WorldWideScience

Sample records for rocky mountain college

  1. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  2. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  3. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    Science.gov (United States)

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  4. Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Transmission Signs and Symptoms Diagnosis and Testing ...

  6. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    Science.gov (United States)

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  7. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  8. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  9. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  10. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  11. A case of Rocky Mountain spotted fever.

    Science.gov (United States)

    Rubel, Barry S

    2007-01-01

    Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.

  12. Managing Rocky Mountain spotted fever.

    Science.gov (United States)

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  13. Rocky Mountain spotted fever from an unexpected tick vector in Arizona.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc S; Nicholson, William L; Paddock, Christopher D; Blau, Dianna M; Eremeeva, Marina E; Dasch, Gregory A; Levin, Michael L; Singleton, Joseph; Zaki, Sherif R; Cheek, James E; Swerdlow, David L; McQuiston, Jennifer H

    2005-08-11

    Rocky Mountain spotted fever is a life-threatening, tick-borne disease caused by Rickettsia rickettsii. This disease is rarely reported in Arizona, and the principal vectors, Dermacentor species ticks, are uncommon in the state. From 2002 through 2004, a focus of Rocky Mountain spotted fever was investigated in rural eastern Arizona. We obtained blood and tissue specimens from patients with suspected Rocky Mountain spotted fever and ticks from patients' homesites. Serologic, molecular, immunohistochemical, and culture assays were performed to identify the causative agent. On the basis of specific laboratory criteria, patients were classified as having confirmed or probable Rocky Mountain spotted fever infection. A total of 16 patients with Rocky Mountain spotted fever infection (11 with confirmed and 5 with probable infection) were identified. Of these patients, 13 (81 percent) were children 12 years of age or younger, 15 (94 percent) were hospitalized, and 2 (12 percent) died. Dense populations of Rhipicephalus sanguineus ticks were found on dogs and in the yards of patients' homesites. All patients with confirmed Rocky Mountain spotted fever had contact with tick-infested dogs, and four had a reported history of tick bite preceding the illness. R. rickettsii DNA was detected in nonengorged R. sanguineus ticks collected at one home, and R. rickettsii isolates were cultured from these ticks. This investigation documents the presence of Rocky Mountain spotted fever in eastern Arizona, with common brown dog ticks (R. sanguineus) implicated as a vector of R. rickettsii. The broad distribution of this common tick raises concern about its potential to transmit R. rickettsii in other settings. Copyright 2005 Massachusetts Medical Society.

  14. Ongoing Cerebral Vasculitis During Treatment of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Sun, Lisa R; Huisman, Thierry A G M; Yeshokumar, Anusha K; Johnston, Michael V

    2015-11-01

    Rocky Mountain spotted fever is a tickborne infection that produces a systemic small-vessel vasculitis; its prognosis is excellent if appropriate treatment is initiated early. Because the advent of effective antirickettsial therapies predates the widespread use of brain magnetic resonance imaging, there are limited data on the effect of untreated Rocky Mountain spotted fever infection on neuroimaging studies. We describe a 7-year-old girl with delayed treatment of Rocky Mountain spotted fever who suffered severe neurological impairment. Serial brain magnetic resonance images revealed a progressive "starry sky appearance," which is proposed to result from the same small vessel vasculitis that causes the characteristic skin rash of this infection. Neurological injury can continue to occur despite specific antirickettsial therapy in Rocky Mountain spotted fever. This child's clinical features raise questions about the optimal management of this infection, particularly the utility of immune modulating therapies in cases of delayed treatment and neurological involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Rocky Mountain spotted fever: a clinician's dilemma.

    Science.gov (United States)

    Masters, Edwin J; Olson, Gary S; Weiner, Scott J; Paddock, Christopher D

    2003-04-14

    Rocky Mountain spotted fever is still the most lethal tick-vectored illness in the United States. We examine the dilemmas facing the clinician who is evaluating the patient with possible Rocky Mountain spotted fever, with particular attention to the following 8 pitfalls in diagnosis and treatment: (1) waiting for a petechial rash to develop before diagnosis; (2) misdiagnosing as gastroenteritis; (3) discounting a diagnosis when there is no history of a tick bite; (4) using an inappropriate geographic exclusion; (5) using an inappropriate seasonal exclusion; (6) failing to treat on clinical suspicion; (7) failing to elicit an appropriate history; and (8) failing to treat with doxycycline. Early diagnosis and proper treatment save lives.

  16. Rocky Mountain spotted fever, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo

    2007-07-01

    We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.

  17. Kawasaki disease following Rocky Mountain spotted fever: a case report.

    Science.gov (United States)

    Bal, Aswine K; Kairys, Steven W

    2009-07-06

    Kawasaki disease is an idiopathic acute systemic vasculitis of childhood. Although it simulates the clinical features of many infectious diseases, an infectious etiology has not been established. This is the first reported case of Kawasaki disease following Rocky Mountain spotted fever. We report the case of a 4-year-old girl who presented with fever and petechial rash. Serology confirmed Rocky Mountain spotted fever. While being treated with intravenous doxycycline, she developed swelling of her hands and feet. She had the clinical features of Kawasaki disease which resolved after therapy with intravenous immune globulin (IVIG) and aspirin. This case report suggests that Kawasaki disease can occur concurrently or immediately after a rickettsial illness such as Rocky Mountain spotted fever, hypothesizing an antigen-driven immune response to a rickettsial antigen.

  18. Proceedings of the second symposium on the geology of Rocky Mountain coal, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, H. E. [ed.

    1978-01-01

    The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniques applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)

  19. Rocky Mountain spotted fever, Panama.

    Science.gov (United States)

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  20. [Rocky Mountain spotted fever in an American tourist].

    Science.gov (United States)

    de Pender, A M G; Bauer, A G C; van Genderen, P J J

    2005-04-02

    In a 28-year-old male American tourist who presented in the hospital with fever, cold shivers, headache, nausea, myalgia and arthralgia, Rocky Mountain spotted fever was suspected, partly because he came from an endemic region (the state of Georgia). The patient was treated with doxycycline, 100 mg b.i.d.; 9 days after the first appearance of the symptoms, the diagnosis was confirmed by the report of a positive antibody titre against Rickettsia rickettsii. The patient did not have exanthema. He was discharged in good general condition after two weeks of treatment. Rocky Mountain spotted fever, caused by the Gram-negative bacterium R. rickettsii, is a serious rickettsiosis. The disease is seen only sporadically in the Netherlands because the ticks in the Netherlands do not carry the bacterium. The travel history is still not a standard component of the anamnesis and is therefore often forgotten. This can lead to under-diagnosis and delayed treatment of diseases that were formerly limited to the continent. The early recognition and treatment of Rocky Mountain spotted fever is important since delayed treatment is associated with a clear increase in both morbidity and mortality.

  1. Kawasaki disease following Rocky Mountain spotted fever: a case report

    Directory of Open Access Journals (Sweden)

    Bal Aswine K

    2009-07-01

    Full Text Available Abstract Introduction Kawasaki disease is an idiopathic acute systemic vasculitis of childhood. Although it simulates the clinical features of many infectious diseases, an infectious etiology has not been established. This is the first reported case of Kawasaki disease following Rocky Mountain spotted fever. Case presentation We report the case of a 4-year-old girl who presented with fever and petechial rash. Serology confirmed Rocky Mountain spotted fever. While being treated with intravenous doxycycline, she developed swelling of her hands and feet. She had the clinical features of Kawasaki disease which resolved after therapy with intravenous immune globulin (IVIG and aspirin. Conclusion This case report suggests that Kawasaki disease can occur concurrently or immediately after a rickettsial illness such as Rocky Mountain spotted fever, hypothesizing an antigen-driven immune response to a rickettsial antigen.

  2. Rocky Mountain spotted fever in Mexico: past, present, and future.

    Science.gov (United States)

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-06-01

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Complications and cause of death in mexican children with rocky mountain spotted fever].

    Science.gov (United States)

    Martínez-Medina, Miguel Ángel; Rascón-Alcantar, Adela

    Rocky Mountain spotted fever is a life threatening disease caused by Rickettsia rickettsia, characterized by multisystem involvement. We studied 19 dead children with Rocky Mountain spotted fever. All children who were suspected of having rickettsial infections were defined as having Rocky Mountain spotted fever by serology test and clinical features. Through the analysis of each case, we identified the clinical profile and complications associated to the death of a patient. In nine (69.2%) of 13 cases that died in the first three days of admission, the associated condition was septic shock. Others complications included respiratory distress causes by non-cardiogenic pulmonary edema, renal impairment, and multiple organ damage. The main cause of death in this study was septic shock. The fatality rate from Rocky Mountain spotted fever can be related to the severity of the infection, delay in diagnosis, and delay in initiation of antibiotic therapy. Pulmonary edema and cerebral edema can be usually precipitated by administration of excess intravenous fluids.

  4. Rocky Mountain spotted fever in dogs, Brazil.

    Science.gov (United States)

    Labruna, Marcelo B; Kamakura, Orson; Moraes-Filho, Jonas; Horta, Mauricio C; Pacheco, Richard C

    2009-03-01

    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy.

  5. 76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization

    Science.gov (United States)

    2011-02-17

    ... Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization AGENCY: Agency for Healthcare... Organization: AHRQ has accepted a notification of voluntary relinquishment from Rocky Mountain Patient Safety Organization, a component entity of Colorado Hospital Association, of its status as a Patient Safety...

  6. Cascading effects of fire exclusion in the Rocky Mountain ecosystems: a literature review

    Science.gov (United States)

    Robert E. Keane; Kevin C. Ryan; Tom T. Veblen; Craig D. Allen; Jessie Logan; Brad Hawkes

    2002-01-01

    The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent...

  7. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  8. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  9. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  10. Why sulfonamides are contraindicated in Rocky Mountain spotted fever

    OpenAIRE

    Ren, Vicky; Hsu, Sylvia

    2014-01-01

    Sulfonamide antibiotics are not effective for the treatment of Rocky Mountain spotted fever (RMSF). Patients suspected of having RMSF based on history and physical exam should be treated with doxycycline and not a sulfonamide to avoid increased morbidity and mortality.

  11. Why sulfonamides are contraindicated in Rocky Mountain spotted fever.

    Science.gov (United States)

    Ren, Vicky; Hsu, Sylvia

    2014-02-18

    Sulfonamide antibiotics are not effective for the treatment of Rocky Mountain spotted fever (RMSF). Patients suspected of having RMSF based on history and physical exam should be treated with doxycycline and not a sulfonamide to avoid increased morbidity and mortality.

  12. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  13. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Directory of Open Access Journals (Sweden)

    Spraker Terry R

    2010-11-01

    Full Text Available Abstract Background Chronic wasting disease (CWD is a transmissible spongiform encephalopathy (TSE of cervids including white-tailed (Odocoileus virginianus and mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces. A leucine variant at position 132 (132L in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of PRNP have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk PRNP. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L. Findings This study provided genomic sequence of all exons for PRNP of Rocky Mountain elk. Many functional sites in and around the PRNP gene region were sequenced, and this report approximately doubled (to 75 the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the PRNP gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the PRNP gene region. Conclusions The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031, which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the PRNP region (P > 0.05.

  14. A history of forest entomology in the Intermountain and Rocky Mountain areas, 1901 to 1982

    Science.gov (United States)

    Malcolm M. Furniss

    2007-01-01

    This account spans the time from A.D. Hopkins' trip to the Black Hills, SD, in 1901 to my retirement in 1982. The focus is on personnel and the work of the Division of Forest Insect Investigations, USDA, and the Forest Service experiment stations in the Rocky Mountain and Intermountain areas. Information for the Intermountain and Northern Rocky Mountain station...

  15. Co-Infection of Rickettsia rickettsii and Streptococcus pyogenes: Is Fatal Rocky Mountain Spotted Fever Underdiagnosed?

    Science.gov (United States)

    Raczniak, Gregory A.; Kato, Cecilia; Chung, Ida H.; Austin, Amy; McQuiston, Jennifer H.; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S.; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J.

    2014-01-01

    Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. PMID:25331804

  16. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  17. Self-reported treatment practices by healthcare providers could lead to death from Rocky Mountain spotted fever.

    Science.gov (United States)

    Zientek, Jillian; Dahlgren, F Scott; McQuiston, Jennifer H; Regan, Joanna

    2014-02-01

    Among 2012 Docstyle survey respondents, 80% identified doxycycline as the appropriate treatment for Rocky Mountain spotted fever in patients ≥ 8 years old, but only 35% correctly chose doxycycline in patients Rocky Mountain spotted fever observed nationally. Targeted education efforts are needed. Crown Copyright © 2014. Published by Mosby, Inc. All rights reserved.

  18. [A fatal case series of Rocky Mountain spotted fever in Sonora, México].

    Science.gov (United States)

    Delgado-De la Mora, Jesús; Licona-Enríquez, Jesús David; Leyva-Gastélum, Marcia; Delgado-De la Mora, David; Rascón-Alcantar, Adela; Álvarez-Hernández, Gerardo

    2018-03-15

    Rocky Mountain spotted fever is a highly lethal infectious disease, particularly if specific treatment with doxycycline is given belatedly. To describe the clinical profile of fatal Rocky Mountain spotted fever cases in hospitalized patients in the state of Sonora, México. We conducted a cross-sectional study on a series of 47 deaths caused by Rickettsia rickettsii from 2013 to 2016. The diagnosis of Rocky Mountain spotted fever was confirmed in a single blood sample by polymerase chain reaction (PCR) or by a four-fold increase in immunoglobulin G measured in paired samples analyzed by indirect immunofluorescence. Clinical and laboratory characteristics were compared stratifying subjects into two groups: pediatric and adult. There were no differences in clinical characteristics between groups; petechial rash was the most frequent sign (96%), followed by headache (70%) and myalgia (67%). Although that doxycycline was administered before the fifth day from the onset of symptoms, death occurred in 55% of patients. In clinical laboratory, thrombocytopenia, and biomarkers of liver acute failure and acute kidney failure were the most frequent. Rocky Mountain spotted fever remains as one of the most lethal infectious diseases, which may be related not only to the lack of diagnostic suspicion and delayed administration of doxycycline, but to genotypic characteristics of Rickettsia rickettsii that may play a role in the variability of the fatality rate that has been reported in other geographical regions where the disease is endemic.

  19. Adult Onset Still's Disease and Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Paul Persad

    2010-01-01

    Full Text Available Adult Still's Disease was first described in 1971 by Bywaters in fourteen adult female patients who presented with symptoms indistinguishable from that of classic childhood Still's Disease (Bywaters, 1971. George Still in 1896 first recognized this triad of quotidian (daily fevers, evanescent rash, and arthritis in children with what later became known as juvenile inflammatory arthritis (Still, 1990. Adult Onset Still's Disease (AOSD is an inflammatory condition of unknown etiology characterized by an evanescent rash, quotidian fevers, and arthralgias. Numerous infectious agents have been associated with its presentation. This case is to our knowledge the first presentation of AOSD in the setting of Rocky Mountain Spotted Fever. Although numerous infectious agents have been suggested, the etiology of this disorder remains elusive. Nevertheless, infection may in fact play a role in triggering the onset of symptoms in those with this disorder. Our case presentation is, to our knowledge, the first case of Adult Onset Still's Disease associated with Rocky Mountain spotted fever (RMSF.

  20. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  1. Bat population monitoring and conservation at the Rocky Mountain Arsenal NWR

    Data.gov (United States)

    Department of the Interior — A study of the bat populations at Rocky Mountain Arsenal National Wildlife Refuge (RMA) was conducted from 1997–1998, which provided basic population and contaminant...

  2. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    Science.gov (United States)

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  3. Rocky Mountain Research Station invasive species visionary white paper

    Science.gov (United States)

    D. E. Pearson; M. Kim; J. Butler

    2011-01-01

    Invasive species represent one of the single greatest threats to natural ecosystems and the services they provide. Effectively addressing the invasive species problem requires management that is based on sound research. We provide an overview of recent and ongoing invasive species research conducted by Rocky Mountain Research Station scientists in the Intermountain...

  4. NPDES Permit for Rocky Mountain Arsenal Recycled Water Pipeline in Colorado

    Science.gov (United States)

    Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.

  5. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains, USA

    OpenAIRE

    Baker, W. L.; Veblen, T. T.; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  6. Rocky road in the Rockies: Challenges to biodiversity

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Baron, Jill S.

    2002-01-01

    To people worldwide, the Rocky Mountains of the United States and Canada represent a last bastion of nature in its purest and rawest form-unspoiled forests teeming with elk and deer stalked by mountain lions and grizzly bears; bald eagles nesting near lakes and rivers; fat, feisty native trout in rushing mountain streams; and dazzling arrays of wildflowers in lush meadows. In fact, the total biodiversity of the Rocky Mountains is considerable, with relatively high diversity in birds, mammals, butterflies, reptiles, and conifers (Ricketts et al. 1999) and with geographic variation in the flora and fauna of alpine, forest, foothill, and adjacent shortgrass prairie and shrub communities over more than 20 degrees of latitude and more than 10' of longitude. Although the biodiversity of most North American regions has declined because of anthropogenic influences, the perception remains that the biodiversity of the Rocky Mountains is intact. This view exists in part because the Rocky Mountains are remote from urban centers, in part because so much of the land comprises protected areas such as national parks and wilderness areas, and in part because of wishful thinking-that nothing bad could happen to the biodiversity that is so much a part of the history, national self-image, legends, nature films, and movies of the United States and Canada. Despite modern technology and the homogenization and globalization of their cities and towns, at heart North Americans still regard their land as the New World, with pristine nature and untamed landscapes epitomized by the Rockies. The reality is that the biodiversity of the Rocky Mountains has not been free of anthropogenic influences since the West was settled in the 1800s, and in fact it was altered by Native Americans for centuries prior to settlement. A number of escalating problems and consequences of management choices are currently changing Rocky Mountain ecological communities at a dizzying pace. In Order to maintain some

  7. Climate along the crest of the US Rocky Mountains during the last glaciation: preliminary insights from numerical modeling of paleoglaciers

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.

    2012-12-01

    Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.

  8. Translating science into policy: Using ecosystem thresholds to protect resources in Rocky Mountain National Park

    International Nuclear Information System (INIS)

    Porter, Ellen; Johnson, Susan

    2007-01-01

    Concern over impacts of atmospheric nitrogen deposition to ecosystems in Rocky Mountain National Park, Colorado, has prompted the National Park Service, the State of Colorado Department of Public Health and Environment, the Environmental Protection Agency, and interested stakeholders to collaborate in the Rocky Mountain National Park Initiative, a process to address these impacts. The development of a nitrogen critical load for park aquatic resources has provided the basis for a deposition goal to achieve resource protection, and parties to the Initiative are now discussing strategies to meet that goal by reducing air pollutant emissions that contribute to nitrogen deposition in the Park. Issues being considered include the types and locations of emissions to be reduced, the timeline for emission reductions, and the impact of emission reductions from programs already in place. These strategies may serve as templates for addressing ecosystem impacts from deposition in other national parks. - A collaborative approach between scientists and policymakers is described for addressing nitrogen deposition effects to Rocky Mountain National Park, USA

  9. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CL Ndep ) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CL Ndep estimates ( −1 yr −1 ) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha −1 yr −1 ), resulting in CL Ndep exceedances ≥1.5 ± 1 kg N ha −1 yr −1 . CL Ndep and CL Ndep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO 3 − threshold at which ecological effects are thought to occur. Based on an NO 3 − threshold of 0.5 μmol L −1 , N deposition exceeds CL Ndep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations. - Highlights: ► Critical loads maps for nutrient enrichment effects of nitrogen deposition. ► Critical load estimates show spatial variability related to basin characteristics. ► Critical loads are sensitive to the nitrate threshold value for ecological effects. ► Broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition. - Critical loads maps for nutrient enrichment effects of nitrogen deposition show that broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition.

  10. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA

    Science.gov (United States)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.

    2017-12-01

    We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.

  11. A fatal urban case of rocky mountain spotted fever presenting an eschar in San Jose, Costa Rica.

    Science.gov (United States)

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-08-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an "eschar" (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases.

  12. Case report: Co-infection of Rickettsia rickettsii and Streptococcus pyogenes: is fatal Rocky Mountain spotted fever underdiagnosed?

    Science.gov (United States)

    Raczniak, Gregory A; Kato, Cecilia; Chung, Ida H; Austin, Amy; McQuiston, Jennifer H; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J

    2014-12-01

    Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. © The American Society of Tropical Medicine and Hygiene.

  13. Litigation Technical Support and Services, Rocky Mountain Arsenal

    Science.gov (United States)

    1989-05-01

    34 d V) W C > - d) 4- -~ 0 - - .4 ..- di L *..L 3~1 3-~ v mi a- a t - --- w- Vdi 4 - ý 0 -4 0 m~ -j m0 m’ .- us 0 Ill i to -v .4 I 4 1 t A ~ 3Ul t -4...2060. Marlow, D. J. 1979g, November 8. Pest control report, October 1979. Rocky Mountain Arsenal. Microfilm RMA182, Franes 2048 -2053 Marlow, D. J

  14. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Miranda, Jorge; Heredia, Damaris; Zambrano, Pilar; Vesga, Juan Fernando; Lizarazo, Diana; Mattar, Salim; Valbuena, Gustavo

    2011-02-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.

  15. Rocky Mountain Research Station 2008-2012 National Fire Plan Investments

    Science.gov (United States)

    Erika Gallegos

    2013-01-01

    This report highlights selected accomplishments by the USDA Forest Service Rocky Mountain Research Station's Wildland Fire and Fuels Research & Development projects in support of the National Fire Plan from 2008 through 2012. These projects are examples of the broad range of knowledge and tools developed by National Fire Plan funding beginning in 2008.

  16. Book Review :The Essential Guide to Rocky Mountain Mushrooms by Habitat

    Science.gov (United States)

    A mushroom guide book, 'The Essential Guide to Rocky Mountain Mushrooms by Habitat' by Cathy L. Cripps, Vera S. Evenson, and Michael Kou (University of Illinois Press, 260 pages), is reviewed in non-technical fashion from the standpoints of format, comprehensiveness, and clarity. Postive features (...

  17. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  18. Field guide to diseases & insects of the Rocky Mountain Region

    Science.gov (United States)

    Forest Health Protection. Rocky Mountain Region

    2010-01-01

    This field guide is a forest management tool for field identification of biotic and abiotic agents that damage native trees in Colorado, Kansas, Nebraska, South Dakota, and Wyoming, which constitute the USDA Forest Service's Rocky Mountain Region. The guide focuses only on tree diseases and forest insects that have significant economic, ecological, and/ or...

  19. Dust Allergens within Rural Northern Rocky Mountain Residences.

    Science.gov (United States)

    Weiler, Emily; Semmens, Erin; Noonan, Curtis; Cady, Carol; Ward, Tony

    2015-01-23

    To date, few studies have characterized allergens within residences located in rural areas of the northern Rocky Mountain region. In this study, we collected dust samples from 57 homes located throughout western Montana and northern Idaho. Dust samples were collected and later analyzed for dust mite allergens Der f 1 and Der p 1 , Group 2 mite allergens ( Der p 2 and Der f 2 ), domestic feline ( Fel d 1 ), and canine ( Can f 1 ). Indoor temperature and humidity levels were also measured during the sampling program, as were basic characteristics of each home. Dog (96%) and cat (82%) allergens were the most prevalent allergens found in these homes (even when a feline or canine did not reside in the home). Results also revealed the presence of dust mites. Seven percent (7%) of homes tested positive for Der p 1 , 19% of homes were positive for Der f 1 , and 5% of homes were positive for the Group 2 mite allergens. Indoor relative humidity averaged 27.0 ± 7.6% within the homes. Overall, humidity was not significantly associated with dust mite presence, nor was any of the other measured home characteristics. This study provides a descriptive assessment of indoor allergen presence (including dust mites) in rural areas of the northern Rocky Mountains, and provides new information to assist regional patients with reducing allergen exposure using in-home intervention strategies.

  20. Evaluation of episodic acidification and amphibian declines in the Rocky Mountains

    Science.gov (United States)

    Frank A. Vertucci; Paul Stephen Corn

    1996-01-01

    We define criteria for documenting episodic acidification of amphibian breeding habitats and examine whether episodic acidification is responsible for observed declines of amphibian populations in the Rocky Mountains. Anthropogenic episodic acidification, caused by atmospheric deposition of sulfate and nitrate, occurs when the concentration of acid anions increases...

  1. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  2. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia

    Directory of Open Access Journals (Sweden)

    Marylin Hidalgo

    2011-02-01

    Full Text Available Rocky Mountain spotted fever (RMSF is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.

  3. Movements and habitat use of rocky mountain elk and mule deer.

    Science.gov (United States)

    Alan A. Ager; Haiganoush K. Preisler; Bruce K. Johnson; John G. Kie

    2004-01-01

    Understanding how ungulates use large landscapes to meet their daily needs for food, security and other resources is critical to wildlife management and conservation practices (Johnson et al. 2002). For ungulates like Rocky Mountain elk (Gems elaphui) and mule deer (Odocoileus hemionus), landscapes are a mosaic of different...

  4. What's new in Rocky Mountain spotted fever?

    Science.gov (United States)

    Chen, Luke F; Sexton, Daniel J

    2008-09-01

    Rocky Mountain spotted fever (RMSF) remains an important illness despite an effective therapy because it is difficult to diagnose and is capable of producing a fatal outcome. The pathogenesis of RMSF remains, in large part, an enigma. However, recent research has helped shed light on this mystery. Importantly, the diagnosis of RMSF must be considered in all febrile patients who have known or possible exposure to ticks, especially if they live in or have traveled to endemic regions during warmer months. Decisions about giving empiric therapy to such patients are difficult and require skill and careful judgement.

  5. A Fatal Urban Case of Rocky Mountain Spotted Fever Presenting an Eschar in San José, Costa Rica

    Science.gov (United States)

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-01-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an “eschar” (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases. PMID:22855769

  6. A Fatal Urban Case of Rocky Mountain Spotted Fever Presenting an Eschar in San José, Costa Rica

    OpenAIRE

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-01-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an “eschar” (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases.

  7. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) - also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura - is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  8. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever.

    Science.gov (United States)

    Paddock, Christopher D; Finley, Richard W; Wright, Cynthia S; Robinson, Howard N; Schrodt, Barbara J; Lane, Carole C; Ekenna, Okechukwu; Blass, Mitchell A; Tamminga, Cynthia L; Ohl, Christopher A; McLellan, Susan L F; Goddard, Jerome; Holman, Robert C; Openshaw, John J; Sumner, John W; Zaki, Sherif R; Eremeeva, Marina E

    2008-11-01

    Rickettsia parkeri rickettsiosis, a recently identified spotted fever transmitted by the Gulf Coast tick (Amblyomma maculatum), was first described in 2004. We summarize the clinical and epidemiological features of 12 patients in the United States with confirmed or probable disease attributable to R. parkeri and comment on distinctions between R. parkeri rickettsiosis and other United States rickettsioses. Clinical specimens from patients in the United States who reside within the range of A. maculatum for whom an eschar or vesicular rash was described were evaluated by > or =1 laboratory assays at the Centers for Disease Control and Prevention (Atlanta, GA) to identify probable or confirmed infection with R. parkeri. During 1998-2007, clinical samples from 12 patients with illnesses epidemiologically and clinically compatible with R. parkeri rickettsiosis were submitted for diagnostic evaluation. Using indirect immunofluorescence antibody assays, immunohistochemistry, polymerase chain reaction assays, and cell culture isolation, we identified 6 confirmed and 6 probable cases of infection with R. parkeri. The aggregate clinical characteristics of these patients revealed a disease similar to but less severe than classically described Rocky Mountain spotted fever. Closer attention to the distinct clinical features of the various spotted fever syndromes that exist in the United States and other countries of the Western hemisphere, coupled with more frequent use of specific confirmatory assays, may unveil several unique diseases that have been identified collectively as Rocky Mountain spotted fever during the past century. Accurate assessments of these distinct infections will ultimately provide a more valid description of the currently recognized distribution, incidence, and case-fatality rate of Rocky Mountain spotted fever.

  9. The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

    Science.gov (United States)

    Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad

    2018-04-01

    Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

  10. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  11. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  12. Discrepancies in Weil-Felix and microimmunofluorescence test results for Rocky Mountain spotted fever.

    Science.gov (United States)

    Hechemy, K E; Stevens, R W; Sasowski, S; Michaelson, E E; Casper, E A; Philip, R N

    1979-01-01

    Only 4.2% of 284 single specimens and 17.6% of 51 pairs of sera reactive in Weil-Felix agglutination tests for Rocky Mountain spotted fever were confirmed by a specific Rickettsia rickettsii microimmunofluorescence test. PMID:107194

  13. Logging residues in principal forest types of the Northern Rocky Mountains

    Science.gov (United States)

    Robert E. Benson; Joyce A. Schlieter

    1980-01-01

    An estimated 466 million ft 3 of forest residue material (nonmerchantable, 3 inches diameter and larger) is generated annually in the Northern Rocky Mountains (Montana, Idaho, Wyoming). Extensive studies of residues in the major forest types show a considerable portion is suited for various products. The lodgepole pine type has the greatest potential for increased...

  14. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    OpenAIRE

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  15. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Cherisse Baldeo

    2017-10-01

    Full Text Available Primary immune thrombocytopenia (ITP – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  16. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa

    2018-03-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and

  17. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa

    2018-01-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and

  18. Rocky Mountain spotted fever acquired in Florida, 1973-83.

    Science.gov (United States)

    Sacks, J J; Janowski, H T

    1985-01-01

    From 1973 to 1983, 49 Florida residents were reported with confirmed Rocky Mountain spotted fever (RMSF), 25 of whom were considered to have had Florida-acquired disease. Although there was no history of tick exposure for six of these 25 persons, all had contact with dogs or outdoor activities during the incubation period. The tick vectors of RMSF are widely distributed throughout Florida. We conclude that RMSF, although rare in Florida, can be acquired in the state. PMID:4061716

  19. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    Science.gov (United States)

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  20. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  1. [Rocky Mountain regional low-level waste compact development and establishment of disposals

    International Nuclear Information System (INIS)

    1986-01-01

    This Compact Issue Study was intended to determine if state institutions in the Rocky Mountain region could reduce low-level radioactive waste shipping and disposal costs through jointly shipping their low-level radioactive wastes. Public institutions in the state of Colorado were used as a test case for this study

  2. Good Days on the Trail, 1938-1942: Film Footage of the Rocky Mountains, Colorado

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents student hiking trips conducted by the University of Colorado at Boulder in the Rocky Mountains, Colorado, USA during the summers of 1938-1942....

