WorldWideScience

Sample records for rockets physical science

  1. Rockets: Physical science teacher's guide with activities

    Science.gov (United States)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  2. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  3. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  4. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  5. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  6. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  7. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  8. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  9. Government Relations: It's Not Rocket Science

    Science.gov (United States)

    Radway, Mike

    2007-01-01

    Many people in the early childhood education field are afraid of government relations work, intimidated by politicians, and believe the whole process is unseemly. The author asserts that they should not be afraid nor be intimidated because government relations is not rocket science and fundamentally officeholders are no different from the rest of…

  10. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  11. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  12. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  13. Adventures in Rocket Science. EG-2007-12-179-MSFC

    Science.gov (United States)

    Huegele, Vince; Hill, Kristy; Terry, Brenda

    2008-01-01

    This guide was prepared as a tool useful for informal education venues (4-H, Boys and Girls Clubs, Boy Scouts, Girl Scouts, etc.), science clubs and related programs, and can be adopted for formal education settings. An exciting and productive study in rocket science can be implemented using the selected activities for the above-mentioned…

  14. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  15. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  16. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  17. Rockets: An Educator's Guide with Activities in Science, Mathematics, and Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This educational guide discusses rockets and includes activities in science, mathematics, and technology. It begins with background information on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry focus on Sir Isaac Newton's Three Laws of Motion. These laws explain…

  18. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  19. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  20. Developing safety culture-rocket science or common sense?

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1998-01-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science

  1. Developing safety culture-rocket science or common sense?

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, J.A.

    1998-08-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.

  2. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  3. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  4. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  5. Physical Sciences 2007 Science and Technology Highlights

    International Nuclear Information System (INIS)

    Hazi, A.U.

    2008-01-01

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007

  6. The Extended Duration Sounding Rocket (EDSR): Low Cost Science and Technology Missions

    Science.gov (United States)

    Cruddace, R. G.; Chakrabarti, S.; Cash, W.; Eberspeaker, P.; Figer, D.; Figueroa, O.; Harris, W.; Kowalski, M.; Maddox, R.; Martin, C.; McCammon, D.; Nordsieck, K.; Polidan, R.; Sanders, W.; Wilkinson, E.; Asrat

    2011-12-01

    The 50-year old NASA sounding rocket (SR) program has been successful in launching scientific payloads into space frequently and at low cost with a 85% success rate. In 2008 the NASA Astrophysics Sounding Rocket Assessment Team (ASRAT), set up to review the future course of the SR program, made four major recommendations, one of which now called Extended Duration Sounding Rocket (EDSR). ASRAT recommended a system capable of launching science payloads (up to 420 kg) into low Earth orbit frequently (1/yr) at low cost, with a mission duration of approximately 30 days. Payload selection would be based on meritorious high-value science that can be performed by migrating sub-orbital payloads to orbit. Establishment of this capability is a essential for NASA as it strives to advance technical readiness and lower costs for risk averse Explorers and flagship missions in its pursuit of a balanced and sustainable program and achieve big science goals within a limited fiscal environment. The development of a new generation of small, low-cost launch vehicles (SLV), primarily the SpaceX Falcon 1 and the Orbital Sciences Minotaur I has made this concept conceivable. The NASA Wallops Flight Facility (WFF)conducted a detailed engineering concept study, aimed at defining the technical characteristics of all phases of a mission, from design, procurement, assembly, test, integration and mission operations. The work was led by Dr. Raymond Cruddace, a veteran of the SR program and the prime mover of the EDSR concept. The team investigated details such as, the "FAA licensed contract" for launch service procurement, with WFF and NASA SMD being responsible for mission assurance which results in a factor of two cost savings over the current approach. These and other creative solutions resulted in a proof-of-concept Class D mission design that could have a sustained launch rate of at least 1/yr, a mission duration of up to about 3 months, and a total cost of $25-30 million for each mission

  7. Rockets and ray guns the sci-fi science of the Cold War

    CERN Document Server

    May, Andrew

    2018-01-01

    The Cold War saw scientists in East and West racing to create amazing new technologies, the like of which the world had never seen. Yet not everyone was taken by surprise. From super-powerful atomic weapons to rockets and space travel, readers of science fiction (SF) had seen it all before. Sometimes reality lived up to the SF vision, at other times it didn’t. The hydrogen bomb was as terrifyingly destructive as anything in fiction, while real-world lasers didn't come close to the promise of the classic SF ray gun. Nevertheless, when the scientific Cold War culminated in the Strategic Defence Initiative of the 1980s, it was so science-fictional in its aspirations that the media dubbed it “Star Wars”. This entertaining account, offering a plethora of little known facts and insights from previously classified military projects, shows how the real-world science of the Cold War followed in the footsteps of SF – and how the two together changed our perception of both science and scientists, and paved the w...

