Mei River, Nantou County located in central Taiwan. The semi-empirical models proposed by previous researchers were used to estimate the scour depths based on the measured flow characteristics. The differences between the measured and estimated scour depths were discussed. Attempts were then made to improve the estimating results by developing a semi-empirical model to predict the riverbed scour based on the local field data. It is expected to setup a warning system of river structure safety by using the flow conditions. Keywords: scour, model, float-out device

  17. Retrospective Study of Rocky Mountain Spotted Fever in Children.

    Science.gov (United States)

    Tull, Rechelle; Ahn, Christine; Daniel, Alyssa; Yosipovitch, Gil; Strowd, Lindsay C

    2017-03-01

    Rocky Mountain spotted fever (RMSF), a lethal tick-borne illness, is prevalent in the south central United States. Children younger than 10 years old have the greatest risk of fatal outcome from RMSF. The objective of the current study was to review pediatric cases of RMSF seen in the dermatology consult service and to evaluate dermatology's role in the diagnosis and management of this disease. A retrospective review was performed of inpatient dermatology consultations at a tertiary care center in North Carolina from 2001 to 2011. Data collected included patient demographic characteristics, symptoms, pre- and postconsultation diagnoses, diagnostic procedures, length of hospital stay, and outcome. A total of 3,912 consultations were conducted in the dermatology service over 10 years. Six patients with RMSF, ranging in age from 22 months to 10 years (mean 5.1 years), were evaluated during April, May, and June. All preconsultation diagnoses included RMSF in the differential diagnosis. All patients underwent skin biopsies, and a culture was obtained in one case. Fifty percent of patients died within 4 days of hospitalization. Variables associated with mortality from RMSF are delayed diagnosis and initiation of antirickettsial therapy. Physicians should consider RMSF in children presenting with fever and rash during the summer months. Dermatology consultation is useful in evaluating patients with suspicious clinical features of RMSF with skin findings. © 2016 Wiley Periodicals, Inc.

  18. Fatal Rocky Mountain Spotted Fever along the United States-Mexico Border, 2013-2016.

    Science.gov (United States)

    Drexler, Naomi A; Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D

    2017-10-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US-Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US-Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico.

  19. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  20. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Directory of Open Access Journals (Sweden)

    Joshua P Averett

    establishment in low and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.

  1. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Science.gov (United States)

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.

  2. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    Science.gov (United States)

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  3. Safety analysis report: A comparison of incidents from Safety Years 2006 through 2010, USDA Forest Service, Rocky Mountain Research Station Inventory and Monitoring Program

    Science.gov (United States)

    Devon Donahue

    2012-01-01

    This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...

  4. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  5. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition

    Science.gov (United States)

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.

  6. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    Science.gov (United States)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  7. S. Burt Wolbach, Rocky Mountain spotted fever, and blood-sucking arthropods: triumph of an early investigative pathologist.

    Science.gov (United States)

    Musser, James M

    2013-02-01

    In a series of four articles published between 1916 and 1919 in The Journal of Medical Research, precursor to The American Journal of Pathology, the investigative pathologist S. Burt Wolbach unambiguously showed that Rocky Mountain spotted fever has a tick-borne mode of transmission, the causative agent replicates intracellularly, and the disease is fundamentally a vasculitis. Although underappreciated, Wolbach's tour-de-force work epitomized investigative pathology. These four articles should be mandatory reading for young investigators and are recommended also to seasoned investigators who seek reinvigoration in the beauty in their craft. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Knowledge, attitudes, and practices regarding Rocky Mountain spotted fever among healthcare providers, Tennessee, 2009.

    Science.gov (United States)

    Mosites, Emily; Carpenter, L Rand; McElroy, Kristina; Lancaster, Mary J; Ngo, Tue H; McQuiston, Jennifer; Wiedeman, Caleb; Dunn, John R

    2013-01-01

    Tennessee has a high incidence of Rocky Mountain spotted fever (RMSF), the most severe tick-borne rickettsial illness in the United States. Some regions in Tennessee have reported increased illness severity and death. Healthcare providers in all regions of Tennessee were surveyed to assess knowledge, attitudes, and perceptions regarding RMSF. Providers were sent a questionnaire regarding knowledge of treatment, diagnosis, and public health reporting awareness. Responses were compared by region of practice within the state, specialty, and degree. A high proportion of respondents were unaware that doxycycline is the treatment of choice in children ≤ 8 years of age. Physicians practicing in emergency medicine, internal medicine, and family medicine; and nurse practitioners, physician assistants, and providers practicing for < 20 years demonstrated less knowledge regarding RMSF. The gaps in knowledge identified between specialties, designations, and years of experience can help target education regarding RMSF.

  9. Rocky Mountain spotted fever in Arizona: documentation of heavy environmental infestations of Rhipicephalus sanguineus at an endemic site.

    Science.gov (United States)

    Nicholson, William L; Paddock, Christopher D; Demma, Linda; Traeger, Marc; Johnson, Brian; Dickson, Jeffrey; McQuiston, Jennifer; Swerdlow, David

    2006-10-01

    A recent epidemiologic investigation identified 16 cases and 2 deaths from Rocky Mountain spotted fever (RMSF) in two eastern Arizona communities. Prevalence studies were conducted by collecting free-living ticks (Acari: Ixodidae) from the home sites of RMSF patients and from other home sites within the community. Dry ice traps and flagging confirmed heavy infestations at many of the home sites. Only Rhipicephalus sanguineus ticks were identified and all developmental stages were detected. It is evident that under certain circumstances, this species does transmit Rickettsia rickettsii to humans and deserves reconsideration as a vector in other geographic areas.

  10. Determination of characteristics maximal runoff mountain rivers in ...

    African Journals Online (AJOL)

    ... water) on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive) on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation. Keywords: maximum runoff; rain floods; hillslope runoff; karst ...

  11. Numerical simulation of atmospheric dispersion in the vicinity of the Rocky Flats plant

    International Nuclear Information System (INIS)

    Bossert, J.E.; Poulos, G.S.

    1993-01-01

    The Atmospheric Studies in Complex Terrain (ASCOT) program sponsored a field experiment in the winter of 1991 near Rocky Flats, Colorado. Both meteorological and tracer dispersion measurements were taken. These two data sets provided an opportunity to investigate the influence of terrain-generated, radiatively-driven flows on the dispersion of the tracer. In this study, we use the Regional Atmospheric Modeling System (RAMS) to simulate meteorological conditions and tracer dispersion on the case night of 4--5 February 1991. The simulations were developed to examine the influence of nocturnal drainage flow from various topography regimes on the dispersion of tracer from the Rocky Flats plant. The simulation described herein demonstrates the extent to which Rocky Mountain drainage winds influence the flow at the mountain/plain interface for a particular case night, and shows the potential importance of canyon drainage on dispersion from the Rocky Flats area

  12. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    Science.gov (United States)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  13. Inadequacy of IgM antibody tests for diagnosis of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    McQuiston, Jennifer H; Wiedeman, Caleb; Singleton, Joseph; Carpenter, L Rand; McElroy, Kristina; Mosites, Emily; Chung, Ida; Kato, Cecilia; Morris, Kevin; Moncayo, Abelardo C; Porter, Susan; Dunn, John

    2014-10-01

    Among 13 suspected Rocky Mountain spotted fever (RMSF) cases identified through an enhanced surveillance program in Tennessee, antibodies to Rickettsia rickettsii were detected in 10 (77%) patients using a standard indirect immunofluorescent antibody (IFA) assay. Immunoglobulin M (IgM) antibodies were observed for 6 of 13 patients (46%) without a corresponding development of IgG, and for 3 of 10 patients (30%) at least 1 year post-onset. However, recent infection with a spotted fever group rickettsiae could not be confirmed for any patient, based on a lack of rising antibody titers in properly timed acute and convalescent serologic specimens, and negative findings by polymerase chain reaction testing. Case definitions used in national surveillance programs lack specificity and may capture cases that do not represent current rickettsial infections. Use of IgM antibodies should be reconsidered as a basis for diagnosis and public health reporting of RMSF and other spotted fever group rickettsiae in the United States. © The American Society of Tropical Medicine and Hygiene.

  14. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    OpenAIRE

    Vatin Nikolai; Lavrov Nikolai; Loginov Gennadi

    2016-01-01

    In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphome...

  15. Distinct crustal isostasy trends east and west of the Rocky Mountain Front

    KAUST Repository

    Schmandt, Brandon

    2015-12-14

    © 2015. American Geophysical Union. All Rights Reserved. Seismic structure beneath the contiguous U.S. was imaged with multimode receiver function stacking and inversion of Rayleigh wave dispersion and ellipticity measurements. Crust thickness and elevation are weakly correlated across the contiguous U.S., but the correlation is ∼3-4 times greater for separate areas east and west of the Rocky Mountain Front (RMF). Greater lower crustal shear velocities east of the RMF, particularly in low-elevation areas with thick crust, are consistent with deep crustal density as the primary cause of the contrasting crust thickness versus elevation trends. Separate eastern and western trends are best fit by Airy isostasy models that assume lower crust to uppermost mantle density increases of 0.18 g/cm3 and 0.40 g/cm3, respectively. The former value is near the minimum that is plausible for felsic lower crust. Location of the transition at the RMF suggests that Laramide to post-Laramide processes reduced western U.S. lower crustal density.

  16. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)

    2008-06-15

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat

  17. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    International Nuclear Information System (INIS)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S.

    2008-01-01

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha -1 ·year -1 . This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be

  18. Efficacy of chloramphenicol, enrofloxacin, and tetracycline for treatment of experimental Rocky Mountain spotted fever in dogs.

    Science.gov (United States)

    Breitschwerdt, E B; Davidson, M G; Aucoin, D P; Levy, M G; Szabados, N S; Hegarty, B C; Kuehne, A L; James, R L

    1991-01-01

    Dogs were experimentally inoculated with Rickettsia rickettsii to characterize the comparative efficacies of chloramphenicol, enrofloxacin, and tetracycline for the treatment of Rocky Mountain spotted fever (RMSF). All three antibiotics were equally effective in abrogating the clinical, hematologic, and vascular indicators of rickettsial infection. Antibiotic treatment for 24 h was sufficient to decrease the rickettsemia to levels below detection by Vero cell culture. Early treatment with all three antibiotics resulted in a similar decrease in antibody titer, but acute and convalescent serum samples taken at appropriate times would have still facilitated an accurate diagnosis of RMSF in all but one dog, which did not seroconvert. We conclude that chloramphenicol, enrofloxacin, and tetracycline are equally efficacious for treating experimental canine RMSF. PMID:1666498

  19. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  20. Fatal Rocky Mountain Spotted Fever along the United States–Mexico Border, 2013–2016

    Science.gov (United States)

    Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D.

    2017-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US–Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US–Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico. PMID:28930006

  1. MACROZOOBENTHOS OF MOUNTAIN RIVERS OF THE TRANSCARPATHIAN REGION AS A FORAGE BASE OF BENTHOPHAGOUS FISHES AND SAPROBITY INDICATOR

    Directory of Open Access Journals (Sweden)

    S. Kruzhylina

    2014-12-01

    Full Text Available Purpose. To study qualitative and qualitative indices of macrozoobenthos as one of main components of the forage base of benthophagous fishes in mountain river reaches of the Transcarpathian region and determination of their saprobity level. Methodology. Thhj,9.e study was carried out in summer period of 2009 in mountain river reaches of the Tisa river catchment. Zoobenthos samples were collected by a Surber sampler (25 × 25 cm on the bottoms of different fractions with different water flow rate (riffle, run, pool. Collection, processing and interpretation of the obtained data was carried out according to generally accepted hydrobiological methods developed for mountain river studies. Saprobity was of the studied rivers was calculated by Pantle-Buck formula. The Zelinka-Marvan saprobity index was used for calculations. Findings. Qualitative and quantitative macrozoobenthos indices have been studied. The number of zoobenthos on the investigated river sections ranged from 416 to 7712 ind./m2 with biomasses from 2.96 to 83.84 g/m2. The major portion of the zoobenthic biomass in the majority of rivers was due to caddis fly larvae composing up to 93% of the total biomass. An important role in the total biomass of the zoobenthos also belonged to mayfly (up to 53% and stonefly (up to 55% larvae and in lower degree amphipods (up to 39%, chironomid larvae (up to 14% and aquatic coleopterans (up to 5%. According to the calculated potential fish productivity, the mountain rivers can be apparently separated into three groups: little productive (4.2–12.7 kg/ha, medium productive (13.2–21.6 kg/ha and high productive (25.3–85.3 kg/ha. Mountain river reaches of the Transcarpathian region were found to belong to pure χ-saprobic, and о- і β-mesosaprobic zones, the saprobity index in which ranged from 0.35 (Rika river to 1.7 (Shipot river. Originality. For further calculation and assessment of brown trout (Salmo trutta and European grayling (Thymallus

  2. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    Science.gov (United States)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a

  3. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    Science.gov (United States)

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  4. Using the Mountain Pine Beetle Infestation of the Rocky Mountain West to Develop a Collaborative, Experiential Course on Science Communication

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.

    2016-12-01

    An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.

  5. Ps mantle transition zone imaging beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous mantle

    Science.gov (United States)

    Zhang, Zhu; Dueker, Kenneth G.; Huang, Hsin-Hua

    2018-06-01

    We analyze teleseismic P-to-S conversions for high-resolution imaging of the mantle transition zone beneath the Colorado Rocky Mountains using data from a dense PASSCAL seismic broadband deployment. A total of 6,021 P-to-S converted receiver functions are constructed using a multi-channel minimum-phase deconvolution method and migrated using the common converted point technique with the 3-D teleseismic P- and S-wave tomography models of Schmandt and Humphreys (2010). The image finds that the average depths of the 410-km discontinuity (the 410) and 660-km discontinuity (the 660) at 408 ± 1.9 km and 649 ± 1.6 km respectively. The peak-to-peak topography of both discontinuities is 33 km and 27 km respectively. Additionally, prominent negative polarity phases are imaged both above and below the 410. To quantify the mean properties of the low-velocity layers about 410 km, we utilize double gradient layer models parameterization to fit the mean receiver function waveform. This waveform fitting is accomplished as a grid-search using anelastic synthetic seismograms. The best-fitting model reveals that the olivine-wadsleyite phase transformation width is 21 km, which is significantly larger than anhydrous mineral physics prediction (4-10 km) (Smyth and Frost, 2002). The findings of a wide olivine-wadsleyite phase transformation and the negative polarity phases above and below the 410, suggest that the mantle, at least in the 350-450 km depth range, is significantly hydrated. Furthermore, a conspicuous negative polarity phase below the 660 is imaged in high velocity region, we speculate the low velocity layer is due to dehydration flux melting in an area of convective downwelling. Our interpretation of these results, in tandem with the tomographic image of a Farallon slab segment at 800 km beneath the region (Schmandt and Humphreys, 2010), is that hydrous and upwelling mantle contributes to the high-standing Colorado Rocky Mountains.

  6. Dose-response model of Rocky Mountain spotted fever (RMSF) for human.

    Science.gov (United States)

    Tamrakar, Sushil B; Haas, Charles N

    2011-10-01

    Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship. © 2011 Society for Risk Analysis.

  7. "Rickettsia amblyommii" induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model.

    Science.gov (United States)

    Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H

    2014-08-01

    Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.

  8. A high resolution complex terrain dispersion study in the Rocky Flats, Colorado vicinity

    International Nuclear Information System (INIS)

    Poulos, G.S.; Bossert, J.E.

    1992-01-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO under the auspices of the Department of Energy Atmospheric Studies over Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km 2 scale. Simultaneously, an SF 6 tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF 6 plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM), a component of the RAMS system, to model the dispersion of the SF 6 . We have chosen the 4--5 February, 1991 overnight period as our case study. This night was characterized by strong drainage flows from the Rocky Mountains to the west of Rocky Flats, southerly winds in a layer about lkm thick above the drainage flows, and northwesterly winds above that layer extending to the tropopause

  9. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by ∼0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation

  10. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  11. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    Science.gov (United States)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total

  12. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Gebhart, Kristi A.; Schichtel, Bret A.; Malm, William C.; Barna, Michael G.; Rodriguez, Marco A.; Collett, Jeffrey L., Jr.

    2011-01-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS), conducted during the spring and summer of 2006, was designed to assess the sources of nitrogen and sulfur species that contribute to wet and dry deposition and visibility impairment at Rocky Mountain National Park (RMNP), Colorado. Several source apportionment methods were utilized for RoMANS, including the Trajectory Mass Balance (TrMB) Model, a receptor-based method in which the hourly measured concentrations are the dependent variables and the residence times of back trajectories in several source regions are the independent variables. The regression coefficients are estimates of the mean emissions, dispersion, chemical transformation, and deposition between the source areas and the receptors. For RoMANS, a new ensemble technique was employed in which input parameters were varied to explore the range, variability, and model sensitivity of source attribution results and statistical measures of model fit over thousands of trials for each set of concentration measurements. Results showed that carefully chosen source regions dramatically improved the ability of TrMB to reproduce temporal patterns in the measured concentrations, and source attribution results were also very sensitive to source region choices. Conversely, attributions were relatively insensitive to trajectory start height, trajectory length, minimum endpoints per source area, and maximum endpoint height, as long as the trajectories were long enough to reach contributing source areas and were not overly restricted in height or horizontal location. Source attribution results estimated that more than half the ammonia and 30-45% of sulfur dioxide and other nitrogen-containing species at the RoMANS core site were from sources within the state of Colorado. Approximately a quarter to a third of the sulfate was from within Colorado.

  13. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  14. The effect of a small creek valley on drainage flows in the Rocky Flats region

    International Nuclear Information System (INIS)

    Porch, W.

    1996-01-01

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program

  15. Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains

    Science.gov (United States)

    Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.

    2017-12-01

    Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.

  16. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    Science.gov (United States)

    Wing, S. L.

    2011-12-01

    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  17. Limber pine health in the Canadian Rockies

    Science.gov (United States)

    Cyndi M. Smith; David Langor; Colin Myrholm; Jim Weber; Cameron Gillies; Jon Stuart-Smith

    2011-01-01

    Limber pine (Pinus flexilis) reaches the northern limit of its range at about 52 degrees latitude in Alberta (AB) and 51 degrees latitude in British Columbia (BC). Most populations are found on the eastern slopes of the Rocky Mountains, with a few disjunct populations west of the Continental Divide in southeastern BC.

  18. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    Science.gov (United States)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  19. Future Forests Webinar Series, Webinar Proceedings and Summary: Ongoing Research and Management Responses to the Mountain Pine Beetle Outbreak

    Science.gov (United States)

    M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan

    2014-01-01

    The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...

  20. Rocky mountain spotted fever in the United States, 2000-2007: interpreting contemporary increases in incidence.

    Science.gov (United States)

    Openshaw, John J; Swerdlow, David L; Krebs, John W; Holman, Robert C; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F; McQuiston, Jennifer H

    2010-07-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5-9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005-2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates.