  3. William L. Baker: Fire ecology in Rocky Mountain landscapes [book review

    Science.gov (United States)

    Daniel. Yaussy

    2010-01-01

    Every so often, we need something to make us question our beliefs and views of the natural order of things, to open our minds to different versions of reality so that we become better informed and open to new avenues of thought. The author comes across as slightly antagonistic in his attempt to set the record straight concerning fires in the Rocky Mountains.

  4. New assay of protective activity of Rocky Mountain spotted fever vaccines.

    Science.gov (United States)

    Anacker, R L; Smith, R F; Mann, R E; Hamilton, M A

    1976-01-01

    Areas under the fever curves of guinea pigs inoculated with Rocky Mountain spotted fever vaccine over a restricted dose range and infected with a standardized dose of Rickettsia rickettsii varied linearly with log10 dose of vaccine. A calculator was programmed to plot fever curves and calculate the vaccine dose that reduced the fever of infected animals by 50%. PMID:823177

  5. [Rocky mountain spotted fever: report of two cases].

    Science.gov (United States)

    Martínez-Medina, Miguel Angel; Padilla-Zamudio, Guillermo; Solís-Gallardo, Lilia Patricia; Guevara-Tovar, Marcela

    2005-01-01

    Rocky Mountain spotted fever (RMSF) is an acute febrile illness caused by infection with Ricketsia Rickettsii, characterized by the presence of petechial rash. Even though the etiology, clinical characteristics and availability of effective antibiotics are known, RMSF related deaths have a prevalence of 4%. In its early stages RMFS can resemble many others infectious conditions and the diagnosis can be difficult. The present paper reports two patients with RMSF; these cases underscore the importance of prompt diagnosis and appropriate antimicrobial therapy, and consider RMSF as a differential diagnosis in any patient who develops fever and rash in an endemic area.

  6. Biogeographic, cultural, and historical setting of the Northern Rocky Mountains [Chapter 2

    Science.gov (United States)

    S. Karen. Dante-Wood

    2018-01-01

    The Northern Rockies Adaptation Partnership (NRAP) includes diverse landscapes, ranging from high mountains to grasslands, from alpine glaciers to broad rivers (fig. 1.1). This region, once inhabited solely by Native Americans, has been altered by two centuries of settlement by Euro- Americans through extractive practices such as timber harvest, grazing, and mining,...

  7. Management of spruce-fir in even-aged stands in the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander; Carleton B. Edminster

    1980-01-01

    Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.

  8. Estimating aboveground tree biomass for beetle-killed lodgepole pine in the Rocky Mountains of northern Colorado

    Science.gov (United States)

    Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...

  9. Studies on ’Macaca mulatta’ Infected with Rocky Mountain Spotted Fever

    Science.gov (United States)

    1976-09-10

    Mountain spotted fever (RMSF) rickettsiae. The LD50 in monkeys of the yolk-sac-grown seed stock was 10 to the 1.35th power plaque-forming units. Blood...acid glycoprotein, haptoglobin and albumin) were measured during a study in 16 male rhesus monkeys to determine the median lethal dose (LD50) of Rocky

  10. Diseases of whooping cranes seen during annual migration of the Rocky Mountain flock

    Science.gov (United States)

    Snyder, S. Bret; Richard, Michael J.; Drewien, Roderick C.; Thomas, Nancy J.; Thilsted, John P.; Junge, Randall E.

    1991-01-01

    Diagnosis and treatment of ill whooping cranes of the Rocky Mountain flock was provided by a zoological facility. Cases of avian cholera, lead poisoning and avian tuberculosis were encountered. The zoo efforts were an adjunct to the U.S. Fish and Wildlife Service, Whooping Crane Recovery Plan.

  11. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  12. Faunal characteristics of the Southern Rocky Mountains of New Mexico: implications for biodiversity analysis and assessment

    Science.gov (United States)

    Rosamonde R. Cook; Curtis H. Flather; Kenneth R. Wilson

    2000-01-01

    To define the faunal context within which local and regional resource management decisions are made, conservation of biological diversity requires an understanding of regional species occurrence patterns. Our study focused on the Southern Rocky Mountains of New Mexico and included the San Juan, the Sangre de Cristo, and the Jemez Mountains. Across this region, we...

  13. Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1

    Science.gov (United States)

    Graeber, Aimee; Gunther, Gregory

    2017-01-01

    The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.

  14. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    Science.gov (United States)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  15. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    Science.gov (United States)

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  16. Sustaining Rocky Mountain landscapes: Science, policy and management for the Crown of the Continent ecosystem

    Science.gov (United States)

    Prato, Tony; Fagre, Daniel B.

    2007-01-01

    Prato and Fagre offer the first systematic, multi-disciplinary assessment of the challenges involved in managing the Crown of the Continent Ecosystem ( CCE), an area of the Rocky Mountains that includes northwestern Montana, southwestern Alberta, and southeastern British Columbia. The spectacular landscapes, extensive recreational options, and broad employment opportunities of the CCE have made it one of the fastest growing regions in the United States and Canada, and have lead to a shift in its economic base from extractive resource industries to service-oriented recreation and tourism industries. In the process, however, the amenities and attributes that draw people to this “New West” are under threat. Pastoral scenes are disappearing as agricultural lands and other open spaces are converted to residential uses, biodiversity is endangered by the fragmentation of fish and wildlife habitats, and many areas are experiencing a decline in air and water quality. Sustaining Rocky Mountain Landscapes provides a scientific basis for communities to develop policies for managing the growth and economic transformation of the CCE without sacrificing the quality of life and environment for which the land is renowned. This forthcoming edited volume focuses on five aspects of sustaining mountain landscapes in the CCE and similar regions in the Rocky Mountains. The five aspects are: 1) how social, economic, demo graphic and environmental forces are transforming ecosystem structure and function, 2) trends in use and conditions for human and environmental resources, 3) activating science, policy and education to enhance sustainable landscape management, 4) challenges to sustainable management of public and private lands, and 5) future prospects for achieving sustainable landscapes.

  17. Assessment of Mechanisms Impacting N-Nitrosodimethylamine Fate Within the North Boundary Containment System, Rocky Mountain Arsenal

    National Research Council Canada - National Science Library

    Gunnison, Douglas

    1997-01-01

    Rocky Mountain Arsenal (RMA) was for many years a site of military chemical weapons manufacturing activities, including manufacture and assembly of weapons containing intermediate and toxic chemical end-products, incendiary...

  18. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  19. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    Science.gov (United States)

    Jaime R. Goode; Charles H. Luce; John M. Buffington

    2012-01-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to...

  20. Self-Reported Treatment Practices by Healthcare Providers Could Lead to Death from Rocky Mountain Spotted Fever

    OpenAIRE

    Zientek, Jillian; Dahlgren, F. Scott; McQuiston, Jennifer H.; Regan, Joanna

    2013-01-01

    Among 2012 Docstyle survey respondents, 80% identified doxycycline as the appropriate treatment for Rocky Mountain spotted fever in patients ≥8 years old, but only 35% correctly chose doxycycline in patients

  1. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    Science.gov (United States)

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  2. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    Science.gov (United States)

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  3. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    Science.gov (United States)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  4. Rocky Mountain spotted fever in Argentina.

    Science.gov (United States)

    Paddock, Christopher D; Fernandez, Susana; Echenique, Gustavo A; Sumner, John W; Reeves, Will K; Zaki, Sherif R; Remondegui, Carlos E

    2008-04-01

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003-2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.

  5. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires

    Science.gov (United States)

    Jonathan D. Coop; Anna W. Schoettle

    2009-01-01

    Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...

  6. Between a Rock and a Blue Chair: David Hockney’s Rocky Mountains and Tired Indians (1965

    Directory of Open Access Journals (Sweden)

    Martin Hammer

    2017-04-01

    Full Text Available Travel and cultural exchange between the United Kingdom and the United States of America became a key feature of the 1960s, shaping the world view of many a British artist, curator, architect, writer, film-maker, and academic. Against that wider backdrop, I offer here a focused reading of David Hockney’s 1965 painting, Rocky Mountains and Tired Indians. With its faux-naive idiom and overt but quirkily un-modern American theme, the work conveys the artist’s singular take on what it felt like to be a Brit at large in the US, an environment at once wondrously exotic and at times strikingly banal. Close analysis discloses Hockney’s rich repertoire of artistic and literary allusions in Rocky Mountains, and the meanings and associations these may have encapsulated.

  7. Patterns of resistance to Cronartium ribicola in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    A. W. Schoettle; R. A. Sniezko; A. Kegley; R. Danchok; K. S. Burns

    2012-01-01

    The core distribution of Rocky Mountain bristlecone pine, Pinus aristata Engelm., extends from central Colorado into northern New Mexico, with a disjunct population on the San Francisco Peaks in northern Arizona. Populations are primarily at high elevations and often define the alpine treeline; however, the species can also be found in open mixed conifer stands with...

  8. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.

    Science.gov (United States)

    Munson, Seth M; Sher, Anna A

    2015-08-01

    Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions. © 2015 Botanical Society of America, Inc.

  9. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  10. Development of State Interindustry Models for Rocky Mountain Region and California

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Kunin, Leonard

    1976-02-01

    Interindustry tables have been developed for the eight Rocky Mountain States and California. These tables are based on the 367-order 1967 national interindustry table. The national matrix was expanded to 404 sectors by disaggregating the seven minerals industries to 44 industries. The state tables can be used for energy and other resource analysis. Regional impacts of alternate development strategies can be evaluated with their use. A general computer program has been developed to facilitate construction of state interindustry tables.

  11. Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate

    Science.gov (United States)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.

    2016-12-01

    Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation

  12. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the northern Rocky Mountains

    Science.gov (United States)

    Samuel A. Cushman; Erin L. Landguth; Curtis H. Flather

    2012-01-01

    Aim: The goal of this study was to evaluate the sufficiency of the network of protected lands in the U.S. northern Rocky Mountains in providing protection for habitat connectivity for 105 hypothetical organisms. A large proportion of the landscape...

  13. Fish assemblage structure and relations with environmental conditions in a Rocky Mountain watershed

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Isaak, D.J.

    2004-01-01

    Fish and habitat were sampled from 110 reaches in the Salt River basin (Idaho and Wyoming) during 1996 and 1997 to assess patterns in fish assemblage structure across a Rocky Mountain watershed. We identified four distinct fish assemblages using cluster analysis: (1) allopatric cutthroat trout (Oncorhynchus clarki (Richardson, 1836)); (2) cutthroat trout - brook trout (Salvelinus fontinalis (Mitchell, 1814)) - Paiute sculpin (Cottus beldingi Eigenmann and Eigenmann, 1891); (3) cutthroat trout - brown trout (Salmo trutta L., 1758) - mottled sculpin (Cottus bairdi Girard, 1850); and (4) Cyprinidae-Catostomidae. The distribution of fish assemblages was explained by thermal characteristics, stream geomorphology, and local habitat features. Reaches with allopatric cutthroat trout and the cutthroat trout - brook trout - Paiute sculpin assemblage were located in high-elevation, high-gradient streams. The other two fish assemblages were generally located in low-elevation streams. Associations between habitat gradients, locations of reaches in the watershed, and occurrence of species were further examined using canonical correspondence analysis. The results suggest that stream geomorphology, thermal conditions, and local habitat characteristics influence fish assemblage structure across a Rocky Mountain watershed, and they provide information on the ecology of individual species that can guide conservation activities. ?? 2004 NRC Canada.

  14. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    Science.gov (United States)

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  15. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Science.gov (United States)

    R. A. Short Bull; Samuel Cushman; R. Mace; T. Chilton; K. C. Kendall; E. L. Landguth; Michael Schwartz; Kevin McKelvey; Fred W. Allendorf; G. Luikart

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation,...

  16. Biochar effects on the nursery propagation of 4 northern Rocky Mountain native plant species

    Science.gov (United States)

    Clarice P. Matt; Christopher R. Keyes; R. Kasten Dumroese

    2018-01-01

    Biochar has emerged as a promising potential amendment of soilless nursery media for plant propagation. With this greenhouse study we used biochar to displace standard soilless nursery media at 4 rates (0, 15, 30, and 45% [v:v]) and then examined media chemistry, irrigation frequency, and the growth of 4 northern Rocky Mountain native plant species: Clarkia pulchella...

  17. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  18. 76 FR 7875 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-02-11

    ... the central Idaho and Yellowstone area nonessential experimental populations of gray wolves in the...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the Lolo Elk Management Zone of Idaho; Draft Environmental Assessment AGENCY: Fish...

  19. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  20. Rocky Mountain Spotted Fever in a patient treated with anti-TNF-alpha inhibitors.

    Science.gov (United States)

    Mays, Rana M; Gordon, Rachel A; Durham, K Celeste; LaPolla, Whitney J; Tyring, Stephen K

    2013-03-15

    Rocky Mountain Spotted Fever (RMSF) is a tick-bourne illness, which can be fatal if unrecognized. We discuss the case of a patient treated with an anti-TNF-alpha inhibitor for rheumatoid arthritis who later developed a generalized erythematous macular eruption accompanied by fever. The clinical findings were suggestive of RMSF, which was later confirmed with serology. Prompt treatment with doxyclycine is recommended for all patients with clinical suspicion of RMSF.

  1. Nonnative trout invasions combined with climate change threaten persistence of isolated cutthroat trout populations in the southern Rocky Mountains

    Science.gov (United States)

    Roberts, James J.; Kurt D. Fausch,; Hooten, Mevin B.; Peterson, Douglas P.

    2017-01-01

    Effective conservation of Cutthroat Trout Oncorhynchus clarkii lineages native to the Rocky Mountains will require estimating effects of multiple stressors and directing management toward the most important ones. Recent

  2. Association between sepsis and Rocky Mountain spotted fever.

    Science.gov (United States)

    Bacci, Marcelo Rodrigues; Namura, José Jorge

    2012-12-06

    Rocky Mountain spotted fever (RMSF) is a disease caused by the Gram-negative coccobacillus Rickettsia ricketsii which has been on the rise since the last decade in the USA. The symptoms are common to the many viral diseases, and the classic triad of fever, rash and headache is not always present when RMSF is diagnosed. It may progress to severe cases such as renal failure, disseminated intravascular coagulation and septicaemia. This report aims to present a fulminant case of RMSF associated with sepsis. It describes a female patient's case that quickly progressed to sepsis and death. The patient showed non-specific symptoms for 5 days before being admitted to a hospital. The fact that she lived in an area highly infested with Amblyomma aureolatum ticks was unknown to the medical staff until the moment she died.

  3. 76 FR 17439 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-03-29

    ... nonessential experimental population areas for the gray wolf under section 10(j) of the ESA: the Yellowstone...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the West Fork Elk Management Unit of Montana; Draft Environmental Assessment AGENCY...

  4. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  5. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    Science.gov (United States)

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  6. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    International Nuclear Information System (INIS)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U 3 O 8 (3.32 million pounds U 3 O 8 ). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed

  7. Tick testing as a method of controlling Rocky Mountain spotted fever.

    Science.gov (United States)

    Sacks, J J; Pinner, T A; Parker, R L

    1983-01-01

    In South Carolina, 1974-1980, only two matches were found between 536 Rocky Mountain spotted fever (RMSF) cases and 965 individuals who submitted ticks that tested rickettsial antigen positive. In neither case did the positive test prevent RMSF. Tick rickettsial positivity rates varied inversely with human RMSF attack rates in different geographic areas. A physician survey established it as unlikely that RMSF occurred in positive tick submitters (PTS), and that although not recommended, 34 per cent of asymptomatic PTS received prophylactic treatment. Only 18 per cent of positive ticks were engorged. Tick testing appears ineffective in preventing RMSF. PMID:6869643

  8. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  9. Rapid differentiation of rocky mountain spotted fever from chickenpox, measles, and enterovirus infections and bacterial meningitis by frequency-pulsed electron capture gas-liquid chromatographic analysis of sera.

    Science.gov (United States)

    Brooks, J B; McDade, J E; Alley, C C

    1981-01-01

    Normal sera and sera from patients with Rocky Mountain spotted fever, chickenpox, enterovirus infections, measles, and Neisseria meningitidis infections were extracted with organic solvents under acidic and basic conditions and then derivatized with trichloroethanol or heptafluorobutyric anhydride-ethanol to form electron-capturing derivatives of organic acids, alcohols, and amines. The derivatives were analyzed by frequency-pulsed electron capture gas-liquid chromatography (FPEC-GLC). There were unique differences in the FPEC-GLC profiles of sera obtained from patients with these respective diseases. With Rocky Mountain spotted fever patients, typical profiles were detected as early as 1 day after onset of disease and before antibody could be detected in the serum. Rapid diagnosis of Rocky Mountain spotted fever by FPEC-GLC could permit early and effective therapy, thus preventing many deaths from this disease. PMID:7276147

  10. Grizzly bears as a filter for human use management in Canadian Rocky Mountain national parks

    Science.gov (United States)

    Derek Petersen

    2000-01-01

    Canadian National Parks within the Rocky Mountains recognize that human use must be managed if the integrity and health of the ecosystems are to be preserved. Parks Canada is being challenged to ensure that these management actions are based on credible scientific principles and understanding. Grizzly bears provide one of only a few ecological tools that can be used to...

  11. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  12. Carbon pools along headwater streams with differing valley geometry in Rocky Mountain National Park, Colorado (Abstract)

    Science.gov (United States)

    Kathleen A. Dwire; Ellen E. Wohl; Nicholas A. Sutfin; Roberto A. Bazan; Lina Polvi-Pilgrim

    2012-01-01

    Headwaters are known to be important in the global carbon cycle, yet few studies have investigated carbon (C) pools along stream-riparian corridors. To better understand the spatial distribution of C storage in headwater fluvial networks, we estimated above- and below-ground C pools in 100-m-long reaches in six different valley types in Rocky Mountain National Park,...

  13. Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA

    Science.gov (United States)

    Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.

    2016-01-01

    "Aim: Ponderosa pine (Pinus ponderosa) experienced one of the most extensive and rapid post-glacial plant migrations in western North America. We used plant macrofossils from woodrat (Neotoma) middens to reconstruct its spread in the Central Rocky Mountains, identify other vegetation changes coinciding with P. ponderosa expansion at the same sites, and relate P. ponderosa migrational history to both its modern phylogeography and to a parallel expansion by Utah juniper (Juniperus osteosperma).

  14. Rocky Mountain Spotted Fever and Pregnancy: Four Cases from Sonora, Mexico.

    Science.gov (United States)

    Licona-Enriquez, Jesus David; Delgado-de la Mora, Jesus; Paddock, Christopher D; Ramirez-Rodriguez, Carlos Arturo; Candia-Plata, María Del Carmen; Hernández, Gerardo Álvarez

    2017-09-01

    We present a series of four pregnant women with Rocky Mountain spotted fever (RMSF) that occurred in Sonora, Mexico, during 2015-2016. Confirmatory diagnoses were made by polymerase chain reaction or serological reactivity to antigens of Rickettsia rickettsii by using an indirect immunofluorescence antibody assay. Each patient presented with fever and petechial rash and was treated successfully with doxycycline. Each of the women and one full-term infant delivered at 36 weeks gestation survived the infection. Three of the patients in their first trimester of pregnancy suffered spontaneous abortions. RMSF should be suspected in any pregnant woman presenting with fever, malaise and rash in regions where R. rickettsii is endemic.

  15. Rocky mountain spotted fever hospitalizations among American Indians.

    Science.gov (United States)

    Demma, Linda J; Holman, Robert C; Mikosz, Christina A; Curns, Aaron T; Swerdlow, David L; Paisano, Edna L; Cheek, James E

    2006-09-01

    To describe the epidemiology of Rocky Mountain spotted fever (RMSF) among American Indians/Alaska Natives (AI/ANs), we conducted a retrospective analysis of hospitalization records with an RMSF diagnosis using Indian Health Service (IHS) hospital discharge data for calendar years 1980-2003. A total of 261 RMSF hospitalizations were reported among AIs, for an average annual hospitalization rate of 1.21 per 100,000 persons; two deaths were reported (0.8%). Most hospitalizations (88.5%) occurred in the Southern Plains region, where the rate was 4.23 per 100,000 persons. Children 1-4 years of age had the highest age-specific hospitalization rate of 2.50 per 100,000 persons. The overall annual RMSF hospitalization rate declined during the study period. Understanding the epidemiology of RMSF among AI/ANs and educating IHS/tribal physicians on the diagnosis of tick-borne diseases remain important for the prompt treatment of RMSF and the reduction of the disease occurrence among AI/ANs, particularly in high-risk areas.

  16. 78 FR 7852 - Notice of Intent To Rule on Request To Release Airport Property at the Rocky Mountain...

    Science.gov (United States)

    2013-02-04

    ... To Release Airport Property at the Rocky Mountain Metropolitan Airport, Broomfield, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... Metropolitan Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  17. Rocky Mountain spotted fever in Panama: a cluster description.

    Science.gov (United States)

    Tribaldos, Maribel; Zaldivar, Yamitzel; Bermudez, Sergio; Samudio, Franklyn; Mendoza, Yaxelis; Martinez, Alexander A; Villalobos, Rodrigo; Eremeeva, Marina E; Paddock, Christopher D; Page, Kathleen; Smith, Rebecca E; Pascale, Juan Miguel

    2011-10-13

    Rocky Mountain spotted fever (RMSF) is a tick-borne infection caused by Rickettsia rickettsii. We report a cluster of fatal cases of RMSF in 2007 in Panama, involving a pregnant woman and two children from the same family.  The woman presented with a fever followed by respiratory distress, maculopapular rash, and an eschar at the site from which a tick had been removed.  She died four days after disease onset.  This is the second published report of an eschar in a patient confirmed by PCR to be infected with R. rickettsii.  One month later, the children presented within days of one another with fever and rash and died three and four days after disease onset. The diagnosis was confirmed by immunohistochemistry, PCR and sequencing of the genes of R. rickettsii in tissues obtained at autopsy. 

  18. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    Science.gov (United States)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  19. Response of six non-native invasive plant species to wildfires in the northern Rocky Mountains, USA

    Science.gov (United States)

    Dennis E. Ferguson; Christine L. Craig

    2010-01-01

    This paper presents early results on the response of six non-native invasive plant species to eight wildfires on six National Forests (NFs) in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density. Data for this report are from 219 stands...

  20. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  1. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  2. Atypical Rocky Mountain spotted fever with polyarticular arthritis.

    Science.gov (United States)

    Chaudhry, Muhammad A; Scofield, Robert Hal

    2013-11-01

    Rocky Mountain spotted fever (RMSF) is an acute, serious tick borne illness caused by Rickettsia rickettsi. Frequently, RMSF is manifested by headache, a typical rash and fever but atypical disease is common, making diagnosis difficult. Inflammatory arthritis as a manifestation is rare. The purpose of this study is to describe a patient with serologically proven RMSF who presented in an atypical manner with inflammatory arthritis of the small joints of the hands and to review the previously reported patients with rickettsial infection and inflammatory arthritis. An 18-year-old woman presented with a rash that began on the distal extremities and spread centrally, along with hand pain and swelling. She had tenderness and swelling of the metacarpophlangeal joints on examination in addition to an erythematosus macular rash and occasional fever. Acute and convalescent serology demonstrated R rickettsi infection. She was successfully treated with doxycycline. Inflammatory arthritis is a rare manifestation of RMSF or other rickettsial infection with 8 previously reported patients, only 1 of whom had RMSF. Physician must have a high index of suspicion for RMSF because of atypical presentations.

  3. Wilderness experience in Rocky Mountain National Park 2002: Report to RMNP

    Science.gov (United States)

    Schuster, Elke; Johnson, S. Shea; Taylor, Jonathan G.

    2004-01-01

    Approximately 250,000 acres of backcountry in Rocky Mountain National Park (RMNP or the Park) may be designated as wilderness use areas in the coming years. Currently, over 3 million people visit RMNP each year; many drive through the park on Trail Ridge Road, camp in designated campgrounds, or hike in front-country areas. However, visitors also report much use of backcountry areas that are not easily accessible by roads or trails. Use of the backcountry is growing at RMNP and is accompanied by changing visitor expectations and preferences for wilderness management. For these reasons it is of great importance for the Park to periodically assess what types of environments and conditions wilderness users seek, to help them facilitate a quality wilderness experience.

  4. Climatology of summer midtropospheric perturbations in the US northern plains. Part II: large-scale effects of the Rocky Mountains on genesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Yu. [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Utah State University, Utah Climate Center, Logan, UT (United States); Chen, Tsing-Chang [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Takle, Eugene S. [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Iowa State University, Department of Agronomy, Ames, IA (United States)

    2011-04-15

    Propagating convective storms across the US northern plains are often coupled with preexisting midtropospheric perturbations (MPs) initiated over the Rocky Mountains. A companion study (Part I) notes that such MPs occur most commonly at 12 UTC (early morning) and 00 UTC (late afternoon). Using a regional reanalysis and a general circulation model (GCM), this study investigates how such a bimodal distribution of the MP frequency is formed. The results point to two possible mechanisms working together while each has a different timing in terms of maximum effect. The diurnal evolutions between the midtropospheric flows over the Rockies and over the Great Plains are nearly out-of-phase due to inertial oscillation. During the nighttime, the westerly flows at 700-500 mb over the Rockies intensify while flows at the same level over the Great Plains turn easterly. These two flows converge over the eastern Rockies and induce cyclonic vorticity through vortex stretching. After sunrise, the convergence dissipates and the cyclonic vorticity is redistributed by horizontal vorticity advection, moving it downstream. This process creates a climatological zonally propagating vorticity signal which, in turn, facilitates the early-morning MP genesis at 12 UTC. The analysis also reveals marked dynamic instability conducive to subsynoptic-scale disturbances in the midtroposphere over the Rockies. Strong meridional temperature gradients appear over the north-facing slopes of the Rockies due to terrain heating to the south and the presence of cooler air to the north. This feature, along with persistent vertical shear, creates a Charney-Stern type of instability (i.e. sign changes of the meridional potential vorticity gradient). Meanwhile, the development of terrain boundary layer reduces the Rossby deformation radius which, subsequently, enhances the likelihood for baroclinic short waves. Such effects are most pronounced in the late afternoon and therefore are supportive to the MP

  5. Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho

    Science.gov (United States)

    Michael K. Schwartz; Nicholas J. DeCesare; Benjamin S. Jimenez; Jeffrey P. Copeland; Wayne E. Melquist

    2013-01-01

    The fisher (Pekania pennanti; formerly known as Martes pennanti) is a North American endemic mustelid with a geographic distribution that spans much of the boreal forests of North America. In the Northern Rocky Mountain (NRM) fishers have been the focus of Endangered Species Act (ESA) listing decisions. Habitat studies of West Coast fishers in California have...

  6. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  7. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    Science.gov (United States)

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  8. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    Science.gov (United States)

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  9. [Rocky Mountain spotted fever in children: clinical and epidemiological features].

    Science.gov (United States)

    Martínez-Medina, Miguel Angel; Alvarez-Hernández, Gerardo; Padilla-Zamudioa, José Guillermo; Rojas-Guerra, Maria Guadalupe

    2007-01-01

    To report the clinical features of the Rocky Mountain spotted fever (RMSF) in children of southern Sonora, Mexico. Nine cases were studied at the Sonora State Children's Hospital. One case was defined by clinical features and positive serological tests (indirect immunofluorescence assay or reaction to Proteus OX 19). Demographic and clinical characteristics of the patients were registered. The study subjects were children from two to twelve years ofage. All patients have had contact with tick-infested dogs and had fever, as well as petechial rash. Laboratory findings included high levels of hepatic aminotransferase, hyponatremia and thrombocytopenia. Therapy with chloramphenicol and doxyciclyne was administered after the first seven days of the onset of illness. The mortality rate was 22%. This study supports the presence of RMSF in the state of Sonora, Mexico, which should be considered as a public health hazard, requiring immediate actions for prevention and control.

  10. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Toth, W.J. (comps.)

    1982-05-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  11. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C. (ed.)

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  12. Trends in Rocky Mountain amphibians and the role of beaver as a keystone species

    Science.gov (United States)

    Hossack, Blake R.; Gould, William R.; Patla, Debra A.; Muths, Erin L.; Daley, Rob; Legg, Kristin; Corn, P. Stephen

    2015-01-01

    Despite prevalent awareness of global amphibian declines, there is still little information on trends for many widespread species. To inform land managers of trends on protected landscapes and identify potential conservation strategies, we collected occurrence data for five wetland-breeding amphibian species in four national parks in the U.S. Rocky Mountains during 2002–2011. We used explicit dynamics models to estimate variation in annual occupancy, extinction, and colonization of wetlands according to summer drought and several biophysical characteristics (e.g., wetland size, elevation), including the influence of North American beaver (Castor canadensis). We found more declines in occupancy than increases, especially in Yellowstone and Grand Teton national parks (NP), where three of four species declined since 2002. However, most species in Rocky Mountain NP were too rare to include in our analysis, which likely reflects significant historical declines. Although beaver were uncommon, their creation or modification of wetlands was associated with higher colonization rates for 4 of 5 amphibian species, producing a 34% increase in occupancy in beaver-influenced wetlands compared to wetlands without beaver influence. Also, colonization rates and occupancy of boreal toads (Anaxyrus boreas) and Columbia spotted frogs (Rana luteiventris) were ⩾2 times higher in beaver-influenced wetlands. These strong relationships suggest management for beaver that fosters amphibian recovery could counter declines in some areas. Our data reinforce reports of widespread declines of formerly and currently common species, even in areas assumed to be protected from most forms of human disturbance, and demonstrate the close ecological association between beaver and wetland-dependent species.

  13. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA

    Science.gov (United States)

    T. N. Wasserman; S. A. Cushman; A. S. Shirk; E. L. Landguth; J. S. Littell

    2012-01-01

    We utilize empirically derived estimates of landscape resistance to assess current landscape connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA, and project how a warming climate may affect landscape resistance and population connectivity in the future. We evaluate the influences of five potential future temperature scenarios...

  14. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    Science.gov (United States)

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  15. Relationships between nutritional condition of adult females and relative carrying capacity for rocky mountain Elk

    Science.gov (United States)

    Piasecke, J.R.; Bender, L.C.