  8. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  9. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  10. European souding-rocket, balloon and related research, with emphasis on experiments at high latitudes. Proceedings

    International Nuclear Information System (INIS)

    Halvorsen, T.; Battrick, B.; Rowley, C.

    1978-06-01

    The document contains 75 papers presented at the fourth symposium held within the framework of the ESA programme advisory committee on the special project concerning the launching of sounding rockets (PAC), which took place at Ajaccio, Corsica, from 24-29 April 1978. The symposium, organised jointly by the PAC and the Centre national d'etudes spaciales (CNES), was divided into 8 sessions embracing, respectively, a review of the national programmes, magnetospheric physics, launch range presentations, middle-atmosphere physics, astrophysic, material sciences, subsatellites and technology, as relevant to souding-rocket and balloon research. Working groups formed during the symposium formulated proposals to the PAC for new or intensified studies based on coordination of other experiments with EISCAT, optical experiments in connection with range and other experiment, middle-atmosphere programme experiments, and subsatellite experiments

  11. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  12. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  13. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    Science.gov (United States)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  14. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  15. The Psychology of Physical Science

    Science.gov (United States)

    Feist, Gregory J.

    2006-12-01

    Who becomes a physical scientist is not completely a coincidence. People with spatial talent and who are thing-oriented are most likely to be attracted to physical science, including astronomy. Additional lessons from the psychology of science suggest that compared with non-scientists and social scientists, physical scientists are most likely to be introverted, independent, self-confident, and yet somewhat arrogant. Understanding the physical and inanimate world is part of what physical scientists do, and understanding those who understand the physical world is part of what psychologists of science do.

  16. Physics The First Science

    CERN Document Server

    LINDENFELD, Peter

    2011-01-01

    Today's physics textbooks have become encyclopedic, offering students dry discussions, rote formulas, and exercises with little relation to the real world. Physics: The First Science offers uniquely accessible, student-friendly explanations, historical and philosophical perspectives and mathematics in easy-to-comprehend dialogue. It emphasizes the unity of physics and its place as the basis for all science. With their experience instructing both students and teachers of physics for decades, Peter Lindenfeld and Suzanne White Brahmia have developed an algebra-based physics book with fea

  17. Physics Guided Data Science in the Earth Sciences

    Science.gov (United States)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  18. Theoretical and Experimental Analysis of the Physics of Water Rockets

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  19. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  20. Theodore von Karman - Rocket Scientist

    Indian Academy of Sciences (India)

    seminal contributions to several areas of fluid and solid mechanics, as the first head of ... nent position in Aeronautics research, as a pioneer of rocket science in America ... toral work, however, was on the theory of buckling of large structures.

  1. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  2. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  3. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  4. Partners in Physics with Colorado School of Mines' Society of Physics Students

    Science.gov (United States)

    Moore, Shirley; Stilwell, Matthew; Boerner, Zach

    2011-04-01

    The Colorado School of Mines (CSM) Society of Physics Students (SPS) revitalized in 2008 and has since blown up with outreach activity, incorporating all age levels into our programs. In Spring 2010, CSM SPS launched a new program called Partners in Physics. Students from Golden High School came to CSM where they had a college-level lesson on standing waves and their applications. These students then joined volunteers from CSM in teaching local elementary school students about standing waves beginning with a science show. The CSM and high school students then helped the children to build make-and-take demonstrations incorporating waves. This year, rockets are the theme for Partners in Physics and we began with demonstrations with local middle school students. In Spring 2011, CSM SPS will be teaching elementary school students about projectile motion and model rockets along with these middle school students. Colorado School of Mines Department of Physics

  5. The Norwegian sounding rocket programme 1980-83

    International Nuclear Information System (INIS)

    Egeland, A.; Gundersen, A.

    1980-01-01

    As illustrated by the rocket program presented and discussed in this paper, exploration of the polar ionosphere still plays a central part in the Norwegian research program in science. A cornerstone in the Norwegian space program is the Andoeya Rocket Range. It will be shown that advanced radio installations in northern Scandinavia together with the new optical site at Svalbard will stimulate towards further in situ measurements and theoretical work of the polar ionosphere. (Auth.)