  1. Final Alternatives Assessment of Interim Response Actions for Other Contamination Sources M-1 Settling Basins, Rocky Mountain Arsenal, Version 3.1

    Science.gov (United States)

    1989-11-01

    u = W. QU- -; t2 E~ zi=- 6e-1 wo u CC .2 211 ~ .CC > . I- - . Ece Zc a- c’ cC I C! 0. - ZEC E ~C C 6-12 E 0 U- .0 E ~E 0 -6 -1 1 I- 8t~ V- .~ u osz w18...Materials and Waste Management Division Colorado Department of Health 4210 East 11th Avenue Denver, CO 80020 Victoria Peters , Esq. Office of Attorney...999 18th Street, Suite 500 Denver, CO 80202-2405 Dr. Peter Gober U.S. Fish and Wildlife Service Rocky Mountain Arsenal, Bldg. 111 Commerce City, CO

  2. Ecological characteristics of the main river catchments in Vrachanska Planina Mountains

    Directory of Open Access Journals (Sweden)

    SVETOSLAV CHESHMEDJIEV

    2016-05-01

    Full Text Available Assessment of the ecological status of river ecosystems of the major watersheds in the Vrachanska Planina Mts. (Leva River, Cherna River and some tributaries is made. The assessment is carried out by determining the composition and structure of phytobenthos, benthic macroinvertebrate communities and fish. The following indexes are calculated: diatom pollution index IPS, macrozoobenthic Biotic Index and Fish Based Index (BFI, adopted for assessing the ecological status as required by WFD (Directive 60/2000. Additionally, various physical and hydrochemical analyzes are performed. Based on our results the majority of the mountainous zones of the studied rivers is "good" or "high" ecological status. Deteriorated ecological conditions is observed downstream some villages: for Leva River below the village of Zgorigrad and for Cherna River nearby the village of Dolno Ozirovo. This is probably owing to contamination with organic matter from the human settlements in the area. An accident pollution (with a predominantly protein character was found in the Cherna River near the Lupovaka area.

  3. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) – producing high fundamental frequency vocalization with a very long vocal fold

    OpenAIRE

    Riede, Tobias; Titze, Ingo R.

    2008-01-01

    The vocal folds of male Rocky Mountain elk (Cervus elaphus nelsoni) are about 3 cm long. If fundamental frequency were to be predicted by a simple vibrating string formula, as is often done for the human larynx, such long vocal folds would bear enormous stress to produce the species-specific mating call with an average fundamental frequency of 1 kHz. Predictions would be closer to 50 Hz. Vocal fold histology revealed the presence of a large vocal ligament between the vocal fold epithelium and...

  4. Makran Mountain Range, Indus River Valley, Pakistan, India

    Science.gov (United States)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  5. Native legume transplant survivorship and subsequent seedling recruitment on unamended coal mine soils in the Canadian Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.R.

    1997-05-01

    Transplant survivorship, growth, and reproductive performance of several indigenous high-elevation legume species grown in unamended spoil were studied at three coal mines in the Canadian Rocky Mountains. Survivorship varied with species but was highest for Astragalus aboriginum (62%), Astragalus alpinus (73-57%), Astragalus vexilliflexus var. nubilus (73-63%), and Oxytropis sericea (77-62%). Mortality was greatest during the first two years for most species. The causes of transplant mortality are considered to be drought stress, deep-seated `frost-popping`/root exposure, and damage, for example, root exposure and destruction of meristematic tissues by foraging mammals such as bighorn sheep, mountain goats, grizzly bears, and marmots. Survivorship, growth, and reproductive activity were greatest at the two subalpine disturbances. Growth varied with species, but the greatest growth increments (height and diameter) were recorded during the first and second years. Reproductive activity for the Astragalus species began during the first year at one location but, in general, flowering and seed set did not begin until the second or third years. Recruitment from seed was small ({lt} 10/year). Several of these species appear to be suitable for revegetation of subalpine and alpine surface mine disturbances.

  6. Trends in clinical diagnoses of Rocky Mountain spotted fever among American Indians, 2001-2008.

    Science.gov (United States)

    Folkema, Arianne M; Holman, Robert C; McQuiston, Jennifer H; Cheek, James E

    2012-01-01

    American Indians are at greater risk for Rocky Mountain spotted fever (RMSF) than the general U.S. population. The epidemiology of RMSF among American Indians was examined by using Indian Health Service inpatient and outpatient records with an RMSF International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis. For 2001-2008, 958 American Indian patients with clinical diagnoses of RMSF were reported. The average annual RMSF incidence was 94.6 per 1,000,000 persons, with a significant increasing incidence trend from 24.2 in 2001 to 139.4 in 2008 (P = 0.006). Most (89%) RMSF hospital visits occurred in the Southern Plains and Southwest regions, where the average annual incidence rates were 277.2 and 49.4, respectively. Only the Southwest region had a significant increasing incidence trend (P = 0.005), likely linked to the emergence of brown dog ticks as an RMSF vector in eastern Arizona. It is important to continue monitoring RMSF infection to inform public health interventions that target RMSF reduction in high-risk populations.

  7. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA

    Science.gov (United States)

    Hossack, Blake R.; Muths, Erin L.; Anderson, Chauncey W.; Kirshtein, Julie D.; Corn, P. Stephen

    2009-01-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region.

  8. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    Science.gov (United States)

    Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan

    2013-01-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  9. Seasonal nutrient chemistry in mountainous river systems of tropical Western Peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Pradhan, U.K.; Wu, Y.; Shirodkar, P.V.; Zhang, J.

    Nutrient chemistry was studied in three mountainous rivers (Mandovi, Zuari and Netravati), across western peninsular India (WPI) during south-west monsoon (SWM), post-monsoon and pre-monsoon seasons of year 2011-2012. Nutrients in rainwater were...

  10. Plant Functional Traits Are More Consistent Than Plant Species on Periglacial Patterned Ground in the Rocky Mountains of Montana

    Science.gov (United States)

    Apple, M. E.; Ricketts, M. K.; Gallagher, J. H. R.

    2017-12-01

    Periglacial patterned ground exists as stripes and hexagons near glaciers and snowfields, some of which are former glaciers. The patterns are accentuated by profound differences in plant cover between the sloping surfaces, generally perceived as green, and the flat treads, generally perceived as brown but which are not devoid of plant life. On four sites in the Rocky Mountains of Montana we detected strong similarities in plant functional traits on the sloping surfaces of striped and hexagonal periglacial patterned ground. On Mt. Keokirk in the Pioneer Mountains, Kinnickinnick, Arctostaphylos uva-ursi, dominates narrow green stripes. On Goat Flat in the Pintler Mountains, Mountain Avens, Dryas octopetala, dominates the side walls of hexagonally patterned ground and narrow green stripes. At Glacier National Park, D. octopetala and the Arctic Willow, Salix arctica, co-dominate the green risers of widely-spaced striped periglacial patterned system at Siyeh Pass, while D. octopetala, S. arctica, and the Mountain Heather, Phyllodoce glanduliflora, co-dominate the green risers of the widely-spaced stripes of Piegan Pass. All four of these dictotyledonous angiosperm species are adventitiously-rooted dwarf shrubs with simple leaves. Of these, P. glanduliflora, A. uva-ursi and D. octopetala are evergreen. D. octopetala is symbiotic with N-fixing Frankia sp. All are mycorrhizal, although D. octopetala and S. arctica are ectomycorrhizal and P. glanduliflora and A. uva-ursi have ericaceous mycorrhizae. In contrast, dwarf shrubs are scarce on flat treads and within hexagons, which are chiefly inhabited by herbaceous, taprooted or rhizomatous, VAM angiosperms. As the green stripes and hexagon walls have greater plant cover, they likely have greater organic material due to leaf buildup and root turnover, anchor themselves and the soil with adventitious roots, their clonality suggests long lives, and N-fixing influences N dynamics of the periglacial patterned ground.

  11. On the polychroism of river terraces in mountain areas

    International Nuclear Information System (INIS)

    Pshenin, G.N.; Serebryanyj, L.R.

    1981-01-01

    Using the method of 14 C isotope dating the age of alluvial deposits of river terraces in mountain areas in Fergana is studied. It is shown that the age of the deposits varies from 16 to 10 thousand years. Their formation as dynamically independent, self-developing systems is pointed out. The role of endo- and exogenous factors in the process of terrace-formation evidently comes to the trigger effect [ru

  12. Draft comprehensive conservation plan and environmental impact statement-Rocky Mountain Arsenal National Wildlife Refuge

    Science.gov (United States)

    ,

    2015-01-01

    The Rocky Mountain Arsenal National Wildlife Refuge Complex, consisting of some of the newer properties in the National Wildlife Refuge System, is a work in progress. Offering unique assets to surrounding communities, these lands promise to become some of the premier urban wildlife refuges in the country. At the heart of the refuge complex is the Rocky Mountain Arsenal National Wildlife Refuge: 16,000 acres of shortgrass and mixed-grass prairie that is home to bison, bald eagles, migratory songbirds, prairie dogs, and much more—all within the Denver Metropolitan area.This comprehensive conservation plan will be the first in the country designed to begin implementing the Refuge System’s new Urban Refuge Initiative. To accomplish this, we analyzed a wide range of options on how best to support up to one million visitors per year without compromising our principal purposes to protect and preserve fish and wildlife and their habitats. We are fortunate to have inherited a great deal of infrastructure from the U.S. Army, but we are also constrained by the current condition and layout of these facilities. Some of this infrastructure may be acting as barriers to the public—a condition inconsistent with the purposes of the refuge. Accordingly, we have developed a goal to increase and improve suitable access to the refuge, develop sustainable transportation options, and provide more connections among the units of the refuge complex. This increased access will enable people from all walks of life to visit the refuge. The vision we have developed for the refuge complex calls for the restoration of the refuge’s historical habitats, and the reconnection of people with the natural lands of the refuge and of the region at large using a network consisting of multimodal trails, a far-reaching light-rail system, and the Denver International Airport. This refuge is well positioned to leverage and catalyze early investments to create world-class wildlife habitat and a

  13. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  14. Flight Paths of Migrating Golden Eagles and the Risk Associated with Wind Energy Development in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Naira N. Johnston

    2013-12-01

    Full Text Available In recent years, the eastern foothills of the Rocky Mountains in northeastern British Columbia have received interest as a site of industrial wind energy development but, simultaneously, have been the subject of concern about wind development coinciding with a known migratory corridor of Golden Eagles (Aquila chrysaetos. We tracked and quantified eagle flights that crossed or followed ridgelines slated for one such wind development. We found that hourly passage rates during fall migration peaked at midday and increased by 17% with each 1 km/h increase in wind speed and by 11% with each 1°C increase in temperature. The propensity to cross the ridge tops where turbines would be situated differed between age classes, with juvenile eagles almost twice as likely to traverse the ridge-top area as adults or subadults. During fall migration, Golden Eagles were more likely to cross ridges at turbine heights (risk zone, < 150 m above ground under headwinds or tailwinds, but this likelihood decreased with increasing temperature. Conversely, during spring migration, eagles were more likely to move within the ridge-top area under eastern crosswinds. Identifying Golden Eagle flight routes and altitudes with respect to major weather systems and local topography in the Rockies may help identify scenarios in which the potential for collisions is greatest at this and other installations.

  15. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  16. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002-2011.

    Science.gov (United States)

    Drexler, Naomi A; Traeger, Marc S; McQuiston, Jennifer H; Williams, Velda; Hamilton, Charlene; Regan, Joanna J

    2015-09-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002-2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. © The American Society of Tropical Medicine and Hygiene.

  17. Rocky Mountain Spotted Fever in the United States, 2000–2007: Interpreting Contemporary Increases in Incidence

    Science.gov (United States)

    Openshaw, John J.; Swerdlow, David L.; Krebs, John W.; Holman, Robert C.; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F.; McQuiston, Jennifer H.

    2010-01-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5–9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005–2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates. PMID:20595498

  18. Aquatic Resources of Rocky Mountain Arsenal Adams County, Colorado

    Science.gov (United States)

    1989-09-01

    Consequently, temperatures rise and oxygen levels fall. Primary producers in these stretches shift from periphyton to phytoplankton (suspended algae ...trees and have rocky substrates. Primary production in these cold- water and coolwater reaches is generally limited to periphyton (attached algae ...Adams County. Biotic components investigated included phytoplankton , zooplankton, aquatic macrophytes, benthic macroinvertebrates, fish eggs and

  19. Rapid ascent: Rocky Mountain National Park in the Great Acceleration, 1945-present

    Science.gov (United States)

    Boxell, Mark

    After the Second World War's conclusion, Rocky Mountain National Park (RMNP) experienced a massive rise in visitation. Mobilized by an affluent economy and a growing, auto-centric infrastructure, Americans rushed to RMNP in droves, setting off new concerns over the need for infrastructure improvements in the park. National parks across the country experienced similar explosions in visitation, inspiring utilities- and road-building campaigns throughout the park units administered by the National Park Service. The quasi-urbanization of parks like RMNP implicated the United States' public lands in a process of global change, whereby wartime technologies, cheap fossil fuels, and a culture of techno-optimism--epitomized by the Mission 66 development program--helped foster a "Great Acceleration" of human alterations of Earth's natural systems. This transformation culminated in worldwide turns toward mass-urbanization, industrial agriculture, and globalized markets. The Great Acceleration, part of the Anthropocene--a new geologic epoch we have likely entered, which proposes that humans have become a force of geologic change--is used as a conceptual tool for understanding the connections between local and global changes which shaped the park after World War II. The Great Acceleration and its array of novel technologies and hydrocarbon-powered infrastructures produced specific cultures of tourism and management techniques within RMNP. After World War II, the park increasingly became the product and distillation of a fossil fuel-dependent society.

  20. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  1. Hydrologic response across a snow persistence gradient on the west and east slopes of the Rocky Mountains in Colorado

    Science.gov (United States)

    Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.

    2017-12-01

    Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope

  2. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  3. Trends in Clinical Diagnoses of Rocky Mountain Spotted Fever among American Indians, 2001–2008

    Science.gov (United States)

    Folkema, Arianne M.; Holman, Robert C.; McQuiston, Jennifer H.; Cheek, James E.

    2012-01-01

    American Indians are at greater risk for Rocky Mountain spotted fever (RMSF) than the general U.S. population. The epidemiology of RMSF among American Indians was examined by using Indian Health Service inpatient and outpatient records with an RMSF International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis. For 2001–2008, 958 American Indian patients with clinical diagnoses of RMSF were reported. The average annual RMSF incidence was 94.6 per 1,000,000 persons, with a significant increasing incidence trend from 24.2 in 2001 to 139.4 in 2008 (P = 0.006). Most (89%) RMSF hospital visits occurred in the Southern Plains and Southwest regions, where the average annual incidence rates were 277.2 and 49.4, respectively. Only the Southwest region had a significant increasing incidence trend (P = 0.005), likely linked to the emergence of brown dog ticks as an RMSF vector in eastern Arizona. It is important to continue monitoring RMSF infection to inform public health interventions that target RMSF reduction in high-risk populations. PMID:22232466

  4. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002–2011

    Science.gov (United States)

    Drexler, Naomi A.; Traeger, Marc S.; McQuiston, Jennifer H.; Williams, Velda; Hamilton, Charlene; Regan, Joanna J.

    2015-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002–2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. PMID:26033020

  5. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    Science.gov (United States)

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  6. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  7. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  8. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  9. An ecological response model for the Cache la Poudre River through Fort Collins

    Science.gov (United States)

    Shanahan, Jennifer; Baker, Daniel; Bledsoe, Brian P.; Poff, LeRoy; Merritt, David M.; Bestgen, Kevin R.; Auble, Gregor T.; Kondratieff, Boris C.; Stokes, John; Lorie, Mark; Sanderson, John

    2014-01-01

    The Poudre River Ecological Response Model (ERM) is a collaborative effort initiated by the City of Fort Collins and a team of nine river scientists to provide the City with a tool to improve its understanding of the past, present, and likely future conditions of the Cache la Poudre River ecosystem. The overall ecosystem condition is described through the measurement of key ecological indicators such as shape and character of the stream channel and banks, streamside plant communities and floodplain wetlands, aquatic vegetation and insects, and fishes, both coolwater trout and warmwater native species. The 13- mile-long study area of the Poudre River flows through Fort Collins, Colorado, and is located in an ecological transition zone between the upstream, cold-water, steep-gradient system in the Front Range of the Southern Rocky Mountains and the downstream, warm-water, low-gradient reach in the Colorado high plains.

  10. Isotopes in North American Rocky Mountain snowpack 1993–2014

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  11. Excess unsupported sup(210)Pb in lake sediment from Rocky Mountain lakes

    International Nuclear Information System (INIS)

    Norton, S.A.; Hess, C.T.; Blake, G.M.; Morrison, M.L.; Baron, J.

    1985-01-01

    Sediment cores from four high-altitude (approximately 3200 m) lakes in Rocky Mountain National Park, Colorado, were dated by sup(210)Pb chronology. Background (supported) sup(210)Pb activities for the four cores range from 0.26 to 0.93 Beq/g dry weight, high for typical oligotrophic lakes. Integrated unsupported sup(210)Pb ranges from 0.81 (a typical value for most lakes) to 11.0 Beq/cmsup(2). The sup(210)Pb activity in the surface sediments ranges from 1.48 to 22.2 Beq/g dry weight. Sedimentation from Lake Louise, the most unusual of the four, has 22.2 Beq/g dry weight at the sediment surface, an integrated unsupported sup(210)Pb=11.0 Beq/cmsup(2), and supported sup(210)Pb=0.74 Beq/g dry weight. sup(226)Ra content of the sediment is insufficient to explain either the high unsupported sup(210)Pb or the sup(222)Rn content of the water column of Lake Louise, which averaged 96.2 Beq/L. We concluded that sup(222)Rn-rich groundwater entering the lake is the source of the high sup(222)Rn in the water column. This, in turn, is capable of supporting the unusually high sup(210)Pb flux to the sediment surface. Groundwater with high sup(222)Rn may control the sup(210)Pb budget of lakes where sediment cores have integrated unsupported sup(210)Pb greater than 2 Beq/cmsup(2)

  12. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    Science.gov (United States)

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  13. Increasing incidence of Rocky Mountain spotted fever among the American Indian population in the United States.

    Science.gov (United States)

    Holman, Robert C; McQuiston, Jennifer H; Haberling, Dana L; Cheek, James E

    2009-04-01

    To examine trends of Rocky Mountain spotted fever (RMSF) incidence among American Indians compared with other race groups, a retrospective analysis of national RMSF surveillance data reported to the National Electronic Telecommunications System for Surveillance and the Tickborne Rickettsial Disease Case Report Forms system were used. The RMSF incidence for American Indians, which was comparable to those for other race groups during 1990-2000, increased at a disproportionate rate during 2001-2005. The average annual incidence of RMSF reported among American Indians for 2001-2005 was 16.8 per 1,000,000 persons compared with 4.2, 2.6, and 0.5 for white, black, and Asian/Pacific Islander persons, respectively. Most cases in American Indians were reported from Oklahoma (113.1 cases per 1,000,000), North Carolina (60.0), and Arizona (17.2). The incidence of RMSF increased dramatically among American Indians disproportionately to trends for other race groups. Education about tick-borne disease and prevention measures should be addressed for high-risk American Indian populations.

  14. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010

    Science.gov (United States)

    Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.

    2018-03-01

    Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611" target="_blank">https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  15. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Baldwin, R.A.; Bender, L.C.

    2009-01-01

    We used scat analysis to determine diets and relative nutritional values of diets for black bears (Ursus americanus Pallas, 1780) in Rocky Mountain National Park, Colorado, from 2003 to 2006, and compared foods consumed and nutritional components to identify important sources of fecal gross energy (GE), crude fat (CF), and fecal nitrogen (FN) in annual and seasonal diets. Patterns of use of food classes followed typical seasonal patterns for bears, although use of animal matter was among the highest reported (>49% annually). Use of animal matter increased after spring, although crude protein levels in bear diets were always >25%. GE was typically lowest for grasses and other herbaceous plants and highest for ants and ungulates; FN was strongly positively related to most animal sources, but negatively correlated with vegetative matter; and CF showed the strongest positive relationship with ungulates and berries, with the latter likely influenced by the presence of seeds. Compared with historic data (1984-1991), contemporary diets included substantially greater prevalence of anthropogenic foods, which likely contributed to increases in size, condition, and productivity of the contemporary bear population. Management strategies are needed to increase quantity and quality of natural foods while minimizing dependence on anthropogenic sources.