    2009-01-01

    Lactation can have significant costs to individual and population-level productivity because of the high energetic demands it places on dams. Because the difference in condition between lactating and dry Rocky Mountain elk (Cervus elaphus nelsoni) cows tends to disappear as nutritional quality rises, the magnitude of that difference could be used to relate condition to habitat quality or the capability of habitats to support elk. We therefore compared nutritional condition of ???2.5-yr-old lactating and dry cows from six free-ranging RockyMountain elk populations throughout the United States.Our goal was to quantify differential accrual of body fat (BF) reserves to determine whether the condition of dry and lactating cows could be used to define relevant management thresholds of habitat quality (i.e., relative carrying capacity) and consequently potential performance of elk populations. Levels of BF that lactating cows were able to accrue in autumn and the proportional difference in BF between dry and lactating cows in autumn were related (F 1-2,10???16.2, Plogistic model to predict relative proximity to ecological carrying capacity (ECC), our population-years ranged from3-97%ofECCand proportion of the population lactating (an index of calf survival) was negatively related to proportion of ECC. Results indicate that the proportional difference in accrual of BF between lactating and dry cows can provide a sensitive index to where elk populations reside relative to the quality of their range.

  16. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    Science.gov (United States)

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  17. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  18. Myocardial involvement in rocky mountain spotted fever: a case report and review.

    Science.gov (United States)

    Doyle, Amy; Bhalla, Karan S; Jones, James M; Ennis, David M

    2006-10-01

    Rocky Mountain Spotted Fever (RMSF), caused by Rickettia rickettsii, is a serious tickborne illness that is endemic in the southeastern United States. Although it is most commonly known as a cause of fever and rash, it can have systemic manifestations. The myocardium may rarely be involved, with symptoms that can mimic those of acute coronary syndromes. This report describes a case of serologically proven RMSF causing symptomatic myocarditis, manifested by chest pain, elevated cardiac enzyme levels, and decrease myocardial function. After treatment with antibiotics, the myocarditis resolved. Thus, although unusual, the clinician should be aware of myocardial disease in patients with appropriate exposure histories or other clinical signs of RMSF. Close monitoring and an aggressive approach are essential to reduce mortality rates.

  19. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  20. Developing a university-workforce partnership to address rural and frontier MCH training needs: the Rocky Mountain Public Health Education Consortium (RMPHEC).

    Science.gov (United States)

    Taren, Douglas L; Varela, Frances; Dotson, Jo Ann W; Eden, Joan; Egger, Marlene; Harper, John; Johnson, Rhonda; Kennedy, Kathy; Kent, Helene; Muramoto, Myra; Peacock, Jane C; Roberts, Richard; Sjolander, Sheila; Streeter, Nan; Velarde, Lily; Hill, Anne

    2011-10-01

    The objective of the article is to provide the socio-cultural, political, economic, and geographic conditions that justified a regional effort for training maternal and child health (MCH) professionals in the Rocky Mountain region, describe a historical account of factors that led to the development of the Rocky Mountain Public Health Education Consortium (RMPHEC), and present RMPHEC as a replicable model developed to enhance practice/academic partnerships among state, tribal, and public health agencies and universities to enhance public health capacity and MCH outcomes. This article provides a description of the development of the RMPHEC, the impetus that drove the Consortium's development, the process used to create it, and its management and programs. Beginning in 1997, local, regional, and federal efforts encouraged stronger MCH training and continuing education in the Rocky Mountain Region. By 1998, the RMPHEC was established to respond to the growing needs of MCH professionals in the region by enhancing workforce development through various programs, including the MCH Certificate Program, MCH Institutes, and distance learning products as well as establishing a place for professionals and MCH agencies to discuss new ideas and opportunities for the region. Finally over the last decade local, state, regional, and federal efforts have encouraged a synergy of MCH resources, opportunities, and training within the region because of the health disparities among MCH populations in the region. The RMPHEC was founded to provide training and continuing education to MCH professionals in the region and as a venue to bring regional MCH organizations together to discuss current opportunities and challenges. RMPHEC is a consortium model that can be replicated in other underserved regions, looking to strengthen MCH training and continuing education.

  1. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in Rocky Mountain savannas invaded and un-invaded by an exotic forb, spotted knapweed

    Science.gov (United States)

    Allison K. Hansen; Yvette K. Ortega; Diana L. Six

    2009-01-01

    We compared ground beetle (Carabidae) assemblages between spotted knapweed (Centaurea maculosa Lam.) -invaded (invaded) and un-invaded (native) habitats in Rocky Mountain savannas. Carabids play important roles in biotic communities and are known as a good indictor group of environmental change. Carabid species activity-abundance and diversity were estimated, and...

  2. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  3. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  4. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  5. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA.

    Science.gov (United States)

    Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert

    2018-01-01

    Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Rocky Mountain spotted fever in Mexican children: Clinical and mortality factors].

    Science.gov (United States)

    Álvarez-Hernández, Gerardo; Candia-Plata, María Del Carmen; Delgado-de la Mora, Jesús; Acuña-Meléndrez, Natalia Haydeé; Vargas-Ortega, Anabel Patricia; Licona-Enríquez, Jesús David

    2016-06-01

    Characterize clinical manifestations and predictors of mortality in children hospitalized for spotted fever. Cross-sectional study in 210 subjects with a diagnosis of Rocky Mountain spotted fever (RMSF) in a pediatric hospital in Sonora, from January 1st, 2004 to June 30th, 2015. Data were analyzed using descriptive statistics and multivariate logistic regression. An upward trend was observed in RMSF morbidity and mortality. Fatality rate was 30%.Three predictors were associated with risk of death: delay ≥ 5 days at the start of doxycycline (ORa= 2.95, 95% CI 1.10-7.95), acute renal failure ((ORa= 8.79, 95% CI 3.46-22.33) and severe sepsis (ORa= 3.71, 95% CI 1.44-9.58). RMSF causes high mortality in children, which can be avoided with timely initiation of doxycycline. Acute renal failure and severe sepsis are two independent predictors of death in children with RMSF.

  7. Rocky Mountain spotted fever: a disease in need of microbiological concern.

    Science.gov (United States)

    Walker, D H

    1989-01-01

    Rocky Mountain spotted fever, a life-threatening tick-transmitted infection, is the most prevalent rickettsiosis in the United States. This zoonosis is firmly entrenched in the tick host, which maintains the rickettsiae in nature by transovarian transmission. Although the incidence of disease fluctuates in various regions and nationwide, the problems of a deceptively difficult clinical diagnosis and little microbiologic diagnostic effort persist. Many empiric antibiotic regimens lack antirickettsial activity. There is neither an effective vaccine nor a generally available assay that is diagnostic during the early stages of illness, when treatment is most effective. Microbiology laboratories that offer only the archaic retrospective Weil-Felix serologic tests should review the needs of their patients. Research microbiologists who tackle these challenging organisms have an array of questions to address regarding rickettsial surface composition, structure-function analysis, and pathogenic and immune mechanisms, as well as laboratory diagnosis. PMID:2504480

  8. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  9. The Rocky Mountain population of the western Canada goose: its distribution, habitats, and management

    Science.gov (United States)

    Krohn, William B.; Bizeau, Elwood G.

    1980-01-01

    The western Canada goose (Branta canadensis moffitti) was divided into a Rocky Mountain population (RMP) and a Pacific population (PP) on the basis of band recovery patterns examined in this study and recovery data from other investigators. Habitat information obtained from nine cooperating wildlife agencies within the RMP's range provided a base line for evaluating future changes in nesting, molting, and wintering areas. The habitat inventory indicated that none of the seasonal habitats were currently limiting the size of the RMP. The RMP's range is divided into 15 reference areas and these are briefly described. Past studies of Canada geese in the Intermountain Region are reviewed. Topics covered in the discussion of breeding biology are nesting chronology, spring population composition, breeding age, clutch size, nesting success. artificial nesting structures, and gosling survival. Much of the mortality of Canada geese occurs before the birds are fledged. Man-made nesting structures reduce losses during incubation. but research is needed on the relations between brooding sites and gosling survival. Some western Canada geese, mainly prebreeders and unsuccessful nesters, make molt migrations to and from molting areas during and after the brood-rearing season. More than half of these molt-migrants are yearlings too young to nest; there are indications that even some successful nesters leave nesting areas to molt before the fledging of their offspring. Geese 2 years old or older may serve as guides to traditional molting areas for the first-time migrants (i.e., yearlings). Lack of disturbance appears to influence selection of specific molting areas within the nesting range of moffitti, whereas movements of molters out of the Intermountain Region may be related to the evolution of this subspecies. Apparently. molters of both the PP and RMP that leave the Region go to the Northwest Territories of Canada. Although the taxonomic status of moffitti as related to the

  10. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    Science.gov (United States)

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Rocky Mountain High.

    Science.gov (United States)

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  12. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    Science.gov (United States)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  13. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    Science.gov (United States)

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  14. Rocky Mountain spotted fever in Mexican children: Clinical and mortality factors.

    Directory of Open Access Journals (Sweden)

    Gerardo Álvarez-Hernández

    2016-05-01

    Full Text Available Objective. Characterize clinical manifestations and predictors of mortality in children hospitalized for spotted fever. Materials and methods. Cross-sectional study in 210 subjects with a diagnosis of Rocky Mountain spotted fever (RMSF in a pediatric hospital in Sonora, from January 1st, 2004 to June 30th, 2015. Data were analyzed using descriptive statistics and multivariate logistic regression. Results. An upward trend was observed in RMSF morbidity and mortal- ity. Fatality rate was 30%. Three predictors were associated with risk of death: delay ≥ 5 days at the start of doxycycline (ORa = 2.95, 95% CI 1.10-7.95, acute renal failure ((ORa = 8.79, 95% CI 3.46-22.33 and severe sepsis (ORa = 3.71, 95% CI 1.44-9.58. Conclusions. RMSF causes high mortality in children, which can be avoided with timely initiation of doxycycline. Acute renal failure and severe sepsis are two independent predictors of death in children with RMSF.

  15. Fatal Rocky Mountain spotted fever in the United States, 1999-2007.

    Science.gov (United States)

    Dahlgren, F Scott; Holman, Robert C; Paddock, Christopher D; Callinan, Laura S; McQuiston, Jennifer H

    2012-04-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999-2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children less than 10 years of age (RR=5.1) [corrected] and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice.

  16. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    Science.gov (United States)

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  17. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  18. Use of acepromazine and medetomidine in combination for sedation and handling of Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus).

    Science.gov (United States)

    Wolfe, Lisa L; Johnson, Heather E; Fisher, Mark C; Sirochman, Michael A; Kraft, Benjamin; Miller, Michael W

    2014-10-01

    We opportunistically evaluated a combination of acepromazine maleate and medetomidine HCl for use in sedating Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus) as an alternative to scheduled drug combinations. This combination was safe and effective with limitations inherent in its sedative rather than anesthetic properties.

  19. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models

    Science.gov (United States)

    Meador, E.; Morrill, C.

    2017-12-01

    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  20. Rocky Mountain spotted fever at Koair Children's Hospital, 1990-2002.

    Science.gov (United States)

    Hayden, Amy M; Marshall, Gary S

    2004-05-01

    The reported average annual incidence of Rocky Mountain spotted fever (RMSF) in Kentucky is less than 5 per million population, although seroprevalence studies suggest that exposure to Rickettsia riskettsii, the causative agent, is relatively common among children. The experience with RMSF at Kosair Children's Hospital over a 12-year period was reviewed. Fifteen cases were identified (5 boys and 10 girls). Illness onset ranged from April to October, and 4 patients resided in Jefferson County. The classic triad of fever, rash, and headache was present in only 60% of cases, and tick attachment was reported in only 40%. On average, 6 days elapsed from onset of symptoms to initiation of appropriate antibiotic therapy. One patient suffered splenic infarction and necrosis of the digits due to shock and disseminated intravascular coagulopathy, and 2 patients died. RMSF is a significant cause of pediatric morbidity and mortality in this region of Kentucky. Affected children may reside in relatively urban parts of the state. Initial clinical features may be nonspecific. This, as well as decreased awareness of disease and (unjustified) reluctance to use doxycycline may contribute to delays in initiating therapy.

  1. Rocky Mountain spotted fever in the United States, 1997-2002.

    Science.gov (United States)

    Chapman, Alice S; Murphy, Staci M; Demma, Linda J; Holman, Robert C; Curns, Aaron T; McQuiston, Jennifer H; Krebs, John W; Swerdlow, David L

    2006-01-01

    Rocky Mountain spotted fever (RMSF) is the most commonly reported fatal tick-borne disease in the United States. During 1997-2002, 3,649 cases of RMSF were reported to the Centers for Disease Control and Prevention via the National Electronic Telecommunications System for Surveillance; 2,589 case report forms, providing supplemental information, were also submitted. The average annual RMSF incidence during 1997-2002 was 2.2 cases/million persons. The annual incidence increased during 1997-2002 to a rate of 3.8 cases/million persons in 2002. The incidence was lowest among persons aged<5 and 10-29 years, and highest among adults aged 60-69 years. The overall case-fatality rate was 1.4%; the rate peaked in 1998 at 2.9% and declined to 0.7% in 2001 and 2002. Children<5 years of age had a case-fatality rate (5%) that was significantly greater than the rates for age groups<60 years of age, except for that for 40-49 years of age. Continued national surveillance is needed to assess the effectiveness of prevention efforts and early treatment in decreasing severe morbidity and mortality associated with RMSF.

  2. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B. C.; Toth, W. J. [comps.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  3. Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah

    Science.gov (United States)

    Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.

    1985-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  4. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  5. Medical knowledge related to Rocky Mountain spotted fever in Sonora, Mexico.

    Science.gov (United States)

    Alvarez-Hernandez, Gerardo; Ernst, Kacey; Acuña-Melendrez, Natalia Haydee; Vargas-Ortega, Anabel Patricia; Candia-Plata, Maria Del Carmen

    2018-03-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease with a high case-fatality rate unless diagnosed promptly and treated timely with doxycycline. Physician knowledge about presentation and treatment can improve outcomes of RMSF in endemic regions, such as Sonora in northern Mexico, where RMSF has caused 1348 non-fatal cases and 247 deaths from 2003 to 2016. A cross-sectional study was conducted with 343 physicians working in medical facilities in Sonora, Mexico. A 25-item questionnaire explored physician knowledge of clinical, epidemiological and preventive aspects of RMSF. Only 62% of physicians agreed that doxycycline should be used as the first choice treatment for children under 8 years with suspected RMSF. Additionally, 40% of primary care physicians correctly identified the time to initiate doxycycline, and 32% correctly identified the case-fatality rate of untreated RMSF in all patients. Inadequate medical knowledge may adversely affect how patients infected with Rickettsia rickettsii are diagnosed and treated. Educational programs that improve the risk perception and medical knowledge about RMSF should be targeted at physicians most likely to have initial contact with diseased patients.

  6. Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever.

    Science.gov (United States)

    Paddock, Christopher D; Denison, Amy M; Lash, R Ryan; Liu, Lindy; Bollweg, Brigid C; Dahlgren, F Scott; Kanamura, Cristina T; Angerami, Rodrigo N; Pereira dos Santos, Fabiana C; Brasil Martines, Roosecelis; Karpathy, Sandor E

    2014-09-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. © The American Society of Tropical Medicine and Hygiene.

  7. Fatal Rocky Mountain Spotted Fever in the United States, 1999–2007

    Science.gov (United States)

    Dahlgren, F. Scott; Holman, Robert C.; Paddock, Christopher D.; Callinan, Laura S.; McQuiston, Jennifer H.

    2012-01-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999–2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children 5–9 years of age (RR = 6.0) and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice. PMID:22492159

  8. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    Science.gov (United States)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual

  9. Protecting the Sacred Water Bundle: Education about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation, Turtle mountain Community College (TMCC) has provided opportunities for all interested parties to learn about fracking and why the tribe banned it.…

  10. Canadian Rockies Ecoregion: Chapter 4 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Canadian Rockies Ecoregion covers approximately 18,494 km2 (7,141 mi2) in northwestern Montana (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The east side of the ecoregion is bordered by the Montana Valley and Foothill Prairies Ecoregion, which also forms a large part of the western border of the ecoregion. In addition, the Northern Rockies Ecoregion wraps around the ecoregion to the northwest and south (fig. 1). As the name implies, the Canadian Rocky Mountains are located mostly in Canada, straddling the border between Alberta and British Columbia. However, this ecoregion only includes the part of the northern Rocky Mountains that is in the United States. This ecoregion is characterized by steep, high-elevation mountain ranges similar to most of the rest of the Rocky Mountains. Compared to the Northern Rockies Ecoregion, however, the Canadian Rockies Ecoregion reaches higher elevations and contains a greater proportion of perennial snow and ice (Omernik, 1987) (fig. 2). Over the years, this section of the Rocky Mountains has garnered many different names, including “Crown of the Continent” by George Bird Grinnell (Waldt, 2008) and “Backbone of the World” by the Blackfeet (Pikuni) Nation. Throughout the ecoregion, montane, subalpine, and alpine ecosystems have distinct flora and fauna elevation zones. Glaciers, permanent snowfields, and seasonal snowpack are found at the highest elevations. Spring and summer runoff fills lakes and tarns that form the headwaters of numerous streams and rivers, including the Columbia and Missouri Rivers that flow west and east, respectively, from the Continental Divide.

  11. Retrospective Study of Rocky Mountain Spotted Fever in Children.

    Science.gov (United States)

    Tull, Rechelle; Ahn, Christine; Daniel, Alyssa; Yosipovitch, Gil; Strowd, Lindsay C

    2017-03-01

    Rocky Mountain spotted fever (RMSF), a lethal tick-borne illness, is prevalent in the south central United States. Children younger than 10 years old have the greatest risk of fatal outcome from RMSF. The objective of the current study was to review pediatric cases of RMSF seen in the dermatology consult service and to evaluate dermatology's role in the diagnosis and management of this disease. A retrospective review was performed of inpatient dermatology consultations at a tertiary care center in North Carolina from 2001 to 2011. Data collected included patient demographic characteristics, symptoms, pre- and postconsultation diagnoses, diagnostic procedures, length of hospital stay, and outcome. A total of 3,912 consultations were conducted in the dermatology service over 10 years. Six patients with RMSF, ranging in age from 22 months to 10 years (mean 5.1 years), were evaluated during April, May, and June. All preconsultation diagnoses included RMSF in the differential diagnosis. All patients underwent skin biopsies, and a culture was obtained in one case. Fifty percent of patients died within 4 days of hospitalization. Variables associated with mortality from RMSF are delayed diagnosis and initiation of antirickettsial therapy. Physicians should consider RMSF in children presenting with fever and rash during the summer months. Dermatology consultation is useful in evaluating patients with suspicious clinical features of RMSF with skin findings. © 2016 Wiley Periodicals, Inc.

  12. Fatal Rocky Mountain Spotted Fever along the United States-Mexico Border, 2013-2016.

    Science.gov (United States)

    Drexler, Naomi A; Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D

    2017-10-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US-Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US-Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico.

  13. Final report: Imagining Fire Futures - An interactive, online learning activity for high school and college students

    Science.gov (United States)

    Jane Kapler Smith

    2014-01-01

    In IMAGINING FIRE FUTURES, students in a high school or college class use model results to develop a vision of the future for Flathead County, Montana. This is a rural area in the northern Rocky Mountains where more than half of the landscape is covered by wildland ecosystems that have evolved with and are shaped by wildland fire.

  14. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Directory of Open Access Journals (Sweden)

    Joshua P Averett

    establishment in low and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.

  15. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Science.gov (United States)

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.

  16. Safety analysis report: A comparison of incidents from Safety Years 2006 through 2010, USDA Forest Service, Rocky Mountain Research Station Inventory and Monitoring Program

    Science.gov (United States)

    Devon Donahue

    2012-01-01

    This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...

  17. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  18. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition

    Science.gov (United States)

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.

  19. S. Burt Wolbach, Rocky Mountain spotted fever, and blood-sucking arthropods: triumph of an early investigative pathologist.

    Science.gov (United States)

    Musser, James M

    2013-02-01

    In a series of four articles published between 1916 and 1919 in The Journal of Medical Research, precursor to The American Journal of Pathology, the investigative pathologist S. Burt Wolbach unambiguously showed that Rocky Mountain spotted fever has a tick-borne mode of transmission, the causative agent replicates intracellularly, and the disease is fundamentally a vasculitis. Although underappreciated, Wolbach's tour-de-force work epitomized investigative pathology. These four articles should be mandatory reading for young investigators and are recommended also to seasoned investigators who seek reinvigoration in the beauty in their craft. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Knowledge, attitudes, and practices regarding Rocky Mountain spotted fever among healthcare providers, Tennessee, 2009.

    Science.gov (United States)

    Mosites, Emily; Carpenter, L Rand; McElroy, Kristina; Lancaster, Mary J; Ngo, Tue H; McQuiston, Jennifer; Wiedeman, Caleb; Dunn, John R

    2013-01-01

    Tennessee has a high incidence of Rocky Mountain spotted fever (RMSF), the most severe tick-borne rickettsial illness in the United States. Some regions in Tennessee have reported increased illness severity and death. Healthcare providers in all regions of Tennessee were surveyed to assess knowledge, attitudes, and perceptions regarding RMSF. Providers were sent a questionnaire regarding knowledge of treatment, diagnosis, and public health reporting awareness. Responses were compared by region of practice within the state, specialty, and degree. A high proportion of respondents were unaware that doxycycline is the treatment of choice in children ≤ 8 years of age. Physicians practicing in emergency medicine, internal medicine, and family medicine; and nurse practitioners, physician assistants, and providers practicing for < 20 years demonstrated less knowledge regarding RMSF. The gaps in knowledge identified between specialties, designations, and years of experience can help target education regarding RMSF.

  1. Rocky Mountain spotted fever in Arizona: documentation of heavy environmental infestations of Rhipicephalus sanguineus at an endemic site.

    Science.gov (United States)

    Nicholson, William L; Paddock, Christopher D; Demma, Linda; Traeger, Marc; Johnson, Brian; Dickson, Jeffrey; McQuiston, Jennifer; Swerdlow, David

    2006-10-01

    A recent epidemiologic investigation identified 16 cases and 2 deaths from Rocky Mountain spotted fever (RMSF) in two eastern Arizona communities. Prevalence studies were conducted by collecting free-living ticks (Acari: Ixodidae) from the home sites of RMSF patients and from other home sites within the community. Dry ice traps and flagging confirmed heavy infestations at many of the home sites. Only Rhipicephalus sanguineus ticks were identified and all developmental stages were detected. It is evident that under certain circumstances, this species does transmit Rickettsia rickettsii to humans and deserves reconsideration as a vector in other geographic areas.

  2. Numerical simulation of atmospheric dispersion in the vicinity of the Rocky Flats plant

    International Nuclear Information System (INIS)

    Bossert, J.E.; Poulos, G.S.

    1993-01-01

    The Atmospheric Studies in Complex Terrain (ASCOT) program sponsored a field experiment in the winter of 1991 near Rocky Flats, Colorado. Both meteorological and tracer dispersion measurements were taken. These two data sets provided an opportunity to investigate the influence of terrain-generated, radiatively-driven flows on the dispersion of the tracer. In this study, we use the Regional Atmospheric Modeling System (RAMS) to simulate meteorological conditions and tracer dispersion on the case night of 4--5 February 1991. The simulations were developed to examine the influence of nocturnal drainage flow from various topography regimes on the dispersion of tracer from the Rocky Flats plant. The simulation described herein demonstrates the extent to which Rocky Mountain drainage winds influence the flow at the mountain/plain interface for a particular case night, and shows the potential importance of canyon drainage on dispersion from the Rocky Flats area

  3. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    Science.gov (United States)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  4. Inadequacy of IgM antibody tests for diagnosis of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    McQuiston, Jennifer H; Wiedeman, Caleb; Singleton, Joseph; Carpenter, L Rand; McElroy, Kristina; Mosites, Emily; Chung, Ida; Kato, Cecilia; Morris, Kevin; Moncayo, Abelardo C; Porter, Susan; Dunn, John

    2014-10-01

    Among 13 suspected Rocky Mountain spotted fever (RMSF) cases identified through an enhanced surveillance program in Tennessee, antibodies to Rickettsia rickettsii were detected in 10 (77%) patients using a standard indirect immunofluorescent antibody (IFA) assay. Immunoglobulin M (IgM) antibodies were observed for 6 of 13 patients (46%) without a corresponding development of IgG, and for 3 of 10 patients (30%) at least 1 year post-onset. However, recent infection with a spotted fever group rickettsiae could not be confirmed for any patient, based on a lack of rising antibody titers in properly timed acute and convalescent serologic specimens, and negative findings by polymerase chain reaction testing. Case definitions used in national surveillance programs lack specificity and may capture cases that do not represent current rickettsial infections. Use of IgM antibodies should be reconsidered as a basis for diagnosis and public health reporting of RMSF and other spotted fever group rickettsiae in the United States. © The American Society of Tropical Medicine and Hygiene.

  5. Distinct crustal isostasy trends east and west of the Rocky Mountain Front

    KAUST Repository

    Schmandt, Brandon

    2015-12-14

    © 2015. American Geophysical Union. All Rights Reserved. Seismic structure beneath the contiguous U.S. was imaged with multimode receiver function stacking and inversion of Rayleigh wave dispersion and ellipticity measurements. Crust thickness and elevation are weakly correlated across the contiguous U.S., but the correlation is ∼3-4 times greater for separate areas east and west of the Rocky Mountain Front (RMF). Greater lower crustal shear velocities east of the RMF, particularly in low-elevation areas with thick crust, are consistent with deep crustal density as the primary cause of the contrasting crust thickness versus elevation trends. Separate eastern and western trends are best fit by Airy isostasy models that assume lower crust to uppermost mantle density increases of 0.18 g/cm3 and 0.40 g/cm3, respectively. The former value is near the minimum that is plausible for felsic lower crust. Location of the transition at the RMF suggests that Laramide to post-Laramide processes reduced western U.S. lower crustal density.

  6. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)

    2008-06-15

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat

  7. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    International Nuclear Information System (INIS)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S.

    2008-01-01

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha -1 ·year -1 . This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be

  8. Efficacy of chloramphenicol, enrofloxacin, and tetracycline for treatment of experimental Rocky Mountain spotted fever in dogs.

    Science.gov (United States)

    Breitschwerdt, E B; Davidson, M G; Aucoin, D P; Levy, M G; Szabados, N S; Hegarty, B C; Kuehne, A L; James, R L

    1991-01-01

    Dogs were experimentally inoculated with Rickettsia rickettsii to characterize the comparative efficacies of chloramphenicol, enrofloxacin, and tetracycline for the treatment of Rocky Mountain spotted fever (RMSF). All three antibiotics were equally effective in abrogating the clinical, hematologic, and vascular indicators of rickettsial infection. Antibiotic treatment for 24 h was sufficient to decrease the rickettsemia to levels below detection by Vero cell culture. Early treatment with all three antibiotics resulted in a similar decrease in antibody titer, but acute and convalescent serum samples taken at appropriate times would have still facilitated an accurate diagnosis of RMSF in all but one dog, which did not seroconvert. We conclude that chloramphenicol, enrofloxacin, and tetracycline are equally efficacious for treating experimental canine RMSF. PMID:1666498

  9. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  10. Fatal Rocky Mountain Spotted Fever along the United States–Mexico Border, 2013–2016

    Science.gov (United States)

    Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D.

    2017-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US–Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US–Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico. PMID:28930006

  11. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    Science.gov (United States)

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  12. Using the Mountain Pine Beetle Infestation of the Rocky Mountain West to Develop a Collaborative, Experiential Course on Science Communication

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.

    2016-12-01

    An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.

  13. Automated Library of the Future: Estrella Mountain Community College Center.

    Science.gov (United States)

    Community & Junior College Libraries, 1991

    1991-01-01

    Describes plans for the Integrated High Technology Library (IHTL) at the Maricopa County Community College District's new Estrella Mountain campus, covering collaborative planning, the IHTL's design, and guidelines for the new center and campus (e.g., establishing computing/information-access across the curriculum; developing lifelong learners;…

  14. Ps mantle transition zone imaging beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous mantle

    Science.gov (United States)

    Zhang, Zhu; Dueker, Kenneth G.; Huang, Hsin-Hua

    2018-06-01

    We analyze teleseismic P-to-S conversions for high-resolution imaging of the mantle transition zone beneath the Colorado Rocky Mountains using data from a dense PASSCAL seismic broadband deployment. A total of 6,021 P-to-S converted receiver functions are constructed using a multi-channel minimum-phase deconvolution method and migrated using the common converted point technique with the 3-D teleseismic P- and S-wave tomography models of Schmandt and Humphreys (2010). The image finds that the average depths of the 410-km discontinuity (the 410) and 660-km discontinuity (the 660) at 408 ± 1.9 km and 649 ± 1.6 km respectively. The peak-to-peak topography of both discontinuities is 33 km and 27 km respectively. Additionally, prominent negative polarity phases are imaged both above and below the 410. To quantify the mean properties of the low-velocity layers about 410 km, we utilize double gradient layer models parameterization to fit the mean receiver function waveform. This waveform fitting is accomplished as a grid-search using anelastic synthetic seismograms. The best-fitting model reveals that the olivine-wadsleyite phase transformation width is 21 km, which is significantly larger than anhydrous mineral physics prediction (4-10 km) (Smyth and Frost, 2002). The findings of a wide olivine-wadsleyite phase transformation and the negative polarity phases above and below the 410, suggest that the mantle, at least in the 350-450 km depth range, is significantly hydrated. Furthermore, a conspicuous negative polarity phase below the 660 is imaged in high velocity region, we speculate the low velocity layer is due to dehydration flux melting in an area of convective downwelling. Our interpretation of these results, in tandem with the tomographic image of a Farallon slab segment at 800 km beneath the region (Schmandt and Humphreys, 2010), is that hydrous and upwelling mantle contributes to the high-standing Colorado Rocky Mountains.

  15. Dose-response model of Rocky Mountain spotted fever (RMSF) for human.

    Science.gov (United States)

    Tamrakar, Sushil B; Haas, Charles N

    2011-10-01

    Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship. © 2011 Society for Risk Analysis.

  16. Numerical Modeling of Large-Scale Rocky Coastline Evolution

    Science.gov (United States)

    Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.

    2008-12-01

    , increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.

  17. "Rickettsia amblyommii" induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model.

    Science.gov (United States)

    Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H

    2014-08-01

    Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.

  18. A high resolution complex terrain dispersion study in the Rocky Flats, Colorado vicinity

    International Nuclear Information System (INIS)

    Poulos, G.S.; Bossert, J.E.