  6. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  7. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  8. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  9. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    Science.gov (United States)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  10. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  11. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  12. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  13. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  14. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  15. Science for common entrance physics : answers

    CERN Document Server

    Pickering, W R

    2015-01-01

    This book contains answers to all exercises featured in the accompanying textbook Science for Common Entrance: Physics , which covers every Level 1 and 2 topic in the ISEB 13+ Physics Common Entrance exam syllabus. - Clean, clear layout for easy marking. - Includes examples of high-scoring answers with diagrams and workings. - Suitable for ISEB 13+ Mathematics Common Entrance exams taken from Autumn 2017 onwards. Also available to purchase from the Galore Park website www.galorepark.co.uk :. - Science for Common Entrance: Physics. - Science for Common Entrance: Biology. - Science for Common En

  16. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  17. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  18. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  19. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)

    2007-10-15

    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  20. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  1. Influence of Physical Activities to Science Performance

    Directory of Open Access Journals (Sweden)

    RS Wilson DR. Constantino

    2017-11-01

    Full Text Available This study explored the physical activities of fifth and sixth graders that projected correlations to science performance and how these physical activities may be utilized for classroom purposes in the context of science-related play activities. Descriptive survey correlational design directed the data collection and analysis of the physical activities of purposively selected 133 fifth and sixth graders. Primarily, the study used a researcher-developed and validated instrument (Physical Activity Questionnaire [PAQ], and standard instruments: Philippine National Physical Activity Guide (PNPAG and General Physical Activity Questionnaire (GPAQ. The latter classified the physical activities into five domains which directed the interpretation of the participants‟ responses. The Pearson-r Moment of Correlation described the level of correlation of the frequency of engagement to physical activities (limited to local and localized activities and the science grade of the respondents. Results show that each of the physical activity domains showed specific correlations to science performance of the respondents. For further research, enrichment of the relationship of the physical activities and the science performance may focus on possible moderating variables like economic status, and time allotment for physical activities.

  2. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  3. Three-Axis Gasless Sounding Rocket Payload Attitude Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas released by current sounding rocket payload attitude control systems (ACS) has the potential to interfere with some types of science instruments. A single-axis...

  4. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  5. Launch Excitement with Water Rockets

    Science.gov (United States)

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  6. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  7. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  8. The National Cancer Institute's Physical Sciences - Oncology Network

    Science.gov (United States)

    Espey, Michael Graham

    In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.

  9. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Science.gov (United States)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  10. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    Science.gov (United States)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  11. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  12. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling

  13. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  14. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  15. Reviews Book: Enjoyable Physics Equipment: SEP Colorimeter Box Book: Pursuing Power and Light Equipment: SEP Bottle Rocket Launcher Equipment: Sciencescope GLE Datalogger Equipment: EDU Logger Book: Physics of Sailing Book: The Lightness of Being Software: Logotron Insight iLog Studio iPhone Apps Lecture: 2010 IOP Schools and Colleges Lecture Web Watch

    Science.gov (United States)

    2010-09-01

    WE RECOMMEND Enjoyable Physics Mechanics book makes learning more fun SEP Colorimeter Box A useful and inexpensive colorimeter for the classroom Pursuing Power and Light Account of the development of science in the 19th centuary SEP Bottle Rocket Launcher An excellent resource for teaching about projectiles GLE Datalogger GPS software is combined with a datalogger EDU Logger Remote datalogger has greater sensing abilities Logotron Insight iLog Studio Software enables datlogging, data analysis and modelling iPhone Apps Mobile phone games aid study of gravity WORTH A LOOK Physics of Sailing Book journeys through the importance of physics in sailing The Lightness of Being Study of what the world is made from LECTURE The 2010 IOP Schools and Colleges Lecture presents the physics of fusion WEB WATCH Planet Scicast pushes boundaries of pupil creativity

  16. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  17. Engaging high school students as plasma science outreach ambassadors

    Science.gov (United States)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  18. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  19. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  20. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  1. Lessons from half a century experience of Japanese solid rocketry since Pencil rocket

    Science.gov (United States)

    Matogawa, Yasunori

    2007-12-01

    50 years have passed since a tiny rocket "Pencil" was launched horizontally at Kokubunji near Tokyo in 1955. Though there existed high level of rocket technology in Japan before the end of the second World War, it was not succeeded by the country after the War. Pencil therefore was the substantial start of Japanese rocketry that opened the way to the present stage. In the meantime, a rocket group of the University of Tokyo contributed to the International Geophysical Year in 1957-1958 by developing bigger rockets, and in 1970, the group succeeded in injecting first Japanese satellite OHSUMI into earth orbit. It was just before the launch of OHSUMI that Japan had built up the double feature system of science and applications in space efforts. The former has been pursued by ISAS (the Institute of Space and Astronautical Science) of the University of Tokyo, and the latter by NASDA (National Space Development Agency). This unique system worked quite efficiently because space activities in scientific and applicational areas could develop rather independently without affecting each other. Thus Japan's space science ran up rapidly to the international stage under the support of solid propellant rocket technology, and, after a 20 year technological introduction period from the US, a big liquid propellant launch vehicle, H-II, at last was developed on the basis of Japan's own technology in the early 1990's. On October 1, 2003, as a part of Governmental Reform, three Japanese space agencies were consolidated into a single agency, JAXA (Japan Aerospace Exploration Agency), and Japan's space efforts began to walk toward the future in a globally coordinated fashion, including aeronautics, astronautics, space science, satellite technology, etc., at the same time. This paper surveys the history of Japanese rocketry briefly, and draws out the lessons from it to make a new history of Japan's space efforts more meaningful.