  17. SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains

    KAUST Repository

    Rodríguez-Jeangros, Nicolás

    2017-10-02

    Land cover (LC) products, derived primarily from satellite spectral imagery, are essential inputs for environmental studies because LC is a critical driver of processes involved in hydrology, ecology, and climatology, among others. However, existing LC products each have different temporal and spatial resolutions and different LC classes that rarely provide the detail required by these studies. Using multiple existing LC products, we implement our Spatiotemporal Categorical Map Fusion (SCaMF) methodology over a large region of the Rocky Mountains (RM), encompassing sections of six states, to create a new LC product, SCaMF–RM. To do this, we must adapt SCaMF to address the prediction of LC in large space–time regions that present nonstationarities, and we add more flexibility in the LC classifications of the predicted product. SCaMF–RM is produced at two high spatial resolutions, 30 and 50 m, and a yearly frequency for the 30-year period 1983–2012. When multiple products are available in time, we illustrate how SCaMF–RM captures relevant information from the different LC products and improves upon flaws observed in other products. Future work needed includes an exhaustive validation not only of SCaMF–RM but also of all input LC products.

  18. Turkish Children's Drawing of Nature in a Certain Way: Range of Mountains in the Back, the Sun, Couple of Clouds, a River Rising from the Mountains

    Science.gov (United States)

    Ulker, Riza

    2012-01-01

    This study reveals that Turkish kindergarten through 8th Grade (K-8) students draw nature pictures in a certain way; range of mountains in the background, a sun, a couple of clouds, a river rising from the mountains. There are similarities in the K-8 students' nature drawings in the way these nature items are organized on a drawing paper. We…

  19. The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers.

    Science.gov (United States)

    Fell, Sarah C; Carrivick, Jonathan L; Brown, Lee E

    2017-10-01

    Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric-cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species.

  20. Ecohydraulics of Strings and Beads in Bedrock Rivers

    Science.gov (United States)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  1. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  2. Experimental contact transmission of Pasteurella haemolytica from clinically normal domestic sheep causing pneumonia in Rocky Mountain bighorn sheep.

    Science.gov (United States)

    Onderka, D K; Wishart, W D

    1988-10-01

    Two Rocky Mountain bighorn lambs (Ovis canadensis canadensis) were held in captivity for 120 days before being housed with two domestic sheep. The lambs were clinically normal and had no Pasteurella spp. on nasal swab cultures. The domestic sheep were known to carry Pasteurella haemolytica biotype A in the nasal passages. After being in close contact for 19 days. P. haemolytica biotype A was cultured from nasal swabs of one of the bighorn lambs. By 26 days, both bighorn sheep developed coughs, were anorectic and became lethargic and nasal swabs yielded P. haemolytica biotype T, serotype 10. Twenty-nine days after contact, the lambs were necropsied and found to have extensive fibrinous bronchopneumonia. From affected tissues pure cultures of beta-hemolytic P. haemolytica biotype T, serotype 10 were grown. Both domestic sheep remained clinically normal and had no gross or microscopic lesions, but they carried the same P. haemolytica serotype in their tonsils. Behavioural observations gave no indication of stress in the bighorn lambs.

  3. Calculation of bedload transport in Swiss mountain rivers using the model sedFlow: proof of concept

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann

    2015-01-01

    Full Text Available Fully validated numerical models specifically designed for simulating bedload transport dynamics in mountain streams are rare. In this study, the recently developed modelling tool sedFlow has been applied to simulate bedload transport in the Swiss mountain rivers Kleine Emme and Brenno. It is shown that sedFlow can be used to successfully reproduce observations from historic bedload transport events with plausible parameter set-ups, meaning that calibration parameters are only varied within ranges of uncertainty that have been pre-determined either by previous research or by field observations in the simulated study reaches. In the Brenno river, the spatial distribution of total transport volumes has been reproduced with a Nash–Sutcliffe goodness of fit of 0.733; this relatively low value is partially due to anthropogenic extraction of sediment that was not considered. In the Kleine Emme river, the spatial distribution of total transport volumes has been reproduced with a goodness of fit of 0.949. The simulation results shed light on the difficulties that arise with traditional flow-resistance estimation methods when macro-roughness is present. In addition, our results demonstrate that greatly simplified hydraulic routing schemes, such as kinematic wave or uniform discharge approaches, are probably sufficient for a good representation of bedload transport processes in reach-scale simulations of steep mountain streams. The influence of different parameters on simulation results is semi-quantitatively evaluated in a simple sensitivity study. This proof-of-concept study demonstrates the usefulness of sedFlow for a range of practical applications in alpine mountain streams.

  4. Drivers Motivating Community Health Improvement Plan Completion by Local Public Health Agencies and Community Partners in the Rocky Mountain Region and Western Plains.

    Science.gov (United States)

    Hill, Anne; Wolf, Holly J; Scallan, Elaine; Case, Jenny; Kellar-Guenther, Yvonne

    There are numerous drivers that motivate completion of community health improvement plans (CHIPs). Some are more obvious and include voluntary public health accreditation, state requirements, federal and state funding, and nonprofit hospital requirements through IRS regulations. Less is known about other drivers, including involvement of diverse partners and belief in best practices, that may motivate CHIP completion. This research investigated the drivers that motivated CHIP completion based on experiences of 51 local public health agencies (LPHAs). An explanatory mixed-methods design, including closed- and open-ended survey questions and key informant interviews, was used to understand the drivers that motivated CHIP completion. Analysis of survey data involved descriptive statistics. Classical content analysis was used for qualitative data to clarify survey findings. The surveys and key informant interviews were conducted in the Rocky Mountain Region and Western Plains among 51 medium and large LPHAs in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming. More than 50% of respondents were public health directors; the balance of the respondents were division/program directors, accreditation coordinators, and public health planners. CHIP completion. Most LPHAs in the Rocky Mountains and Western Plains have embraced developing and publishing a CHIP, with 80% having completed their plan and another 13% working on it. CHIP completion is motivated by a belief in best practices, with LPHAs and partners seeing the benefit of quality improvement activities linked to the CHIP and the investment of nonprofit hospitals in the process. Completing a CHIP is strengthened through engagement of diverse partners and a well-functioning partnership. The future of CHIP creation depends on LPHAs and partners investing in the CHIP as a best practice, dedicating personnel to CHIP activities, and enhancing leadership skills to contribute to a synergistic

  5. Quantification of controls on regional rockfall activity and talus deposition, Kananaskis, Canadian Rockies

    Science.gov (United States)

    Thapa, Prasamsa; Martin, Yvonne E.; Johnson, E. A.

    2017-12-01

    Rockfall is a significant geomorphic process in many mountainous regions that also poses a notable natural hazard risk. Most previous studies of rockfall erosion have investigated the mechanics and rates of local rockwall retreat and talus deposition, with only a few investigations of rockfall and/or associated talus considering larger spatial scales (i.e., drainage basin, mountain range). The purpose of the current research is to investigate the areal extent of rockfall-talus and controlling factors of its distribution over regional spatial scales (of order 102 km2) in Kananaskis, Canadian Rockies to inform our understanding of its significance in mountain development. To achieve this goal, a large talus inventory is collected and analyzed for 11 steep tributaries of the Kananaskis River, Canadian Rockies. Talus accumulations associated with rockfall provide evidence about the nature and rates of rockfall activity that supplies sediment to these deposits and are the focus of the present study. To quantify the controls of rockfall-talus activity in this region, we analyze the association of talus deposits with structural geology, glacial topography, and temperature-related weathering (i.e., frost cracking). A total of 324 talus polygons covering a surface area of 28.51 km2 are delineated within the 11 study basins, with the number of talus polygons in each study basin ranging from 1 to 73. Analysis of the talus inventory shows that cirques and glacially sculpted valleys are locations of notable talus accumulation in Kananaskis, with other locations of significant talus deposition being associated with thrust faults. We also found that the upper elevations at which talus deposits are typically found are the general range of elevations experiencing a notable number of days in the frost cracking window when this window is defined as - 3 to - 15 °C; no such association is found for the frost cracking window of - 3 to - 8 °C. Estimates of average erosion rates for all

  6. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  7. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010

    Directory of Open Access Journals (Sweden)

    W. H. Wood

    2018-03-01

    Full Text Available Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  8. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  9. Summer Temperature Extremes in the Northern Rockies: A Tree-Ring-Based Reconstruction (1670-2014) from the Bighorn Mountains, WY

    Science.gov (United States)

    Hudson, A.; Alfaro-Sanchez, R.; Belmecheri, S.; Moore, D. J.; Trouet, V.

    2017-12-01

    Anthropogenic climate change has caused global temperatures to rise in recent decades. Temperatures at the regional scale are influenced by various factors including topography, atmospheric circulation, and seasonality that superimpose year-to-year variability on this global warming trend. Here, we develop a tree-ring based summer temperature reconstruction for the northern Rockies in order to investigate the drivers of the year-to-year temperature variability in this region. For this purpose, we sampled 10 sites in the semi-arid Bighorn Mountains, WY and developed two tree-ring width chronologies for differing elevations. The high elevation Picea engelmannii chronology (>2,630m) is positively correlated with July temperature variability, whereas the low elevation (<2,580m) chronology - consisting of Pinus contorta, Pseudotsuga menziesii, and Pinus albicaulis - is sensitive to summer precipitation and negatively correlated with June and July temperatures. A reconstruction based on a combination of the two chronologies explains 30% of the variance in regional June and July temperatures over the instrumental period, covers the period 1670-2014, and is representative for the central United States and southern Canada region. Our reconstruction shows significantly lower summer temperatures in the year following the 16 largest tropical eruptions from 1670 to the present. The reconstruction further captures the high summer temperatures during the 1930s dust bowl era and shows a steep increase in variance in the late 20th century. Enhanced late 20th century variance has also been detected in climate and ecosystem dynamics in the Northeast Pacific, which suggests an impact of an amplified meridional flow on northern Rockies summer temperatures.

  10. Insights into contaminant transport from unconventional oil and gas developments from analog system analysis of methane-bearing thermal springs in the northern Canadian Rocky Mountains

    Science.gov (United States)

    Ferguson, Grant; Grasby, Stephen E.

    2018-03-01

    Natural gas is currently being produced from shales of the Montney and Liard basins in western Canada. Production requires hydraulic fracturing due to the low permeability of the shales in the basins. Stratigraphically equivalent shales are present in the northern Canadian Rocky Mountains. Thermal springs with notable hydrocarbon concentrations occur where large-scale faults intersect the same shale units that are the focus of gas development, indicating that under certain circumstances, connection of deep fractured shales to the land surface is possible. To constrain these conditions, simulations were conducted for the spring with the highest hydrocarbon flux (Toad River Spring), results of which indicate that in order to supply sufficient water to a fault to support measurable advection, the effective permeability of the shales in these structurally deformed areas must be one to four orders of magnitude higher than in areas of active gas production to the east. The spatial scale of enhanced permeability is much greater than that which is achieved by hydraulic fracturing and the mechanism of maintaining high pressures at depth is more persistent in time. Examination of groundwater velocities suggests that upward migration of solutes from hydraulic fracturing may take decades to centuries. Results also indicate that any temperature anomaly will be associated with transport along a fault at such velocities. No such temperature anomaly has been documented in regions with unconventional oil and gas development to date. Such an anomaly would be diagnostic of a deep solute source.

  11. The sources of streamwater to small mountainous rivers in Taiwan during typhoon and non-typhoon seasons.

    Science.gov (United States)

    Lee, Tsung-Yu; Hong, Nien-Ming; Shih, Yu-Ting; Huang, Jr-Chuan; Kao, Shuh-Ji

    2017-12-01

    The dynamics and behaviors of streamwater chemistry are rarely documented for subtropical small mountainous rivers. A 1-year detailed time series of streamwater chemistry, using non-typhoon and typhoon samples, was monitored in two watersheds, with and without cultivation, in central Taiwan. Rainwater, soil leachate, and well water were supplemented to explain the streamwater chemistry. The concentrations of fluoride, chloride, sulfate, magnesium, potassium, calcium, strontium, silicon, and barium of all the water samples were measured. Principal component analysis and residual analysis were applied to examine the mechanisms of solute transport and investigate possible sources contributing to the streamwater chemistry. In addition to the influence of well water and soil leachate on streamwater chemistry during non-typhoon period, overland flow and surface erosion affect streamwater chemistry during the typhoon period. The latter has not been discussed in previous studies. Surface erosion is likely to be an end member and non-conservatively mixed with other end members, resulting in a previously unobserved blank zone in the mixing space. This has a particularly great impact on small mountainous watersheds, which suffer from rapid erosion. Moreover, fertilizer contaminates agricultural soil, making soil water end members more identifiable. To our knowledge, this study is the first to clearly illustrate the dynamics and sources of streamwater chemistry of small mountainous rivers that are analogous to rivers in Oceania.

  12. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    Science.gov (United States)

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  13. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  14. Clinical and laboratory features, hospital course, and outcome of Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Buckingham, Steven C; Marshall, Gary S; Schutze, Gordon E; Woods, Charles R; Jackson, Mary Anne; Patterson, Lori E R; Jacobs, Richard F

    2007-02-01

    To describe the clinical characteristics and course of children with laboratory-diagnosed Rocky Mountain spotted fever (RMSF) and to identify clinical findings independently associated with adverse outcomes of death or discharge with neurologic deficits. Retrospective chart review of 92 patients at six institutions in the southeastern and southcentral United States from 1990 to 2002. Statistical analyses used descriptive statistics and multiple logistic regression. Children with RMSF presented to study institutions after a median of 6 days of symptoms, which most commonly included fever (98%), rash (97%), nausea and/or vomiting (73%), and headache (61%); no other symptom or sign was present in >50% of children. Only 49% reported antecedent tick bites. Platelet counts were <150,000/mm3 in 59% of children, and serum sodium concentrations were <135 mEq/dL in 52%. Although 86% sought medical care before admission, only 4 patients received anti-rickettsial therapy during this time. Three patients died, and 13 survivors had neurologic deficits at discharge. Coma and need for inotropic support and intravenous fluid boluses were independently associated with adverse outcomes. Children with RMSF generally present with fever and rash. Delays in diagnosis and initiation of appropriate therapy are unacceptably common. Prognosis is guarded in those with hemodynamic instability or neurologic compromise at initiation of therapy.

  15. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Todd, Suzanne R; Dahlgren, F Scott; Traeger, Marc S; Beltrán-Aguilar, Eugenio D; Marianos, Donald W; Hamilton, Charlene; McQuiston, Jennifer H; Regan, Joanna J

    2015-05-01

    To evaluate whether cosmetically relevant dental effects occurred among children who had received doxycycline for treatment of suspected Rocky Mountain spotted fever (RMSF). Children who lived on an American Indian reservation with high incidence of RMSF were classified as exposed or unexposed to doxycycline, based on medical and pharmacy record abstraction. Licensed, trained dentists examined each child's teeth and evaluated visible staining patterns and enamel hypoplasia. Objective tooth color was evaluated with a spectrophotometer. Fifty-eight children who received an average of 1.8 courses of doxycycline before 8 years of age and who now had exposed permanent teeth erupted were compared with 213 children who had never received doxycycline. No tetracycline-like staining was observed in any of the exposed children's teeth (0/58, 95% CI 0%-5%), and no significant difference in tooth shade (P=.20) or hypoplasia (P=1.0) was found between the 2 groups. This study failed to demonstrate dental staining, enamel hypoplasia, or tooth color differences among children who received short-term courses of doxycycline at <8 years of age. Healthcare provider confidence in use of doxycycline for suspected RMSF in children may be improved by modifying the drug's label. Published by Elsevier Inc.

  16. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  17. Health status of mule deer and white-tailed deer herds on the Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Creekmore, T.E.; Franson, J.C.; Sileo, L. [National Wildlife Health Research Center, Madison, WI (United States); Griess, J.M.; Roy, R.R. [Rocky Mountain Arsenal, Commerce City, CO (United States); Baker, D.L. [Colorado Division of Wildlife, Ft. Collins, CO (United States)

    1994-12-31

    The Rocky Mountain Arsenal is a fenced, 6,900-ha Superfund site under remediation by the US Army and the Shell Oil Company. A variety of environmental contaminants including organochlorine pesticides, metals, and nerve-gas-production by-products are in the soil or in the water on the site. The authors evaluated the health of 18 radio-collared deer (13 mule deer [Odocoileus hemionus] and 5 white-tailed deer [O. virginianus]) collected by gunshot. Prior to collection, more than 4,000 locations of the 18 deer were plotted during a period of more than 2 years. Blood samples from the euthanized animals were collected for serologic, hematologic, and contaminant evaluations. Necropsies were preformed and tissues collected for histopathologic examinations and environmental contaminants analyses. Results indicate that the physical conditions of the mule deer were fair/good and of the white-tailed deer were good. Antibody prevalence against epizootic hemorrhagic disease serotype 2 was 85% and bovine virus diarrhea 56%. Two mule deer had severe testicular atrophy, and one of these animals also had antler deformities. Three mule deer had alopecia with dermatitis and hyperkeratosis. Results of heavy metal, and organochlorine pesticide analyses from blood and tissue samples and other analyses will be presented.

  18. Comparative wood anatomy of some shrubs native to the Northern Rocky Mountains

    Science.gov (United States)

    Arlene Dale

    1968-01-01

    This paper describes some xylem characteristics of the more important shrub species of the Northern Rockies and presents a key for identifying shrub-wood specimens by microscopic characters. The paper contains photomicrographs of 55 shrub woods.

  19. Holy flux: Spatial and temporal variation in massive pulses of emerging insect biomass from western U.S. rivers

    Science.gov (United States)

    Walters, David; Wesner, Jeff S.; Zuellig, Robert E.; Kowalski, Dan A.; Kondratieff, Matt C.

    2018-01-01

    The river stonefly, Pteronarcys californica (aka salmonfly), is an iconic insect in rivers of western North America due to its large size and its support of economically important species like wild trout (Nehring et al. 2011). Their emergence generates a large economic subsidy to local communities, as anglers from around the world travel to western rivers to fish the salmonfly “hatch” (e.g., Willoughby 2013). Salmonflies, which have a 4-yr lifespan in the central Rocky Mountains (Nehring et al. 2011), emerge en masse during 1 week in late spring (Sheldon 1999), and more than 20 terrestrial species, including humans, are known to eat adult salmonflies (Muttkowski 1925, Sutton 1985, Rockwell et al. 2009). How they influence populations of insectivores or the broader river-riparian ecosystem is unknown; this itself is an issue because salmonflies are disappearing from some rivers (Nehring et al. 2011).