    1992-01-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO under the auspices of the Department of Energy Atmospheric Studies over Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km 2 scale. Simultaneously, an SF 6 tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF 6 plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM), a component of the RAMS system, to model the dispersion of the SF 6 . We have chosen the 4--5 February, 1991 overnight period as our case study. This night was characterized by strong drainage flows from the Rocky Mountains to the west of Rocky Flats, southerly winds in a layer about lkm thick above the drainage flows, and northwesterly winds above that layer extending to the tropopause

  19. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by ∼0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation

  20. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  1. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    Science.gov (United States)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total

  2. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  3. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  4. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Gebhart, Kristi A.; Schichtel, Bret A.; Malm, William C.; Barna, Michael G.; Rodriguez, Marco A.; Collett, Jeffrey L., Jr.

    2011-01-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS), conducted during the spring and summer of 2006, was designed to assess the sources of nitrogen and sulfur species that contribute to wet and dry deposition and visibility impairment at Rocky Mountain National Park (RMNP), Colorado. Several source apportionment methods were utilized for RoMANS, including the Trajectory Mass Balance (TrMB) Model, a receptor-based method in which the hourly measured concentrations are the dependent variables and the residence times of back trajectories in several source regions are the independent variables. The regression coefficients are estimates of the mean emissions, dispersion, chemical transformation, and deposition between the source areas and the receptors. For RoMANS, a new ensemble technique was employed in which input parameters were varied to explore the range, variability, and model sensitivity of source attribution results and statistical measures of model fit over thousands of trials for each set of concentration measurements. Results showed that carefully chosen source regions dramatically improved the ability of TrMB to reproduce temporal patterns in the measured concentrations, and source attribution results were also very sensitive to source region choices. Conversely, attributions were relatively insensitive to trajectory start height, trajectory length, minimum endpoints per source area, and maximum endpoint height, as long as the trajectories were long enough to reach contributing source areas and were not overly restricted in height or horizontal location. Source attribution results estimated that more than half the ammonia and 30-45% of sulfur dioxide and other nitrogen-containing species at the RoMANS core site were from sources within the state of Colorado. Approximately a quarter to a third of the sulfate was from within Colorado.

  5. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  6. The effect of a small creek valley on drainage flows in the Rocky Flats region

    International Nuclear Information System (INIS)

    Porch, W.

    1996-01-01

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program

  7. Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains

    Science.gov (United States)

    Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.

    2017-12-01

    Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.

  8. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    Science.gov (United States)

    Wing, S. L.

    2011-12-01

    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  9. Limber pine health in the Canadian Rockies

    Science.gov (United States)

    Cyndi M. Smith; David Langor; Colin Myrholm; Jim Weber; Cameron Gillies; Jon Stuart-Smith

    2011-01-01

    Limber pine (Pinus flexilis) reaches the northern limit of its range at about 52 degrees latitude in Alberta (AB) and 51 degrees latitude in British Columbia (BC). Most populations are found on the eastern slopes of the Rocky Mountains, with a few disjunct populations west of the Continental Divide in southeastern BC.

  10. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    Science.gov (United States)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  11. Assessment of Climate Change and Freshwater Ecosystems of the Rocky Mountains, USA and Canada

    Science.gov (United States)

    Hauer, F. Richard; Baron, Jill S.; Campbell, Donald H.; Fausch, Kurt D.; Hostetler, Steve W.; Leavesley, George H.; Leavitt, Peter R.; McKnight, Diane M.; Stanford, Jack A.

    1997-06-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month spring runoff period, rivers frequently discharge > 70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow.Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Niño-Southern Oscillation) forcing.Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  12. Future Forests Webinar Series, Webinar Proceedings and Summary: Ongoing Research and Management Responses to the Mountain Pine Beetle Outbreak

    Science.gov (United States)

    M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan

    2014-01-01

    The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...

  13. Rocky mountain spotted fever in the United States, 2000-2007: interpreting contemporary increases in incidence.

    Science.gov (United States)

    Openshaw, John J; Swerdlow, David L; Krebs, John W; Holman, Robert C; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F; McQuiston, Jennifer H

    2010-07-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5-9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005-2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates.

  14. Final Alternatives Assessment of Interim Response Actions for Other Contamination Sources M-1 Settling Basins, Rocky Mountain Arsenal, Version 3.1

    Science.gov (United States)

    1989-11-01

    u = W. QU- -; t2 E~ zi=- 6e-1 wo u CC .2 211 ~ .CC > . I- - . Ece Zc a- c’ cC I C! 0. - ZEC E ~C C 6-12 E 0 U- .0 E ~E 0 -6 -1 1 I- 8t~ V- .~ u osz w18...Materials and Waste Management Division Colorado Department of Health 4210 East 11th Avenue Denver, CO 80020 Victoria Peters , Esq. Office of Attorney...999 18th Street, Suite 500 Denver, CO 80202-2405 Dr. Peter Gober U.S. Fish and Wildlife Service Rocky Mountain Arsenal, Bldg. 111 Commerce City, CO

  15. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) – producing high fundamental frequency vocalization with a very long vocal fold

    OpenAIRE

    Riede, Tobias; Titze, Ingo R.

    2008-01-01

    The vocal folds of male Rocky Mountain elk (Cervus elaphus nelsoni) are about 3 cm long. If fundamental frequency were to be predicted by a simple vibrating string formula, as is often done for the human larynx, such long vocal folds would bear enormous stress to produce the species-specific mating call with an average fundamental frequency of 1 kHz. Predictions would be closer to 50 Hz. Vocal fold histology revealed the presence of a large vocal ligament between the vocal fold epithelium and...

  16. Native legume transplant survivorship and subsequent seedling recruitment on unamended coal mine soils in the Canadian Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.R.

    1997-05-01

    Transplant survivorship, growth, and reproductive performance of several indigenous high-elevation legume species grown in unamended spoil were studied at three coal mines in the Canadian Rocky Mountains. Survivorship varied with species but was highest for Astragalus aboriginum (62%), Astragalus alpinus (73-57%), Astragalus vexilliflexus var. nubilus (73-63%), and Oxytropis sericea (77-62%). Mortality was greatest during the first two years for most species. The causes of transplant mortality are considered to be drought stress, deep-seated `frost-popping`/root exposure, and damage, for example, root exposure and destruction of meristematic tissues by foraging mammals such as bighorn sheep, mountain goats, grizzly bears, and marmots. Survivorship, growth, and reproductive activity were greatest at the two subalpine disturbances. Growth varied with species, but the greatest growth increments (height and diameter) were recorded during the first and second years. Reproductive activity for the Astragalus species began during the first year at one location but, in general, flowering and seed set did not begin until the second or third years. Recruitment from seed was small ({lt} 10/year). Several of these species appear to be suitable for revegetation of subalpine and alpine surface mine disturbances.

  17. Trends in clinical diagnoses of Rocky Mountain spotted fever among American Indians, 2001-2008.

    Science.gov (United States)

    Folkema, Arianne M; Holman, Robert C; McQuiston, Jennifer H; Cheek, James E

    2012-01-01

    American Indians are at greater risk for Rocky Mountain spotted fever (RMSF) than the general U.S. population. The epidemiology of RMSF among American Indians was examined by using Indian Health Service inpatient and outpatient records with an RMSF International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis. For 2001-2008, 958 American Indian patients with clinical diagnoses of RMSF were reported. The average annual RMSF incidence was 94.6 per 1,000,000 persons, with a significant increasing incidence trend from 24.2 in 2001 to 139.4 in 2008 (P = 0.006). Most (89%) RMSF hospital visits occurred in the Southern Plains and Southwest regions, where the average annual incidence rates were 277.2 and 49.4, respectively. Only the Southwest region had a significant increasing incidence trend (P = 0.005), likely linked to the emergence of brown dog ticks as an RMSF vector in eastern Arizona. It is important to continue monitoring RMSF infection to inform public health interventions that target RMSF reduction in high-risk populations.

  18. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA

    Science.gov (United States)

    Hossack, Blake R.; Muths, Erin L.; Anderson, Chauncey W.; Kirshtein, Julie D.; Corn, P. Stephen

    2009-01-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region.

  19. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    Science.gov (United States)

    Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan

    2013-01-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  20. Plant Functional Traits Are More Consistent Than Plant Species on Periglacial Patterned Ground in the Rocky Mountains of Montana

    Science.gov (United States)

    Apple, M. E.; Ricketts, M. K.; Gallagher, J. H. R.

    2017-12-01

    Periglacial patterned ground exists as stripes and hexagons near glaciers and snowfields, some of which are former glaciers. The patterns are accentuated by profound differences in plant cover between the sloping surfaces, generally perceived as green, and the flat treads, generally perceived as brown but which are not devoid of plant life. On four sites in the Rocky Mountains of Montana we detected strong similarities in plant functional traits on the sloping surfaces of striped and hexagonal periglacial patterned ground. On Mt. Keokirk in the Pioneer Mountains, Kinnickinnick, Arctostaphylos uva-ursi, dominates narrow green stripes. On Goat Flat in the Pintler Mountains, Mountain Avens, Dryas octopetala, dominates the side walls of hexagonally patterned ground and narrow green stripes. At Glacier National Park, D. octopetala and the Arctic Willow, Salix arctica, co-dominate the green risers of widely-spaced striped periglacial patterned system at Siyeh Pass, while D. octopetala, S. arctica, and the Mountain Heather, Phyllodoce glanduliflora, co-dominate the green risers of the widely-spaced stripes of Piegan Pass. All four of these dictotyledonous angiosperm species are adventitiously-rooted dwarf shrubs with simple leaves. Of these, P. glanduliflora, A. uva-ursi and D. octopetala are evergreen. D. octopetala is symbiotic with N-fixing Frankia sp. All are mycorrhizal, although D. octopetala and S. arctica are ectomycorrhizal and P. glanduliflora and A. uva-ursi have ericaceous mycorrhizae. In contrast, dwarf shrubs are scarce on flat treads and within hexagons, which are chiefly inhabited by herbaceous, taprooted or rhizomatous, VAM angiosperms. As the green stripes and hexagon walls have greater plant cover, they likely have greater organic material due to leaf buildup and root turnover, anchor themselves and the soil with adventitious roots, their clonality suggests long lives, and N-fixing influences N dynamics of the periglacial patterned ground.

  1. Draft comprehensive conservation plan and environmental impact statement-Rocky Mountain Arsenal National Wildlife Refuge

    Science.gov (United States)

    ,

    2015-01-01

    The Rocky Mountain Arsenal National Wildlife Refuge Complex, consisting of some of the newer properties in the National Wildlife Refuge System, is a work in progress. Offering unique assets to surrounding communities, these lands promise to become some of the premier urban wildlife refuges in the country. At the heart of the refuge complex is the Rocky Mountain Arsenal National Wildlife Refuge: 16,000 acres of shortgrass and mixed-grass prairie that is home to bison, bald eagles, migratory songbirds, prairie dogs, and much more—all within the Denver Metropolitan area.This comprehensive conservation plan will be the first in the country designed to begin implementing the Refuge System’s new Urban Refuge Initiative. To accomplish this, we analyzed a wide range of options on how best to support up to one million visitors per year without compromising our principal purposes to protect and preserve fish and wildlife and their habitats. We are fortunate to have inherited a great deal of infrastructure from the U.S. Army, but we are also constrained by the current condition and layout of these facilities. Some of this infrastructure may be acting as barriers to the public—a condition inconsistent with the purposes of the refuge. Accordingly, we have developed a goal to increase and improve suitable access to the refuge, develop sustainable transportation options, and provide more connections among the units of the refuge complex. This increased access will enable people from all walks of life to visit the refuge. The vision we have developed for the refuge complex calls for the restoration of the refuge’s historical habitats, and the reconnection of people with the natural lands of the refuge and of the region at large using a network consisting of multimodal trails, a far-reaching light-rail system, and the Denver International Airport. This refuge is well positioned to leverage and catalyze early investments to create world-class wildlife habitat and a

  2. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  3. Flight Paths of Migrating Golden Eagles and the Risk Associated with Wind Energy Development in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Naira N. Johnston

    2013-12-01

    Full Text Available In recent years, the eastern foothills of the Rocky Mountains in northeastern British Columbia have received interest as a site of industrial wind energy development but, simultaneously, have been the subject of concern about wind development coinciding with a known migratory corridor of Golden Eagles (Aquila chrysaetos. We tracked and quantified eagle flights that crossed or followed ridgelines slated for one such wind development. We found that hourly passage rates during fall migration peaked at midday and increased by 17% with each 1 km/h increase in wind speed and by 11% with each 1°C increase in temperature. The propensity to cross the ridge tops where turbines would be situated differed between age classes, with juvenile eagles almost twice as likely to traverse the ridge-top area as adults or subadults. During fall migration, Golden Eagles were more likely to cross ridges at turbine heights (risk zone, < 150 m above ground under headwinds or tailwinds, but this likelihood decreased with increasing temperature. Conversely, during spring migration, eagles were more likely to move within the ridge-top area under eastern crosswinds. Identifying Golden Eagle flight routes and altitudes with respect to major weather systems and local topography in the Rockies may help identify scenarios in which the potential for collisions is greatest at this and other installations.

  4. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  5. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002-2011.

    Science.gov (United States)

    Drexler, Naomi A; Traeger, Marc S; McQuiston, Jennifer H; Williams, Velda; Hamilton, Charlene; Regan, Joanna J

    2015-09-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002-2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. © The American Society of Tropical Medicine and Hygiene.

  6. Rocky Mountain Spotted Fever in the United States, 2000–2007: Interpreting Contemporary Increases in Incidence

    Science.gov (United States)

    Openshaw, John J.; Swerdlow, David L.; Krebs, John W.; Holman, Robert C.; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F.; McQuiston, Jennifer H.

    2010-01-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5–9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005–2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates. PMID:20595498

  7. Aquatic Resources of Rocky Mountain Arsenal Adams County, Colorado

    Science.gov (United States)

    1989-09-01

    Consequently, temperatures rise and oxygen levels fall. Primary producers in these stretches shift from periphyton to phytoplankton (suspended algae ...trees and have rocky substrates. Primary production in these cold- water and coolwater reaches is generally limited to periphyton (attached algae ...Adams County. Biotic components investigated included phytoplankton , zooplankton, aquatic macrophytes, benthic macroinvertebrates, fish eggs and

  8. Rapid ascent: Rocky Mountain National Park in the Great Acceleration, 1945-present

    Science.gov (United States)

    Boxell, Mark

    After the Second World War's conclusion, Rocky Mountain National Park (RMNP) experienced a massive rise in visitation. Mobilized by an affluent economy and a growing, auto-centric infrastructure, Americans rushed to RMNP in droves, setting off new concerns over the need for infrastructure improvements in the park. National parks across the country experienced similar explosions in visitation, inspiring utilities- and road-building campaigns throughout the park units administered by the National Park Service. The quasi-urbanization of parks like RMNP implicated the United States' public lands in a process of global change, whereby wartime technologies, cheap fossil fuels, and a culture of techno-optimism--epitomized by the Mission 66 development program--helped foster a "Great Acceleration" of human alterations of Earth's natural systems. This transformation culminated in worldwide turns toward mass-urbanization, industrial agriculture, and globalized markets. The Great Acceleration, part of the Anthropocene--a new geologic epoch we have likely entered, which proposes that humans have become a force of geologic change--is used as a conceptual tool for understanding the connections between local and global changes which shaped the park after World War II. The Great Acceleration and its array of novel technologies and hydrocarbon-powered infrastructures produced specific cultures of tourism and management techniques within RMNP. After World War II, the park increasingly became the product and distillation of a fossil fuel-dependent society.

  9. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  10. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  11. Trends in Clinical Diagnoses of Rocky Mountain Spotted Fever among American Indians, 2001–2008

    Science.gov (United States)

    Folkema, Arianne M.; Holman, Robert C.; McQuiston, Jennifer H.; Cheek, James E.

    2012-01-01

    American Indians are at greater risk for Rocky Mountain spotted fever (RMSF) than the general U.S. population. The epidemiology of RMSF among American Indians was examined by using Indian Health Service inpatient and outpatient records with an RMSF International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis. For 2001–2008, 958 American Indian patients with clinical diagnoses of RMSF were reported. The average annual RMSF incidence was 94.6 per 1,000,000 persons, with a significant increasing incidence trend from 24.2 in 2001 to 139.4 in 2008 (P = 0.006). Most (89%) RMSF hospital visits occurred in the Southern Plains and Southwest regions, where the average annual incidence rates were 277.2 and 49.4, respectively. Only the Southwest region had a significant increasing incidence trend (P = 0.005), likely linked to the emergence of brown dog ticks as an RMSF vector in eastern Arizona. It is important to continue monitoring RMSF infection to inform public health interventions that target RMSF reduction in high-risk populations. PMID:22232466

  12. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002–2011

    Science.gov (United States)

    Drexler, Naomi A.; Traeger, Marc S.; McQuiston, Jennifer H.; Williams, Velda; Hamilton, Charlene; Regan, Joanna J.

    2015-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002–2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. PMID:26033020

  13. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    Science.gov (United States)

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  14. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  15. Isotopes in North American Rocky Mountain snowpack 1993–2014

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  16. Excess unsupported sup(210)Pb in lake sediment from Rocky Mountain lakes

    International Nuclear Information System (INIS)

    Norton, S.A.; Hess, C.T.; Blake, G.M.; Morrison, M.L.; Baron, J.

    1985-01-01

    Sediment cores from four high-altitude (approximately 3200 m) lakes in Rocky Mountain National Park, Colorado, were dated by sup(210)Pb chronology. Background (supported) sup(210)Pb activities for the four cores range from 0.26 to 0.93 Beq/g dry weight, high for typical oligotrophic lakes. Integrated unsupported sup(210)Pb ranges from 0.81 (a typical value for most lakes) to 11.0 Beq/cmsup(2). The sup(210)Pb activity in the surface sediments ranges from 1.48 to 22.2 Beq/g dry weight. Sedimentation from Lake Louise, the most unusual of the four, has 22.2 Beq/g dry weight at the sediment surface, an integrated unsupported sup(210)Pb=11.0 Beq/cmsup(2), and supported sup(210)Pb=0.74 Beq/g dry weight. sup(226)Ra content of the sediment is insufficient to explain either the high unsupported sup(210)Pb or the sup(222)Rn content of the water column of Lake Louise, which averaged 96.2 Beq/L. We concluded that sup(222)Rn-rich groundwater entering the lake is the source of the high sup(222)Rn in the water column. This, in turn, is capable of supporting the unusually high sup(210)Pb flux to the sediment surface. Groundwater with high sup(222)Rn may control the sup(210)Pb budget of lakes where sediment cores have integrated unsupported sup(210)Pb greater than 2 Beq/cmsup(2)

  17. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  18. Increasing incidence of Rocky Mountain spotted fever among the American Indian population in the United States.

    Science.gov (United States)

    Holman, Robert C; McQuiston, Jennifer H; Haberling, Dana L; Cheek, James E

    2009-04-01

    To examine trends of Rocky Mountain spotted fever (RMSF) incidence among American Indians compared with other race groups, a retrospective analysis of national RMSF surveillance data reported to the National Electronic Telecommunications System for Surveillance and the Tickborne Rickettsial Disease Case Report Forms system were used. The RMSF incidence for American Indians, which was comparable to those for other race groups during 1990-2000, increased at a disproportionate rate during 2001-2005. The average annual incidence of RMSF reported among American Indians for 2001-2005 was 16.8 per 1,000,000 persons compared with 4.2, 2.6, and 0.5 for white, black, and Asian/Pacific Islander persons, respectively. Most cases in American Indians were reported from Oklahoma (113.1 cases per 1,000,000), North Carolina (60.0), and Arizona (17.2). The incidence of RMSF increased dramatically among American Indians disproportionately to trends for other race groups. Education about tick-borne disease and prevention measures should be addressed for high-risk American Indian populations.

  19. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010

    Science.gov (United States)

    Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.

    2018-03-01

    Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611" target="_blank">https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  20. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Baldwin, R.A.; Bender, L.C.

    2009-01-01

    We used scat analysis to determine diets and relative nutritional values of diets for black bears (Ursus americanus Pallas, 1780) in Rocky Mountain National Park, Colorado, from 2003 to 2006, and compared foods consumed and nutritional components to identify important sources of fecal gross energy (GE), crude fat (CF), and fecal nitrogen (FN) in annual and seasonal diets. Patterns of use of food classes followed typical seasonal patterns for bears, although use of animal matter was among the highest reported (>49% annually). Use of animal matter increased after spring, although crude protein levels in bear diets were always >25%. GE was typically lowest for grasses and other herbaceous plants and highest for ants and ungulates; FN was strongly positively related to most animal sources, but negatively correlated with vegetative matter; and CF showed the strongest positive relationship with ungulates and berries, with the latter likely influenced by the presence of seeds. Compared with historic data (1984-1991), contemporary diets included substantially greater prevalence of anthropogenic foods, which likely contributed to increases in size, condition, and productivity of the contemporary bear population. Management strategies are needed to increase quantity and quality of natural foods while minimizing dependence on anthropogenic sources.

  2. Visions and Vanities: John Andrew Rice of Black Mountain College. Southern Biography Series.

    Science.gov (United States)

    Reynolds, Katherine Chaddock

    This biography presents the life of John Andrew Rice, who founded Black Mountain College (North Carolina) in 1933 to implement his philosophy of education, including the centrality of artistic experience and emotional development to learning in all disciplines and the need for democratic governance shared between faculty and students. Born in…

  3. SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains

    KAUST Repository

    Rodríguez-Jeangros, Nicolás

    2017-10-02

    Land cover (LC) products, derived primarily from satellite spectral imagery, are essential inputs for environmental studies because LC is a critical driver of processes involved in hydrology, ecology, and climatology, among others. However, existing LC products each have different temporal and spatial resolutions and different LC classes that rarely provide the detail required by these studies. Using multiple existing LC products, we implement our Spatiotemporal Categorical Map Fusion (SCaMF) methodology over a large region of the Rocky Mountains (RM), encompassing sections of six states, to create a new LC product, SCaMF–RM. To do this, we must adapt SCaMF to address the prediction of LC in large space–time regions that present nonstationarities, and we add more flexibility in the LC classifications of the predicted product. SCaMF–RM is produced at two high spatial resolutions, 30 and 50 m, and a yearly frequency for the 30-year period 1983–2012. When multiple products are available in time, we illustrate how SCaMF–RM captures relevant information from the different LC products and improves upon flaws observed in other products. Future work needed includes an exhaustive validation not only of SCaMF–RM but also of all input LC products.

  4. Experimental contact transmission of Pasteurella haemolytica from clinically normal domestic sheep causing pneumonia in Rocky Mountain bighorn sheep.

    Science.gov (United States)

    Onderka, D K; Wishart, W D

    1988-10-01

    Two Rocky Mountain bighorn lambs (Ovis canadensis canadensis) were held in captivity for 120 days before being housed with two domestic sheep. The lambs were clinically normal and had no Pasteurella spp. on nasal swab cultures. The domestic sheep were known to carry Pasteurella haemolytica biotype A in the nasal passages. After being in close contact for 19 days. P. haemolytica biotype A was cultured from nasal swabs of one of the bighorn lambs. By 26 days, both bighorn sheep developed coughs, were anorectic and became lethargic and nasal swabs yielded P. haemolytica biotype T, serotype 10. Twenty-nine days after contact, the lambs were necropsied and found to have extensive fibrinous bronchopneumonia. From affected tissues pure cultures of beta-hemolytic P. haemolytica biotype T, serotype 10 were grown. Both domestic sheep remained clinically normal and had no gross or microscopic lesions, but they carried the same P. haemolytica serotype in their tonsils. Behavioural observations gave no indication of stress in the bighorn lambs.

  5. Growing Our Own: A Sustainable Approach to Teacher Education at Turtle Mountain Community College

    Science.gov (United States)

    Lamb, Carmelita

    2014-01-01

    Through its teacher education program, Turtle Mountain Community College (TMCC) is meeting the Anishinaabe of North Dakota's educational needs, strengthening tribal sovereignty and self-determination, and positively affecting people's lives. Pivotal to the success of the teacher education program are strongly committed faculty, supportive staff,…

  6. Drivers Motivating Community Health Improvement Plan Completion by Local Public Health Agencies and Community Partners in the Rocky Mountain Region and Western Plains.

    Science.gov (United States)

    Hill, Anne; Wolf, Holly J; Scallan, Elaine; Case, Jenny; Kellar-Guenther, Yvonne

    There are numerous drivers that motivate completion of community health improvement plans (CHIPs). Some are more obvious and include voluntary public health accreditation, state requirements, federal and state funding, and nonprofit hospital requirements through IRS regulations. Less is known about other drivers, including involvement of diverse partners and belief in best practices, that may motivate CHIP completion. This research investigated the drivers that motivated CHIP completion based on experiences of 51 local public health agencies (LPHAs). An explanatory mixed-methods design, including closed- and open-ended survey questions and key informant interviews, was used to understand the drivers that motivated CHIP completion. Analysis of survey data involved descriptive statistics. Classical content analysis was used for qualitative data to clarify survey findings. The surveys and key informant interviews were conducted in the Rocky Mountain Region and Western Plains among 51 medium and large LPHAs in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming. More than 50% of respondents were public health directors; the balance of the respondents were division/program directors, accreditation coordinators, and public health planners. CHIP completion. Most LPHAs in the Rocky Mountains and Western Plains have embraced developing and publishing a CHIP, with 80% having completed their plan and another 13% working on it. CHIP completion is motivated by a belief in best practices, with LPHAs and partners seeing the benefit of quality improvement activities linked to the CHIP and the investment of nonprofit hospitals in the process. Completing a CHIP is strengthened through engagement of diverse partners and a well-functioning partnership. The future of CHIP creation depends on LPHAs and partners investing in the CHIP as a best practice, dedicating personnel to CHIP activities, and enhancing leadership skills to contribute to a synergistic

  7. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010

    Directory of Open Access Journals (Sweden)

    W. H. Wood

    2018-03-01

    Full Text Available Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  8. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  9. Summer Temperature Extremes in the Northern Rockies: A Tree-Ring-Based Reconstruction (1670-2014) from the Bighorn Mountains, WY

    Science.gov (United States)

    Hudson, A.; Alfaro-Sanchez, R.; Belmecheri, S.; Moore, D. J.; Trouet, V.

    2017-12-01

    Anthropogenic climate change has caused global temperatures to rise in recent decades. Temperatures at the regional scale are influenced by various factors including topography, atmospheric circulation, and seasonality that superimpose year-to-year variability on this global warming trend. Here, we develop a tree-ring based summer temperature reconstruction for the northern Rockies in order to investigate the drivers of the year-to-year temperature variability in this region. For this purpose, we sampled 10 sites in the semi-arid Bighorn Mountains, WY and developed two tree-ring width chronologies for differing elevations. The high elevation Picea engelmannii chronology (>2,630m) is positively correlated with July temperature variability, whereas the low elevation (<2,580m) chronology - consisting of Pinus contorta, Pseudotsuga menziesii, and Pinus albicaulis - is sensitive to summer precipitation and negatively correlated with June and July temperatures. A reconstruction based on a combination of the two chronologies explains 30% of the variance in regional June and July temperatures over the instrumental period, covers the period 1670-2014, and is representative for the central United States and southern Canada region. Our reconstruction shows significantly lower summer temperatures in the year following the 16 largest tropical eruptions from 1670 to the present. The reconstruction further captures the high summer temperatures during the 1930s dust bowl era and shows a steep increase in variance in the late 20th century. Enhanced late 20th century variance has also been detected in climate and ecosystem dynamics in the Northeast Pacific, which suggests an impact of an amplified meridional flow on northern Rockies summer temperatures.

  10. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    Science.gov (United States)

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  11. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  12. Clinical and laboratory features, hospital course, and outcome of Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Buckingham, Steven C; Marshall, Gary S; Schutze, Gordon E; Woods, Charles R; Jackson, Mary Anne; Patterson, Lori E R; Jacobs, Richard F

    2007-02-01

    To describe the clinical characteristics and course of children with laboratory-diagnosed Rocky Mountain spotted fever (RMSF) and to identify clinical findings independently associated with adverse outcomes of death or discharge with neurologic deficits. Retrospective chart review of 92 patients at six institutions in the southeastern and southcentral United States from 1990 to 2002. Statistical analyses used descriptive statistics and multiple logistic regression. Children with RMSF presented to study institutions after a median of 6 days of symptoms, which most commonly included fever (98%), rash (97%), nausea and/or vomiting (73%), and headache (61%); no other symptom or sign was present in >50% of children. Only 49% reported antecedent tick bites. Platelet counts were <150,000/mm3 in 59% of children, and serum sodium concentrations were <135 mEq/dL in 52%. Although 86% sought medical care before admission, only 4 patients received anti-rickettsial therapy during this time. Three patients died, and 13 survivors had neurologic deficits at discharge. Coma and need for inotropic support and intravenous fluid boluses were independently associated with adverse outcomes. Children with RMSF generally present with fever and rash. Delays in diagnosis and initiation of appropriate therapy are unacceptably common. Prognosis is guarded in those with hemodynamic instability or neurologic compromise at initiation of therapy.

  13. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Todd, Suzanne R; Dahlgren, F Scott; Traeger, Marc S; Beltrán-Aguilar, Eugenio D; Marianos, Donald W; Hamilton, Charlene; McQuiston, Jennifer H; Regan, Joanna J

    2015-05-01

    To evaluate whether cosmetically relevant dental effects occurred among children who had received doxycycline for treatment of suspected Rocky Mountain spotted fever (RMSF). Children who lived on an American Indian reservation with high incidence of RMSF were classified as exposed or unexposed to doxycycline, based on medical and pharmacy record abstraction. Licensed, trained dentists examined each child's teeth and evaluated visible staining patterns and enamel hypoplasia. Objective tooth color was evaluated with a spectrophotometer. Fifty-eight children who received an average of 1.8 courses of doxycycline before 8 years of age and who now had exposed permanent teeth erupted were compared with 213 children who had never received doxycycline. No tetracycline-like staining was observed in any of the exposed children's teeth (0/58, 95% CI 0%-5%), and no significant difference in tooth shade (P=.20) or hypoplasia (P=1.0) was found between the 2 groups. This study failed to demonstrate dental staining, enamel hypoplasia, or tooth color differences among children who received short-term courses of doxycycline at <8 years of age. Healthcare provider confidence in use of doxycycline for suspected RMSF in children may be improved by modifying the drug's label. Published by Elsevier Inc.

  14. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  15. Health status of mule deer and white-tailed deer herds on the Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Creekmore, T.E.; Franson, J.C.; Sileo, L. [National Wildlife Health Research Center, Madison, WI (United States); Griess, J.M.; Roy, R.R. [Rocky Mountain Arsenal, Commerce City, CO (United States); Baker, D.L. [Colorado Division of Wildlife, Ft. Collins, CO (United States)

    1994-12-31

    The Rocky Mountain Arsenal is a fenced, 6,900-ha Superfund site under remediation by the US Army and the Shell Oil Company. A variety of environmental contaminants including organochlorine pesticides, metals, and nerve-gas-production by-products are in the soil or in the water on the site. The authors evaluated the health of 18 radio-collared deer (13 mule deer [Odocoileus hemionus] and 5 white-tailed deer [O. virginianus]) collected by gunshot. Prior to collection, more than 4,000 locations of the 18 deer were plotted during a period of more than 2 years. Blood samples from the euthanized animals were collected for serologic, hematologic, and contaminant evaluations. Necropsies were preformed and tissues collected for histopathologic examinations and environmental contaminants analyses. Results indicate that the physical conditions of the mule deer were fair/good and of the white-tailed deer were good. Antibody prevalence against epizootic hemorrhagic disease serotype 2 was 85% and bovine virus diarrhea 56%. Two mule deer had severe testicular atrophy, and one of these animals also had antler deformities. Three mule deer had alopecia with dermatitis and hyperkeratosis. Results of heavy metal, and organochlorine pesticide analyses from blood and tissue samples and other analyses will be presented.

  16. Comparative wood anatomy of some shrubs native to the Northern Rocky Mountains

    Science.gov (United States)

    Arlene Dale

    1968-01-01

    This paper describes some xylem characteristics of the more important shrub species of the Northern Rockies and presents a key for identifying shrub-wood specimens by microscopic characters. The paper contains photomicrographs of 55 shrub woods.

  17. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    Science.gov (United States)

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  18. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    Science.gov (United States)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  19. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  20. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  1. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni.

    Science.gov (United States)

    Clayton, Katie A; Gall, Cory A; Mason, Katheen L; Scoles, Glen A; Brayton, Kelly A

    2015-12-10

    In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies have shown that symbiotic organisms are involved in a number of biochemical and physiological functions. Characterizing the bacterial microbiome of D. andersoni is a pivotal step towards understanding symbiont-host interactions. In this study, we have shown by high-throughput sequence analysis that the composition of endosymbionts in the midgut and salivary glands in adult ticks is dynamic over three generations. Four Proteobacteria genera, Rickettsia, Francisella, Arsenophonus, and Acinetobacter, were identified as predominant symbionts in these two tissues. Exposure to therapeutic doses of the broad-spectrum antibiotic, oxytetracycline, affected both proportions of predominant genera and significantly reduced reproductive fitness. Additionally, Acinetobacter, a free-living ubiquitous microbe, invaded the bacterial microbiome at different proportions based on antibiotic treatment status suggesting that microbiome composition may have a role in susceptibility to environmental contaminants. This study characterized the bacterial microbiome in D. andersoni and determined the generational variability within this tick. Furthermore, this study confirmed that microbiome manipulation is associated with tick fitness and may be a potential method for biocontrol.

  2. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  3. VERANO DE 1948. BUCKMINSTER FULLER EN BLACK MOUNTAIN COLLEGE. LA ARQUITECTURA COMO ACONTECIMIENTO / Summer 1948. Buckminster Fuller at Black Mountain college. Architecture as an event

    Directory of Open Access Journals (Sweden)

    María Teresa Muñoz Jiménez

    2010-11-01

    Full Text Available RESUMEN. El paso de Buckminster Fuller por Black Mountain College, y que ha asociado permanentemente su nombre al de esta institución de North Carolina, se concentra y se limita a tres episodios: el experimento fracasado de erigir una cúpula geodésica con ayuda de los estudiantes en el verano de 1948, su participación en la obra de Eric Satie promovida por Cage y Cunnigham ese mismo verano, y su nuevo experimento con una cúpula geodésica en 1949, esta vez sí conseguido con ayuda del equipo de ingenieros que había realizado los cálculos estructurales. Es cierto que la mayoría del tiempo pasado en North Carolina fue dedicado por Fuller a sus conferencias y conversaciones con profesores y alumnos, a exponer sus teorías sobre los temas más diversos e incluso a la lectura de sus poemas. Pero queda en la memoria colectiva únicamente el dato de que fue allí, en Black Mountain, donde Buckminster Fuller erigió la primera cúpula geodésica de su carrera, una de las construcciones más identificadas con él y cuya ambición de cubrir grandes espacios, o incluso ciudades enteras, estaba muy lejos de lo limitado de ese primer ensayo con una burbuja de vinilo multicolor que no sobrepasaba las dimensiones de una cabaña. SUMMARY. The time spent by Buckminster Fuller at Black Mountain College, and which has permanently associated his name to this North Carolina institution, is focused upon, and limited to, three episodes: the failed experiment to erect a geodesic dome with the help of the students during the summer of 1948; his participation in the work of Eric Satie promoted by Cage and Cunningham that same summer; and, his new experiment with a geodesic dome in 1949, this time with the help of the engineering team which had made the structural calculations. Most of the time spent by Fuller in North Carolina was dedicated to his lectures and conversations with teachers and students, to expound his theories on the most diverse subjects and even

  4. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfsberg, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  5. Climate vulnerability of native cold-water salmonids in the Northern Rockies Region [Chapter 5

    Science.gov (United States)

    Michael K. Young; Daniel J. Isaak; Scott Spaulding; Cameron A. Thomas; Scott A. Barndt; Matthew C. Groce; Dona Horan; David E. Nagel

    2018-01-01

    During the 21st century, climate change is expected to alter aquatic habitats throughout the Northern Rocky Mountains, intermountain basins, and western Great Plains. Particularly in montane watersheds, direct changes are likely to include warmer water temperatures, earlier snowmelt-driven runoff, earlier declines to summer baseflow, downhill movement of perennial...

  6. A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States.

    Science.gov (United States)

    vonHoldt, Bridgett M; Stahler, Daniel R; Bangs, Edward E; Smith, Douglas W; Jimenez, Mike D; Mack, Curt M; Niemeyer, Carter C; Pollinger, John P; Wayne, Robert K

    2010-10-01

    The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity. © 2010 Blackwell Publishing Ltd.

  7. Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century.

    Science.gov (United States)

    Boisvenue, Céline; Running, Steven W

    2010-07-01

    Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region.

  8. Spatial clustering by disease severity among reported Rocky Mountain spotted fever cases in the United States, 2001-2005.

    Science.gov (United States)

    Adjemian, Jennifer Zipser; Krebs, John; Mandel, Eric; McQuiston, Jennifer

    2009-01-01

    Rocky Mountain spotted fever (RMSF) occurs throughout much of the United States, ranging in clinical severity from moderate to fatal infection. Yet, little is known about possible differences among severity levels across geographic locations. To identify significant spatial clusters of severe and non-severe disease, RMSF cases reported to Centers for Disease Control and Prevention (CDC) were geocoded by county and classified by severity level. The statistical software program SaTScan was used to detect significant spatial clusters. Of 4,533 RMSF cases reported, 1,089 hospitalizations (168 with complications) and 23 deaths occurred. Significant clusters of 6 deaths (P = 0.05, RR = 11.4) and 19 hospitalizations with complications (P = 0.02, RR = 3.45) were detected in southwestern Tennessee. Two geographic areas were identified in north-central North Carolina with unusually low rates of severity (P = 0.001, RR = 0.62 and P = 0.001, RR = 0.45, respectively). Of all hospitalizations, 20% were clustered in central Oklahoma (P = 0.02, RR = 1.43). Significant geographic differences in severity were observed, suggesting that biologic and/or anthropogenic factors may be impacting RMSF epidemiology in the United States.

  9. Serologic evidence for exposure to Rickettsia rickettsii in eastern Arizona and recent emergence of Rocky Mountain spotted fever in this region.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc; Blau, Dianna; Gordon, Rondeen; Johnson, Brian; Dickson, Jeff; Ethelbah, Rudy; Piontkowski, Stephen; Levy, Craig; Nicholson, William L; Duncan, Christopher; Heath, Karen; Cheek, James; Swerdlow, David L; McQuiston, Jennifer H

    2006-01-01

    During 2002 through 2004, 15 patients with Rocky Mountain spotted fever (RMSF) were identified in a rural community in Arizona where the disease had not been previously reported. The outbreak was associated with Rickettsia rickettsii in an unexpected tick vector, the brown dog tick (Rhipicephalus sanguineus), which had not been previously associated with RMSF transmission in the United States. We investigated the extent of exposure to R. rickettsii in the local area through serologic evaluations of children and dogs in 2003-2004, and in canine sera from 1996. Antibodies to R. rickettsii at titers > or = 32 were detected in 10% of children and 70% of dogs in the outbreak community and 16% of children and 57% of dogs in a neighboring community. In comparison, only 5% of canine samples from 1996 had anti-R. rickettsii antibodies at titers > or = 32. These results suggest that exposures to RMSF have increased over the past 9 years, and that RMSF may now be endemic in this region.

  10. Regulatory authority of the Rocky Mountain states for low-level radioactive waste packaging and transportation

    International Nuclear Information System (INIS)

    Whitman, M.; Tate, P.

    1983-07-01

    The newly-formed Rocky Mountain Low-Level Radioactive Waste Compact is an interstate agreement for the management of low-level radioactive waste (LLW). Eligible members of the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Each state must ratify the compact within its legislature for the compact to become effective in that state and to make that state a full-fledged member of the compact. By so adopting the compact, each state agrees to the terms and conditions specified therein. Among those terms and conditions are provisions requiring each member state to adopt and enforce procedures requiring low-level waste shipments originating within its borders and destined for a regional facility to conform to packaging and transportation requirements and regulations. These procedures are to include periodic inspections of packaging and shipping practices, periodic inspections of waste containers while in the custody of carriers and appropriate enforcement actions for violations. To carry out this responsibility, each state must have an adequate statutory and regulatory inspection and enforcement authority to ensure the safe transportation of low-level radioactive waste. Three states in the compact region, Arizona, Utah and Wyoming, have incorporated the Department of Transportation regulations in their entirety, and have no published rules and regulations of their own. The other states in the compact, Colorado, Nevada and New Mexico all have separate rules and regulations that incorporate the DOT regulations. A brief description of the regulatory requirements of each state is presented

  11. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  12. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Directory of Open Access Journals (Sweden)

    Michael L Levin

    Full Text Available Rocky Mountain spotted fever (RMSF is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  13. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Science.gov (United States)

    Levin, Michael L; Killmaster, Lindsay F; Zemtsova, Galina E; Ritter, Jana M; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  14. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Science.gov (United States)

    West, Amanda M; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S; Stohlgren, Thomas J; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  15. Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park

    Science.gov (United States)

    West, Amanda M.; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S.; Stohlgren, Thomas J.; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255

  16. Efficacy of Doxycycline, Azithromycin, or Trovafloxacin for Treatment of Experimental Rocky Mountain Spotted Fever in Dogs

    Science.gov (United States)

    Breitschwerdt, E. B.; Papich, M. G.; Hegarty, B. C.; Gilger, B.; Hancock, S. I.; Davidson, M. G.

    1999-01-01

    Dogs were experimentally inoculated with Rickettsia rickettsii (canine origin) in order to compare the efficacies of azithromycin and trovafloxacin to that of the current antibiotic standard, doxycycline, for the treatment of Rocky Mountain spotted fever. Clinicopathologic parameters, isolation of rickettsiae in tissue culture, and PCR amplification of rickettsial DNA were used to evaluate the response to therapy or duration of illness (untreated infection control group) in the four groups. Concentrations of the three antibiotics in plasma and blood cells were measured by high-performance liquid chromatography. Doxycycline and trovafloxacin treatments resulted in more-rapid defervescence, whereas all three antibiotics caused rapid improvement in attitudinal scores, blood platelet numbers, and the albumin/total-protein ratio. Based upon detection of retinal vascular lesions by fluorescein angiography, trovafloxacin and doxycycline substantially decreased rickettsia-induced vascular injury to the eye, whereas the number of ocular lesions in the azithromycin group did not differ from that in the infection control group. As assessed by tissue culture isolation, doxycycline resulted in the earliest apparent clearance of viable circulating rickettsiae; however, rickettsial DNA could still be detected in the blood of some dogs from all four groups on day 21 postinfection, despite our inability to isolate viable rickettsiae at that point. As administered in this study, trovafloxacin was as efficacious as doxycycline but azithromycin proved less efficacious, possibly due to the short duration of administration. PMID:10103185

  17. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Directory of Open Access Journals (Sweden)

    Amanda M West

    Full Text Available National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass, which is found in Rocky Mountain National Park (hereafter, the Park, Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211, current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2 and at a fine spatial resolution (90 m is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  18. Effects of Climate Change on Cultural Resources in the Northern Rockies Region [Chapter 12

    Science.gov (United States)

    Carl M. Davis

    2018-01-01

    People have inhabited the Northern Rocky Mountains of the United States since the close of the last Pleistocene glacial period, some 14,000 years B.P. (Fagan 1990; Meltzer 2009). Evidence of this ancient and more recent human occupation is found throughout the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area,...

  19. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  20. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  1. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    Science.gov (United States)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  2. Wilderness experience in Rocky Mountain National Park 2002; report to respondents

    Science.gov (United States)

    Schuster, Elke; Johnson, S. Shea; Taylor, Jonathan G.

    2003-01-01

    A substantial amount of backcountry (about 250,000 acres) in Rocky Mountain National Park [RMNP of the Park] may be designated as wilderness areas in the coming years. Currently, over 3 million visitors drives through the park on Trail Ridge Road, camp in designated campgrounds, day hike, etc. each year. Many of those visitors also report using the backcountry-wilderness areas that are not easily accessible by roads or trails. Use of the backcountry is growing at RMNP and is accompanied by changing visitor expectations and preferences for wilderness management. For these reasons it is of great importance for the Park to periodically assess what types of environments and conditions wilderness users seek to facilitate a quality experience. To assist in this effort, the Political Analysis and Science Assistance [PSAS] program / Fort Collins Center / U.S. Geological Survey, in close collaboration with personnel and volunteers from RMNP, as well as the Natural Resource Recreation and Tourism [NRRT] Department at Colorado State University, launched a research effort in the summer of 2002 to investigate visitorsa?? wilderness experiences in the Park. Specifically, the purpose of this research was: (1) To determine what constitutes a wilderness experience; (2) To identify important places, visual features, and sounds essential to a quality wilderness experience and; (3) To determine what aspects may detract from wilderness experience. Thus, answers to these questions should provide insight for Park managers about visitorsa?? expectation for wilderness recreation and the conditions they seek for quality wilderness experiences. Ultimately, this information can be used to support wilderness management decisions within RMNP. The social science technique of Visitor Employed Photography [VEP] was used to obtain information from visitors about wilderness experiences. Visitors were selected at random from Park-designated wilderness trails, in proportion to their use, and asked to

  3. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  4. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Science.gov (United States)

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  5. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Science.gov (United States)

    Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.

  6. Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills

    Science.gov (United States)

    Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

  7. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  8. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  9. The past as prelude to the future for understanding 21st-century climate effects on Rocky Mountain Trout

    Science.gov (United States)

    Isaak, Daniel J.; Muhlfeld, Clint C.; Todd, Andrew S.; Al-chokhachy, Robert; Roberts, James; Kershner, Jeffrey L.; Fausch, Kurt D.; Hostetler, Steven W.

    2012-01-01

    Bioclimatic models predict large reductions in native trout across the Rocky Mountains in the 21st century but lack details about how changes will occur. Through five case histories across the region, we explore how a changing climate has been affecting streams and the potential consequences for trout. Monitoring records show trends in temperature and hydrographs consistent with a warming climate in recent decades. Biological implications include upstream shifts in thermal habitats, risk of egg scour, increased wildfire disturbances, and declining summer habitat volumes. The importance of these factors depends on the context, but temperature increases are most relevant where population boundaries are mediated by thermal constraints. Summer flow declines and wildfires will be important where trout populations are fragmented and constrained to small refugia. A critical information gap is evidence documenting how populations are adjusting to long-term habitat trends, so biological monitoring is a priority. Biological, temperature, and discharge data from monitoring networks could be used to develop accurate vulnerability assessments that provide information regarding where conservation actions would best improve population resilience. Even with better information, future uncertainties will remain large due to unknowns regarding Earth's ultimate warming trajectory and how effects translate across scales. Maintaining or increasing the size of habitats could provide a buffer against these uncertainties.

  10. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  11. Interactions between Rocky Mountain Bighorn Sheep Ovis canadensis canadensis and Domestic Sheep Ovis aries and the Biological, Social, Economic, and Legal Implications of these Interactions on USDA Forest Service Lands in the Evanston/Mt. View Ranger District

    OpenAIRE

    Herrera, Ashly Nicole

    2012-01-01

    Strong evidence exists indicating domestic sheep (Ovis aries) can infect Rocky Mountain bighorn sheep (Ovis canadensis canadensis), a United States Forest Service (USFS) Region 4 sensitive species, with pneumonia (Callan 1991; Foreyt 1989, 1992, 1994; Foreyt and Lagerquist 1996; George et al 2008; Wehausen et al. 2011). Since the transmission of the pneumonic bacteria between the domestic and wild sheep is a result of bighorn sheep coming into contact with the bacteria carried in the mucous m...

  12. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This 'was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE)

  13. Stable isotopes in yellow-bellied marmot (Marmota flaviventris) fossils reveal environmental stability in the late Quaternary of the Colorado Rocky Mountains

    Science.gov (United States)

    Reynard, Linda M.; Meltzer, David J.; Emslie, Steven D.; Tuross, Noreen

    2015-03-01

    High elevation plant and animal communities are considered extremely sensitive to environmental change. We investigated an exceptional fossil record of yellow-bellied marmot (Marmota flaviventris) specimens that was recovered from Cement Creek Cave (elev. 2860 m) and ranged in age from radiocarbon background circa 49.8 cal ka BP to ~ 1 cal ka BP. We coupled isotopic and radiocarbon measurements (δ18O, δD, δ15N, δ13C, and 14C) of bone collagen from individually-AMS dated specimens of marmots to assess ecological responses by this species to environmental change over time in a high elevation basin in the Rocky Mountains of southwestern Colorado, USA. We find little change in all four isotope ratios over time, demonstrating considerable environmental stability during periods when the marmots were present. The stable ecology and the apparent persistence of the small mammal community in the cave fauna throughout the late Quaternary are in marked contrast to the changes that occurred in the large mammal community, including local extirpation and extinction, at the end of the Pleistocene.

  14. 78 FR 48183 - Rocky Mountain Arsenal National Wildlife Refuge, Commerce City, CO; Comprehensive Conservation...

    Science.gov (United States)

    2013-08-07

    ... Plan and Environmental Impact Statement; Two Ponds National Wildlife Refuge, Arvada, CO; Comprehensive... prepare a Comprehensive Conservation Plan (CCP) and an Environmental Impact Statement (EIS) for the Rocky..., including more than 120 species of birds, coyote and red fox, muskrat, raccoon, and beaver, deer, several...

  15. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    Science.gov (United States)

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  16. Factors influencing spring and summer areal snow ablation and snowcover depletion in alpine terrain: detailed measurements from the Canadian Rockies

    OpenAIRE

    Schirmer, Michael; Pomeroy, John W.

    2018-01-01

    The spatial distribution of snow water equivalent (SWE) and melt are important to estimating areal melt rates and snowcover depletion dynamics but are rarely measured in detail during the late ablation period. This study contributes the result of high resolution observations made using large numbers of sequential aerial photographs taken from an Unmanned Aerial Vehicle on an alpine ridge in the Fortress Mountain Snow Laboratory in the Canadian Rocky Mountains from May to July. With Structure-...

  17. Multi-Scale Influences of Climate, Spatial Pattern, and Positive Feedback on 20th Century Tree Establishment at Upper Treeline in the Rocky Mountains, USA

    Science.gov (United States)

    Elliott, G. P.

    2009-12-01

    The influences of 20th century climate, spatial pattern of tree establishment, and positive feedback were assessed to gain a more holistic understanding of how broad scale abiotic and local scale biotic components interact to govern upper treeline ecotonal dynamics along a latitudinal gradient (ca. 35°N-45°N) in the Rocky Mountains. Study sites (n = 22) were in the Bighorn, Medicine Bow, Front Range, and Sangre de Cristo mountain ranges. Dendroecological techniques were used for a broad scale analysis of climate at treeline. Five-year age-structure classes were compared with identical five-year bins of 20th century climate data using Spearman’s rank correlation and regime shift analysis. Local scale biotic interactions capable of ameliorating broad scale climate inputs through positive feedback were examined by using Ripley’s K to determine the spatial patterns of tree establishment above timberline. Significant correlations (p Medicine Bow and Sangre de Cristo Mountains primarily contain clustered spatial patterns of trees above timberline, which indicates a strong reliance on the amelioration of abiotic conditions through positive feedback with nearby vegetation. Although clustered spatial patterns likely originate in response to harsh abiotic conditions such as drought or constant strong winds, the local scale biotic interactions within a clustered formation of trees appears to override the immediate influence of broad scale climate. This is evidenced both by a lack of significant correlations between tree establishment and climate in these mountain ranges, as well as the considerable lag times between initial climate regime shifts and corresponding shifts in tree age structure. Taken together, this research suggests that the influence of broad scale climate on upper treeline ecotonal dynamics is contingent on the local scale spatial patterns of tree establishment and related influences of positive feedback. These findings have global implications for our

  18. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    Science.gov (United States)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides

  19. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Science.gov (United States)

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  20. Clinical profile and predictors of fatal Rocky Mountain spotted fever in children from Sonora, Mexico.

    Science.gov (United States)

    Alvarez-Hernandez, Gerardo; Murillo-Benitez, Coral; Candia-Plata, Maria del Carmen; Moro, Manuel

    2015-02-01

    Rocky Mountain spotted fever (RMSF) is an increasingly important cause of preventable mortality in children in Sonora, Mexico. Although early treatment with tetracycline has shown to prevent fatal outcome, the disease remains a life-threatening condition, particularly for children. This study describes the clinical factors associated with pediatric mortality due to RMSF in Sonora, in order to guide healthcare practices. This is a retrospective analysis of 104 children consecutively hospitalized at the major pediatric hospital of Sonora, diagnosed with RMSF between January 2004 and December 2013. Descriptive statistics and multiple logistic regression were used to identify risk factors for fatal outcome. The case fatality ratio in this cohort was 20.2%. Children were hospitalized after a median of 6 days from onset of symptoms including fever (100%), rash involving palms and soles (88.5%) and headache (79.8%); 90.4% of fatal cases had low platelet counts (<50,000/μL) and 33.3% showed serum creatinine concentrations above the normal value. Acute kidney injury increased mortality, odds ratio (OR(adj)) = 4.84, 95% confidence interval (CI): 1.2-16.2, as well as delay in treatment (≥ 5th day from onset) with doxycycline, OR(adj) = 2.62, 95% CI: 1.24-5.52 and hemorrhage, OR(adj) = 6.11, 95% CI: 1.89-19.69. RMSF is a public health problem in Sonora. Clinically, fatal cases differ from non-fatal cases in renal function and hemorrhagic manifestations, although these findings may occur too late for a timely intervention. First-line providers must be educated to harbor a timely suspicion of RMSF, and should provide empiric treatment with doxycycline when febrile patients first present for care.

  1. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  2. Mountains as early warning indicators of climate change

    Science.gov (United States)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  3. North American Rocky Mountain Hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Finney, B.; Anderson, L.; Berkelhammer, M. B.; Barron, J. A.; Steinman, B. A.; Abbott, M. B.

    2015-12-01

    A network of western North American lake sediment isotope records (calcium carbonate-δ18O) developed during the past decade provides substantial evidence of Pacific ocean-atmosphere forcing of precipitation variability during the Holocene. We present an overview of the eighteen lake carbonate-δ18O records located in the North American Rocky Mountains with a new compilation of modern lake water isotope measurements to characterize their sensitivity to variations in precipitation-δ18O and fractionation effects by evaporation. Comparative analysis of the carbonate-δ18O records that reflect precipitation isotope (δ18O) values (i.e., precipitation "isometers") indicates a sequence of time-varying in-phase and antiphase patterns between northern and southern regions during the Holocene that provide evidence for a highly non-stationary influence of Pacific ocean-atmosphere processes on the hydroclimate of western North America. We identify a prominent precipitation-δ18O dipole, which was sustained for ~2000 years between ~3.5 and 1.5 ka. The dipole contrasts with divergent earlier Holocene patterns and appears to indicate the onset of linkages between northern and tropical Pacific ocean-atmosphere dynamics as we know them today. These observations are informed by previous research on North Pacific precipitation-δ18O. Further investigation of short (observational) and long (Holocene) time scale patterns are needed to improve our understanding of the processes that 1) drive regional precipitation-δ18O responses to Pacific Ocean-atmosphere variability, and 2) cause varying internal ocean-atmosphere responses to external climate forcing.

  4. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    Science.gov (United States)

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-01-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m−3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (10), as revealed by relatively low average daily concentrations of fine (<5 μg m−3; PM2.5) and coarse (<10 μg m−3; PM2.5–10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  5. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  6. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Science.gov (United States)

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  7. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick).

    Science.gov (United States)

    Atkinson, Samuel F; Sarkar, Sahotra; Aviña, Aldo; Schuermann, Jim A; Williamson, Phillip

    2012-11-01

    The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF) in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick's habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17). It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.

  8. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick

    Directory of Open Access Journals (Sweden)

    Samuel F. Atkinson

    2012-11-01

    Full Text Available The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick’s habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17. It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.

  9. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  10. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    Science.gov (United States)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  11. Notes from the Field: Community-Based Prevention of Rocky Mountain Spotted Fever - Sonora, Mexico, 2016.

    Science.gov (United States)

    Straily, Anne; Drexler, Naomi; Cruz-Loustaunau, Denica; Paddock, Christopher D; Alvarez-Hernandez, Gerardo

    2016-11-25

    Rocky Mountain spotted fever (RMSF), a life-threatening tickborne zoonosis caused by Rickettsia rickettsii, is a reemerging disease in Mexico (1,2). R. rickettsii is an intracellular bacterium that infects vascular endothelium and can cause multisystem organ failure and death in the absence of timely administration of a tetracycline-class antibiotic, typically doxycycline. Epidemic RMSF, as described in parts of Arizona and Mexico, is associated with massive local infestations of the brown dog tick (Rhiphicephalus sanguineus sensu lato) on domestic dogs and in peridomestic settings that result in high rates of human exposure; for example, during 2003-2012, in Arizona the incidence of RMSF in the three most highly affected communities was 150 times the U.S. national average (3,4). In 2015, the Mexico Ministry of Health (MOH) declared an epidemiologic emergency because of high and sustained rates of RMSF in several states in northern Mexico, including the state of Sonora. During 2004-2015, a total of 1,129 cases and 188 RMSF deaths were reported from Sonora (Sonora MOH, unpublished data, 2016). During 2009-2015, one impoverished community (community A) in Sonora reported 56 cases of RMSF involving children and adolescents, with a case-fatality rate of 40% (Sonora MOH, unpublished data, 2016). Poverty and lack of timely access to health services are risk factors for severe RMSF. Children are especially vulnerable to infection, because they might have increased contact with dogs and spend more time playing around spaces where ticks survive (5). In Sonora, case fatality rates for children aged <10 years can be as high as 30%, which is almost four times the aggregate case-fatality rate reported for the general population of the state (8%) (2), and 10-13 times higher than the case-fatality rate described for this age group in the United States (2.4%) (6).

  12. Far from City Lights: Current TCJ Staff Brings Variety of Talents, Enthusiasm for Their Work

    Science.gov (United States)

    Talahongva, Patty

    2009-01-01

    Far from the glitzy streets of New York or Los Angeles... where many of this nation's magazines are published... and on the edge of the famed Four Corners Region in the town of Mancos, Colorado ...is the home of the Tribal College Journal (TCJ). Tucked away in the Rocky Mountains, it's much like the tribal colleges it serves, far from big city…

  13. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    Science.gov (United States)

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  14. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review

    International Nuclear Information System (INIS)

    Burns, Douglas A.

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha -1 yr -1 , and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is 3 - concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. - The effects of nitrogen deposition will become more evident as growth increases

  15. The Evaluation and Management of Rocky Mountain Spotted Fever in the Emergency Department: a Review of the Literature.

    Science.gov (United States)

    Gottlieb, Michael; Long, Brit; Koyfman, Alex

    2018-07-01

    Rocky Mountain spotted fever (RMSF) is potentially deadly and can present subtly with signs and symptoms overlapping with other clinical conditions. Delayed diagnosis can be fatal. This review provides an evidence-based summary of the current data for the evaluation and management of RMSF in the emergency department. RMSF occurs through transmission of Rickettsia rickettsii by an infected tick. Exposure in the United States occurs most commonly from April to September, and high-risk locations include wooded, shrubby, or grassy areas. Approximately half of patients with infection do not recall tick exposure. Symptoms can include fever, headache, photophobia, malaise, myalgias, and a petechial rash that begins on the wrists and ankles and spreads to the trunk. Rash may not occur in ≤15% of patients, and the classic triad of fever, headache, and rash is also not definitive. Laboratory evaluation may demonstrate hyponatremia, anemia, thrombocytopenia, abnormal liver enzymes, and elevated coagulation tests. Antibody testing can be helpful, but these results are not typically available to the emergency clinician. Doxycycline is the treatment of choice in adults, children, and pregnant patients. Patients should be advised about prevention strategies and effective techniques for removing ticks. RMSF is a potentially deadly disease that requires prompt recognition and management. Focused history, physical examination, and testing are important in the diagnosis of this disease. Understanding the clinical features, diagnostic tools, and proper treatment can assist emergency clinicians in the management of RMSF. Published by Elsevier Inc.

  16. Effects of fuel treatments on carbon-disturbance relationships in forests of the northern Rocky Mountains

    Science.gov (United States)

    Elizabeth Reinhardt; Lisa Holsinger

    2010-01-01

    Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky...

  17. Occurrence of pathogenic fungi to Amblyomma cajennense in a rural area of Central Brazil and their activities against vectors of Rocky Mountain spotted fever.

    Science.gov (United States)

    D'Alessandro, Walmirton B; Humber, Richard A; Luz, Christian

    2012-08-13

    Two isolates of Beauveria bassiana and one of Purpureocillium lilacinum (=Paecilomyces lilacinus) were found infecting Amblyomma cajennense engorged females collected on horses (0.15% infection rate from a total of 1982 specimens) and another two isolates of P. lilacinum and one Metarhizium anisopliae detected in soils (2.1% from 144 samples) collected in typical pasture habitats of this tick in Central Brazil from October 2009 to March 2011. Fungi were isolated from soils with Rhipicephalus sanguineus as surrogate baits. No fungi were found in ticks or soils during the driest months (May to August). Testing pathogenicity of fungi all R. sanguineus females were killed regardless of the isolate and fungi sporulated abundantly on the cadavers. A. cajennense was less susceptible to infection with P. lilacinum within 20 days than R. sanguineus. All three fungal species probably act as natural antagonists of A. cajennense particularly in the rainy season and have interest for integrate control of vectors of Rocky Mountain spotted fever. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    Science.gov (United States)

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  19. Rocky Mountain spotted fever in Georgia, 1961-75: analysis of social and environmental factors affecting occurrence.