  20. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    Science.gov (United States)

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  1. Reservoirs on the mountain rivers and their safety

    Directory of Open Access Journals (Sweden)

    Ts.Z. Basilashvili

    2016-06-01

    Full Text Available Water resource issues and problems in the world's developing countries, present special challenges, as development of these countries significantly depends on the utilization of water resources. Georgia nestled between the Black Sea, Russia, and Turkey, and surrounded by the Caucasus Mountains, occupies a unique geographic space, which gives it strategic importance far beyond its size. Though blessed by its rich hydro resources, Georgia due to its uneven distribution, experiences some problems as the demand on water frequently doesn't coincide with water provision. As a result it causes acute deficit situation. Due to the global warming of the climate, it is expected that the fresh water amount will decrease in Georgia. This is why it is necessary to approach the use of water resources in a complex way by means of water reservoirs, which will enable attaining of a large economic effect. In the mountainous conditions filling of reservoirs take place in spring time, when snow and glaciers melt. In Georgia as in mountainous country, abundant rains take place, thus causing catastrophic flooding on rivers. In summer and winter water amount decreases 10 times and irrigation, water provision and energy production is impeded. Thus, the lack of water just like the excess amount of water causes damage. This is why it is needed to forecast water amount in water reservoirs for different periods of the year. But in a complex, mountainous terrain operative data of hydrometeorology is not sufficient for application of modern mathematical methods. We have elaborated multiple-factor statistical model for a forecast, which by means of different mathematical criteria and methods can simultaneously research the increase of the timeliness of forecasts and the level of their precision. We have obtained methodologies for short and long term forecasts of inflowing water properties in Georgia's main water reservoirs to further plan optimally and regulate water resources

  2. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    Science.gov (United States)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  3. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    Science.gov (United States)

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  4. Mountain rivers may need centuries to adjust to earthquake-triggered sediment pulses, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Korup, Oliver; Schwanghart, Wolfgang; Bernhardt, Anne; Adhikari, Basanta Raj; Andermann, Christoff; Wittmann, Hella; Merchel, Silke

    2017-04-01

    Mountain rivers respond to strong earthquakes by not only adjusting to changes in local base level, but also by rapidly aggrading to accommodate excess sediment delivered by co- and post-seismic landslides. A growing number of detailed sediment budgets suggests that it takes rivers several years to decades to recover from such seismic disturbances, depending on how recovery is defined. We test this notion and study how rivers adjusted to catastrophic sedimentation triggered by at least three medieval earthquakes in the central Nepal Himalaya. In the vicinity of Pokhara, the nation's second largest city, rapid aggradation formed a large fan covering 150 km2 of mountainous terrain over a length of some 70 km. The fan prograded into several tributary valleys, rapidly infilling their lower reaches with several tens of meters of sediment from a major point source tens of kilometers away. A robust radiocarbon chronology of these valley fills provides an ideal framework for gauging average rates of fluvial incision and adjustment. We use high-resolution digital elevation data, geodetic field surveys, aerial photos documenting historic channel changes, and several re-exhumed tree trunks in growth position to define dated geomorphic marker surfaces. We compare various methods of computing the volumes lost from these surfaces to arrive at net sediment yields averaged over decades to centuries. We find that contemporary rates of river incision into the medieval earthquake debris are between 160 and 220 mm yr-1, with corresponding sediment yields of 103 to 105 t km-2 yr-1, several hundred years after the last traceable seismic disturbance. These rates greatly exceed the density-adjusted background rates of catchment-wide denudation inferred from concentrations of cosmogenic 10Be in river sands sampled in different tributaries. The lithological composition of active channel-bed load differs largely from local bedrock and confirms that rivers are still busy with excavating

  5. On the Relationship between Holocene Geomorphic Evolution of Rivers and Prehistoric Settlements Distribution in the Songshan Mountain Region of China

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2017-01-01

    Full Text Available This paper deals with the study of Holocene geomorphic evolution of rivers around Songshan Mountain in relation to human frequentation in Prehistoric periods. The investigations were performed by means of an integration of GIS data processing; field surveys and particle size analysis. In 8000–3000 aBP; in the Songshan Mountain Region, large-scale river sedimentation occurred. This increased the elevation of river beds that were higher than today. After 3000 aBP; the upper reaches of the rivers experienced a down cut; while the lower reaches experienced continuing sedimentation. The data on the elevation of prehistoric settlements above the river levels were obtained from Digital Elevation Models (DEMs. These data were corrected according to the evolutionary features of fluvial landforms in order to obtain synchronous elevations above river levels of prehistoric settlements. The relationship between sediment distribution and the Holocene geomorphic evolution was investigated through the statistical analysis of the elevation above the river levels. Outputs from our analyses enabled us to differentiate three evolutionary stages. During the first one, related to Peiligang culture (9000–7500 aBP, populations mainly settled on both hilly relief and high plateaus depending on their agriculture production modes. During the second stage, from Yangshao (7500–5000 aBP to the Longshan period (5000–4000 aBP, settlements were mainly distributed on mountainous areas and hilly lands to avoid flooding and to develop agriculture. Finally, during the Xiashang culture (4000–3000 aBP, a large number of settlements migrated to the plain area to facilitate trade of goods and cultural exchanges.

  6. Experimental study on evolution of bed structures of natural mountain rivers

    Directory of Open Access Journals (Sweden)

    Huai-xiang Liu

    2011-06-01

    Full Text Available Bed structures in many mountain rivers provide additional resistance to the flow. A field experiment was conducted on debris flow deposits in the valley of the Jiangjiagou Ravine, a tributary of the Yangtze River in southwestern China, to study the evolution and distribution of bed structures and their relationship with environmental conditions. Water and sediment from the Jiangjiagou main stream were diverted into the experimental channel. Several hydrological schemes were adopted to scour the channel until equilibrium was reached. During this process the evolutions of bed structures and channel configuration were investigated. The results indicate that stronger bed structures mean greater stream power consumption, greater resistance, and greater slope in a certain section when rivers are in dynamic equilibrium. Thus, to some extent the longitudinal profiles of channels can be determined by the distribution of bed structures. In natural cases, the strength and evolution of bed structures are under the influence of environmental conditions such as discharge and bed-load transportation rate. That is, given the same conditions, the same bed structure distribution and longitudinal profile can be predicted.

  7. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  8. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  9. INFLUENCE OF EXTREME DISCHARGE ON RESTORATION WORKS IN MOUNTAIN RIVER – A CASE STUDY OF THE KRZCZONÓWKA RIVER (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Anna Lenar-Matyas

    2015-06-01

    Full Text Available The research was conducted on the Krzczonówka River channel, one of the gravel-bedded, regulated mountain river in Polish Carpathians. The main morphological and ecological problem of the river was lack of sediment and channel downcutting. The area is currently associated with an on-going project called “the Upper Raba River Spawning Grounds”. Lowering of an existing debris dam on Krzczonówka River is a part of the project. In 2013 twelve artificial riffles have been created by heaping up stones at points within the segment of the river channel below the debris dam. The riffles are to introduce variety to the longitudinal profile of the river and to reduce the river’s slope. Consequently, these are to decrease sediment transport and to prevent further deepening of the river channel. Post-project monitoring of river restoration works is conducted to determine channel changes and development. In May, 2014, extreme flooding occurred, which caused unexpected changes in channel development. This paper describes maintenance work performed in the riverbed of the Krzczonówka River. Observations and calculations concerning changes in conditions of water flow and sediment transport are also presented. The main purpose is to characterize the influence of an extreme flow event on morphology and functioning of the recently restored gravel-bed river.

  10. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni.

    Science.gov (United States)

    Clayton, Katie A; Gall, Cory A; Mason, Katheen L; Scoles, Glen A; Brayton, Kelly A

    2015-12-10

    In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies have shown that symbiotic organisms are involved in a number of biochemical and physiological functions. Characterizing the bacterial microbiome of D. andersoni is a pivotal step towards understanding symbiont-host interactions. In this study, we have shown by high-throughput sequence analysis that the composition of endosymbionts in the midgut and salivary glands in adult ticks is dynamic over three generations. Four Proteobacteria genera, Rickettsia, Francisella, Arsenophonus, and Acinetobacter, were identified as predominant symbionts in these two tissues. Exposure to therapeutic doses of the broad-spectrum antibiotic, oxytetracycline, affected both proportions of predominant genera and significantly reduced reproductive fitness. Additionally, Acinetobacter, a free-living ubiquitous microbe, invaded the bacterial microbiome at different proportions based on antibiotic treatment status suggesting that microbiome composition may have a role in susceptibility to environmental contaminants. This study characterized the bacterial microbiome in D. andersoni and determined the generational variability within this tick. Furthermore, this study confirmed that microbiome manipulation is associated with tick fitness and may be a potential method for biocontrol.

  11. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  12. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfsberg, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  13. Climate vulnerability of native cold-water salmonids in the Northern Rockies Region [Chapter 5

    Science.gov (United States)

    Michael K. Young; Daniel J. Isaak; Scott Spaulding; Cameron A. Thomas; Scott A. Barndt; Matthew C. Groce; Dona Horan; David E. Nagel

    2018-01-01

    During the 21st century, climate change is expected to alter aquatic habitats throughout the Northern Rocky Mountains, intermountain basins, and western Great Plains. Particularly in montane watersheds, direct changes are likely to include warmer water temperatures, earlier snowmelt-driven runoff, earlier declines to summer baseflow, downhill movement of perennial...

  14. A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States.

    Science.gov (United States)

    vonHoldt, Bridgett M; Stahler, Daniel R; Bangs, Edward E; Smith, Douglas W; Jimenez, Mike D; Mack, Curt M; Niemeyer, Carter C; Pollinger, John P; Wayne, Robert K

    2010-10-01

    The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity. © 2010 Blackwell Publishing Ltd.

  15. Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century.

    Science.gov (United States)

    Boisvenue, Céline; Running, Steven W

    2010-07-01

    Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region.

  16. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  18. Spatial clustering by disease severity among reported Rocky Mountain spotted fever cases in the United States, 2001-2005.

    Science.gov (United States)

    Adjemian, Jennifer Zipser; Krebs, John; Mandel, Eric; McQuiston, Jennifer

    2009-01-01

    Rocky Mountain spotted fever (RMSF) occurs throughout much of the United States, ranging in clinical severity from moderate to fatal infection. Yet, little is known about possible differences among severity levels across geographic locations. To identify significant spatial clusters of severe and non-severe disease, RMSF cases reported to Centers for Disease Control and Prevention (CDC) were geocoded by county and classified by severity level. The statistical software program SaTScan was used to detect significant spatial clusters. Of 4,533 RMSF cases reported, 1,089 hospitalizations (168 with complications) and 23 deaths occurred. Significant clusters of 6 deaths (P = 0.05, RR = 11.4) and 19 hospitalizations with complications (P = 0.02, RR = 3.45) were detected in southwestern Tennessee. Two geographic areas were identified in north-central North Carolina with unusually low rates of severity (P = 0.001, RR = 0.62 and P = 0.001, RR = 0.45, respectively). Of all hospitalizations, 20% were clustered in central Oklahoma (P = 0.02, RR = 1.43). Significant geographic differences in severity were observed, suggesting that biologic and/or anthropogenic factors may be impacting RMSF epidemiology in the United States.

  19. Serologic evidence for exposure to Rickettsia rickettsii in eastern Arizona and recent emergence of Rocky Mountain spotted fever in this region.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc; Blau, Dianna; Gordon, Rondeen; Johnson, Brian; Dickson, Jeff; Ethelbah, Rudy; Piontkowski, Stephen; Levy, Craig; Nicholson, William L; Duncan, Christopher; Heath, Karen; Cheek, James; Swerdlow, David L; McQuiston, Jennifer H

    2006-01-01

    During 2002 through 2004, 15 patients with Rocky Mountain spotted fever (RMSF) were identified in a rural community in Arizona where the disease had not been previously reported. The outbreak was associated with Rickettsia rickettsii in an unexpected tick vector, the brown dog tick (Rhipicephalus sanguineus), which had not been previously associated with RMSF transmission in the United States. We investigated the extent of exposure to R. rickettsii in the local area through serologic evaluations of children and dogs in 2003-2004, and in canine sera from 1996. Antibodies to R. rickettsii at titers > or = 32 were detected in 10% of children and 70% of dogs in the outbreak community and 16% of children and 57% of dogs in a neighboring community. In comparison, only 5% of canine samples from 1996 had anti-R. rickettsii antibodies at titers > or = 32. These results suggest that exposures to RMSF have increased over the past 9 years, and that RMSF may now be endemic in this region.

  20. Regulatory authority of the Rocky Mountain states for low-level radioactive waste packaging and transportation

    International Nuclear Information System (INIS)

    Whitman, M.; Tate, P.

    1983-07-01

    The newly-formed Rocky Mountain Low-Level Radioactive Waste Compact is an interstate agreement for the management of low-level radioactive waste (LLW). Eligible members of the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Each state must ratify the compact within its legislature for the compact to become effective in that state and to make that state a full-fledged member of the compact. By so adopting the compact, each state agrees to the terms and conditions specified therein. Among those terms and conditions are provisions requiring each member state to adopt and enforce procedures requiring low-level waste shipments originating within its borders and destined for a regional facility to conform to packaging and transportation requirements and regulations. These procedures are to include periodic inspections of packaging and shipping practices, periodic inspections of waste containers while in the custody of carriers and appropriate enforcement actions for violations. To carry out this responsibility, each state must have an adequate statutory and regulatory inspection and enforcement authority to ensure the safe transportation of low-level radioactive waste. Three states in the compact region, Arizona, Utah and Wyoming, have incorporated the Department of Transportation regulations in their entirety, and have no published rules and regulations of their own. The other states in the compact, Colorado, Nevada and New Mexico all have separate rules and regulations that incorporate the DOT regulations. A brief description of the regulatory requirements of each state is presented

  1. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Directory of Open Access Journals (Sweden)

    Michael L Levin

    Full Text Available Rocky Mountain spotted fever (RMSF is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  2. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Science.gov (United States)

    Levin, Michael L; Killmaster, Lindsay F; Zemtsova, Galina E; Ritter, Jana M; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  3. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Science.gov (United States)

    West, Amanda M; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S; Stohlgren, Thomas J; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  4. Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park

    Science.gov (United States)

    West, Amanda M.; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S.; Stohlgren, Thomas J.; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255

  5. Efficacy of Doxycycline, Azithromycin, or Trovafloxacin for Treatment of Experimental Rocky Mountain Spotted Fever in Dogs

    Science.gov (United States)

    Breitschwerdt, E. B.; Papich, M. G.; Hegarty, B. C.; Gilger, B.; Hancock, S. I.; Davidson, M. G.

    1999-01-01

    Dogs were experimentally inoculated with Rickettsia rickettsii (canine origin) in order to compare the efficacies of azithromycin and trovafloxacin to that of the current antibiotic standard, doxycycline, for the treatment of Rocky Mountain spotted fever. Clinicopathologic parameters, isolation of rickettsiae in tissue culture, and PCR amplification of rickettsial DNA were used to evaluate the response to therapy or duration of illness (untreated infection control group) in the four groups. Concentrations of the three antibiotics in plasma and blood cells were measured by high-performance liquid chromatography. Doxycycline and trovafloxacin treatments resulted in more-rapid defervescence, whereas all three antibiotics caused rapid improvement in attitudinal scores, blood platelet numbers, and the albumin/total-protein ratio. Based upon detection of retinal vascular lesions by fluorescein angiography, trovafloxacin and doxycycline substantially decreased rickettsia-induced vascular injury to the eye, whereas the number of ocular lesions in the azithromycin group did not differ from that in the infection control group. As assessed by tissue culture isolation, doxycycline resulted in the earliest apparent clearance of viable circulating rickettsiae; however, rickettsial DNA could still be detected in the blood of some dogs from all four groups on day 21 postinfection, despite our inability to isolate viable rickettsiae at that point. As administered in this study, trovafloxacin was as efficacious as doxycycline but azithromycin proved less efficacious, possibly due to the short duration of administration. PMID:10103185

  6. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Directory of Open Access Journals (Sweden)

    Amanda M West

    Full Text Available National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass, which is found in Rocky Mountain National Park (hereafter, the Park, Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211, current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2 and at a fine spatial resolution (90 m is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  7. Effects of Climate Change on Cultural Resources in the Northern Rockies Region [Chapter 12

    Science.gov (United States)

    Carl M. Davis

    2018-01-01

    People have inhabited the Northern Rocky Mountains of the United States since the close of the last Pleistocene glacial period, some 14,000 years B.P. (Fagan 1990; Meltzer 2009). Evidence of this ancient and more recent human occupation is found throughout the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area,...

  8. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  9. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  10. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    Science.gov (United States)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  11. Wilderness experience in Rocky Mountain National Park 2002; report to respondents

    Science.gov (United States)

    Schuster, Elke; Johnson, S. Shea; Taylor, Jonathan G.

    2003-01-01

    A substantial amount of backcountry (about 250,000 acres) in Rocky Mountain National Park [RMNP of the Park] may be designated as wilderness areas in the coming years. Currently, over 3 million visitors drives through the park on Trail Ridge Road, camp in designated campgrounds, day hike, etc. each year. Many of those visitors also report using the backcountry-wilderness areas that are not easily accessible by roads or trails. Use of the backcountry is growing at RMNP and is accompanied by changing visitor expectations and preferences for wilderness management. For these reasons it is of great importance for the Park to periodically assess what types of environments and conditions wilderness users seek to facilitate a quality experience. To assist in this effort, the Political Analysis and Science Assistance [PSAS] program / Fort Collins Center / U.S. Geological Survey, in close collaboration with personnel and volunteers from RMNP, as well as the Natural Resource Recreation and Tourism [NRRT] Department at Colorado State University, launched a research effort in the summer of 2002 to investigate visitorsa?? wilderness experiences in the Park. Specifically, the purpose of this research was: (1) To determine what constitutes a wilderness experience; (2) To identify important places, visual features, and sounds essential to a quality wilderness experience and; (3) To determine what aspects may detract from wilderness experience. Thus, answers to these questions should provide insight for Park managers about visitorsa?? expectation for wilderness recreation and the conditions they seek for quality wilderness experiences. Ultimately, this information can be used to support wilderness management decisions within RMNP. The social science technique of Visitor Employed Photography [VEP] was used to obtain information from visitors about wilderness experiences. Visitors were selected at random from Park-designated wilderness trails, in proportion to their use, and asked to

  12. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    Science.gov (United States)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  13. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Science.gov (United States)

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  14. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    Science.gov (United States)

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  15. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    Science.gov (United States)

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  16. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Science.gov (United States)

    Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.

  17. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Science.gov (United States)

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  18. Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills

    Science.gov (United States)

    Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

  19. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  20. The past as prelude to the future for understanding 21st-century climate effects on Rocky Mountain Trout

    Science.gov (United States)

    Isaak, Daniel J.; Muhlfeld, Clint C.; Todd, Andrew S.; Al-chokhachy, Robert; Roberts, James; Kershner, Jeffrey L.; Fausch, Kurt D.; Hostetler, Steven W.

    2012-01-01

    Bioclimatic models predict large reductions in native trout across the Rocky Mountains in the 21st century but lack details about how changes will occur. Through five case histories across the region, we explore how a changing climate has been affecting streams and the potential consequences for trout. Monitoring records show trends in temperature and hydrographs consistent with a warming climate in recent decades. Biological implications include upstream shifts in thermal habitats, risk of egg scour, increased wildfire disturbances, and declining summer habitat volumes. The importance of these factors depends on the context, but temperature increases are most relevant where population boundaries are mediated by thermal constraints. Summer flow declines and wildfires will be important where trout populations are fragmented and constrained to small refugia. A critical information gap is evidence documenting how populations are adjusting to long-term habitat trends, so biological monitoring is a priority. Biological, temperature, and discharge data from monitoring networks could be used to develop accurate vulnerability assessments that provide information regarding where conservation actions would best improve population resilience. Even with better information, future uncertainties will remain large due to unknowns regarding Earth's ultimate warming trajectory and how effects translate across scales. Maintaining or increasing the size of habitats could provide a buffer against these uncertainties.