    Science.gov (United States)

    Newhouse, V F; Choi, K; Holman, R C; Thacker, S B; D'Angelo, L J; Smith, J D

    1986-01-01

    For the period of 1961 through 1975, 10 geographic and sociologic variables in each of the 159 counties of Georgia were analyzed to determine how they were correlated with the occurrence of Rocky Mountain spotted fever (RMSF). Combinations of variables were transformed into a smaller number of factors using principal-component analysis. Based upon the relative values of these factors, geographic areas of similarity were delineated by cluster analysis. It was found by use of these analyses that the counties of the State formed four similarity clusters, which we called south, central, lower north and upper north. When the incidence of RMSF was subsequently calculated for each of these regions of similarity, the regions had differing RMSF incidence; low in the south and upper north, moderate in the central, and high in the lower north. The four similarity clusters agreed closely with the incidence of RMSF when both were plotted on a map. Thus, when analyzed simultaneously, the 10 variables selected could be used to predict the occurrence of RMSF. The most important variables were those of climate and geography. Of secondary, but still major importance, were the changes over the 15-year period in variables associated with humans and their environmental alterations. Detailed examination of these factors has permitted quantitative evaluation of the simultaneous impacts of the geographic and sociologic variables on the occurrence of RMSF in Georgia. These analyses could be updated to reflect changes in the relevant variables and tested as a means of identifying new high risk areas for RMSF in the State. More generally, this method might be adapted to clarify our understanding of the relative importance of individual variables in the ecology of other diseases or environmental health problems. PMID:3090609

  20. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  1. Soil movements and surface erosion rates on rocky slopes in the mountain areas of the karst region of Southwest China

    Science.gov (United States)

    Zhang, X. B.; Bai, X. Y.; Long, Y.

    2012-04-01

    The karst region of Southwest China with an area of 54 × 104 km2 is one of the largest karst areas in the world and experiences subtropical climate. Hill-depressions are common landforms in the mountain areas of this region. Downslope soil movement on the ground by surface water erosion and soil sinking into underground holes by creeping or pipe erosion are mayor types of soil movements on rocky carbonate slopes. The 137Cs technique was used to date the sediment deposits in six karst depressions, to estimate average surface erosion rates on slopes from their catchments. The estimates of soil loss rates obtained from this study evidenced considerable variability. A value of 1.0 t km-2 year-1 was obtained for a catchment under original dense karst forest, but the erosion rates ranged between 19.3 t km-2 year-1 and 48.7 t km-2 year-1 in four catchments under secondary forest or grasses, where the original forest cover had been removed in the Ming and Qing dynasties, several hundred years ago. The highest rate of 1643 t km-2 year-1 was obtained for a catchment underlain by clayey carbonate rocks, where the soil cover was thicker and more extensive than in the other catchments and extensive land reclamation for cultivation had occurred during the period 1979-1981, immediately after the Cultural Revolution.

  2. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  3. Inconsistent Growth Response to Fertilization and Thinning of Lodgepole Pine in the Rocky Mountain Foothills Is Linked to Site Index

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2012-01-01

    Full Text Available Fertilization of conifers often results in highly variable growth responses across sites which are difficult to predict. The goal of this study was to predict the growth response of lodgepole pine (Pinus contorta var. latifolia crop trees to thinning and fertilization using basic site and foliar characteristics. Fifteen harvest-origin stands along the foothills of the Rocky Mountains of Alberta were subjected to six treatments including two levels of thinning (thinning to 2500 stems per hectare and a control and three types of fertilization (nitrogen-only fertilization, complete fertilization including nitrogen with added P, K, S, Mg, and B, and no fertilization. After three growing seasons, the growth response and foliar status of the crop trees were examined and this response was related to site and foliar characteristics. There was a small and highly variable additive response to fertilization and thinning; diameter growth of crop trees increased relative to the controls an average of 0.3 cm with thinning, 0.3 cm with either N-only or complete fertilization and 0.6 cm when thinned and fertilized. The increase in diameter growth with thinning and nitrogen-only fertilization was positively related to site index but not to any other site factors or pretreatment foliar variables such as nutrient concentrations, ratios, or thresholds.

  4. Atmospheric dispersion modeling at the Rocky Flats Plant. Progress report, December 1981-December 1985

    International Nuclear Information System (INIS)

    Hodgin, C.R.

    1986-01-01

    The Rocky Flats Plant applies atmospheric dispersion modeling as a tool for Emergency Response, Risk Assessment, and Regulatory Compliance. Extreme variations in terrain around the facility have necessitated the development of an advanced modeling approach. The Terrain-Responsive Atmospheric Code (TRAC) was developed to treat realistically the changing wind, stability, dispersion, and deposition patterns that are experienced in mountainous areas. The result is a detailed picture of dose and deposition patterns associated with postulated or actual releases. A unified approach was taken to modeling needs at Rocky Flats. This produces consistent dose projections for all applications. A Risk Assessment version of TRAC is now operational. A high-speed version of the code is being implemented for Emergency Response, and development of a regulatory version is under way. Public, scientific, and governmental acceptance of TRAC is critical to successful applications at the Rocky Flats Plant. A program of peer review and regulatory approval was initiated to provide a full outside evaluation of our techniques. Full field validation (tracer testing) is key to demonstrating reliability of the TRAC model. A validation study was planned for implementation beginning in early CY-1986. The necessary funding ($500,000) is being sought. Although the TRAC model development and approval program was developed for site-specific needs at the Rocky Flats Plant, potential exists for wider application within the Department of Energy (DOE). The TRAC model can be easily applied at other sites in complex terrain. A coordinated approach to model validation throughout the Albquerque Operations Office (AL) or DOE complexes could prove more cost effective than site-by-site evaluations. Finally, the model approval procedure developed jointly by Rocky Flats and the Environmental Protection Agency (EPA) is general and could be applied to other models or as the basis for a DOE-wide program

  5. Effect of vaccination schedule on immune response of Macaca mulatta to cell culture-grown Rocky Mountain spotted fever vaccine.

    Science.gov (United States)

    Sammons, L S; Kenyon, R H; Pedersen, C E

    1976-01-01

    The effect of vaccination schedule on the immune response of Macaca mulatta to formalin-inactivated chicken embryo cell culture (CEC)-grown Rickettsia rickettsii vaccine was studied. Schedules consisted of inoculation on day 1 only, on days 1 and 15, on days 1 and 30, on days 1, 8, and 15, or on days 1, 15, and 45. Humoral antibody measured by microagglutination and indirect immunofluorescence and resistance to challenge with 10(4) plaque-forming units of yolk sac-grown R. rickettsii were assessed. Seroconversion was noted in all monkeys after the first dose of vaccine. A second dose administered 8 or 15 days after the primary infection, or a third given 7 or 30 days after the second, produced no long-term effect on antibody titer. Only monkeys given two doses of vaccine at a 30-day interval showed an increase in antibody titer during the period before challenge. Vaccination with one, two, or three doses of CEC vaccine prevented development of rash and rickettsemia after challenge. The two-dose schedules appeared to induce the highest degree of resistance to challenge, as indicated by unaltered hematological parameters and body temperature in monkeys. The one- and three-dose schedules were somewhat less effective, in that some challenged monkeys within each group displayed febrile and leukocyte responses associated with Rocky Mountain spotted fever infection. Our data suggest that administration of two doses of CEC vaccine at 15- or 30-day intervals is the immunization schedule of choice. PMID:823173

  6. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    International Nuclear Information System (INIS)

    Shin, Eun-Jae; Lauve, Alexander; Carey, Maxwell; Bukovsky, Eric; Ranville, James F.; Evans, Robert J.; Herring, Andrew M.

    2008-01-01

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully

  7. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Jae [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)], E-mail: eshin@mines.edu; Lauve, Alexander; Carey, Maxwell [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Bukovsky, Eric; Ranville, James F. [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Evans, Robert J.; Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2008-03-15

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully.

  8. Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain Region City.

    Science.gov (United States)

    May, Philip A; Keaster, Carol; Bozeman, Rosemary; Goodover, Joelene; Blankenship, Jason; Kalberg, Wendy O; Buckley, David; Brooks, Marita; Hasken, Julie; Gossage, J Phillip; Robinson, Luther K; Manning, Melanie; Hoyme, H Eugene

    2015-10-01

    The prevalence and characteristics of fetal alcohol syndrome (FAS) and partial FAS (PFAS) in the United States (US) are not well known. This active case ascertainment study in a Rocky Mountain Region City assessed the prevalence and traits of children with FAS and PFAS and linked them to maternal risk factors. Diagnoses made by expert clinical dysmorphologists in multidisciplinary case conferences utilized all components of the study: dysmorphology and physical growth, neurobehavior, and maternal risk interviews. Direct parental (active) consent was obtained for 1278 children. Averages for key physical diagnostic traits and several other minor anomalies were significantly different among FAS, PFAS, and randomly-selected, normal controls. Cognitive tests and behavioral checklists discriminated the diagnostic groups from controls on 12 of 14 instruments. Mothers of children with FAS and PFAS were significantly lower in educational attainment, shorter, later in pregnancy recognition, and suffered more depression, and used marijuana and methamphetamine during their pregnancy. Most pre-pregnancy and pregnancy drinking measures were worse for mothers of FAS and PFAS. Excluding a significant difference in simply admitting drinking during the index pregnancy (FAS and PFAS=75% vs. 39.4% for controls), most quantitative intergroup differences merely approached significance. This community's prevalence of FAS is 2.9-7.5 per 1000, PFAS is 7.9-17.7 per 1000, and combined prevalence is 10.9-25.2 per 1000 or 1.1-2.5%. Comprehensive, active case ascertainment methods produced rates of FAS and PFAS higher than predicted by long-standing, popular estimates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Hydrologic response across a snow persistence gradient on the west and east slopes of the Rocky Mountains in Colorado

    Science.gov (United States)

    Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.

    2017-12-01

    Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope

  10. Dwarf forest recovery after disturbances in the Luquillo Mountains of Puerto Rico

    Science.gov (United States)

    P.L. Weaver

    2008-01-01

    Dwarf forest in Puerto Rico’s Luquillo Mountains varies according to substrate and topography with very short, dense forest growing on exposed, rocky sites. High elevation level sites suffered considerable damage during past hurricanes whereas the trees on certain lower slopes were protected by ridges or spurs. Post-disturbance recovery of dwarf forest on two types of...

  11. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  12. Seismic hazard characterization of 69 nuclear plant sites east of the Rocky Mountains: Results and discussion for the Batch 4 sites

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Savy, J.B.; Mensing, R.W.; Chen, J.C.

    1989-01-01

    The EUS Seismic Hazard Characterization Project (SHC) is the outgrowth of an earlier study performed as part of the US Nuclear Regulatory Commission's (NRC) Systematic Evaluation Program (SEP). The objectives of the SHC were: (1) to develop a seismic hazard characterization methodology for the region east of the Rocky Mountains (EUS), and (2) the application of the methodology to 69 site locations, some of them with several local soil conditions. The method developed uses expert opinions to obtain the input to the analyses. An important aspect of the elicitation of the expert opinion process was the holding of two feedback meetings with all the experts in order to finalize the methodology and the input data bases. The hazard estimates are reported in terms of peak ground acceleration (PGA) and 5% damping velocity response spectra (PSV). A total of eight volumes make up this report which contains a thorough description of the methodology, the expert opinion's elicitation process, the input data base as well as a discussion, comparison and summary volume (Volume 6). Consistent with previous analyses, this study finds that there are large uncertainties associated with the estimates of seismic hazard in the EUS, and it identifies the ground motion modeling as the prime contributor to those uncertainties. This document, Volume 5, provides the seismic hazard estimates for the 17 sites in ''Batch 4''

  13. Risk factors for fatal outcome from rocky mountain spotted Fever in a highly endemic area-Arizona, 2002-2011.

    Science.gov (United States)

    Regan, Joanna J; Traeger, Marc S; Humpherys, Dwight; Mahoney, Dianna L; Martinez, Michelle; Emerson, Ginny L; Tack, Danielle M; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A; McQuiston, Jennifer H

    2015-06-01

    Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Rocky mountain spotted fever characterization and comparison to similar illnesses in a highly endemic area-Arizona, 2002-2011.

    Science.gov (United States)

    Traeger, Marc S; Regan, Joanna J; Humpherys, Dwight; Mahoney, Dianna L; Martinez, Michelle; Emerson, Ginny L; Tack, Danielle M; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H; Yost, David A

    2015-06-01

    Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002-2011 from 2 Indian reservations in Arizona. RMSF cases in Arizona occurred year-round and peaked later (July-September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  16. Risk Factors for Fatal Outcome From Rocky Mountain Spotted Fever in a Highly Endemic Area—Arizona, 2002–2011

    Science.gov (United States)

    Regan, Joanna J.; Traeger, Marc S.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A.; McQuiston, Jennifer H.

    2016-01-01

    Background Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. Methods The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Results Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Conclusions Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. PMID:25697742

  17. Rocky Mountain Spotted Fever Characterization and Comparison to Similar Illnesses in a Highly Endemic Area—Arizona, 2002–2011

    Science.gov (United States)

    Traeger, Marc S.; Regan, Joanna J.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H.; Yost, David A.

    2015-01-01

    Background Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. Methods We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002–2011 from 2 Indian reservations in Arizona. Results RMSF cases in Arizona occurred year-round and peaked later (July–September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. Conclusions RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. PMID:25697743

  18. Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records

    International Nuclear Information System (INIS)

    Wang Xiaoping; Gong Ping; Zhang, Qianggong; Yao Tandong

    2010-01-01

    How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. - Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.

  19. Investigating the Adult Ixodid Tick Populations and Their Associated Anaplasma, Ehrlichia, and Rickettsia Bacteria at a Rocky Mountain Spotted Fever Hotspot in Western Tennessee.

    Science.gov (United States)

    Trout Fryxell, Rebecca T; Hendricks, Brain M; Pompo, Kimberly; Mays, Sarah E; Paulsen, Dave J; Operario, Darwin J; Houston, Allan E

    2017-08-01

    Ehrlichiosis and rickettsiosis are two common bacterial tick-borne diseases in the southeastern United States. Ehrlichiosis is caused by ehrlichiae transmitted by Amblyomma americanum and rickettsiosis is caused by rickettsiae transmitted by Amblyomma maculatum and Dermacentor variabilis. These ticks are common and have overlapping distributions in the region. The objective of this study was to identify Anaplasma, Ehrlichia, and Rickettsia species associated with questing ticks in a Rocky Mountain spotted fever (RMSF) hotspot, and identify habitats, time periods, and collection methods for collecting questing-infected ticks. Using vegetation drags and CO 2 -baited traps, ticks were collected six times (May-September 2012) from 100 sites (upland deciduous, bottomland deciduous, grassland, and coniferous habitats) in western Tennessee. Adult collections were screened for Anaplasma and Ehrlichia (simultaneous polymerase chain reaction [PCR]) and Rickettsia using genus-specific PCRs, and resulting positive amplicons were sequenced. Anaplasma and Ehrlichia were only identified within A. americanum (Ehrlichia ewingii, Ehrlichia chaffeensis, Panola Mountain Ehrlichia, and Anaplasma odocoilei sp. nov.); more Ehrlichia-infected A. americanum were collected at the end of June regardless of habitat and collection method. Rickettsia was identified in three tick species; "Candidatus Rickettsia amblyommii" from A. americanum, R. parkeri and R. andeanae from A. maculatum, and R. montanensis ( = montana) from D. variabilis. Overall, significantly more Rickettsia-infected ticks were identified as A. americanum and A. maculatum compared to D. variabilis; more infected-ticks were collected from sites May-July and with dragging. In this study, we report in the Tennessee RMSF hotspot the following: (1) Anaplasma and Ehrlichia are only found in A. americanum, (2) each tick species has its own Rickettsia species, (3) a majority of questing-infected ticks are collected May-July, (4) A

  20. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  1. An epidemiologic and entomologic investigation of a cluster of Rocky Mountain spotted fever cases in Delaware.

    Science.gov (United States)

    Rotz, L; Callejas, L; McKechnie, D; Wolfe, D; Gaw, E; Hathcock, L; Childs, J

    1998-06-01

    Rocky Mountain spotted fever (RMSF) continues to be the most common fatal tick-borne illness in the United States. In August of 1996, four children attending a summer camp in Delaware were diagnosed with RMSF. This report summarizes the results of the epidemiologic and entomologic investigation conducted by the Delaware Division of Public Health and the Centers for Disease Control and Prevention regarding this cluster of RMSF cases. Epidemiologic and clinical aspects of RMSF, as well as previously reported clusters of the disease, are also reviewed. A questionnaire regarding symptoms and activities was administered via telephone to 163 (73 percent) of the 223 attendees. A suspected case was defined as an illness in a person attending the camp between August 11 and 17 that occurred during the two-week period following the session, characterized by either 1) fever with one or more symptoms (i.e., headache, rash, myalgia, or fatigue) or 2) no fever with two or more symptoms. Cases of RMSF were confirmed by serologic evaluation. Seven of 13 patients with suspected RMSF submitted sera for testing. Four patients had confirmed RMSF; three were males, and the median age was 12.5 years compared with 12 years for all attendees. All confirmed patients reported fever, headache, fatigue, and rash. An increased risk of becoming ill was associated with overnight camping at site A (Odds Ratio (OR) undefined, p = 0.02), visiting or overnight camping at site B (OR undefined, p = 0.003 and 0.002), and leaving the trails when hiking (OR undefined, p = 0.02). These data suggest that development of RMSF was associated with visiting or camping at specific sites and behavior likely to increase contact with ticks. Camp supervisors were advised to educate campers regarding tick bite prevention measures, reduce underbrush around campsites, and encourage campers to remain on the trails. Health care providers should remain aware of the increased risk for RMSF during the spring, summer, and

  2. Drivers of spatial heterogeneity in nitrogen processing among three alpine plant communities in the Rocky Mountains

    Science.gov (United States)

    Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.

    2017-12-01

    Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using

  3. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  4. Estrella Mountain Plan for Institutional Effectiveness, 1997-1998.

    Science.gov (United States)

    Estrella Mountain Community Coll., Avondale, AZ.

    This plan provides information on the efforts of Arizona's Estrella Mountain Community College (EMCC) to evaluate its effectiveness in achieving organizational mission and purpose. The plan contains the following information: (1) a discussion of EMCC's institutional effectiveness efforts to date, indicating that the college's Plan for…

  5. 76 FR 21425 - Rocky Mountain Railcar and Repair, Inc.-Acquisition and Operation Exemption-Line of Railroad in...

    Science.gov (United States)

    2011-04-15

    ... under 49 CFR 1150.31 to acquire from Utah Industrial Depot and operate 11.5 miles of rail line, located inside an existing industrial facility in Tooele County, Utah.\\1\\ The rail line includes a spur that... operates a railcar repair facility, but that it seeks to become a common carrier. According to Rocky...

  6. Middle Rockies Ecoregion: Chapter 5 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Middle Rockies Ecoregion—characterized by steep, high-elevation mountain ranges and intermountain valleys—is a disjunct ecoregion composed of three distinct geographic areas: the Greater Yellowstone area in northwest Wyoming, southwest Montana, and eastern Idaho; the Bighorn Mountains in north-central Wyoming and south-central Montana; and the Black Hills in western South Dakota and eastern Wyoming (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion covers approximately 90,160 km2 (34,881 mi2), and its three distinct geographic sections are bordered by several other ecoregions (fig. 1). The Yellowstone section abuts the Montana Valley and Foothill Prairies and the Northern Rockies Ecoregions to the north, the Snake River Basin and the Central Basin and Range Ecoregions to the west, and the Wyoming Basin Ecoregion to the south and east. The Bighorn Mountains section lies between the Wyoming Basin Ecoregion to the west and the Northwestern Great Plains Ecoregion to the east, and it abuts the Montana Valleys and Foothill Prairies Ecoregion to the north. The Black Hills section is entirely surrounded by the Northwestern Great Plains Ecoregion. The Continental Divide crosses the ecoregion from the southeast along the Wind River Range, through Yellowstone National Park, and west along the Montana-Idaho border. On both sides of the divide, topographic relief causes local climate variability, particularly the effects of aspect, exposure to prevailing wind, thermal inversions, and rain-shadow effects, that are reflected in the wide variety of flora and fauna within the ecoregion (Ricketts and others, 1999).

  7. North American Monsoon Response to Eemian Climate Forcings and its Effect on Rocky Mountain Forests

    Science.gov (United States)

    Insel, N.; Berkelhammer, M. B.

    2017-12-01

    The key to recognizing and predicting future changes in regional climate and ecosystems lies in understanding the causes and characteristics of paleovariations. The Last Interglacial (LIG: 130-116 ka) is the most recent period in Earth history when temperatures are believed to have exceeded those of today. In this study, we are focusing on the response of the North American monsoon (NAM) to shifts in orbital forcings during LIG. In particular, we are using regional climate model (RegCM) simulations under LIG (115ka, 125 ka and 135 ka) and modern forcings to evaluate changes in the strength, timing, duration, and amount of moisture transported from different sources during the NAM season. Understanding these variations is critical to forecast seasonal supply of water to the southwestern U.S. under current warming conditions. In addition, cellulose extracted stable isotopes from Rocky Mountain Eemian wood samples provides both a tool to diagnose the model simulations and to evaluate the response of western U.S. tree species to changes in temperature and moisture availability. Our preliminary results indicate enhanced summer precipitation, wind shifts and changes in NAM characteristics in response to increased Northern Hemisphere insolation. The following features were observed: (1) The NAM strengthens and extends slightly more northward during the Eemian due to a shift in upper-level divergence. (2) The onset and duration of the NAM seems to be similar between modern and Eemian simulations. (3) Consistent with modern observations, simulations suggest a western NAM region in Arizona that receives most of its monsoonal moisture from the Gulf of California, while the eastern NAM region in New Mexico obtains most of its summer rains from the Gulf of Mexico. In the Eemian, we see a spatial shift from more depleted to more enriched source waters throughout the monsoon season. These changes in the summer climate are confirmed by the tree ring isotope data, which show a

  8. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  9. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    Science.gov (United States)

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  10. Forecasting distributional responses of limber pine to climate change at management-relevant scales in Rocky Mountain National Park.

    Directory of Open Access Journals (Sweden)

    William B Monahan

    Full Text Available Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis to climate change in Rocky Mountain National Park (Colorado, USA. Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m(2 show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change

  11. Selenium and other trace elements in aquatic insects in coal mine-affected streams in the Rocky Mountains of Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, M.; Crosley, R. [Environmental Canada, Saskatoon, SK (Canada)

    2006-05-15

    We determined levels of Se, As, Cd, Pb, and Zn in aquatic insects at coal mine-impacted and reference sites in streams in the Rocky Mountain foothills of west central Alberta from 2001-2003. Selenium levels were greater at coal mine-impacted sites than at reference sites in caddisflies but not in mayflies or stoneflies. Arsenic levels were greater at coal mine-impacted sites than at reference sites in caddisflies and stoneflies but not in mayflies. Zn levels were higher at coal mine-impacted sites than at reference sites in all three groups of insects. At coal mine-impacted sites, Se levels in mayflies and caddisflies were greater than those in stoneflies while at reference sites mayflies contained greater concentrations of Se than either caddisflies or stoneflies. Arsenic levels in mayflies were greater than those in caddisflies at reference and coal mine-impacted sites and were greater than those in stoneflies at reference sites. At both types of sites Cd differed amongst insect taxa in the order of mayflies < caddisflies < stoneflies. The same was true of Zn at coal mine-affected sites. At reference sites, stoneflies had greater concentrations of Zn than both mayflies and caddisflies. At both types of sites, Pb levels were greater in mayflies and caddisflies than they were in stoneflies. Of the five trace elements considered in this study, only Se was sufficiently elevated in aquatic invertebrates to be of potential concern for consumers such as fish and aquatic birds. Such was the case at both coal mine-impacted and reference sites.

  12. Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park

    Science.gov (United States)

    Kramer, N.; Harry, D. L.; Wohl, E. E.

    2010-12-01

    This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.

  13. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  14. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    Science.gov (United States)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  15. Integrated wastewater management planning for DOE's Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D ampersand D) , and project management industry. The company is currently the environmental restoration, waste management, and D ampersand D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ''Project Breakthrough'' where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site's Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs

  16. Site vegetation report: Terrestrial vegetation survey (1993--1995) for the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1997-06-01

    The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy's (DOE's) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front result in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure

  17. Site vegetation report: Terrestrial vegetation survey (1993--1995) for the Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy`s (DOE`s) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front result in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure.

  18. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    Science.gov (United States)

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government

  19. Quantification of controls on regional rockfall activity and talus deposition, Kananaskis, Canadian Rockies

    Science.gov (United States)

    Thapa, Prasamsa; Martin, Yvonne E.; Johnson, E. A.

    2017-12-01

    Rockfall is a significant geomorphic process in many mountainous regions that also poses a notable natural hazard risk. Most previous studies of rockfall erosion have investigated the mechanics and rates of local rockwall retreat and talus deposition, with only a few investigations of rockfall and/or associated talus considering larger spatial scales (i.e., drainage basin, mountain range). The purpose of the current research is to investigate the areal extent of rockfall-talus and controlling factors of its distribution over regional spatial scales (of order 102 km2) in Kananaskis, Canadian Rockies to inform our understanding of its significance in mountain development. To achieve this goal, a large talus inventory is collected and analyzed for 11 steep tributaries of the Kananaskis River, Canadian Rockies. Talus accumulations associated with rockfall provide evidence about the nature and rates of rockfall activity that supplies sediment to these deposits and are the focus of the present study. To quantify the controls of rockfall-talus activity in this region, we analyze the association of talus deposits with structural geology, glacial topography, and temperature-related weathering (i.e., frost cracking). A total of 324 talus polygons covering a surface area of 28.51 km2 are delineated within the 11 study basins, with the number of talus polygons in each study basin ranging from 1 to 73. Analysis of the talus inventory shows that cirques and glacially sculpted valleys are locations of notable talus accumulation in Kananaskis, with other locations of significant talus deposition being associated with thrust faults. We also found that the upper elevations at which talus deposits are typically found are the general range of elevations experiencing a notable number of days in the frost cracking window when this window is defined as - 3 to - 15 °C; no such association is found for the frost cracking window of - 3 to - 8 °C. Estimates of average erosion rates for all

  20. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains.

    Science.gov (United States)

    Nelson, Brynn; Hebblewhite, Mark; Ezenwa, Vanessa; Shury, Todd; Merrill, Evelyn H; Paquet, Paul C; Schmiegelow, Fiona; Seip, Dale; Skinner, Geoff; Webb, Nathan

    2012-01-01

    Wild carnivores are often exposed to diseases via contact with peridomestic host species that travel through the wildland-urban interfaces. To determine the antibody prevalences and relationships to human activity for two common canid pathogens, we sampled 99 wolves (Canis lupus) from 2000 to 2008 for antibodies to canine parvovirus (CPV) and canine distemper virus (CDV) in Banff and Jasper National Parks and surrounding areas of the Canadian Rockies. This population was the source for wolves reintroduced into the Northern Rockies of the US. Of 99 wolves sampled, 94 had detectable antibody to CPV (95%), 24 were antibody-positive for CDV (24%), and 24 had antibodies to both pathogens (24%). We tested whether antibody prevalences for CPV and CDV were higher closer to human activity (roads, town sites, First Nation reserves) and as a function of sex and age class. Wolves ≥2 yr old were more likely to be have antibodies to CPV. For CDV, male wolves, wolves ≥2 yr, and those closer to First Nation reserves were more likely to have antibodies. Overall, however, we found minimal support for human influence on antibody prevalence for CDV and CPV. The similarity between our antibody prevalence results and results from recent studies in Yellowstone National Park suggests that at least in the case of CDV, and perhaps CPV, these could be important pathogens with potential effects on wolf populations.

  1. Characterization of meltwater 'ingredients' at the Haig Glacier, Canadian Rockies: the importance of glaciers to regional water resources

    Science.gov (United States)

    Miller, K.; Marshall, S.

    2017-12-01

    With rising temperatures, Alberta's glaciers are under stresses which change and alter the timing, amount, and composition of meltwater contributions to rivers that flow from the Rocky Mountains. Meltwater can be stored within a glacier or it can drain through the groundwater system, reducing and delaying meltwater delivery to glacier-fed streams. This study tests whether the glacier meltwater is chemically distinct from rain or snow melt, and thus whether meltwater contributions to higher-order streams that flow from the mountains can be determined through stream chemistry. Rivers like the Bow, North Saskatchewan, and Athabasca are vital waterways for much of Alberta's population. Assessing the extent of glacier meltwater is vital to future water resource planning. Glacier snow/ice and meltwater stream samples were collected during the 2017 summer melt season (May- September) and analyzed for isotope and ion chemistry. The results are being used to model water chemistry evolution in the melt stream through the summer season. A chemical mixing model will be constructed to determine the fractional contributions to the Haig meltwater stream from precipitation, surface melt, and subglacial meltwaters. Distinct chemical water signatures have not been used to partition water sources and understand glacier contributions to rivers in the Rockies. The goal of this work is to use chemical signatures of glacial meltwater to help assess the extent of glacier meltwater in Alberta rivers and how this varies through the summer season.

  2. S.442: a bill to grant the consent of the Congress to the Rocky Mountain Low-Level Radioactive Waste Compact. Introduced in the Senate of the United States, Ninety-Ninth Congress, First Session, February 7, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Congress grants the States of Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming the right to enter into the Rocky Mountain Interstate Low-Level Radioactive Waste Compact under S.442. Under the compact, each state assumes responsibility for cooperating in the management of low-level radioactive wastes. The bill summarizes this purpose, defines pertinent terms, and outlines the rights and obligations of the member states. It stipulates that within six years after the law is enacted in Nevada and one other state, a regional facility must be operating in a state other than Nevada. The facility board will impose a surcharge on each unit of waste received, and the host state may impose a state surcharge against expenses. The bill outlines board duties, conditions for Congressional consent, and the circumstances for withdrawal or exclusion

  3. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    Science.gov (United States)

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  4. Ecophysiology of seedling establishment in contrasting spruce-fir forests of southern Appalachian and Rocky Mountain ecotones, USA

    Science.gov (United States)

    William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...