  1. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    Science.gov (United States)

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers

  2. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  3. Interactions between Rocky Mountain Bighorn Sheep Ovis canadensis canadensis and Domestic Sheep Ovis aries and the Biological, Social, Economic, and Legal Implications of these Interactions on USDA Forest Service Lands in the Evanston/Mt. View Ranger District

    OpenAIRE

    Herrera, Ashly Nicole

    2012-01-01

    Strong evidence exists indicating domestic sheep (Ovis aries) can infect Rocky Mountain bighorn sheep (Ovis canadensis canadensis), a United States Forest Service (USFS) Region 4 sensitive species, with pneumonia (Callan 1991; Foreyt 1989, 1992, 1994; Foreyt and Lagerquist 1996; George et al 2008; Wehausen et al. 2011). Since the transmission of the pneumonic bacteria between the domestic and wild sheep is a result of bighorn sheep coming into contact with the bacteria carried in the mucous m...

  4. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This 'was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE)

  5. Stable isotopes in yellow-bellied marmot (Marmota flaviventris) fossils reveal environmental stability in the late Quaternary of the Colorado Rocky Mountains

    Science.gov (United States)

    Reynard, Linda M.; Meltzer, David J.; Emslie, Steven D.; Tuross, Noreen

    2015-03-01

    High elevation plant and animal communities are considered extremely sensitive to environmental change. We investigated an exceptional fossil record of yellow-bellied marmot (Marmota flaviventris) specimens that was recovered from Cement Creek Cave (elev. 2860 m) and ranged in age from radiocarbon background circa 49.8 cal ka BP to ~ 1 cal ka BP. We coupled isotopic and radiocarbon measurements (δ18O, δD, δ15N, δ13C, and 14C) of bone collagen from individually-AMS dated specimens of marmots to assess ecological responses by this species to environmental change over time in a high elevation basin in the Rocky Mountains of southwestern Colorado, USA. We find little change in all four isotope ratios over time, demonstrating considerable environmental stability during periods when the marmots were present. The stable ecology and the apparent persistence of the small mammal community in the cave fauna throughout the late Quaternary are in marked contrast to the changes that occurred in the large mammal community, including local extirpation and extinction, at the end of the Pleistocene.

  6. 78 FR 48183 - Rocky Mountain Arsenal National Wildlife Refuge, Commerce City, CO; Comprehensive Conservation...

    Science.gov (United States)

    2013-08-07

    ... Plan and Environmental Impact Statement; Two Ponds National Wildlife Refuge, Arvada, CO; Comprehensive... prepare a Comprehensive Conservation Plan (CCP) and an Environmental Impact Statement (EIS) for the Rocky..., including more than 120 species of birds, coyote and red fox, muskrat, raccoon, and beaver, deer, several...

  7. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    Science.gov (United States)

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  8. Factors influencing spring and summer areal snow ablation and snowcover depletion in alpine terrain: detailed measurements from the Canadian Rockies

    OpenAIRE

    Schirmer, Michael; Pomeroy, John W.

    2018-01-01

    The spatial distribution of snow water equivalent (SWE) and melt are important to estimating areal melt rates and snowcover depletion dynamics but are rarely measured in detail during the late ablation period. This study contributes the result of high resolution observations made using large numbers of sequential aerial photographs taken from an Unmanned Aerial Vehicle on an alpine ridge in the Fortress Mountain Snow Laboratory in the Canadian Rocky Mountains from May to July. With Structure-...

  9. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  10. The geomechanical characterization of the rocky mass foundation of the Tijuco Alto hydroelectric power plant, Ribeira River, Sao Paulo/Parana States, Brazil; Caracterizacao geomecanica do Macico de Fundacao da UHE Tijuco Alto (Rio Ribeira - SP/PR)

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Amarilis Lucia Casteli de

    1996-07-01

    This work has as its main objective the geomechanical characterization on the future rocky mass foundation of the Tijuco Alto dam, sited at the Ribeira river, in the cities of Ribeirao, Sao Paulo state and Adrianopolis, Parana state, Brazil, owned by the Companhia Brasileira de Aluminio (Brazilian company of Aluminium). To reach that target, field studies were made to qualify the geotechnical parameters of the rocky mass, in the axis area open galleries. It was also used in situ deformability and stress test results performed in those galleries, that were reinterpreted for a better adaptation of the mass values. The knowledge of the mass inherent characteristics together with the laboratories test results, allowed for the geomechanical classification applications in several different gallery sectors. The geomechanical data obtained allowed through mathematical expressions, to reach the rocky mass values correlations of interest to the work (deformability and strength), that could be compared to the in situ test results. That analysis permitted, besides the classification critical system evaluation, the geomechanical characterization of the rocky mass, focusing its ability to the dam arch construction. (author)

  11. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry

    Science.gov (United States)

    Benjamin, Joseph R.; Wetzel, Lisa A.; Martens, Kyle D.; Larsen, Kimberly; Connolly, Patrick J.

    2013-01-01

    Connectivity of river networks and the movements among habitats can be critical for the life history of many fish species, and understanding of the patterns of movement is central to managing populations, communities, and the landscapes they use. We combined passive integrated transponder tagging over 4 years and strontium isotopes in otoliths to demonstrate that 25% of the mountain whitefish (Prosopium williamsoni) sampled moved between the Methow and Columbia rivers, Washington, USA. Seasonal migrations downstream from the Methow River to the Columbia River to overwinter occurred in autumn and upstream movements in the spring. We observed migration was common during the first year of life, with migrants being larger than nonmigrants. However, growth between migrants and nonmigrants was similar. Water temperature was positively related to the proportion of migrants and negatively related to the timing of migration, but neither was related to discharge. The broad spatio-temporal movements we observed suggest mountain whitefish, and likely other nonanadromous fish, require distant habitats and also suggests that management and conservation strategies to keep connectivity of large river networks are imperative.

  12. Multi-Scale Influences of Climate, Spatial Pattern, and Positive Feedback on 20th Century Tree Establishment at Upper Treeline in the Rocky Mountains, USA

    Science.gov (United States)

    Elliott, G. P.

    2009-12-01

    The influences of 20th century climate, spatial pattern of tree establishment, and positive feedback were assessed to gain a more holistic understanding of how broad scale abiotic and local scale biotic components interact to govern upper treeline ecotonal dynamics along a latitudinal gradient (ca. 35°N-45°N) in the Rocky Mountains. Study sites (n = 22) were in the Bighorn, Medicine Bow, Front Range, and Sangre de Cristo mountain ranges. Dendroecological techniques were used for a broad scale analysis of climate at treeline. Five-year age-structure classes were compared with identical five-year bins of 20th century climate data using Spearman’s rank correlation and regime shift analysis. Local scale biotic interactions capable of ameliorating broad scale climate inputs through positive feedback were examined by using Ripley’s K to determine the spatial patterns of tree establishment above timberline. Significant correlations (p Medicine Bow and Sangre de Cristo Mountains primarily contain clustered spatial patterns of trees above timberline, which indicates a strong reliance on the amelioration of abiotic conditions through positive feedback with nearby vegetation. Although clustered spatial patterns likely originate in response to harsh abiotic conditions such as drought or constant strong winds, the local scale biotic interactions within a clustered formation of trees appears to override the immediate influence of broad scale climate. This is evidenced both by a lack of significant correlations between tree establishment and climate in these mountain ranges, as well as the considerable lag times between initial climate regime shifts and corresponding shifts in tree age structure. Taken together, this research suggests that the influence of broad scale climate on upper treeline ecotonal dynamics is contingent on the local scale spatial patterns of tree establishment and related influences of positive feedback. These findings have global implications for our

  13. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    Science.gov (United States)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides

  14. Topographic Signatures of Meandering Rivers with Differences in Outer Bank Cohesion

    Science.gov (United States)

    Kelly, S. A.; Belmont, P.

    2014-12-01

    Within a given valley setting, interactions between river hydraulics, sediment, topography, and vegetation determine attributes of channel morphology, including planform, width and depth, slope, and bed and bank properties. These feedbacks also govern river behavior, including migration and avulsion. Bank cohesion, from the addition of fine sediment and/or vegetation has been recognized in flume experiments as a necessary component to create and maintain a meandering channel planform. Greater bank cohesion slows bank erosion, limiting the rate at which a river can adjust laterally and preventing so-called "runaway widening" to a braided state. Feedbacks of bank cohesion on channel hydraulics and sediment transport may thus produce distinct topographic signatures, or patterns in channel width, depth, and point bar transverse slope. We expect that in bends of greater outer bank cohesion the channel will be narrower, deeper, and bars will have greater transverse slopes. Only recently have we recognized that biotic processes may imprint distinct topographic signatures on the landscape. This study explores topographic signatures of three US rivers: the lower Minnesota River, near Mankato, MN, the Le Sueur River, south central MN, and the Fall River, Rocky Mountain National Park, CO. Each of these rivers has variability in outer bank cohesion, quantified based on geotechnical and vegetation properties, and in-channel topography, which was derived from rtkGPS and acoustic bathymetry surveys. We present methods for incorporating biophysical feedbacks into geomorphic transport laws so that models can better simulate the spatial patterns and variability of topographic signatures.

  15. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    Science.gov (United States)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  16. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Science.gov (United States)

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  17. Clinical profile and predictors of fatal Rocky Mountain spotted fever in children from Sonora, Mexico.

    Science.gov (United States)

    Alvarez-Hernandez, Gerardo; Murillo-Benitez, Coral; Candia-Plata, Maria del Carmen; Moro, Manuel

    2015-02-01

    Rocky Mountain spotted fever (RMSF) is an increasingly important cause of preventable mortality in children in Sonora, Mexico. Although early treatment with tetracycline has shown to prevent fatal outcome, the disease remains a life-threatening condition, particularly for children. This study describes the clinical factors associated with pediatric mortality due to RMSF in Sonora, in order to guide healthcare practices. This is a retrospective analysis of 104 children consecutively hospitalized at the major pediatric hospital of Sonora, diagnosed with RMSF between January 2004 and December 2013. Descriptive statistics and multiple logistic regression were used to identify risk factors for fatal outcome. The case fatality ratio in this cohort was 20.2%. Children were hospitalized after a median of 6 days from onset of symptoms including fever (100%), rash involving palms and soles (88.5%) and headache (79.8%); 90.4% of fatal cases had low platelet counts (<50,000/μL) and 33.3% showed serum creatinine concentrations above the normal value. Acute kidney injury increased mortality, odds ratio (OR(adj)) = 4.84, 95% confidence interval (CI): 1.2-16.2, as well as delay in treatment (≥ 5th day from onset) with doxycycline, OR(adj) = 2.62, 95% CI: 1.24-5.52 and hemorrhage, OR(adj) = 6.11, 95% CI: 1.89-19.69. RMSF is a public health problem in Sonora. Clinically, fatal cases differ from non-fatal cases in renal function and hemorrhagic manifestations, although these findings may occur too late for a timely intervention. First-line providers must be educated to harbor a timely suspicion of RMSF, and should provide empiric treatment with doxycycline when febrile patients first present for care.

  18. Mountains as early warning indicators of climate change

    Science.gov (United States)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  19. North American Rocky Mountain Hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Finney, B.; Anderson, L.; Berkelhammer, M. B.; Barron, J. A.; Steinman, B. A.; Abbott, M. B.

    2015-12-01

    A network of western North American lake sediment isotope records (calcium carbonate-δ18O) developed during the past decade provides substantial evidence of Pacific ocean-atmosphere forcing of precipitation variability during the Holocene. We present an overview of the eighteen lake carbonate-δ18O records located in the North American Rocky Mountains with a new compilation of modern lake water isotope measurements to characterize their sensitivity to variations in precipitation-δ18O and fractionation effects by evaporation. Comparative analysis of the carbonate-δ18O records that reflect precipitation isotope (δ18O) values (i.e., precipitation "isometers") indicates a sequence of time-varying in-phase and antiphase patterns between northern and southern regions during the Holocene that provide evidence for a highly non-stationary influence of Pacific ocean-atmosphere processes on the hydroclimate of western North America. We identify a prominent precipitation-δ18O dipole, which was sustained for ~2000 years between ~3.5 and 1.5 ka. The dipole contrasts with divergent earlier Holocene patterns and appears to indicate the onset of linkages between northern and tropical Pacific ocean-atmosphere dynamics as we know them today. These observations are informed by previous research on North Pacific precipitation-δ18O. Further investigation of short (observational) and long (Holocene) time scale patterns are needed to improve our understanding of the processes that 1) drive regional precipitation-δ18O responses to Pacific Ocean-atmosphere variability, and 2) cause varying internal ocean-atmosphere responses to external climate forcing.

  20. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    Science.gov (United States)

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-01-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m−3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (10), as revealed by relatively low average daily concentrations of fine (<5 μg m−3; PM2.5) and coarse (<10 μg m−3; PM2.5–10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  1. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    Science.gov (United States)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  2. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Science.gov (United States)

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  3. MACROZOOBENTHIC COMMUNITIES STRUCTURE CHARACTERISTIC OF CERTAIN TRIBUTARIES OF THE SIRET RIVER FROM HARGHITA, MARAMUREŞ AND VRANCEA MOUNTAINS AND MOLDOVEI PLATEAU

    Directory of Open Access Journals (Sweden)

    Elena-Andreea GHIBUŞI

    2012-01-01

    Full Text Available 35 qualitative macrozoobentonic samples were collected in 2011 from many Siret river tributaries coming from the Harghita Mountains (5 stations, Maramureş Mountains (14 stations, Moldavian Plateau (4 stations and Vrancea Mountains (12 stations. Laboratory analysis of samples revealed the existence of the following 15 groups of benthic invertebrates: Ephemeroptera, Plecoptera, Trichoptera, Oligochaeta, Diptera (Chironomidae, Simuliidae, Ceratopogonidae, Limoniidae, Gastropoda, Bivalva, Coleoptera, Acarina, Odonata, Hirudinea, Isopoda, Heteroptera, Turbellariata and Collembola. Groups that have the highest frequencies were mayflies and dipterans (each with a frequency of 97.1%, followed by caddisflies (80%, amphipods (68.6%, oligochaetes (57.1% and stoneflies (54.3%. Presence of sensitive groups to water quality degradation (Ephemeroptera, Trichoptera and Plecoptera with high frequency shows good quality water at most stations investigated.

  4. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick).

    Science.gov (United States)

    Atkinson, Samuel F; Sarkar, Sahotra; Aviña, Aldo; Schuermann, Jim A; Williamson, Phillip

    2012-11-01

    The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF) in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick's habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17). It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.

  5. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick

    Directory of Open Access Journals (Sweden)

    Samuel F. Atkinson

    2012-11-01

    Full Text Available The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick’s habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17. It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.

  6. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  7. New summer areas and mixing of two greater sandhill crane populations in the Intermountain West

    Science.gov (United States)

    Collins, Daniel P.; Grisham, Blake A.; Conring, Courtenay M.; Knetter, Jeffrey M.; Conway, Warren C.; Carleton, Scott A.; Boggie, Matthew A.

    2016-01-01

    Population delineation throughout the annual life cycle for migratory birds is needed to formulate regional and national management and conservation strategies. Despite being well studied continentally, connectivity of sandhill crane Grus canadensis populations throughout the western portion of their North American range remains poorly described. Our objectives were to 1) use global positioning system satellite transmitter terminals to identify summer distributions for the Lower Colorado River Valley Population of greater sandhill cranes Grus canadensis tabida and 2) determine whether intermingling occurs among any of the western greater sandhill crane populations: Rocky Mountain Population, Lower Colorado River Valley Population, and Central Valley Population. Capture and marking occurred during winter and summer on private lands in California and Idaho as well as on two National Wildlife Refuges: Cibola and Sonny Bono Salton Sea National Wildlife Refuges. A majority of marked greater sandhill cranes summered in what is established Lower Colorado River Valley Population breeding areas in northeastern Nevada and southwestern Idaho. A handful of greater sandhill cranes summered outside of traditional breeding areas in west-central Idaho around Cascade Reservoir near Donnelly and Cascade, Idaho. For example, a greater sandhill crane colt captured near Donnelly in July 2014 survived to winter migration and moved south to areas associated with the Rocky Mountain Population. The integration of the greater sandhill crane colt captured near Donnelly provides the first evidence of potential intermingling between the Lower Colorado River Population and Rocky Mountain Population. We suggest continued marking and banding efforts of all three western populations of greater sandhill cranes will accurately delineate population boundaries and connectivity and inform management decisions for the three populations.

  8. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    Science.gov (United States)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  9. Notes from the Field: Community-Based Prevention of Rocky Mountain Spotted Fever - Sonora, Mexico, 2016.

    Science.gov (United States)

    Straily, Anne; Drexler, Naomi; Cruz-Loustaunau, Denica; Paddock, Christopher D; Alvarez-Hernandez, Gerardo

    2016-11-25

    Rocky Mountain spotted fever (RMSF), a life-threatening tickborne zoonosis caused by Rickettsia rickettsii, is a reemerging disease in Mexico (1,2). R. rickettsii is an intracellular bacterium that infects vascular endothelium and can cause multisystem organ failure and death in the absence of timely administration of a tetracycline-class antibiotic, typically doxycycline. Epidemic RMSF, as described in parts of Arizona and Mexico, is associated with massive local infestations of the brown dog tick (Rhiphicephalus sanguineus sensu lato) on domestic dogs and in peridomestic settings that result in high rates of human exposure; for example, during 2003-2012, in Arizona the incidence of RMSF in the three most highly affected communities was 150 times the U.S. national average (3,4). In 2015, the Mexico Ministry of Health (MOH) declared an epidemiologic emergency because of high and sustained rates of RMSF in several states in northern Mexico, including the state of Sonora. During 2004-2015, a total of 1,129 cases and 188 RMSF deaths were reported from Sonora (Sonora MOH, unpublished data, 2016). During 2009-2015, one impoverished community (community A) in Sonora reported 56 cases of RMSF involving children and adolescents, with a case-fatality rate of 40% (Sonora MOH, unpublished data, 2016). Poverty and lack of timely access to health services are risk factors for severe RMSF. Children are especially vulnerable to infection, because they might have increased contact with dogs and spend more time playing around spaces where ticks survive (5). In Sonora, case fatality rates for children aged <10 years can be as high as 30%, which is almost four times the aggregate case-fatality rate reported for the general population of the state (8%) (2), and 10-13 times higher than the case-fatality rate described for this age group in the United States (2.4%) (6).

  10. Influence of landscape features on variation of δ2H and δ18O in seasonal mountain snowpack

    Science.gov (United States)

    Kipnis, E. L.; Chapple, W.; Frank, J. M.; Traver, E.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    Streamflow contributions from snowpack remain difficult to predict in snow dominated headwater catchments in the Rocky Mountains. There remains considerable uncertainty in how environmental change in mountain watersheds alter seasonal snowpack accumulation and development and how these relationships translate from gaged to ungaged catchments. Stable isotope analysis is a valuable tool for determining the contribution and changes of different source inputs to catchment water budgets. Stable isotope values in snowpack integrate source inputs and processes such as water vapor exchange, selective redistribution, and melt. For better understanding of how these physical processes vary at local and catchment scales, snowpack density, depth, snow water equivalence (SWE), δ2H and δ18O were examined at peak snowpack in spring 2013 and 2014 and at monthly time steps throughout the winter of 2013-2014. Distributed data and sample collection occurred between 2400 and 3300 m elevation across two pine beetle and spruce beetle impacted forest stands with variable canopy cover in the Libby Creek and Nash Fork Little Laramie River basins, Medicine Bow Range, Wyoming. Peak snowpack within these watersheds was 10% below historic average in 2013 and 50% above average in 2014 (NRCS Snotel data). Even with these contrasting peak snowpack patterns, elevation described less than 40% of the spatial variation of snow water equivalents (SWE) across the watersheds for both seasons. Hydrogen and oxygen isotope ratio values of snowpack sampled monthly in 2014 revealed early season separation from the local meteoric water line, suggesting some kinetic isotope effects. However, isotope ratio values at peak snowpack in 2013 reflected no such signal at any sampling location. The influence of landscape position and canopy cover will be modeled to detect and scale spatial and temporal changes in SWE and stable isotope composition of snowpack. Such an approach will provide increased understanding of

  11. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    Science.gov (United States)

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  12. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review

    International Nuclear Information System (INIS)

    Burns, Douglas A.

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha -1 yr -1 , and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is 3 - concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. - The effects of nitrogen deposition will become more evident as growth increases

  13. The Evaluation and Management of Rocky Mountain Spotted Fever in the Emergency Department: a Review of the Literature.

    Science.gov (United States)

    Gottlieb, Michael; Long, Brit; Koyfman, Alex

    2018-07-01

    Rocky Mountain spotted fever (RMSF) is potentially deadly and can present subtly with signs and symptoms overlapping with other clinical conditions. Delayed diagnosis can be fatal. This review provides an evidence-based summary of the current data for the evaluation and management of RMSF in the emergency department. RMSF occurs through transmission of Rickettsia rickettsii by an infected tick. Exposure in the United States occurs most commonly from April to September, and high-risk locations include wooded, shrubby, or grassy areas. Approximately half of patients with infection do not recall tick exposure. Symptoms can include fever, headache, photophobia, malaise, myalgias, and a petechial rash that begins on the wrists and ankles and spreads to the trunk. Rash may not occur in ≤15% of patients, and the classic triad of fever, headache, and rash is also not definitive. Laboratory evaluation may demonstrate hyponatremia, anemia, thrombocytopenia, abnormal liver enzymes, and elevated coagulation tests. Antibody testing can be helpful, but these results are not typically available to the emergency clinician. Doxycycline is the treatment of choice in adults, children, and pregnant patients. Patients should be advised about prevention strategies and effective techniques for removing ticks. RMSF is a potentially deadly disease that requires prompt recognition and management. Focused history, physical examination, and testing are important in the diagnosis of this disease. Understanding the clinical features, diagnostic tools, and proper treatment can assist emergency clinicians in the management of RMSF. Published by Elsevier Inc.

  14. Biotic Drivers of Spatial Heterogeneity and Implications for River Ecosystems

    Science.gov (United States)

    Wohl, Ellen

    2017-04-01

    Rivers throughout the northern hemisphere have been simplified and homogenized by the removal of beavers and instream wood, along with numerous forms of channel engineering and flow regulation. Loss of spatial heterogeneity in river corridors - channels and floodplains - affects downstream fluxes of water, sediment, organic matter, and nutrients, as well as stream metabolism, biomass, and biodiversity. Recent work in streams of the Colorado Rocky Mountains illustrates how the presence of beavers and instream wood can facilitate spatial heterogeneity by creating stable, persistent, multithread channel planform and high channel-floodplain and channel-hyporheic zone connectivity. This spatial heterogeneity facilitates retention of water in pools, floodplain wetlands, and hyporheic storage. Suspended sediment, particulate organic matter (POM), and solutes are also more likely to be retained in these stream segments than in more uniform stream segments with greater downstream conveyance. Retention of POM and solutes equates to greater volumes of organic carbon storage per unit valley length and greater rates of nitrogen uptake. Spatially heterogeneous stream segments also exhibit greater biomass and biodiversity of aquatic macroinvertebrates, salmonid fish, and riparian spiders than do more uniform stream segments. These significant differences in stream form and function are unlikely to be unique to this field area and can provide a conceptual model for understanding and restoring ecosystem functions in other rivers.

  15. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  16. Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion

    Science.gov (United States)

    S. E. Litschert; D. M. Theobald; T. C. Brown

    2014-01-01

    Forests in the Southern Rockies Ecoregion surround the headwaters of several major rivers in the western and central US. Future climatic changes will increase the incidence of wildfire in those forests, and will likely lead to changes in downstream water quality, including sediment loads.We estimated soil loss under the historic climate and two IPCC climate change...

  17. Quality control activities in support of the plutonium workers study. Assessment of coding consistency for data collected at Rocky Flats

    International Nuclear Information System (INIS)

    Reyes, M.; Wilkinson, G.S.; Acquavella, J.F.

    1984-03-01

    The Plutonium Workers Study is a multifaceted epidemiologic investigation of workers at six Department of Energy (DOE) facilities: Los Alamos, Rocky Flats, Mound, Savannah River, Oak Ridge, and Hanford. Information from a variety of record sources has been collected and abstracted for these studies. This report considers the accuracy of the demographic, occupational, and radiation exposure data collected for studies at Rocky Flats. the majority of the information was accurately abstracted, and analyses based on these data may be conducted

  18. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  19. Learn from the burn: The High Park Fire 5 years later

    Science.gov (United States)

    Sue Miller; Charles Rhodes; Pete Robichaud; Sandra Ryan; Jen Kovecses; Carl Chambers; Sara Rathburn; Jared Heath; Stephanie Kampf; Codie Wilson; Dan Brogan; Brad Piehl; Mary Ellen Miller; John Giordanengo; Erin Berryman; Monique Rocca

    2017-01-01

    It has been 5 years since the High Park Fire burned over 85,000 acres in Northern Colorado, causing extensive property damage, loss of life, and severe impacts to the water quality of the Poudre River. In the fall of 2016, a conference was organized by the USFS Rocky Mountain Research Station and the Coalition for the Poudre River Watershed to discuss what has been...

  20. Effects of fuel treatments on carbon-disturbance relationships in forests of the northern Rocky Mountains

    Science.gov (United States)

    Elizabeth Reinhardt; Lisa Holsinger

    2010-01-01

    Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky...

  1. Occurrence of pathogenic fungi to Amblyomma cajennense in a rural area of Central Brazil and their activities against vectors of Rocky Mountain spotted fever.

    Science.gov (United States)

    D'Alessandro, Walmirton B; Humber, Richard A; Luz, Christian

    2012-08-13

    Two isolates of Beauveria bassiana and one of Purpureocillium lilacinum (=Paecilomyces lilacinus) were found infecting Amblyomma cajennense engorged females collected on horses (0.15% infection rate from a total of 1982 specimens) and another two isolates of P. lilacinum and one Metarhizium anisopliae detected in soils (2.1% from 144 samples) collected in typical pasture habitats of this tick in Central Brazil from October 2009 to March 2011. Fungi were isolated from soils with Rhipicephalus sanguineus as surrogate baits. No fungi were found in ticks or soils during the driest months (May to August). Testing pathogenicity of fungi all R. sanguineus females were killed regardless of the isolate and fungi sporulated abundantly on the cadavers. A. cajennense was less susceptible to infection with P. lilacinum within 20 days than R. sanguineus. All three fungal species probably act as natural antagonists of A. cajennense particularly in the rainy season and have interest for integrate control of vectors of Rocky Mountain spotted fever. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    Science.gov (United States)

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  3. Rocky Mountain spotted fever in Georgia, 1961-75: analysis of social and environmental factors affecting occurrence.

    Science.gov (United States)

    Newhouse, V F; Choi, K; Holman, R C; Thacker, S B; D'Angelo, L J; Smith, J D

    1986-01-01

    For the period of 1961 through 1975, 10 geographic and sociologic variables in each of the 159 counties of Georgia were analyzed to determine how they were correlated with the occurrence of Rocky Mountain spotted fever (RMSF). Combinations of variables were transformed into a smaller number of factors using principal-component analysis. Based upon the relative values of these factors, geographic areas of similarity were delineated by cluster analysis. It was found by use of these analyses that the counties of the State formed four similarity clusters, which we called south, central, lower north and upper north. When the incidence of RMSF was subsequently calculated for each of these regions of similarity, the regions had differing RMSF incidence; low in the south and upper north, moderate in the central, and high in the lower north. The four similarity clusters agreed closely with the incidence of RMSF when both were plotted on a map. Thus, when analyzed simultaneously, the 10 variables selected could be used to predict the occurrence of RMSF. The most important variables were those of climate and geography. Of secondary, but still major importance, were the changes over the 15-year period in variables associated with humans and their environmental alterations. Detailed examination of these factors has permitted quantitative evaluation of the simultaneous impacts of the geographic and sociologic variables on the occurrence of RMSF in Georgia. These analyses could be updated to reflect changes in the relevant variables and tested as a means of identifying new high risk areas for RMSF in the State. More generally, this method might be adapted to clarify our understanding of the relative importance of individual variables in the ecology of other diseases or environmental health problems. PMID:3090609

  4. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  5. Soil movements and surface erosion rates on rocky slopes in the mountain areas of the karst region of Southwest China

    Science.gov (United States)

    Zhang, X. B.; Bai, X. Y.; Long, Y.

    2012-04-01

    The karst region of Southwest China with an area of 54 × 104 km2 is one of the largest karst areas in the world and experiences subtropical climate. Hill-depressions are common landforms in the mountain areas of this region. Downslope soil movement on the ground by surface water erosion and soil sinking into underground holes by creeping or pipe erosion are mayor types of soil movements on rocky carbonate slopes. The 137Cs technique was used to date the sediment deposits in six karst depressions, to estimate average surface erosion rates on slopes from their catchments. The estimates of soil loss rates obtained from this study evidenced considerable variability. A value of 1.0 t km-2 year-1 was obtained for a catchment under original dense karst forest, but the erosion rates ranged between 19.3 t km-2 year-1 and 48.7 t km-2 year-1 in four catchments under secondary forest or grasses, where the original forest cover had been removed in the Ming and Qing dynasties, several hundred years ago. The highest rate of 1643 t km-2 year-1 was obtained for a catchment underlain by clayey carbonate rocks, where the soil cover was thicker and more extensive than in the other catchments and extensive land reclamation for cultivation had occurred during the period 1979-1981, immediately after the Cultural Revolution.

  6. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  7. Inconsistent Growth Response to Fertilization and Thinning of Lodgepole Pine in the Rocky Mountain Foothills Is Linked to Site Index

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2012-01-01

    Full Text Available Fertilization of conifers often results in highly variable growth responses across sites which are difficult to predict. The goal of this study was to predict the growth response of lodgepole pine (Pinus contorta var. latifolia crop trees to thinning and fertilization using basic site and foliar characteristics. Fifteen harvest-origin stands along the foothills of the Rocky Mountains of Alberta were subjected to six treatments including two levels of thinning (thinning to 2500 stems per hectare and a control and three types of fertilization (nitrogen-only fertilization, complete fertilization including nitrogen with added P, K, S, Mg, and B, and no fertilization. After three growing seasons, the growth response and foliar status of the crop trees were examined and this response was related to site and foliar characteristics. There was a small and highly variable additive response to fertilization and thinning; diameter growth of crop trees increased relative to the controls an average of 0.3 cm with thinning, 0.3 cm with either N-only or complete fertilization and 0.6 cm when thinned and fertilized. The increase in diameter growth with thinning and nitrogen-only fertilization was positively related to site index but not to any other site factors or pretreatment foliar variables such as nutrient concentrations, ratios, or thresholds.

  8. Atmospheric dispersion modeling at the Rocky Flats Plant. Progress report, December 1981-December 1985

    International Nuclear Information System (INIS)

    Hodgin, C.R.

    1986-01-01

    The Rocky Flats Plant applies atmospheric dispersion modeling as a tool for Emergency Response, Risk Assessment, and Regulatory Compliance. Extreme variations in terrain around the facility have necessitated the development of an advanced modeling approach. The Terrain-Responsive Atmospheric Code (TRAC) was developed to treat realistically the changing wind, stability, dispersion, and deposition patterns that are experienced in mountainous areas. The result is a detailed picture of dose and deposition patterns associated with postulated or actual releases. A unified approach was taken to modeling needs at Rocky Flats. This produces consistent dose projections for all applications. A Risk Assessment version of TRAC is now operational. A high-speed version of the code is being implemented for Emergency Response, and development of a regulatory version is under way. Public, scientific, and governmental acceptance of TRAC is critical to successful applications at the Rocky Flats Plant. A program of peer review and regulatory approval was initiated to provide a full outside evaluation of our techniques. Full field validation (tracer testing) is key to demonstrating reliability of the TRAC model. A validation study was planned for implementation beginning in early CY-1986. The necessary funding ($500,000) is being sought. Although the TRAC model development and approval program was developed for site-specific needs at the Rocky Flats Plant, potential exists for wider application within the Department of Energy (DOE). The TRAC model can be easily applied at other sites in complex terrain. A coordinated approach to model validation throughout the Albquerque Operations Office (AL) or DOE complexes could prove more cost effective than site-by-site evaluations. Finally, the model approval procedure developed jointly by Rocky Flats and the Environmental Protection Agency (EPA) is general and could be applied to other models or as the basis for a DOE-wide program

  9. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  10. Effect of vaccination schedule on immune response of Macaca mulatta to cell culture-grown Rocky Mountain spotted fever vaccine.

    Science.gov (United States)

    Sammons, L S; Kenyon, R H; Pedersen, C E

    1976-01-01

    The effect of vaccination schedule on the immune response of Macaca mulatta to formalin-inactivated chicken embryo cell culture (CEC)-grown Rickettsia rickettsii vaccine was studied. Schedules consisted of inoculation on day 1 only, on days 1 and 15, on days 1 and 30, on days 1, 8, and 15, or on days 1, 15, and 45. Humoral antibody measured by microagglutination and indirect immunofluorescence and resistance to challenge with 10(4) plaque-forming units of yolk sac-grown R. rickettsii were assessed. Seroconversion was noted in all monkeys after the first dose of vaccine. A second dose administered 8 or 15 days after the primary infection, or a third given 7 or 30 days after the second, produced no long-term effect on antibody titer. Only monkeys given two doses of vaccine at a 30-day interval showed an increase in antibody titer during the period before challenge. Vaccination with one, two, or three doses of CEC vaccine prevented development of rash and rickettsemia after challenge. The two-dose schedules appeared to induce the highest degree of resistance to challenge, as indicated by unaltered hematological parameters and body temperature in monkeys. The one- and three-dose schedules were somewhat less effective, in that some challenged monkeys within each group displayed febrile and leukocyte responses associated with Rocky Mountain spotted fever infection. Our data suggest that administration of two doses of CEC vaccine at 15- or 30-day intervals is the immunization schedule of choice. PMID:823173

  11. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    International Nuclear Information System (INIS)

    Shin, Eun-Jae; Lauve, Alexander; Carey, Maxwell; Bukovsky, Eric; Ranville, James F.; Evans, Robert J.; Herring, Andrew M.

    2008-01-01

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully

  12. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Jae [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)], E-mail: eshin@mines.edu; Lauve, Alexander; Carey, Maxwell [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Bukovsky, Eric; Ranville, James F. [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Evans, Robert J.; Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2008-03-15

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully.

  13. Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain Region City.

    Science.gov (United States)

    May, Philip A; Keaster, Carol; Bozeman, Rosemary; Goodover, Joelene; Blankenship, Jason; Kalberg, Wendy O; Buckley, David; Brooks, Marita; Hasken, Julie; Gossage, J Phillip; Robinson, Luther K; Manning, Melanie; Hoyme, H Eugene

    2015-10-01

    The prevalence and characteristics of fetal alcohol syndrome (FAS) and partial FAS (PFAS) in the United States (US) are not well known. This active case ascertainment study in a Rocky Mountain Region City assessed the prevalence and traits of children with FAS and PFAS and linked them to maternal risk factors. Diagnoses made by expert clinical dysmorphologists in multidisciplinary case conferences utilized all components of the study: dysmorphology and physical growth, neurobehavior, and maternal risk interviews. Direct parental (active) consent was obtained for 1278 children. Averages for key physical diagnostic traits and several other minor anomalies were significantly different among FAS, PFAS, and randomly-selected, normal controls. Cognitive tests and behavioral checklists discriminated the diagnostic groups from controls on 12 of 14 instruments. Mothers of children with FAS and PFAS were significantly lower in educational attainment, shorter, later in pregnancy recognition, and suffered more depression, and used marijuana and methamphetamine during their pregnancy. Most pre-pregnancy and pregnancy drinking measures were worse for mothers of FAS and PFAS. Excluding a significant difference in simply admitting drinking during the index pregnancy (FAS and PFAS=75% vs. 39.4% for controls), most quantitative intergroup differences merely approached significance. This community's prevalence of FAS is 2.9-7.5 per 1000, PFAS is 7.9-17.7 per 1000, and combined prevalence is 10.9-25.2 per 1000 or 1.1-2.5%. Comprehensive, active case ascertainment methods produced rates of FAS and PFAS higher than predicted by long-standing, popular estimates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Facies and diagenesis of the Devonian Portilla limestone formation between the river Esla and the Embalse de la Luna, Cantabrian Mountains, Spain

    NARCIS (Netherlands)

    Reijers, T.J.A.

    1972-01-01

    In the central part of the Cantabrian Mountains, between the artificial lake in the rivei Luna in the west and the river Esla in the east, outcrops of the Portilla Limestone Formation were investigated. A fairly uniform development could be observed in four structurally different areas. Six

  15. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  16. What can we learn from fluvial incision in high mountains?

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000

  17. Dwarf forest recovery after disturbances in the Luquillo Mountains of Puerto Rico

    Science.gov (United States)

    P.L. Weaver

    2008-01-01

    Dwarf forest in Puerto Rico’s Luquillo Mountains varies according to substrate and topography with very short, dense forest growing on exposed, rocky sites. High elevation level sites suffered considerable damage during past hurricanes whereas the trees on certain lower slopes were protected by ridges or spurs. Post-disturbance recovery of dwarf forest on two types of...

  18. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  19. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  20. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    Science.gov (United States)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  1. Seismic hazard characterization of 69 nuclear plant sites east of the Rocky Mountains: Results and discussion for the Batch 4 sites

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Savy, J.B.; Mensing, R.W.; Chen, J.C.

    1989-01-01

    The EUS Seismic Hazard Characterization Project (SHC) is the outgrowth of an earlier study performed as part of the US Nuclear Regulatory Commission's (NRC) Systematic Evaluation Program (SEP). The objectives of the SHC were: (1) to develop a seismic hazard characterization methodology for the region east of the Rocky Mountains (EUS), and (2) the application of the methodology to 69 site locations, some of them with several local soil conditions. The method developed uses expert opinions to obtain the input to the analyses. An important aspect of the elicitation of the expert opinion process was the holding of two feedback meetings with all the experts in order to finalize the methodology and the input data bases. The hazard estimates are reported in terms of peak ground acceleration (PGA) and 5% damping velocity response spectra (PSV). A total of eight volumes make up this report which contains a thorough description of the methodology, the expert opinion's elicitation process, the input data base as well as a discussion, comparison and summary volume (Volume 6). Consistent with previous analyses, this study finds that there are large uncertainties associated with the estimates of seismic hazard in the EUS, and it identifies the ground motion modeling as the prime contributor to those uncertainties. This document, Volume 5, provides the seismic hazard estimates for the 17 sites in ''Batch 4''

  2. A Hydrogeochemical Study of the Evolution of the Headwaters of the Bear River in the Uinta Mountains, Utah

    OpenAIRE

    Leschin, Michael F.