  5. Limited evidence for CO2 -related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients.

    Science.gov (United States)

    Reed, Charlotte C; Ballantyne, Ashley P; Cooper, Leila Annie; Sala, Anna

    2018-04-15

    Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO 2 may enhance photosynthesis and/or decrease stomatal conductance (g s ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO 2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ 13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in g s . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing g s may benefit tree growth in

  6. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  7. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Science.gov (United States)

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  8. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  9. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    Science.gov (United States)

    Clow, David W.; Roop, Heidi; Nanus, Leora; Fenn, Mark; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006–September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25–50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3−) were examined using N isotopes. The average δ15N of NO3− from IER collectors was 3.5‰ higher during winter than during summer (p model critical loads by filling gaps in geographic coverage of deposition monitoring/modeling programs and thus may enable policy makers to better protect sensitive natural resources in Class 1 Wilderness areas.

  10. Tick-borne diseases in North Carolina: is "Rickettsia amblyommii" a possible cause of rickettsiosis reported as Rocky Mountain spotted fever?

    Science.gov (United States)

    Apperson, Charles S; Engber, Barry; Nicholson, William L; Mead, Daniel G; Engel, Jeffrey; Yabsley, Michael J; Dail, Kathy; Johnson, Joey; Watson, D Wesley

    2008-10-01

    Cases of Rocky Mountain spotted fever (RMSF) in North Carolina have escalated markedly since 2000. In 2005, we identified a county in the Piedmont region with high case numbers of RMSF. We collected ticks and examined them for bacterial pathogens using molecular methods to determine if a novel tick vector or spotted fever group rickettsiae (SFGR) might be emerging. Amblyomma americanum, the lone star tick, comprised 99.6% of 6,502 specimens collected in suburban landscapes. In contrast, Dermacentor variabilis, the American dog tick, a principal vector of Rickettsia rickettsii, comprised < 1% of the ticks collected. Eleven of 25 lone star tick pools tested were infected with "Rickettsia amblyommii," an informally named SFGR. Sera from patients from the same county who were presumptively diagnosed by local physicians with a tick-borne illness were tested by an indirect immunofluorescence antibody (IFA) assay to confirm clinical diagnoses. Three of six patients classified as probable RMSF cases demonstrated a fourfold or greater rise in IgG class antibody titers between paired acute and convalescent sera to "R. amblyommii" antigens, but not to R. rickettsii antigens. White-tailed deer, Odocoileus virginianus, are preferred hosts of lone star ticks. Blood samples collected from hunter-killed deer from the same county were tested by IFA test for antibodies to Ehrlichia chaffeensis and "R. amblyommii." Twenty-eight (87%) of 32 deer were positive for antibodies to E. chaffeensis, but only 1 (3%) of the deer exhibited antibodies to "R. amblyommii," suggesting that deer are not the source of "R. amblyommii" infection for lone star ticks. We propose that some cases of rickettsiosis reported as RMSF may have been caused by "R. amblyommii" transmitted through the bite of A. americanum.

  11. Thunder Mountain School Is Something Special.

    Science.gov (United States)

    NJEA Review, 1979

    1979-01-01

    This article describes Thunder Mountain School, operated year round by the Newton Board of Education under a special use permit granted by the National Park Service. The center includes sports facilities, nature preserves, a farm, and historic sites for use by residential and day students, kindergarten through college. (SJL)

  12. Developing proactive management options to sustain bristlecone and limber pine ecosystems in the presence of a non-native pathogen

    Science.gov (United States)

    A. W. Schoettle

    2004-01-01

    Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...

  13. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    Science.gov (United States)

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers

  14. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  15. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle.

    Science.gov (United States)

    Tsui, Clement K M; Roe, Amanda D; El-Kassaby, Yousry A; Rice, Adrianne V; Alamouti, Sepideh M; Sperling, Felix A H; Cooke, Janice E K; Bohlmann, Jörg; Hamelin, Richard C

    2012-01-01

    We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and

  16. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  17. Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.

    Science.gov (United States)

    Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M

    2005-01-01

    Concentrations of selected persistent organic pollutants (POPs) in air and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical exchange across the air-water interface of these lakes. Bow Lake (1,975 m above sea level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas exchange for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in air declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in air and water, nor the direction and rate of air-water gas exchange correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount exchanged across the air-water interface in these lakes.

  18. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains

    Science.gov (United States)

    Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

  19. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains.

    Directory of Open Access Journals (Sweden)

    Christina L Tague

    Full Text Available Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa. Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

  20. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains.

    Science.gov (United States)

    Tague, Christina L; McDowell, Nathan G; Allen, Craig D

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

  1. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    Science.gov (United States)

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  2. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    Directory of Open Access Journals (Sweden)

    Naomi Drexler

    Full Text Available Rocky Mountain spotted fever (RMSF transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  3. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    Science.gov (United States)

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone

  4. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  5. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  6. Insights into contaminant transport from unconventional oil and gas developments from analog system analysis of methane-bearing thermal springs in the northern Canadian Rocky Mountains

    Science.gov (United States)

    Ferguson, Grant; Grasby, Stephen E.

    2018-03-01

    Natural gas is currently being produced from shales of the Montney and Liard basins in western Canada. Production requires hydraulic fracturing due to the low permeability of the shales in the basins. Stratigraphically equivalent shales are present in the northern Canadian Rocky Mountains. Thermal springs with notable hydrocarbon concentrations occur where large-scale faults intersect the same shale units that are the focus of gas development, indicating that under certain circumstances, connection of deep fractured shales to the land surface is possible. To constrain these conditions, simulations were conducted for the spring with the highest hydrocarbon flux (Toad River Spring), results of which indicate that in order to supply sufficient water to a fault to support measurable advection, the effective permeability of the shales in these structurally deformed areas must be one to four orders of magnitude higher than in areas of active gas production to the east. The spatial scale of enhanced permeability is much greater than that which is achieved by hydraulic fracturing and the mechanism of maintaining high pressures at depth is more persistent in time. Examination of groundwater velocities suggests that upward migration of solutes from hydraulic fracturing may take decades to centuries. Results also indicate that any temperature anomaly will be associated with transport along a fault at such velocities. No such temperature anomaly has been documented in regions with unconventional oil and gas development to date. Such an anomaly would be diagnostic of a deep solute source.

  7. Criteria impacting shipments of Rocky Flats Plant radioactive mixed wastes

    International Nuclear Information System (INIS)

    Clawson, R.L.; Eide, J.H.

    1992-05-01

    Westinghouse Hanford Company, Transportation and Packaging Division, under contract for the Los Alamos Technology Office-Rocky Flats Plant, has developed this synopsis report to be used as a reference in the development of the Rocky Flats Plant Comprehensive Treatment and Management Plan and the Rocky Flats Plant Residue Elimination Plan. This report represents the criteria for packaging, shipping, and transporting Rocky Flats Plant radioactive mixed wastes. It is a compilation of state and federal regulations, US Department of Energy orders, and acceptance criteria specific to US Department of Energy radioactive mixed waste treatment, storage and disposal facilities

  8. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Fang

    2013-04-01

    Full Text Available One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2, located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005–2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007–2011, with a small bias and normalised root mean square difference (NRMSD ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006–2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006–2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%, while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet

  9. Baseline report - tall upland shrubland at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1997-03-01

    Rocky Flats Environmental Technology Site (Site) is located on the Colorado Piedmont east of the Front Range between Boulder and Golden. At an elevation of approximately 6,000 feet, the Site contains a unique ecotonal mixture of mountain and prairie plant species, resulting from the topography and close proximity to the mountain front. The Buffer Zone surrounding the Industrial Area is one of the largest remaining undeveloped areas of its kind along the Colorado Piedmont. A number of plant communities at the Site have been identified as increasingly rare and unique by Site ecologists and the Colorado Natural Heritage Program (CNHP). These include the xeric tallgrass prairie, tall upland shrubland, wetlands, and Great Plains riparian woodland communities. Many of these communities support populations of increasingly rare animals as well, including the Preble's meadow jumping mouse, grasshopper sparrow, loggerhead shrike, Merriam's shrew, black crowned night heron, and Hops blue and Argos skipper butterflies. One of the more interesting and important plant communities at the Site is the tall upland shrubland community. It has been generally overlooked by previous Site ecological studies, probably due to its relatively small size; only 34 acres total. Although mentioned in a plant community ordination study conducted by Clark et al. and also in the Site baseline ecological study, few data were available on this plant community before the present study

  10. Baseline report - tall upland shrubland at the Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Rocky Flats Environmental Technology Site (Site) is located on the Colorado Piedmont east of the Front Range between Boulder and Golden. At an elevation of approximately 6,000 feet, the Site contains a unique ecotonal mixture of mountain and prairie plant species, resulting from the topography and close proximity to the mountain front. The Buffer Zone surrounding the Industrial Area is one of the largest remaining undeveloped areas of its kind along the Colorado Piedmont. A number of plant communities at the Site have been identified as increasingly rare and unique by Site ecologists and the Colorado Natural Heritage Program (CNHP). These include the xeric tallgrass prairie, tall upland shrubland, wetlands, and Great Plains riparian woodland communities. Many of these communities support populations of increasingly rare animals as well, including the Preble`s meadow jumping mouse, grasshopper sparrow, loggerhead shrike, Merriam`s shrew, black crowned night heron, and Hops blue and Argos skipper butterflies. One of the more interesting and important plant communities at the Site is the tall upland shrubland community. It has been generally overlooked by previous Site ecological studies, probably due to its relatively small size; only 34 acres total. Although mentioned in a plant community ordination study conducted by Clark et al. and also in the Site baseline ecological study, few data were available on this plant community before the present study.

  11. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN number-sign 85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper

  12. Public involvement in cleanup - the Rocky Flats experience

    International Nuclear Information System (INIS)

    Paukert, J.; Pennock, S.; Schassburger, R.

    1992-01-01

    The U.S. Department of Energy's Rocky Flats Plant recently completed and implemented the Rocky Flats Plant Community Relations Plan for public involvement in environmental restoration of the site. The plan was developed in cooperation with the plant's regulators, the U.S. Environmental Protection Agency and the Colorado Department of Health. In addition, citizens near the plant played a significant role in shaping the document through extensive community interviews and public comment. The result of these cooperative efforts is a plan that meets and exceeds the applicable federal and state community relations requirements for a cleanup program. In fact, the U.S. Environmental Protection Agency has used the Rocky Flats Plant Community Relations Plants a model for similar plans at other federal facilities. Plan development, however, is only the starting point for an effective community relations effort. The Rocky Flats Plant and the public will face many challenges together as we implement the plan and build a partnership for addressing environmental cleanup issues. (author)

  13. Rocky desertification in Southwest China: Impacts, causes, and restoration

    Science.gov (United States)

    Jiang, Zhongcheng; Lian, Yanqing; Qin, Xiaoqun

    2014-05-01

    Rocky desertification, which is relatively less well known than desertification, refers to the processes and human activities that transform a karst area covered by vegetation and soil into a rocky landscape. It has occurred in various countries and regions, including the European Mediterranean and Dinaric Karst regions of the Balkan Peninsula, Southwest China on a large scale, and alarmingly, even in tropical rainforests such as Haiti and Barbados, and has had tremendous negative impacts to the environment and social and economic conditions at local and regional scales. The goal of this paper is to provide a thorough review of the impacts, causes, and restoration measures of rocky desertification based on decades of studies in the southwest karst area of China and reviews of studies in Europe and other parts of the world. The low soil formation rate and high permeability of carbonate rocks create a fragile and vulnerable environment that is susceptible to deforestation and soil erosion. Other natural processes related to hydrology and ecology could exacerbate rocky desertification. However, disturbances from a wide variety of human activities are ultimately responsible for rocky desertification wherever it has occurred. This review shows that reforestation can be successful in Southwest China and even in the Dinaric Karst region when the land, people, water, and other resources are managed cohesively. However, new challenges may arise as more frequent droughts and extreme floods induced by global climate change and variability may slow the recovery process or even expand rocky desertification. This review is intended to bring attention to this challenging issue and provide information needed to advance research and engineering practices to combat rocky desertification and to aid in sustainable development.

  14. Introduction [Chapter 1

    Science.gov (United States)

    S. Karen. Dante-Wood

    2018-01-01

    The Northern Rockies Adaptation Partnership (NRAP) is a science-management partnership among the Forest Service, U.S. Department of Agriculture (USFS) regional offices and national forests (mostly in the Northern Region, and small portions of the Intermountain and Rocky Mountain Regions); USFS Pacific Northwest and Rocky Mountain Research Stations; Glacier, Yellowstone...

  15. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    Science.gov (United States)

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  16. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes how stakeholder involvement processes led to the successful resolution of a dispute over radionuclide soil action levels at the Rocky Flats Site near Denver, Colorado. During the Cold War Era, Rocky Flats, a plutonium fabrication plant, was part of the American government's multi-site nuclear weapons production facilities. Although the Rocky Flats plant had significant positive effects on the local economy, it became a target of public protest due to concerns over both public safety in the area surrounding the site and global nuclear proliferation. In the late 1980's, local safety concerns led to investigations by state and federal agencies. In 1992, with the Cold War ended, the Department of Energy decided to decommission the Rocky Flats site and to begin the long process of decontamination. (author)

  17. Community-Based Control of the Brown Dog Tick in a Region with High Rates of Rocky Mountain Spotted Fever, 2012–2013

    Science.gov (United States)

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F. Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H.

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003–2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives. PMID:25479289

  18. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    Science.gov (United States)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional

  19. The Centre for Mountain Studies: Active From Scottish to Global Scales

    Directory of Open Access Journals (Sweden)

    Amy Woolvin

    2016-11-01

    Full Text Available The Centre for Mountain Studies (CMS, located at Perth College, University of the Highlands and Islands, Scotland, hosts the United Nations Educational, Scientific and Cultural Organization Chair in Sustainable Mountain Development. Since 2000, CMS staff and students have been active in research and knowledge exchange activities at scales from the local—in Scotland—to the global (Price 2011; Glass et al 2013. In addition to hosting the Mountains of our Future Earth conference (Perth III, recent international activities have focused on climate change, biosphere reserves, social innovation, and stakeholder engagement in biodiversity research. Projects in Scotland have mainly addressed land management and local communities. The CMS also runs a part-time online MSc program in Sustainable Mountain Development.

  20. Asymptomatic Petechial Eruption on the Lower Legs

    OpenAIRE

    Mendese, Gary; Grande, Donald

    2013-01-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a...

  1. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  2. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    Science.gov (United States)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls

  3. Study on comprehensive planning of rocky desertification in karst area of Chongqing

    Science.gov (United States)

    Zang, Yajun

    2017-11-01

    Chongqing is a key area for comprehensive treatment of rocky desertification in karst areas of china. Strengthening the comprehensive management of karst rocky desertification area, for the maintenance of ecological safety of Three Gorges Reservoir area, expanding the karst rocky desertification area people survival and development space, and improving the regional ecological conditions, have important practical significance to the construction of ecological civilization and building a harmonious society. Based on the investigation, analysis and arrangement of the data in the rocky desertification area, the paper puts forward the corresponding measures and phased targets for the treatment of the Rocky Desertification in the karst areas of Chongqing.

  4. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    Science.gov (United States)

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  5. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Science.gov (United States)

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of

  6. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    Shelton, D.C.

    1997-01-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  7. ROCKY PLANETESIMAL FORMATION VIA FLUFFY AGGREGATES OF NANOGRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Sota; Nakamoto, Taishi, E-mail: arakawa.s.ac@m.titech.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2016-12-01

    Several pieces of evidence suggest that silicate grains in primitive meteorites are not interstellar grains but condensates formed in the early solar system. Moreover, the size distribution of matrix grains in chondrites implies that these condensates might be formed as nanometer-sized grains. Therefore, we propose a novel scenario for rocky planetesimal formation in which nanometer-sized silicate grains are produced by evaporation and recondensation events in early solar nebula, and rocky planetesimals are formed via aggregation of these nanograins. We reveal that silicate nanograins can grow into rocky planetesimals via direct aggregation without catastrophic fragmentation and serious radial drift, and our results provide a suitable condition for protoplanet formation in our solar system.

  8. Water uptake of trees in a montane forest catchment and the geomorphological potential of root growth in Boulder Creek Critical Zone Observatory, Rocky Mountains, Colorado

    Science.gov (United States)

    Skeets, B.; Barnard, H. R.; Byers, A.

    2011-12-01

    The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.

  9. Human Health Exposure Assessment for Rocky Mountain Arsenal Study Area Evaluations. Volume 6-B. Western Study Area Exposure Assessment Version 4.1

    Science.gov (United States)

    1990-09-01

    Prpae f9 r FIUR ?--81L C)ora 2Aagv 61iefrPoe n hs lAnl sDtceRocky~ ~ ~ ~~~~~~~~91 O~~iiAsea lau IthnoLbv ndctrLvl Abar~~~ ge14 15~ rigE 0.4n, ar

  10. The challenge and future of rocky desertification control in karst areas in southwest China

    Science.gov (United States)

    Zhang, J. Y.; Dai, M. H.; Wang, L. C.; Zeng, C. F.; Su, W. C.

    2016-01-01

    Karst rocky desertification occurs after vegetation deteriorates as a result of intensive land use, which leads to severe water loss and soil erosion and exposes basement rocks, creating a rocky landscape. Karst rocky desertification is found in humid areas in southwest China, the region most seriously affected by rocky desertification in the world. In order to promote ecological restoration and help peasants out of poverty, the Chinese government carried out the first phase of a rocky desertification control project from 2006 to 2015, which initially contained the expansion of rocky desertification. Currently, the Chinese government is prepared to implement the second phase of the rocky desertification control project, and therefore it is essential to summarise the lessons learned over the last 10 years of the first phase. In this paper, we analyse the driving social and economic factors behind rocky desertification, summarise the scientific research on rocky desertification in the region, and finally identify the main problems facing rocky desertification control. In addition, we put forward several policy suggestions that take into account the perspective of local peasants, scientific research, and China's economic development and urbanisation process. These suggestions include promoting the non-agriculturalization of household livelihoods, improving ecological compensation, strengthening the evaluation of rocky desertification control and dynamic monitoring, and strengthening research on key ecological function recovery technologies and supporting technologies.

  11. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  12. Protecting the Sacred Water Bundle: Educating about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, one becomes surrounded by a deciduous forest, spotted with deer stands, fishing holes, mosquito havens, and secret berry-picking spots. It is here that the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation,…

  13. Conditions for caribou persistence in the wolf-elk-caribou systems of the Canadian Rockies

    Directory of Open Access Journals (Sweden)

    Mark Hebblewhite

    2007-04-01

    Full Text Available Woodland caribou populations are considered threatened in Alberta and have declined in the Canadian Rocky Mountain National Parks of Banff and Jasper despite protection from factors causing caribou populations to decline outside of parks. Recent research emphasizes the importance of the numeric response of wolves to moose in moose-caribou-wolf systems to caribou persistence. Moose are rare in the Canadian Rockies, where the dominant ungulate prey for wolves is elk. Few studies have explored wolf-elk dynamics and none have examined implications for caribou. We used data collected in Banff to estimate the numeric response of wolves to elk from 1985 to 2005. Because no caribou kill-rate data exist for the Rockies, we explore the consequences of a range of hypothetical kill-rates based on kill-rates of alternate prey collected from 1985 to 2000 in Banff. We then multiplied the numeric response of wolves by the estimated caribou kill-rates to estimate the wolf predation response on caribou as a function of elk density. Caribou predation rates were inversely density dependent because wolf numbers depend on prey species besides caribou in multiple prey species systems. We then combined this simple wolf-elk-caribou model with observed demographic and population estimates for Banff and Jasper caribou from 2003-2004 and solved for the critical kill-rate thresholds above which caribou populations would decline. Using these critical kill-rate thresholds, Jasper caribou are likely to persist when wolf densities are below 2.1 - 4.3 wolves/1000km2 and/or when elk densities are below 0.015- 0.033 elk/km2. Thresholds for Banff caribou persistence are much lower because of inverse density dependence. Future research is needed on some of the necessary assumptions underlying our modeling including multi-prey wolf numeric responses, wolf kill-rates of caribou, caribou mortality by other predators, and spatial aspects of wolf-elk-caribou dynamics.

  14. The Quest for Continuous Improvement: A Qualitative Study on Diffusion of Outcomes Assessment among Career and Technical Education Faculty Members at Rocky Mountain States Community Colleges

    Science.gov (United States)

    McFarlane, Michele

    2012-01-01

    The following qualitative multicase study presents an examination of outcomes assessment adoption as it relates to Career and Technical Education faculty at community colleges and outlines recommendations for postsecondary education administration as they introduce innovations to faculty members. The purpose of this investigation was to explore…

  15. Asymptomatic petechial eruption on the lower legs.

    Science.gov (United States)

    Mendese, Gary; Grande, Donald

    2013-09-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a short period of time, was completely back at baseline.

  16. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever, ehrlichioses, and anaplasmosis--United States: a practical guide for physicians and other health-care and public health professionals.

    Science.gov (United States)

    Chapman, Alice S; Bakken, Johan S; Folk, Scott M; Paddock, Christopher D; Bloch, Karen C; Krusell, Allan; Sexton, Daniel J; Buckingham, Steven C; Marshall, Gary S; Storch, Gregory A; Dasch, Gregory A; McQuiston, Jennifer H; Swerdlow, David L; Dumler, Stephen J; Nicholson, William L; Walker, David H; Eremeeva, Marina E; Ohl, Christopher A

    2006-03-31

    Tickborne rickettsial diseases (TBRD) continue to cause severe illness and death in otherwise healthy adults and children, despite the availability of low cost, effective antimicrobial therapy. The greatest challenge to clinicians is the difficult diagnostic dilemma posed by these infections early in their clinical course, when antibiotic therapy is most effective. Early signs and symptoms of these illnesses are notoriously nonspecific or mimic benign viral illnesses, making diagnosis difficult. In October 2004, CDC's Viral and Rickettsial Zoonoses Branch, in consultation with 11 clinical and academic specialists of Rocky Mountain spotted fever, human granulocytotropic anaplasmosis, and human monocytotropic ehrlichiosis, developed guidelines to address the need for a consolidated source for the diagnosis and management of TBRD. The preparers focused on the practical aspects of epidemiology, clinical assessment, treatment, and laboratory diagnosis of TBRD. This report will assist clinicians and other health-care and public health professionals to 1) recognize epidemiologic features and clinical manifestations of TBRD, 2) develop a differential diagnosis that includes and ranks TBRD, 3) understand that the recommendations for doxycycline are the treatment of choice for both adults and children, 4) understand that early empiric antibiotic therapy can prevent severe morbidity and death, and 5) report suspect or confirmed cases of TBRD to local public health authorities to assist them with control measures and public health education efforts.

  17. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  18. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes the Rocky Flats radionuclide soil action level controversy as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, the post-Cold War era, and the transition between the two. This provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified. (author)

  19. Two decision-support tools for assessing the potential effects of energy development on hydrologic resources as part of the Energy and Environment in the Rocky Mountain Area interactive energy atlas

    Science.gov (United States)

    Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.

    2014-01-01

    The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a

  20. Automated Monitoring of Carbon Fluxes in a Northern Rocky Mountain Forest Indicates Above-Average Net Primary Productivity During the 2015 Western U.S. Drought

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.

    2016-12-01

    As global temperatures rise in the 21st century, "hotter" droughts will become more intense and persistent, particularly in areas which already experience seasonal drought. Because forests represent a large and persistent terrestrial carbon sink which has previously offset a significant proportion of anthropogenic carbon emissions, forest carbon cycle responses to drought have become a prominent research concern. However, robust mechanistic modeling of carbon balance responses to projected drought effects requires improved observation-driven representations of carbon cycle processes; many such component processes are rarely monitored in complex terrain, are modeled or unrepresented quantities at eddy covariance sites, or are monitored at course temporal scales that are not conducive to elucidating process responses at process time scales. In the present study, we demonstrate the use of newly available and affordable automated dendrometers for the estimation of intra-seasonal Net Primary Productivity (NPP) in a Northern Rocky Mountain conifer forest which is impacted by seasonal drought. Results from our pilot study suggest that NPP was restricted by mid-summer moisture deficit under the extraordinary 2015 Western U.S. drought, with greater than 90% off stand growth occurring prior to August. Examination of growth on an inter-annual scale, however, suggests that the study site experienced above-average NPP during this exceptionally hot year. Taken together, these findings indicate that intensifying mid-summer drought in regional forests has affected the timing but has not diminished the magnitude of this carbon flux. By employing automated instrumentation for the intra-annual assessment of NPP, we reveal that annual NPP in regional forests is largely determined before mid-summer and is therefore surprisingly resilient to intensities of seasonal drought that exceed normal conditions of the 20th century.

  1. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice.

    Science.gov (United States)

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-04-11

    Rickettsia rickettsii is the pathogen of Rocky Mountain spotted fever (RMSF), a life-threatening tick-transmitted infection. Adr2 was a surface-exposed adhesion protein of R. rickettsii and its immunoprotection against RMSF was investigated in mice. Recombinant Adr2 (rAdr2) was used to immunize C3H/HeN mice, and the rickettsial loads in organs of the mice were detected after challenge with R. rickettsii. The levels of specific antibodies of sera from the immunized mice were determined and the sera from immunized mice were applied to neutralize R. rickettsii. Proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were also assayed after rAdr2 stimulation. After R. rickettsii challenge, the rickettsial loads in spleens, livers, and lungs were significantly lower and the impairment degrees of these organs in rAdr2-immunized mice were markedly slighter, compared with those in negative control mice. The ratio of specific IgG2a/IgG1 of rAdr2-immunized mice kept increasing during the immunization. After treatment with rAdr2-immunized sera, the total number of R. rickettsii organisms adhering and invading host cells was significantly lower than that treated with PBS-immunized sera. Interferon-γ secretion by CD4(+) or CD8(+) T cells and tumor necrosis factor-α secretion by CD4(+) T cells from R. rickettsii-infected mice were respectively significantly greater than those from uninfected mice after rAdr2 stimulation. Adr2 is a protective antigen of R. rickettsii. Protection offered by Adr2 is mainly dependent on antigen-specific cell-mediated immune responses, including efficient activity of CD4(+) and CD8(+) T cells to produce great amount of TNF-α and/or IFN-γ as well as rapid increase of specific IgG2a, which synergistically activate and opsonize host cells to killing intracellular rickettsiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biological impacts of oil pollution: rocky shores. V. 7

    International Nuclear Information System (INIS)

    1997-01-01

    Most people with access to the sea have at one time enjoyed looking into rockpools and searching for crabs under boulders. Rocky shores have a great deal of fascination for people and they are the closest that many of them will get to the mysteries below the low tide mark. They are found, in some form, on most of the world's coasts and their ecology has been the subject of many books, reports and scientific papers. Rocky shores encompass a variety of intertidal habitats and have a range of vulnerabilities to oil. While some areas are quickly and easily cleaned by natural forces others can trap oil in sensitive sub-habitats which may then be damaged and take many years to recover. Furthermore, rocky shores have an importance in the wider context of marine ecosystems and some provide important local fisheries resources, tourism and amenities. This report describes the factors that make some rocky shores more sensitive to oil spills than others and considers the most appropriate methods of clean-up. Case histories are used to illustrate the effects of spills and spill clean-up, as well as typical recovery rates. (UK)

  3. THERMODYNAMIC LIMITS ON MAGNETODYNAMOS IN ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Conrad, Clinton P.; Manga, Michael; Hernlund, John

    2010-01-01

    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron 'snow' will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of 'ocean' planets with ∼10% mass in an upper mantle of water (ice).

  4. Taxonomic variation in oviposition by tailed frogs (Aschaphus spp.).

    Science.gov (United States)

    Nancy E. Karraker; David S. Pilliod; Michael J. Adams; Evelyn L. Bull; Paul Stephen Corn; Lowell V. Diller; Linda A. Dupuis; Marc P. Hayes; Blake R. Hossack; Garth R. Hodgson; Erin J. Hyde; Kirk Lohman; Bradford R. Norman; Lisa M. Ollivier; Christopher A. Pearl; Charles R. Peterson

    2006-01-01

    Tailed frogs (Ascaphus spp.) oviposit in cryptic locations in streams of the Pacific Northwest and Rocky Mountains. This aspect of their life history has restricted our understanding of their reproductive ecology. The recent split of A. montanus in the Rocky Mountains from A. truei was based on molecular...

  5. STD Uplink Complex. Satellite Technology Demonstration, Technical Report No. 0418.

    Science.gov (United States)

    Potter, James G.

    The Health, Education, Telecommunications (HET) experiment, and the Federation of Rocky Mountain States have collaborated with the National Aeronautics and Space Administration to provide health education and other community service broadcasts to rural areas of the Rocky Mountains. In order to access the signal of the ATS-6 (Applications…

  6. Issues evaluation process at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Smith, L.C.

    1992-01-01

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant

  7. [Relationships between landscape structure and rocky desertification in karst region of northwestern Guangxi].

    Science.gov (United States)

    Zhang, Xiao-nan; Wang, Ke-lin; Chen, Hong-song; Zhang, Wei

    2008-11-01

    By using canonical correspondence analysis (CCA), sixteen landscape indices were adopted to quantitatively analyze the relationships between the landscape structure and rocky desertification in karst region of Huanjiang County, Guangxi Province. The results showed that the first and the second ordination axis of CCA were strongly correlated to the factors of average patch area, average dry land patch area, landscape shape index, and landscape aggregation index. The potential rocky desertification in the region was highly positively correlated with the average dry land patch area and the average fractal dimensions of dry land and shrub land, but negatively correlated with the patch numbers of dry land. Light rocky desertification had obvious positive correlations with the fractal dimension index, average fractal dimension of unused land, and patch numbers of shrub land; while moderate and strong rocky desertification had high positive correlations with the average unused land patch area but negative correlation with the average fractal dimension of shrub land. To some extent, rocky desertification degree might be represented by the values of landscape indices. The gradient variation in karst rocky desertification along landscape structure was clearly presented by the results of CCA.

  8. Closing Rocky Flats by 2006

    International Nuclear Information System (INIS)

    Tuor, N. R.; Schubert, A. L.