    1997-01-01

    The headwaters of the Bear River in the Uinta Mountains of Utah provide a good setting in which to examine the influence of geological materials on stream chemistry. Ionic contributions to the stream-water from soils, vegetation, and the atmosphere generally are sparse enough that they do not mask the geologic contributions. Samples from 37 sites on the four major headwater streams and several minor tributaries were examined geochemically. Data derived from the samples allowed the constructio...

  3. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  4. Risk factors for fatal outcome from rocky mountain spotted Fever in a highly endemic area-Arizona, 2002-2011.

    Science.gov (United States)

    Regan, Joanna J; Traeger, Marc S; Humpherys, Dwight; Mahoney, Dianna L; Martinez, Michelle; Emerson, Ginny L; Tack, Danielle M; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A; McQuiston, Jennifer H

    2015-06-01

    Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Rocky mountain spotted fever characterization and comparison to similar illnesses in a highly endemic area-Arizona, 2002-2011.

    Science.gov (United States)

    Traeger, Marc S; Regan, Joanna J; Humpherys, Dwight; Mahoney, Dianna L; Martinez, Michelle; Emerson, Ginny L; Tack, Danielle M; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H; Yost, David A

    2015-06-01

    Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002-2011 from 2 Indian reservations in Arizona. RMSF cases in Arizona occurred year-round and peaked later (July-September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  7. Risk Factors for Fatal Outcome From Rocky Mountain Spotted Fever in a Highly Endemic Area—Arizona, 2002–2011

    Science.gov (United States)

    Regan, Joanna J.; Traeger, Marc S.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A.; McQuiston, Jennifer H.

    2016-01-01

    Background Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. Methods The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Results Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Conclusions Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. PMID:25697742

  8. Rocky Mountain Spotted Fever Characterization and Comparison to Similar Illnesses in a Highly Endemic Area—Arizona, 2002–2011

    Science.gov (United States)

    Traeger, Marc S.; Regan, Joanna J.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H.; Yost, David A.

    2015-01-01

    Background Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. Methods We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002–2011 from 2 Indian reservations in Arizona. Results RMSF cases in Arizona occurred year-round and peaked later (July–September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. Conclusions RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. PMID:25697743

  9. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  10. Streamflow timing of mountain rivers in Spain: Recent changes and future projections

    Science.gov (United States)

    Morán-Tejeda, Enrique; Lorenzo-Lacruz, Jorge; López-Moreno, Juan Ignacio; Rahman, Kazi; Beniston, Martin

    2014-09-01

    Changes in streamflow timing are studied in 27 mountain rivers in Spain, in the context of climate warming. The studied rivers are characterized by a highflows period in spring due to snowmelt, although differences in the role of snow and consequently in the timing of flows are observed amongst cases. We calculated for every year of the studied period (1976-2008) various hydrological indices that enable locating the timing of spring flows within the annual hydrologic regime, including the day of 75% of mass, and the day of spring maximum. The evolution of these indices was compared with that of seasonal precipitation and temperature, and trends in time were calculated. Results show a general negative trend in the studied indices which indicates that spring peaks due to snowmelt are shifting earlier within the hydrological year. Spring temperatures, which show a significant increasing trend, are the main co-variable responsible for the observed changes in the streamflow timing. In a second set of analyses we performed hydrological simulations with the SWAT model, in order to estimate changes in streamflow timing under projected warming temperatures. Projections show further shifting of spring peak flows along with a more pronounced low water level period in the summer. The simulations also allowed quantifying the role of snowfall-snowmelt on the observed changes in streamflow.

  11. Research on the infiltration processes of lawn soils of the Babao River in the Qilian Mountain.

    Science.gov (United States)

    Li, GuangWen; Feng, Qi; Zhang, FuPing; Cheng, AiFang

    2014-01-01

    Using a Guelph Permeameter, the soil water infiltration processes were analyzed in the Babao River of the Qilian Mountain in China. The results showed that the average soil initial infiltration and the steady infiltration rates in the upstream reaches of the Babao River are 1.93 and 0.99 cm/min, whereas those of the middle area are 0.48 cm/min and 0.21 cm/min, respectively. The infiltration processes can be divided into three stages: the rapidly changing stage (0-10 min), the slowly changing stage (10-30 min) and the stabilization stage (after 30 min). We used field data collected from lawn soils and evaluated the performances of the infiltration models of Philip, Kostiakov and Horton with the sum of squared error, the root mean square error, the coefficient of determination, the mean error, the model efficiency and Willmott's index of agreement. The results indicated that the Kostiakov model was most suitable for studying the infiltration process in the alpine lawn soils.

  12. Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records

    International Nuclear Information System (INIS)

    Wang Xiaoping; Gong Ping; Zhang, Qianggong; Yao Tandong

    2010-01-01

    How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. - Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.

  13. Investigating the Adult Ixodid Tick Populations and Their Associated Anaplasma, Ehrlichia, and Rickettsia Bacteria at a Rocky Mountain Spotted Fever Hotspot in Western Tennessee.

    Science.gov (United States)

    Trout Fryxell, Rebecca T; Hendricks, Brain M; Pompo, Kimberly; Mays, Sarah E; Paulsen, Dave J; Operario, Darwin J; Houston, Allan E

    2017-08-01

    Ehrlichiosis and rickettsiosis are two common bacterial tick-borne diseases in the southeastern United States. Ehrlichiosis is caused by ehrlichiae transmitted by Amblyomma americanum and rickettsiosis is caused by rickettsiae transmitted by Amblyomma maculatum and Dermacentor variabilis. These ticks are common and have overlapping distributions in the region. The objective of this study was to identify Anaplasma, Ehrlichia, and Rickettsia species associated with questing ticks in a Rocky Mountain spotted fever (RMSF) hotspot, and identify habitats, time periods, and collection methods for collecting questing-infected ticks. Using vegetation drags and CO 2 -baited traps, ticks were collected six times (May-September 2012) from 100 sites (upland deciduous, bottomland deciduous, grassland, and coniferous habitats) in western Tennessee. Adult collections were screened for Anaplasma and Ehrlichia (simultaneous polymerase chain reaction [PCR]) and Rickettsia using genus-specific PCRs, and resulting positive amplicons were sequenced. Anaplasma and Ehrlichia were only identified within A. americanum (Ehrlichia ewingii, Ehrlichia chaffeensis, Panola Mountain Ehrlichia, and Anaplasma odocoilei sp. nov.); more Ehrlichia-infected A. americanum were collected at the end of June regardless of habitat and collection method. Rickettsia was identified in three tick species; "Candidatus Rickettsia amblyommii" from A. americanum, R. parkeri and R. andeanae from A. maculatum, and R. montanensis ( = montana) from D. variabilis. Overall, significantly more Rickettsia-infected ticks were identified as A. americanum and A. maculatum compared to D. variabilis; more infected-ticks were collected from sites May-July and with dragging. In this study, we report in the Tennessee RMSF hotspot the following: (1) Anaplasma and Ehrlichia are only found in A. americanum, (2) each tick species has its own Rickettsia species, (3) a majority of questing-infected ticks are collected May-July, (4) A

  14. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  15. An epidemiologic and entomologic investigation of a cluster of Rocky Mountain spotted fever cases in Delaware.

    Science.gov (United States)

    Rotz, L; Callejas, L; McKechnie, D; Wolfe, D; Gaw, E; Hathcock, L; Childs, J

    1998-06-01

    Rocky Mountain spotted fever (RMSF) continues to be the most common fatal tick-borne illness in the United States. In August of 1996, four children attending a summer camp in Delaware were diagnosed with RMSF. This report summarizes the results of the epidemiologic and entomologic investigation conducted by the Delaware Division of Public Health and the Centers for Disease Control and Prevention regarding this cluster of RMSF cases. Epidemiologic and clinical aspects of RMSF, as well as previously reported clusters of the disease, are also reviewed. A questionnaire regarding symptoms and activities was administered via telephone to 163 (73 percent) of the 223 attendees. A suspected case was defined as an illness in a person attending the camp between August 11 and 17 that occurred during the two-week period following the session, characterized by either 1) fever with one or more symptoms (i.e., headache, rash, myalgia, or fatigue) or 2) no fever with two or more symptoms. Cases of RMSF were confirmed by serologic evaluation. Seven of 13 patients with suspected RMSF submitted sera for testing. Four patients had confirmed RMSF; three were males, and the median age was 12.5 years compared with 12 years for all attendees. All confirmed patients reported fever, headache, fatigue, and rash. An increased risk of becoming ill was associated with overnight camping at site A (Odds Ratio (OR) undefined, p = 0.02), visiting or overnight camping at site B (OR undefined, p = 0.003 and 0.002), and leaving the trails when hiking (OR undefined, p = 0.02). These data suggest that development of RMSF was associated with visiting or camping at specific sites and behavior likely to increase contact with ticks. Camp supervisors were advised to educate campers regarding tick bite prevention measures, reduce underbrush around campsites, and encourage campers to remain on the trails. Health care providers should remain aware of the increased risk for RMSF during the spring, summer, and

  16. Drivers of spatial heterogeneity in nitrogen processing among three alpine plant communities in the Rocky Mountains

    Science.gov (United States)

    Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.

    2017-12-01

    Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using

  17. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  18. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  19. 76 FR 21425 - Rocky Mountain Railcar and Repair, Inc.-Acquisition and Operation Exemption-Line of Railroad in...

    Science.gov (United States)

    2011-04-15

    ... under 49 CFR 1150.31 to acquire from Utah Industrial Depot and operate 11.5 miles of rail line, located inside an existing industrial facility in Tooele County, Utah.\\1\\ The rail line includes a spur that... operates a railcar repair facility, but that it seeks to become a common carrier. According to Rocky...

  20. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    Science.gov (United States)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm

  1. Environmental Assessment for the Military Housing Privatization Initiative (MHPI) Malmstrom Air Force Base, Montana

    Science.gov (United States)

    2009-08-01

    the Missouri River approximately 75 miles east of the Rocky Mountains and 2 miles east of the city of Great Falls. MAFB is 120 miles south of the...the mountains . Other nearby surface water bodies are Box Elder Creek and Sand Coulee Creek, which are located within 5 miles of MAFB. There are no...Drainage Area 2 c:J Drainage Area 3 c:J Drainage Area 4 Drainage Area 5 - Drainage Alea 6 - Drainage Alea 7 - Drainage Alea 6 - Drainage

  2. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers - Case study from two river restoration projects in the German lower mountain range

    Science.gov (United States)

    Groll, M.

    2017-09-01

    Intensive use of European rivers during the last hundreds of years has led to profound changes in the physicochemical properties, river morphology, and aquatic faunistic communities. Rectifying these changes and improving the ecological state of all surface water bodies is the central aim of the European Water Frame Directive (WFD), and river restoration measures are the main tool to achieve this goal for many rivers. As the cost-effectiveness of all measures is crucial to the WFD implementation, the approach of the passive river restoration has become very popular over the last decades. But while costs of this approach are minimal, not much is known about the long-term effectiveness of passive river restorations. The research presented here provides essential and in-depth data about the effects of two such restoration measures on the riverbed morphology of a large river of the lower mountain region in Germany (type 9.2). More than 3200 data sets were acquired using the TRiSHa method (Typology of Riverbed Structures and Habitats). The results show a high spatial and temporal diversity and dynamic for all analyzed hydromorphologic parameters - ranging from riverbed sediments, organic structures like dead wood or macrophytes, to the distribution of 32 microhabitat types. The structures and their dynamic depend on the character of the study area (free-flowing or impounded), the location of the study sites within the research area (main channel or restored side channel), and on the occurrence of major flood events (the mapping and sampling were conducted annually from 2006 to 2008 with a 50-year flood event occurring in early 2007). These results show the potential of the passive restoration approach for creating morphologically diverse riverbeds, as habitat diversity and the spatial heterogeneity of the riverbed substrates increased significantly (e.g., more than 40% of all habitat types were only detected in the newly restored side channels). But the results also

  3. North American Monsoon Response to Eemian Climate Forcings and its Effect on Rocky Mountain Forests

    Science.gov (United States)

    Insel, N.; Berkelhammer, M. B.

    2017-12-01

    The key to recognizing and predicting future changes in regional climate and ecosystems lies in understanding the causes and characteristics of paleovariations. The Last Interglacial (LIG: 130-116 ka) is the most recent period in Earth history when temperatures are believed to have exceeded those of today. In this study, we are focusing on the response of the North American monsoon (NAM) to shifts in orbital forcings during LIG. In particular, we are using regional climate model (RegCM) simulations under LIG (115ka, 125 ka and 135 ka) and modern forcings to evaluate changes in the strength, timing, duration, and amount of moisture transported from different sources during the NAM season. Understanding these variations is critical to forecast seasonal supply of water to the southwestern U.S. under current warming conditions. In addition, cellulose extracted stable isotopes from Rocky Mountain Eemian wood samples provides both a tool to diagnose the model simulations and to evaluate the response of western U.S. tree species to changes in temperature and moisture availability. Our preliminary results indicate enhanced summer precipitation, wind shifts and changes in NAM characteristics in response to increased Northern Hemisphere insolation. The following features were observed: (1) The NAM strengthens and extends slightly more northward during the Eemian due to a shift in upper-level divergence. (2) The onset and duration of the NAM seems to be similar between modern and Eemian simulations. (3) Consistent with modern observations, simulations suggest a western NAM region in Arizona that receives most of its monsoonal moisture from the Gulf of California, while the eastern NAM region in New Mexico obtains most of its summer rains from the Gulf of Mexico. In the Eemian, we see a spatial shift from more depleted to more enriched source waters throughout the monsoon season. These changes in the summer climate are confirmed by the tree ring isotope data, which show a

  4. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  5. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  6. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    Science.gov (United States)

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  7. Forecasting distributional responses of limber pine to climate change at management-relevant scales in Rocky Mountain National Park.

    Directory of Open Access Journals (Sweden)

    William B Monahan

    Full Text Available Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis to climate change in Rocky Mountain National Park (Colorado, USA. Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m(2 show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change

  8. Assessing the potential for rainbow trout reproduction in tributaries of the Mountain Fork River below Broken Bow Dam, southeastern Oklahoma

    Science.gov (United States)

    Long, James M.; Starks, Trevor A.; Farling, Tyler; Bastarache, Robert

    2016-01-01

    Stocked trout (Salmonidae) in reservoir tailwater systems in the Southern United States have been shown to use tributary streams for spawning and rearing. The lower Mountain Fork of the Little River below Broken Bow Dam is one of two year-round tailwater trout fisheries in Oklahoma, and the only one with evidence of reproduction by stocked rainbow trout (Oncorhynchus mykiss). Whether stocked trout use tributaries in this system for spawning is unknown. Furthermore, an

  9. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  10. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    Science.gov (United States)

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  11. Selenium and other trace elements in aquatic insects in coal mine-affected streams in the Rocky Mountains of Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, M.; Crosley, R. [Environmental Canada, Saskatoon, SK (Canada)

    2006-05-15

    We determined levels of Se, As, Cd, Pb, and Zn in aquatic insects at coal mine-impacted and reference sites in streams in the Rocky Mountain foothills of west central Alberta from 2001-2003. Selenium levels were greater at coal mine-impacted sites than at reference sites in caddisflies but not in mayflies or stoneflies. Arsenic levels were greater at coal mine-impacted sites than at reference sites in caddisflies and stoneflies but not in mayflies. Zn levels were higher at coal mine-impacted sites than at reference sites in all three groups of insects. At coal mine-impacted sites, Se levels in mayflies and caddisflies were greater than those in stoneflies while at reference sites mayflies contained greater concentrations of Se than either caddisflies or stoneflies. Arsenic levels in mayflies were greater than those in caddisflies at reference and coal mine-impacted sites and were greater than those in stoneflies at reference sites. At both types of sites Cd differed amongst insect taxa in the order of mayflies < caddisflies < stoneflies. The same was true of Zn at coal mine-affected sites. At reference sites, stoneflies had greater concentrations of Zn than both mayflies and caddisflies. At both types of sites, Pb levels were greater in mayflies and caddisflies than they were in stoneflies. Of the five trace elements considered in this study, only Se was sufficiently elevated in aquatic invertebrates to be of potential concern for consumers such as fish and aquatic birds. Such was the case at both coal mine-impacted and reference sites.

  12. Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park

    Science.gov (United States)

    Kramer, N.; Harry, D. L.; Wohl, E. E.

    2010-12-01

    This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.

  13. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  14. Fate and transport of trace metals and rare earth elements in the Snake River, an AMD/ARD-impacted watershed. Montezuma, Colorado USA.

    Science.gov (United States)

    McKnight, D. M.; Rue, G.

    2017-12-01

    Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed

  15. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    Science.gov (United States)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  16. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  17. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  18. GEODIVERSITY AUDIT AND ACTION PLAN FOR UPPER CATCHMENT AREA OF GERSA RIVER (RODNEI MOUNTAINS, BISTRIȚA-NĂSĂUD COUNTY, ROMANIA

    Directory of Open Access Journals (Sweden)

    Ioan Bâca

    2015-08-01

    Full Text Available Geodiversity Audit is an inventory and assessment process, wich represents the basis for elaborating the Geoconservation Action Plan. The geodiversity includes the abiotic factors (rocks, minerals, soils, landforms that sustain the life on the Earth, and owns economic, social, environmental, tourist and educational functions. This study proposes an audit of geodiversity from Gersa catcment area and an Action Plan for future planning and tourist valorization projects by local and county authorities. Gersa Valley is a geomorphological subunit located in the southern part of Rodnei Mountains (Bistrița-Năsăud County and contains in the superior sector some landforms with high degree of attractiveness, such as Izvorul Tăușoarelor Cave, Izvorul Calului Gorge and Bârlea Massif. By their configuration these landforms has a great potential for engaging in scientific and recreational activities (caving, hiking, gorge walking, canyoning, mountain biking. Keywords: geodiversity, geologic heritage, geoconservation, geosite, action plan, Rodnei Mountains, Gersa River, Izvorul Tăușoarelor Cave, speotourism, activ leisure

  19. The Importance of Glaciers as Thermal Buffers in the Kitsumkalum River Watershed, Coast Mountains, Canada

    Science.gov (United States)

    Beedle, M. J.; Menounos, B.; Biagi, M.; White, C.

    2016-12-01

    Glacier volume in the Coast Mountains of British Columbia is projected to decrease by up to 60% by the end of this century. The hydrologic impact of this change, however, is uncertain; these changes may negatively affect sport, commercial and subsistence fisheries dependent on Pacific salmon. To quantify hydrologic impacts of declining glacier cover, we commenced monitoring stream temperature and glacier change of the Kitsumkalum River basin, an important watershed for First Nations and sport fisheries. Our stream temperature sites include the main stem of the lower Kitsumkalum River, Kalum Lake and six sub-drainages with glacier cover that varied between 0.97-14.4%. Data for the 2016 hydrologic season reveal that maximum weekly average temperature (MWAT) ranged from 8.46 to 13.90 °C; more heavily glacierized basins maintained a lower MWAT than the less glacierized basins. Time series of MWAT indicate that temperatures of sub-basins in May differed by 1.11°C, presumably due to a similar pattern of snowmelt among the basins. By mid-July, MWAT values varied by 4.85 °C. Basins with less glacier cover (management challenge.

  20. An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine

    Science.gov (United States)

    Woodhouse, C.A.; Pederson, G.T.; Gray, S.T.

    2011-01-01

    Bristlecone pine trees are exceptionally long-lived, and with the incorporation of remnant material have been used to construct multi-millennial length ring-width chronologies. These chronologies can provide valuable information about past temperature and moisture variability. In this study, we outline a method to build a moisture-sensitive bristlecone chronology and assess the robustness and consistency of this sensitivity over the past 1200. yr using new reconstructions of Arkansas River flow (AD 1275-2002 and 1577-2002) and the summer Palmer Drought Sensitivity Index. The chronology, a composite built from parts of three collections in the central Rocky Mountains, is a proxy for decadal-scale moisture variability for the past 18 centuries. Since the sample size is small in some portions of the time series, the chronology should be considered preliminary; the timing and duration of drought events are likely the most robust characteristics. This chronology suggests that the region experienced increased aridity during the medieval period, as did much of western North America, but that the timing and duration of drought episodes within this period were somewhat different from those in other western locations, such as the upper Colorado River basin. ?? 2010 University of Washington.

  1. Integrated wastewater management planning for DOE's Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D ampersand D) , and project management industry. The company is currently the environmental restoration, waste management, and D ampersand D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ''Project Breakthrough'' where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site's Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs

  2. Site vegetation report: Terrestrial vegetation survey (1993--1995) for the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1997-06-01

    The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy's (DOE's) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front result in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure

  3. Site vegetation report: Terrestrial vegetation survey (1993--1995) for the Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy`s (DOE`s) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front result in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure.

  4. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    Science.gov (United States)

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  5. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    Science.gov (United States)

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government

  6. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains.

    Science.gov (United States)

    Nelson, Brynn; Hebblewhite, Mark; Ezenwa, Vanessa; Shury, Todd; Merrill, Evelyn H; Paquet, Paul C; Schmiegelow, Fiona; Seip, Dale; Skinner, Geoff; Webb, Nathan

    2012-01-01

    Wild carnivores are often exposed to diseases via contact with peridomestic host species that travel through the wildland-urban interfaces. To determine the antibody prevalences and relationships to human activity for two common canid pathogens, we sampled 99 wolves (Canis lupus) from 2000 to 2008 for antibodies to canine parvovirus (CPV) and canine distemper virus (CDV) in Banff and Jasper National Parks and surrounding areas of the Canadian Rockies. This population was the source for wolves reintroduced into the Northern Rockies of the US. Of 99 wolves sampled, 94 had detectable antibody to CPV (95%), 24 were antibody-positive for CDV (24%), and 24 had antibodies to both pathogens (24%). We tested whether antibody prevalences for CPV and CDV were higher closer to human activity (roads, town sites, First Nation reserves) and as a function of sex and age class. Wolves ≥2 yr old were more likely to be have antibodies to CPV. For CDV, male wolves, wolves ≥2 yr, and those closer to First Nation reserves were more likely to have antibodies. Overall, however, we found minimal support for human influence on antibody prevalence for CDV and CPV. The similarity between our antibody prevalence results and results from recent studies in Yellowstone National Park suggests that at least in the case of CDV, and perhaps CPV, these could be important pathogens with potential effects on wolf populations.

  7. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon.

    Science.gov (United States)

    Bao, Hongyan; Lee, Tsung-Yu; Huang, Jr-Chuan; Feng, Xiaojuan; Dai, Minhan; Kao, Shuh-Ji

    2015-11-20

    The land-to-ocean export of particulate organic carbon (POC) connects carbon flow from the atmosphere through land to the ocean, of which the contemporary fraction that reaches the deep sea for burial may effectively affect atmospheric CO2. In this regard, small mountainous rivers (SMRs) in Oceania, a global erosion hotspot driven by torrential typhoon rain and active earthquakes are potentially important. Here we measured typhoon lignin discharges for Taiwan SMRs. We found that the particulate lignin export in 96 hours by a single SMR amounting to ~20% of the annual export by Mississippi River. The yearly particulate lignin discharge from Taiwan Island (35,980 km(2)) is governed by the frequency and magnitude of typhoon; thus, the historical lignin export ranged widely from 1.5 to 99.7 Gg yr(-1), which resulted in a 10-100 times higher areal yield relative to non-Oceanian rivers. The lignin-derived modern POC output from Oceania region is 37 ± 21 Tg C yr(-1), account for approximately 20% of the annual modern POC export from global rivers. Coupled with the hyperpycnal pathway, the forested watersheds of SMRs in Oceania may serve as a giant factory to rapidly produce and efficiently convey modern POC into deep sea for sequestration.

  8. Geology and hydrology of the Fort Belknap Indian Reservation, Montana

    Science.gov (United States)

    Alverson, Douglas C.

    1965-01-01

    The Fort Belknap Indian Reservation includes an area of 970 square miles in north-central Montana. At its north edge is the Milk River valley, which is underlain by Recent alluvium of the Milk River, glacial deposits, and alluvial deposits of the preglacial Missouri River, which carved and occupied this valley before the Pleistocene Epoch. Rising gently to the south is an undulating glaciated plain broken only by three small syenite porphyry intrusions. Underlying the glacial till of the plain are Upper Cretaceous shale and sandstone of the Bearpaw and Judith River Formations. At the south end of the reservation, 40 miles from the Milk River, an intrusion of syenite porphyry in Tertiary time uplifted, tilted, and exposed the succession of sedimentary rocks overlying the Precambrian metamorphic basement. The sedimentary rocks include 1,000 feet of sandstone and shale of Cambrian age; 2,000 feet of limestone and dolomite of Ordovician, Devonian, and Mississippian age; 400 feet of shale and limestone of Jurassic age; and 3,500 feet of sandstone, siltstone, and shale of Cretaceous age. Extensive gravel terraces of Tertiary and Quaternary age bevel the upturned bedrock formations exposed around the Little Rocky Mountains. Ground water under water-table conditions is obtained at present from alluvium, glaciofluvial deposits, and the Judith River Formation. The water table ranges in depth from a few feet beneath the surface in the Milk River valley alluvium to more than 100 feet deep in the Judith River Formation. Yields to wells are generally low but adequate for domestic and stock-watering use. Quality of the water ranges from highly mineralized and unusable to excellent; many wells in the Milk River valley have been abandoned because of the alkalinity of their water. Potential sources of additional ground-water supplies are the alluvial gravel of creeks issuing from the Little Rocky Mountains and some extensive areas of terrace gravel. The uplift and tilting of the

  9. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  10. SEASONAL DISCHARGE REGIME OF THE RIVERS IN THE TRANSYLVANIAN SUBCARPATHIANS AND THE ADJACENT MOUNTAINOUS SPACE BETWEEN TÂRNAVA MARE AND NIRAJ

    OpenAIRE

    VICTOR SOROCOVSCHI; DANIEL RADULY; CSABA HORVATH

    2015-01-01

    Seasonal discharge regime of the rivers in the Transylvanian Subcarpathians and the adjacent mountainous space between Târnava Mare and Niraj. The studied region is situated in the North-East of the Transylvanian Depression and includes two distinct units: the Transylvanian Subcarpathians and the Moldavo-Transylvanian Carpathians, comprised between the valleys of Târnava Mare and Niraj. The study is based upon the processing and interpretation of data coming from 13 hydrometric stations. In o...

  11. Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin

    Science.gov (United States)

    Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.

    2017-12-01

    Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water

  12. S.442: a bill to grant the consent of the Congress to the Rocky Mountain Low-Level Radioactive Waste Compact. Introduced in the Senate of the United States, Ninety-Ninth Congress, First Session, February 7, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Congress grants the States of Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming the right to enter into the Rocky Mountain Interstate Low-Level Radioactive Waste Compact under S.442. Under the compact, each state assumes responsibility for cooperating in the management of low-level radioactive wastes. The bill summarizes this purpose, defines pertinent terms, and outlines the rights and obligations of the member states. It stipulates that within six years after the law is enacted in Nevada and one other state, a regional facility must be operating in a state other than Nevada. The facility board will impose a surcharge on each unit of waste received, and the host state may impose a state surcharge against expenses. The bill outlines board duties, conditions for Congressional consent, and the circumstances for withdrawal or exclusion

  13. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    Science.gov (United States)

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  14. Impact of climate change on the hydrology of High Mountain Asia

    NARCIS (Netherlands)

    Lutz, A.

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly

  15. Ecophysiology of seedling establishment in contrasting spruce-fir forests of southern Appalachian and Rocky Mountain ecotones, USA

    Science.gov (United States)

    William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...

  16. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  17. The mountains influence on Turkey Climate

    International Nuclear Information System (INIS)

    Sensoy, Serhat

    2004-01-01

    Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. For example, there is a subtropical climate prevailing on the Black sea shore between Sinop and Batum where precipitation is more than 1000-2000 mm yearly. Going from Sinop to the mouth of the Sakarya River the rate of precipitation goes down to 800-1250 mm in a year. Running from the Sakarya River to the western area covering Thrace the climate seems to be continental, and in the area dominant plant cover is of the Mediterranean type. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. The continental climate with long, dry and summer affects this area. In the Eastern region of Anatolia, since the elevation of the mountains exceeds 2500-3000 m, valleys are disorderly scattered and located at high elevations, and the northern Black sea mountains and Caucasian mountains hold the rain clouds, the area is effected by the continental climate with long and very cold winters. Consequently precipitation at the lgdir River goes down to 300 mm while it is 500-800 mm in most of areas and 1000-1500 mm in some regions towards northern Mu and Bingol provinces. As mentioned above, high mountains, which hold rain clouds, surround the Central Anatolia, which has caused drought in this region. In the central Anatolia covering Afyon, Eski hir, Ankara, Qankiri, Qorum, Amasya, Kayseri

  18. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  19. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  20. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    Science.gov (United States)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  1. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.

    1989-01-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab

  2. Limited evidence for CO2 -related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients.

    Science.gov (United States)

    Reed, Charlotte C; Ballantyne, Ashley P; Cooper, Leila Annie; Sala, Anna

    2018-04-15

    Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO 2 may enhance photosynthesis and/or decrease stomatal conductance (g s ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO 2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ 13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in g s . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing g s may benefit tree growth in

  3. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  4. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Science.gov (United States)

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  5. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  6. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  7. Problems in maintenance of herd health associated with acid forming emissions

    International Nuclear Information System (INIS)

    Kostuch, M.

    1992-01-01

    The effects of sour gas plant emissions on dairy herds are described. A veterinarian establishing a practice in Rocky Mountain House, Alberta, found that dairy herds in that area suffered from a disproportionately higher occurrence of health problems than Minnesota herds with similar types of management. These problems are postulated to result from acid-forming emissions from two large sour gas plants in the area (the Ram River and Gulf Strachan plants). Health problems found in dairy cattle in the Rocky Mountain House area were: unthriftiness, increased susceptibility to infectious diseases, reproductive problems, and 'downer' animals (cows unable to stand up unassisted). Problems related to the reproductive organs were the most apparent. Clinical observations of problems in dairy herds are described. Since the levels of emissions from the plants have decreased, incidence of problems in dairy herds has also decreased. 1 ref., 2 figs

  8. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  9. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  10. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  11. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    Science.gov (United States)

    Clow, David W.; Roop, Heidi; Nanus, Leora; Fenn, Mark; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006–September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25–50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3−) were examined using N isotopes. The average δ15N of NO3− from IER collectors was 3.5‰ higher during winter than during summer (p model critical loads by filling gaps in geographic coverage of deposition monitoring/modeling programs and thus may enable policy makers to better protect sensitive natural resources in Class 1 Wilderness areas.

  12. Tick-borne diseases in North Carolina: is "Rickettsia amblyommii" a possible cause of rickettsiosis reported as Rocky Mountain spotted fever?

    Science.gov (United States)

    Apperson, Charles S; Engber, Barry; Nicholson, William L; Mead, Daniel G; Engel, Jeffrey; Yabsley, Michael J; Dail, Kathy; Johnson, Joey; Watson, D Wesley

    2008-10-01

    Cases of Rocky Mountain spotted fever (RMSF) in North Carolina have escalated markedly since 2000. In 2005, we identified a county in the Piedmont region with high case numbers of RMSF. We collected ticks and examined them for bacterial pathogens using molecular methods to determine if a novel tick vector or spotted fever group rickettsiae (SFGR) might be emerging. Amblyomma americanum, the lone star tick, comprised 99.6% of 6,502 specimens collected in suburban landscapes. In contrast, Dermacentor variabilis, the American dog tick, a principal vector of Rickettsia rickettsii, comprised < 1% of the ticks collected. Eleven of 25 lone star tick pools tested were infected with "Rickettsia amblyommii," an informally named SFGR. Sera from patients from the same county who were presumptively diagnosed by local physicians with a tick-borne illness were tested by an indirect immunofluorescence antibody (IFA) assay to confirm clinical diagnoses. Three of six patients classified as probable RMSF cases demonstrated a fourfold or greater rise in IgG class antibody titers between paired acute and convalescent sera to "R. amblyommii" antigens, but not to R. rickettsii antigens. White-tailed deer, Odocoileus virginianus, are preferred hosts of lone star ticks. Blood samples collected from hunter-killed deer from the same county were tested by IFA test for antibodies to Ehrlichia chaffeensis and "R. amblyommii." Twenty-eight (87%) of 32 deer were positive for antibodies to E. chaffeensis, but only 1 (3%) of the deer exhibited antibodies to "R. amblyommii," suggesting that deer are not the source of "R. amblyommii" infection for lone star ticks. We propose that some cases of rickettsiosis reported as RMSF may have been caused by "R. amblyommii" transmitted through the bite of A. americanum.

  13. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  14. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  15. An assessment of fish communities along a piedmont river receiving organic pollution (Aconquija Mountains, Argentina)

    International Nuclear Information System (INIS)

    Fernandez, Luis; Bechara, Jose A

    2010-01-01

    The relationships between fish assemblage structure and environmental variables along a pollution gradient in the Medina River were analyzed over a year in four sampling sites (S1-S4). The river flows in a mountain-plain transition and is affected by several small town waste water and sugar cane industries effluents. Environmental variables were divided in two sets, hereafter named pollution and natural. The first set included water quality variables modified by anthropogenic activities such as D.O. (Dissolved Oxygen), C.O.D. (Chemical Demand Oxygen), and dissolved ion concentrations. Natural variables included altitude, position, and time of the year. The upstream site (S1) had the lowest species richness and C.P.U.E. (Catch per Unit of Effort). The number of species and density increased down river (S2-S3). S1 was inhabited by an invertivore species (Trichomycterus corduvensis) that has low tolerance to adverse environmental conditions, and has high D.O. requirements. S4 sustained the most tolerant and abundant species (Otocinclus vittatus, Corydoras paleatus), which endure the lowest D.O. and the highest C.O.D. a Canonical Correspondence Analysis for natural variables showed a significant gradient of species composition related to altitude and discharge. Water quality degradation by sugar cane factories and urban development, coupled with natural climatic, topographic and hydrological factors explained a significant amount of spatial and temporal variation in fish community structure (48%). natural and pollution variables shared about 15% of total variance. however, pollution variables were not significant after partitioning out the effects of natural variables. Natural variability remained significant after removal of pollution effects.

  16. Developing proactive management options to sustain bristlecone and limber pine ecosystems in the presence of a non-native pathogen

    Science.gov (United States)

    A. W. Schoettle

    2004-01-01

    Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...

  17. A unique mountainous vertical distribution patterns and related environmental interpretation-a case study on the northern slope of the ili river valley

    International Nuclear Information System (INIS)

    Tian, Z.P.; Wang, X.L.; Zhuang, L.

    2016-01-01

    Patterns of plant diversity and soil factors along the altitude gradient on the northern slope of Ili River Valley were examined. Plant and environment characteristics were surveyed from 1000-2200 m. There were a total of 155 vascular plant, 133 herbage, 18 shrub, and 7 tree species in 44 sampled plots. The plant richness of vegetation types generally showed a special pattern along altitude, with a bimodal change of plant species number at 100m intervals of altitude samples. The two belts of higher plant richness were in transient areas between vegetation types, the first in areas from low-mountain desert to forest, and the other from dry grass to coniferous forest. Matching the change of richness of plant species to environmental factors along altitude by GAM model and relation analysis revealed that the environmental factors controlling species richness and their patterns were the combined effects of soil salt and nutrition. Water was more important at lower altitude, and temperature at higher altitude, the role of the inversion layer at high altitude coniferous forest species diversity appearing to rise. Soil nutrition and salt also showed a similar distribution pattern of diversity. Especially, diversity index and soil salinity showed a strong correlation. This study provides insights into plant diversity conservation of ili River Valley in Tianshan Mountain. (author)

  18. The Olympic Mountains Experiment (OLYMPEX)

    Energy Technology Data Exchange (ETDEWEB)

    Houze, Robert A. [University of Washington, Seattle, Washington; Pacific Northwest National Laboratory, Richland, Washington; McMurdie, Lynn A. [University of Washington, Seattle, Washington; Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, Alabama; Schwaller, Mathew R. [NASA Goddard Space Flight Center, Greenbelt, Maryland; Baccus, William [Olympic National Park, Port Angeles, Washington; Lundquist, Jessica D. [University of Washington, Seattle, Washington; Mass, Clifford F. [University of Washington, Seattle, Washington; Nijssen, Bart [University of Washington, Seattle, Washington; Rutledge, Steven A. [Colorado State University, Fort Collins, Colorado; Hudak, David R. [Environment and Climate Change Canada, King City, Ontario, Canada; Tanelli, Simone [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; Mace, Gerald G. [University of Utah, Salt Lake City, Utah; Poellot, Michael R. [University of North Dakota, Grand Forks, North Dakota; Lettenmaier, Dennis P. [University of California, Los Angeles, Los Angeles, California; Zagrodnik, Joseph P. [University of Washington, Seattle, Washington; Rowe, Angela K. [University of Washington, Seattle, Washington; DeHart, Jennifer C. [University of Washington, Seattle, Washington; Madaus, Luke E. [National Center for Atmospheric Research, Boulder, Colorado; Barnes, Hannah C. [Pacific Northwest National Laboratory, Richland, Washington

    2017-10-01

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection

  19. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  20. Uplifting model of the Longmenshan mountain in the eastern margin of Tibetan plateau

    Science.gov (United States)

    Zhang, S.; Ding, R.; Mao, C.

    2010-12-01

    Longmenshan mountain is a vivid manifestation of the Cenozoic orogenesis in the eastern margin of the Tibetan plateau, and a key to understand the geodynamics of eastward extending of the plateau. Thus the uplift mechanism of Longmenshan mountain became a hot spot issue of geosciences about the Tibetan plateau. Two entirely different hypotheses, i.e., crustal shortening and lower crustal channel flow, were put forward, but the solution is open. Further discussion need our deeper understanding about the uplifting features of the Longmenshan mountain. Fortunately, the uplifting processes were recorded objectively by peneplains and river landforms. We first analysed the peneplains and pediplanes of Longmenshan mountain and its surrounding areas, and surveyed the terraces of Dadu river running across the mountain. Then we studied the uplifting features of the study areas in late Cenozoic time on the basis of landform geometries. Finaly we discussed the possible mechanisms for the uplifting. There are two levels of peneplains whose peneplanations may begin in early Cenozoic time and end at late Miocene when the final fluctuations of elevations were possibly less than one kilometers. The valley of Dadu river is incised into the peneplains and has a staircase of no less than ten levels of terraces. The highest terrace is a strath which was contemporary with the pediplane in the piedmont formed in late Pliocene or in early Pleistocene. Due to their originally flat features, the peneplains and the strath terraces were used as datum planes for judging neotectonic deformations. Since late Miocene, the southeastern side of Longmenshan mountain has been dominated by thrust-faulting with a total vertical displacement of about 4500 m against the Sichuan basin, meantime the northwest side has been maintained flexural uplift with syncline hinge approximately following the Longriba fault. As a landform barrier between Tibetan plateau and Sichuan basin, the crest lines of the