    2002-01-01

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead

  9. Rocky Flats cleanup receives new deadline

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Rocky Flats nuclear weapon plant near Denver narrowly missed a court-ordered shutdown of virtually all cleanup activities when it failed to meet an Aug. 22 deadline for a state permit to store mixed radioactive and hazardous wastes on site. US District Court Judge Lewis Babcock granted a 90-day stay of contempt charges against the US Dept. of Energy, but left open the possibility of civil penalties under the Resource Conservation and Recovery Act. DOE's problems stem from a lawsuit the Sierra Club won two years ago in which Babcock gave Rocky Flats until Aug. 22 to obtain a RCRA permit or interim status from Colorado to store 600 cu yd of mixed wastes. If DOE failed to do so, the court said it could not generate further hazardous wastes at the site

  10. Mountain Plains Telecommunications: 1987 Survey of Colleges Serving Nonmetropolitan Distance Learners.

    Science.gov (United States)

    Slotten, Marjorie Hacker

    Information is provided about the use of telecommunications in the delivery of postsecondary coursework to off-campus nonmetropolitan sites in the Mountain Plains states. The five chapters cover the following: introduction; review of the literature (shift to information society, underserved rural adult population, historical sketch, selected…

  11. Release fractions for Rocky Flats specific accidents

    International Nuclear Information System (INIS)

    Weiss, R.C.

    1992-01-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches at sign to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved

  12. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  13. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  14. Benchmarking and performance improvement at Rocky Flats Technology Site

    International Nuclear Information System (INIS)

    Elliott, C.; Doyle, G.; Featherman, W.L.

    1997-03-01

    The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes

  15. Influence of landscape features on variation of δ2H and δ18O in seasonal mountain snowpack

    Science.gov (United States)

    Kipnis, E. L.; Chapple, W.; Frank, J. M.; Traver, E.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    Streamflow contributions from snowpack remain difficult to predict in snow dominated headwater catchments in the Rocky Mountains. There remains considerable uncertainty in how environmental change in mountain watersheds alter seasonal snowpack accumulation and development and how these relationships translate from gaged to ungaged catchments. Stable isotope analysis is a valuable tool for determining the contribution and changes of different source inputs to catchment water budgets. Stable isotope values in snowpack integrate source inputs and processes such as water vapor exchange, selective redistribution, and melt. For better understanding of how these physical processes vary at local and catchment scales, snowpack density, depth, snow water equivalence (SWE), δ2H and δ18O were examined at peak snowpack in spring 2013 and 2014 and at monthly time steps throughout the winter of 2013-2014. Distributed data and sample collection occurred between 2400 and 3300 m elevation across two pine beetle and spruce beetle impacted forest stands with variable canopy cover in the Libby Creek and Nash Fork Little Laramie River basins, Medicine Bow Range, Wyoming. Peak snowpack within these watersheds was 10% below historic average in 2013 and 50% above average in 2014 (NRCS Snotel data). Even with these contrasting peak snowpack patterns, elevation described less than 40% of the spatial variation of snow water equivalents (SWE) across the watersheds for both seasons. Hydrogen and oxygen isotope ratio values of snowpack sampled monthly in 2014 revealed early season separation from the local meteoric water line, suggesting some kinetic isotope effects. However, isotope ratio values at peak snowpack in 2013 reflected no such signal at any sampling location. The influence of landscape position and canopy cover will be modeled to detect and scale spatial and temporal changes in SWE and stable isotope composition of snowpack. Such an approach will provide increased understanding of

  16. Opening remarks for the Fort Valley Centennial Celebration

    Science.gov (United States)

    G. Sam Foster

    2008-01-01

    The Rocky Mountain Research Station recognizes and values the contributions of our scientists and collaborators for their work over the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky Mountain Research Station is working to improve coordination across its research Program Areas and Experimental Forests and Ranges...

  17. Opening remarks for the Fort Valley Centennial Celebration (P-53)

    Science.gov (United States)

    G. Sam Foster

    2008-01-01

    The Rocky Mountain Research Station recognizes and values the contributions of our scientists and collaborators for their work over the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky Mountain Research Station is working to improve coordination across its research Program Areas and Experimental Forests and Ranges...

  18. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  19. Extraction of Rocky Desertification from Disp Imagery: a Case Study of Liupanshui, Guizhou, China

    Science.gov (United States)

    Zhou, G.; Wu, Z.; Wang, W.; Shi, Y.; Mao, G.; Huang, Y.; Jia, B.; Gao, G.; Chen, P.

    2017-09-01

    Karst rocky desertification is a typical type of land degradation in Guizhou Province, China. It causes great ecological and economical implications to the local people. This paper utilized the declassified intelligence satellite photography (DISP) of 1960s to extract the karst rocky desertification area to analyze the early situation of karst rocky desertification in Liupanshui, Guizhou, China. Due to the lack of ground control points and parameters of the satellite, a polynomial orthographic correction model with considering altitude difference correction is proposed for orthorectification of DISP imagery. With the proposed model, the 96 DISP images from four missions are orthorectified. The images are assembled into a seamless image map of the karst area of Guizhou, China. The assembled image map is produced to thematic map of karst rocky desertification by visual interpretation in Liupanshui city. With the assembled image map, extraction of rocky desertification is conducted.

  20. EXTRACTION OF ROCKY DESERTIFICATION FROM DISP IMAGERY: A CASE STUDY OF LIUPANSHUI, GUIZHOU, CHINA

    Directory of Open Access Journals (Sweden)

    G. Zhou

    2017-09-01

    Full Text Available Karst rocky desertification is a typical type of land degradation in Guizhou Province, China. It causes great ecological and economical implications to the local people. This paper utilized the declassified intelligence satellite photography (DISP of 1960s to extract the karst rocky desertification area to analyze the early situation of karst rocky desertification in Liupanshui, Guizhou, China. Due to the lack of ground control points and parameters of the satellite, a polynomial orthographic correction model with considering altitude difference correction is proposed for orthorectification of DISP imagery. With the proposed model, the 96 DISP images from four missions are orthorectified. The images are assembled into a seamless image map of the karst area of Guizhou, China. The assembled image map is produced to thematic map of karst rocky desertification by visual interpretation in Liupanshui city. With the assembled image map, extraction of rocky desertification is conducted.

  1. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Science.gov (United States)

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  2. The Rocky Road to Change: Implications for Substance Abuse Programs on College Campuses.

    Science.gov (United States)

    Scott, Cynthia G.; Ambroson, DeAnn L.

    1994-01-01

    Examines college substance abuse prevention and intervention programs in the framework of the elaboration likelihood model. Discusses the role of persuasion and recommends careful analysis of the relevance, construction, and delivery of messages about substance use and subsequent program evaluation. Recommendations for increasing program…

  3. Summary and abstracts from Sudden Aspen Decline (SAD) Meeting; Fort Collins, Colorado, February 12-13, 2008

    Science.gov (United States)

    Paul C. Rogers

    2008-01-01

    In recent years the aspen research and management community has witnessed increasing accounts of unexplained aspen die-offs across the Rocky Mountain region. In response, two meetings were held to address the issue; this paper summarizes the most recent gathering, a symposium held in Fort Collins at the USDA Forest Service, Rocky Mountain Research Station, on February...

  4. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    Luckett, L.L.; Dickman, A.A.; Wells, C.R.; Vickery, D.J.

    1982-01-01

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  5. Radiological/Health physics program assessement at Rocky Flats, the process

    International Nuclear Information System (INIS)

    Psomas, P.O.

    1996-01-01

    The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings

  6. Downstream effects of stream flow diversion on channel characteristics and riparian vegetation in the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Simeon T. Caskey; Tyanna S. Blaschak; Ellen Wohl; Elizabeth Schnackenberg; David M. Merritt; Kathleen A. Dwire

    2015-01-01

    Flow diversions are widespread and numerous throughout the semi-arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic...

  7. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  8. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  9. Are seagrass beds indicators of anthropogenic nutrient stress in the rocky intertidal?

    International Nuclear Information System (INIS)

    Honig, Susanna E.; Mahoney, Brenna; Glanz, Jess S.; Hughes, Brent B.

    2017-01-01

    It is well established that anthropogenic nutrient inputs harm estuarine seagrasses, but the influence of nutrients in rocky intertidal ecosystems is less clear. In this study, we investigated the effect of anthropogenic nutrient loading on Phyllospadix spp., a rocky intertidal seagrass, at local and regional scales. At sites along California, Washington, and Oregon, we demonstrated a significant, negative correlation of urban development and Phyllospadix bed thickness. These results were echoed locally along an urban gradient on the central California coast, where Phyllospadix shoot δ 15 N was negatively associated with Phyllospadix bed thickness, and experimentally, where nutrient additions in mesocosms reduced Phyllospadix shoot formation and increased epiphytic cover on Phyllospadix shoots. These findings provide evidence that coastal development can threaten rocky intertidal seagrasses through increased epiphytism. Considering that seagrasses provide vital ecosystem services, mitigating eutrophication and other factors associated with development in the rocky intertidal coastal zone should be a management priority. - Highlights: • The effect of nutrient loading on rocky intertidal seagrasses is not well studied. • Regionally, development was negatively associated with Phyllospadix bed thickness. • Locally, shoot δ 15 N was negatively associated with Phyllospadix bed thickness. • Mesocosms with added nutrients had a net loss in shoots and increased epiphytes. • Nutrient loading may have a negative effect on intertidal seagrass bed health.

  10. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    Science.gov (United States)

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  11. Restoration of genetic connectivity among Northern Rockies wolf populations.

    Science.gov (United States)

    Hebblewhite, Mark; Musiani, Marco; Mills, L Scott

    2010-10-01

    Probably no conservation genetics issue is currently more controversial than the question of whether grey wolves (Canis lupus) in the Northern Rockies have recovered to genetically effective levels. Following the dispersal-based recolonization of Northwestern Montana from Canada, and reintroductions to Yellowstone and Central Idaho, wolves have vastly exceeded population recovery goals of 300 wolves distributed in at least 10 breeding pairs in each of Wyoming, Idaho and Montana. With >1700 wolves currently, efforts to delist wolves from endangered status have become mired in legal battles over the distinct population segment (DPS) clause of the Endangered Species Act (ESA), and whether subpopulations within the DPS were genetically isolated. An earlier study by vonHoldt et al. (2008) suggested Yellowstone National Park wolves were indeed isolated and was used against delisting in 2008. Since then, wolves were temporarily delisted, and a first controversial hunting season occurred in fall of 2009. Yet, concerns over the genetic recovery of wolves in the Northern Rockies remain, and upcoming District court rulings in the summer of 2010 will probably include consideration of gene flow between subpopulations. In this issue of Molecular Ecology, vonHoldt et al. (2010) conduct the largest analysis of gene flow and population structure of the Northern Rockies wolves to date. Using an impressive sampling design and novel analytic methods, vonHoldt et al. (2010) show substantial levels of gene flow between three identified subpopulations of wolves within the Northern Rockies, clarifying previous analyses and convincingly showing genetic recovery. © 2010 Blackwell Publishing Ltd.

  12. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    Science.gov (United States)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  13. Wind constraints on the thermoregulation of high mountain lizards

    Science.gov (United States)

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  14. FACIES, MICROFOSSILS (SMALLER FORAMINIFERS, CALCAREOUS ALGAE AND BIOSTRATIGRAPHY OF THE HUECO GROUP, DOÑA ANA MOUNTAINS, SOUTHERN NEW MEXICO, USA

    Directory of Open Access Journals (Sweden)

    KARL KRAINER

    2009-03-01

    Full Text Available The Lower Permian Hueco Group of the Doña Ana Mountains (south-central New Mexico, USA is studied in three sections (A, B, C located east of Leasburg, Doña Ana County. Regionally, the Hueco Group has been subdivided into four formations termed Shalem Colony, Community Pit, Robledo Mountains and Apache Dam formations; the lower three are exposed in the Doña Ana Mountains. The succession shows a shallowing upward trend from dominantly shallow, open marine conditions (Shalem Colony Fm to increasingly restricted marine environments (Community Pit Fm and siliciclastic influx (Robledo Mountains Formation. Sedimentation, particularly siliciclastic influx, was mainly controlled by reactivation of basement uplifts during the last pulses of the Ancestral Rocky Mountains deformation. The microfossils and microfacies of the two first formations are studied in detail here. The Shalem Colony Formation can be divided into a lower biozone with Triticites pinguis, which is Newwellian (latest Pennsylvanian, early Wolfcampian in age, and an upper division characterized by the first occurrence of Geinitzina, and lower-middle Asselian (late early Wolfcampian in age. By comparison with the subdivisions of the Carnic Alps (Austria, the Community Pit Formation is characterized as Sakmarian (middle Wolfcampian in age due to the first occurrence of the genus Pseudovermiporella, and its probable complete phylogeny from Hedraites. The late Asselian is restricted to the uppermost part of the Shalem Colony and lowermost part of the Community Pit Formation. Due to the occurrence of Pseudoreichelina the Robledo Mountains Formation is dated as Artinskian (late Wolfcampian. Some bioconstructions of Archaeolithophyllum are emphasized, as well as some species of foraminifers-globivalvulinids, Miliolata and Nodosariata. 

  15. Stratigraphy and structural setting of Upper Cretaceous Frontier Formation, western Centennial Mountains, southwestern Montana and southeastern Idaho

    Science.gov (United States)

    Dyman, T.S.; Tysdal, R.G.; Perry, W.J.; Nichols, D.J.; Obradovich, J.D.

    2008-01-01

    Stratigraphic, sedimentologic, and palynologic data were used to correlate the Frontier Formation of the western Centennial Mountains with time-equivalent rocks in the Lima Peaks area and other nearby areas in southwestern Montana. The stratigraphic interval studied is in the middle and upper parts (but not uppermost) of the formation based on a comparison of sandstone petrography, palynologic age data, and our interpretation of the structure using a seismic line along the frontal zone of the Centennial Mountains and the adjacent Centennial Valley. The Frontier Formation is comprised of sandstone, siltstone, mudstone, limestone, and silty shale in fluvial and coastal depositional settings. A distinctive characteristic of these strata in the western Centennial Mountains is the absence of conglomerate and conglomeratic sandstone beds. Absence of conglomerate beds may be due to lateral facies changes associated with fluvial systems, a distal fining of grain size, and the absence of both uppermost and lower Frontier rocks in the study area. Palynostratigraphic data indicate a Coniacian age for the Frontier Formation in the western Centennial Mountains. These data are supported by a geochronologic age from the middle part of the Frontier at Lima Peaks indicating a possible late Coniacian-early Santonian age (86.25 ?? 0.38 Ma) for the middle Frontier there. The Frontier Formation in the western Centennial Mountains is comparable in age and thickness to part of the Frontier at Lima Peaks. These rocks represent one of the thickest known sequences of Frontier strata in the Rocky Mountain region. Deposition was from about 95 to 86 Ma (middle Cenomanian to at least early Santonian), during which time, shoreface sandstone of the Telegraph Creek Formation and marine shale of the Cody Shale were deposited to the east in the area now occupied by the Madison Range in southwestern Montana. Frontier strata in the western Centennial Mountains are structurally isolated from other

  16. Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C. [Kaiser-Hill Co., LLC, Golden, CO (United States)], Doyle, D. [USDOE Rocky Flats Office, Golden, CO (United States)], Featherman, W.D. [Project Performance Corp., Sterline, VA (United States)

    1997-12-31

    The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

  17. Structure Changes of Macrobenthic Community on Rocky Shores After the Hebei Spirit Oil Spill

    OpenAIRE

    Yun-Hwan Jung; Heung-Sik Park; Kon-Tak Yoon; Hyung-Gon Lee; Chae-Woo Ma

    2013-01-01

    In Korea, more than 300 oil spill accidents occur every year. Despite the frequency, only a small pool of data is available on the initial effect of oil spill on macrobenthic fauna inhabiting rocky shores. The aim of this study was to analyze the variation of macrobenthic fauna composition and community structure on rocky shores, and understand the impact of oil on rocky shore organisms after the Hebei Spirit oil spill. Field surveys were carried out in five regions dose to the wreck site in ...

  18. K. Linda Kivi autoriõhtu Tartu College´is / Eda Sepp ; fotod: Eda Sepp

    Index Scriptorium Estoniae

    Sepp, Eda

    2006-01-01

    19. jaanuaril 2006, Linda Kivi kolmanda raamatu "The Inner Green: Exploring Home in the Columbia Mountains" raamatuesitlusest. Korraldajateks Toronto Ülikooli Eesti Õppetool, Tartu Instituut, Tartu College´i laenuraamatukogu

  19. Table mountain observatory support to other programs

    International Nuclear Information System (INIS)

    Harris, A.W.

    1988-01-01

    The Table Mountain Observatory (TMO) facilities include well equipped 24 inch and 16 inch telescopes with a 40 inch telescope (owned by Pomona College) due for completion during FY 89. This proposal is to provide operational support (equipment maintenance, setup, and observing assistnce) at TMO to other programs. The program currently most heavily supported by this grant is the asteroid photometry program directed by A. W. Harris. During 1987, about 20 asteroids were observed, including a near-earth asteroid, 1951 Midas. The photometric observations are used to derive rotation periods, estimate shapes and pole orientations, and to define the phase relations of asteroids. The E class asteroid 64 Angelina was observed, and showed the same opposition spike observed of 44 Jysa, last year. Comet observations are made with the narrow band camera system of David Rees, University College London. Observational support and training was provided to students and faculty from Claremont Colleges for variable star observing programs. Researchers propose to continue the asteroid program, with emphasis on measuring phase relations of low and high albedo asteroids at very low phase angles, and supporting collaborative studies of asteroid shapes

  20. Mortality among plutonium and other workers at Rocky Flats

    International Nuclear Information System (INIS)

    Wilkinson, G.S.; Acquavella, J.F.; Reyes, M.; Tietjen, G.L.; Wiggs, L.d.; Voelz, G.L.

    1985-01-01

    A detailed study of mortality and radiation exposure for Rocky Flats workers was reported at the Sixteenth Mid-Year Topical Symposium of the Health Physics Society in January 1983. Significantly fewer deaths were found than were expected due to all causes, all malignant neoplasms, lung cancer, and cancer of the digestive organs. No bone cancers were observed and cancers commonly associated with radiation exposure were not more frequent than expected. Significantly more deaths than expected were observed for two causes, cancer of the prostate and benign and unspecified neoplasms. Further investigation revealed that the deaths from benign and unspecified neoplasms all involved intracranial tumors. A case control study found no association between these brain tumors and exposure to radiation, including plutonium depositions or type of occupation. The excess deaths from intracranial tumors remain unexplained but do not appear to be associated with employment at Rocky Flats. Relative risks among Rocky Flats workers with cumulative plutonium depositions of 2 nCi or more did not indicate a significantly greater risk of death among workers exposed to plutonium than among unexposed workers. Similar results were found for workers with cumulative radiation exposure of at least 1 rem. 2 references, 3 tables

  1. Public distrust and hazard management success at the Rocky Flats nuclear weapons plant

    International Nuclear Information System (INIS)

    Hohenemser, C.

    1987-01-01

    Based on experience gained while serving a public oversight commission appointed by the governor of Colorado, hazard management at the Department of Energy's Rocky Flats nuclear weapons plant is reviewed. Specific reference is made to the plant's history of controversy, its defense-in-depth strategy of hazard control, occupational health issues, public exposure to plutonium, and the assessment of low-probability, high-consequence risks. This leads to the conclusion that Rocky flats is, by any objective standard, a hazard management success. It follows that public distrust of Rocky Flats arises as much from fear and loathing of nuclear weapons themselves as from the manufacturing process by which they are made

  2. The removal of plutonium contaminants from Rocky Flats Plant soil

    International Nuclear Information System (INIS)

    Sunderland, N.R.

    1987-01-01

    This research was undertaken to determine if the TRUclean process could effectively remove radioactive elements from soils other than derived coral. This is an interim report prior to the project report and discusses the outcome of the tests of the Rocky Flats Plant (RFP) soil. The soil tested contained plutonium particulates in the micron and submicron range. Volume reduction and activity removal were accomplished with an overall efficiency of greater than 90%. The TRUclean process is a very practical and economical solution to soil contamination problems at the Rocky Flats Plant

  3. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Science.gov (United States)

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  4. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    International Nuclear Information System (INIS)

    Hendrickson, D.W.; Biyani, R.K.; Brown, C.M.; Teter, W.L.

    1995-11-01

    Proposals for demonstration work under the Department of Energy's Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document

  5. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  6. Assessing exotic plant species invasions and associated soil characteristics: A case study in eastern Rocky Mountain National Park, Colorado, USA, using the pixel nested plot design

    Science.gov (United States)

    Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.

    2007-01-01

    Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested

  7. Rocky flats closure project - lessons learned in worker stakeholder engagement

    International Nuclear Information System (INIS)

    Sweeney, Laura; Mazur, Robert E.; Edelson, Martin

    2013-01-01

    The Rocky Flats Environmental Technology Site (EPA Superfund site near Denver, Colorado) produced plutonium components for nuclear weapons for the U.S. defense program. The facility shut down in 1989 and clean up began in 1992. To ensure safe remediation of inactive nuclear sites, site owners have begun to consult stakeholders more widely in recent years. The closure of Rocky Flats aimed to set the standard for stakeholder involvement in doing the work safely, complying with regulations/standards, in a cost-effective manner. We have studied, using ethnographic methods, the extent to which workers at Rocky Flats were involved in communication and decision making strategies. Our results point out that workers can have perceptions of the site remediation process that differ from management and even other workers and that a significant number of workers questioned the commitment by management to engage the worker as stakeholder. The most effective remediation efforts should involve careful consideration of the insights and observations of all workers, particularly those who face immediate and high-level health and safety risks. (authors)

  8. Rocky flats closure project - lessons learned in worker stakeholder engagement

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Laura [Des Moines Area Community College, Ankeny, Iowa (United States); Mazur, Robert E. [Iowa State University, Ames, Iowa (United States); Edelson, Martin [Ames Laboratory-USDOE (Retired), Ames, Iowa (United States)

    2013-07-01

    The Rocky Flats Environmental Technology Site (EPA Superfund site near Denver, Colorado) produced plutonium components for nuclear weapons for the U.S. defense program. The facility shut down in 1989 and clean up began in 1992. To ensure safe remediation of inactive nuclear sites, site owners have begun to consult stakeholders more widely in recent years. The closure of Rocky Flats aimed to set the standard for stakeholder involvement in doing the work safely, complying with regulations/standards, in a cost-effective manner. We have studied, using ethnographic methods, the extent to which workers at Rocky Flats were involved in communication and decision making strategies. Our results point out that workers can have perceptions of the site remediation process that differ from management and even other workers and that a significant number of workers questioned the commitment by management to engage the worker as stakeholder. The most effective remediation efforts should involve careful consideration of the insights and observations of all workers, particularly those who face immediate and high-level health and safety risks. (authors)

  9. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado

    International Nuclear Information System (INIS)

    Litaor, M.I.

    1999-01-01

    Spatial analysis of the 240 Pu: 239 Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 ± 0.003 to 0.169 ± 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio ≥0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio ≤0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq

  10. FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Joe M. Aldrich

    2004-11-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

  11. FINAL REPORT. FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    International Nuclear Information System (INIS)

    Aldrich, Joe M.

    2004-01-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC--05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004

  12. The Snowmastodon Project: A view of the Last Interglacial Period from high in the Colorado Rockies

    Science.gov (United States)

    Pigati, Jeffery S.

    2015-01-01

    In North America, terrestrial records of biodiversity and climate change that span the Last Interglacial Period [or Marine Oxygen Isotope Stage (MIS) 5] are rare. In 2010-11, construction at Ziegler Reservoir near Snowmass Village, Colorado revealed a lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site (ZRFS) also contained thousands of well-preserved bones and teeth of Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals, including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework, shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.

  13. Residue management at Rocky Flats

    International Nuclear Information System (INIS)

    Olencz, J.

    1995-01-01

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as open-quotes materials in-processclose quotes to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes

  14. Injury and illness in college outdoor education.

    Science.gov (United States)

    Gaudio, Flavio G; Greenwald, Peter W; Holton, Mark

    2010-12-01

    Many colleges offer outdoor education courses such as rock climbing, kayaking, and mountain biking. Since these sports may be perceived as dangerous, we describe the prevalence of injuries and illnesses in a large, university-based outdoor education program. We also compare composite incident rates from this outdoor program to those of traditional college sports. Cohort of college students participating in either Cornell Outdoor Education (COE) or National Collegiate Athletic Association (NCAA) sports and comparison of incident rates. COE data were prospectively collected in the field; and NCAA data were prospectively collected through the Association's Injury Surveillance System. By definition, a COE injury or illness required follow-up care, prescription medication, or limited course participation. Similarly, a NCAA injury limited further practice or play. Incident rates were calculated as injuries and illnesses per 1000 participant-days (COE) or injuries per 1000 athlete-exposures (NCAA). Included COE courses during 2002-2007 totaled 74 005 participant-days. There were 111 injuries and illnesses, rate = 1.50/1000 participant-days (95% CI 1.24-1.81). The NCAA reported 32 646 899 athlete-exposures during 1988-2004 and 181 476 injuries, rate = 5.56/1000 athlete-exposures (95% CI 5.53-5.58). Compared to COE, the relative risk of injury in NCAA sports was 3.7 (95% CI 3.1-4.5) overall and 3.3 (95% CI 2.8-4.0) after excluding the high-contact sports of football, ice hockey, and wrestling. For COE, mountain biking had the highest incident rate (7.5/1000), which was significantly lower than game injury rates in NCAA football and soccer. The most common injuries for both NCAA and COE were soft-tissue injuries such as sprains and strains. Outdoor education at this university-sponsored program was at least as safe as traditional college sports. Overall, college students were less likely to be injured while participating in COE courses than while participating in NCAA sports

  15. Rocky Flats Solar Evaporation Ponds RCRA hybrid-closure case study

    International Nuclear Information System (INIS)

    Ogg, R.T.; Everett, L.G.; Cullen, S.J.

    1994-01-01

    The Solar Evaporation Ponds (SEP)/Operable Unit 4 (OU 4), located at the Rocky Flats Plant (RFP) sixteen miles northwest of Denver, Colorado, is currently undergoing remediation/Resource Conservation and Recovery Act (RCRA) closure in accordance with the Rocky Flats Interagency Agreement (IAG) signed by the US Department of Energy (DOE), US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH) on January 22, 1991. Based on the ''Phase 1'' (source and soils) RCRA Facility Investigation/Remedial Investigation (RFM data and interpretations), the DOE and EG and G Rocky Flats, Inc. (EG and G) have selected a permanent surface engineered/isolation barrier as the technological option for remediation of the SEP. The DOE and EG and G will utilize all natural materials to create an ''impermeable'' barrier/structure to isolate the waste being left in place from impacting human health and the environment for a minimum of 1,000 years. Their rationale for utilizing natural materials is two fold; (1) optimize long term performance of the barrier and; (2) design a structure which will be near maintenance free (passive remediation) for 1,000 years. The DOE and EG and G have taken a proactive approach in providing post closure performance assessment for this RCRA closure action. An integrated monitoring system has been designed which will include monitoring the engineered barrier, vadose zone and ground water systems. Rocky Flats will integrate instrumentation into the permanent engineered barrier which will provide early warning of potential liquid migration through the barrier and into the waste zone

  16. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    International Nuclear Information System (INIS)

    Jones, M.E.; Shain, D.I.

    1994-01-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges

  17. To Tree, or not to Tree: Sediment Storage in Forested and Non-forested Mountainous Hillslopes of the Bitterroot Mountains, MT

    Science.gov (United States)

    Quinn, C.; Dixon, J. L.; Wilcox, A. C.

    2017-12-01

    In steep, mountainous landscapes, interactions between soil, rock, and biotic factors combine to form complex feedbacks. Here, we explore the dynamic interplay between soil and vegetation and its influence on hillslope sediment storage and movement in the Bitterroot Range of Montana's Rocky Mountains. We focus on a set of analogous forested and non-forested hillslopes along Lost Horse Creek, where avalanche paths determine vegetative density without significant impact on other topographic variables. LiDAR, high-resolution aerial photography, and field mapping are used to determine the local and landscape variables that influence soil cover and sediment storage. We find high-resolution surface roughness is a useful remote proxy to identify bedrock and boulder outcrops, particularly beneath canopy cover. Based on this analysis and field mapping, the spatial extent of soil cover does not vary significantly between forested and non-forested regions, though soils are generally thicker under forest cover. We additionally measure fallout radiogenic nuclides (FRNs; Cs-137 and Pb-210) in soils across 40 sites to provide insight into short-term soil erosion and movement. Preliminary results show high spatial variability in FRN activities of mineral soils in both systems, which may reflect either spatially variable delivery or soil erosion. Additionally, FRN activity of surface litter and duff at the forest floor is three to four times higher than mineral soils in both the forested and non-forested sites, suggesting that FRNs may provide a novel tracer of carbon storage and export. Our results show that the coupled use of isotopic tracers and high resolution spatial data reveal quantitative insights into landscape scale hillslope soil dynamics.

  18. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    An account of the Rocky Flats radionuclide soil action level controversy is presented as: a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, which was characterised by secrecy and distrust, the post-Cold War era, in which trust and co-operation between risk managers and the public began to develop. This contrast between these two historical periods provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified: (1) without a basis in shared values, collaborative public involvement in the management of radiological hazards is not possible; (2) given a basis in shared values, collaborative public involvement can lead to improved solutions to the management of radiological hazards; and (3) risk managers should therefore seek to understand the values of public stakeholders and to identify ways, through stakeholder involvement, that those values can be incorporated in management practice. (author)

  19. Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.

    2017-12-01

    In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.

  20. Floristic similarity, diversity and endemism as indicators of refugia characteristics and needs in the West

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2015-01-01

    The floras of mountain ranges, and their similarity, beta diversity and endemism, are indicative of processes of community assembly; they are also the initial conditions for coming disassembly and reassembly in response to climate change. As such, these characteristics can inform thinking on refugia. The published floras or approximations for 42 mountain ranges in the three major mountain systems (Sierra-Cascades, Rocky Mountains and Great Basin ranges) across the western USA and southwestern Canada were analysed. The similarity is higher among the ranges of the Rockies while equally low among the ranges of the Sierra-Cascades and Great Basin. Mantel correlations of similarity with geographic distance are also higher for the Rocky Mountains. Endemism is relatively high, but is highest in the Sierra-Cascades (due to the Sierra Nevada as the single largest range) and lowest in the Great Basin, where assemblages are allochthonous. These differences indicate that the geologic substrates of the Cascade volcanoes, which are much younger than any others, play a role in addition to geographic isolation in community assembly. The pattern of similarity and endemism indicates that the ranges of the Cascades will not function well as stepping stones and the endemic species that they harbor may need more protection than those of the Rocky Mountains. The geometry of the ranges is complemented by geology in setting the stage for similarity and the potential for refugia across the West. Understanding the geographic template as initial conditions for the future can guide the forecast of refugia and related monitoring or protection efforts.