  2. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  3. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  4. Avatars of Hollywood in Physical Science

    Science.gov (United States)

    Efthimiou, Costas J.; Llewellyn, Ralph A.

    2006-01-01

    This paper reports the results of the initial phase of an ambitious project known as Physics in Films, designed to help improve public understanding of the basic principles of physical science that the authors have embarked upon. The project began with several large groups of nonscience majors enrolled in the general education physical science course at the University of Central Florida (UCF), a course with a counterpart in nearly every college and university (and many high schools) in the nation.

  5. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  6. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  7. Proceedings of the 6. Japan-Brazil Symposium on Science and Technology

    International Nuclear Information System (INIS)

    1988-01-01

    The most recent results of Brazil-Japan agreement for technological development on areas of space science and plasma, were presented. Problems related to: astrophysics, cosmic radiation interaction with earth atmosphere, plasma physics, and construction of rockets and satellites for space researches were discussed. (M.C.K.) [pt

  8. Summer Institute for Physical Science Teachers

    Science.gov (United States)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  9. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hockaday, Mary Yvonne P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lacerda, Alex Hugo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilburn, Wesley Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carnes, Jay Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeYoung, Anemarie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, III, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martineau, Rick Lorne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Joseph Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Migliori, Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poling, Charles C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prestridge, Katherine Philomena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  10. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  11. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  12. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  13. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Chemical Sciences · Journal of Earth System Science · Journal of Genetics · Pramana ... Pramana – Journal of Physics was launched in July 1973. ... with the Indian National Science Academy and Indian Physics Association. ... special issues devoted to advances in specific areas of physics and proceedings of ...

  15. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  16. The Science of Physics

    CERN Document Server

    Field, Andrea

    2012-01-01

    As the foundation for other natural sciences, physics helps us interpret both our most basic and complex observations of the natural world. Physics encompasses such topics as mechanics, relativity, thermodynamics, and electricity, among others, all of which elucidate the nature of matter, its motion, and its relationship to force and energy. This engaging volume surveys some of the major branches of physics, the laws, and theories significant to each. Also chronicled are some of the historical milestones in the field by such great minds as Galileo and Isaac Newton.

  17. Quantum physics a beginner's guide

    CERN Document Server

    Rae, Alastair I M

    2005-01-01

    As Alastair Rae points out in his introduction, ""quantum physics is not rocket science"". It may have gained a reputation as the theory that no one really understands, but its practical applications are all around us in everyday life. If it were not for quantum physics, computers would not function, metals would not conduct electricity, and the power stations that heat our homes would not produce energy. Assuming no prior scientific or mathematical knowledge, this clear and concise introduction provides a step-by-step guide to quantum theory, right from the very basic principles to the most c

  18. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  19. The Alfred Nobel rocket camera. An early aerial photography attempt

    Science.gov (United States)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  20. Physics Laws of Social Science

    OpenAIRE

    Wayne, James J.

    2013-01-01

    Economics, and other fields of social science are often criticized as unscientific for their apparent failures to formulate universal laws governing human societies. Whether economics is truly a science is one of the oldest questions. This paper attempts to create such universal laws, and asserts that economics is a branch of quantum physics just like chemistry. Choice is a central concept in economics and other fields of social science, yet there is no corresponding concept of choice in mode...

  1. e-Science Paradigm for Astroparticle Physics at KISTI

    Directory of Open Access Journals (Sweden)

    Kihyeon Cho

    2016-03-01

    Full Text Available The Korea Institute of Science and Technology Information (KISTI has been studying the e-Science paradigm. With its successful application to particle physics, we consider the application of the paradigm to astroparticle physics. The Standard Model of particle physics is still not considered perfect even though the Higgs boson has recently been discovered. Astrophysical evidence shows that dark matter exists in the universe, hinting at new physics beyond the Standard Model. Therefore, there are efforts to search for dark matter candidates using direct detection, indirect detection, and collider detection. There are also efforts to build theoretical models for dark matter. Current astroparticle physics involves big investments in theories and computing along with experiments. The complexity of such an area of research is explained within the framework of the e-Science paradigm. The idea of the e-Science paradigm is to unify experiment, theory, and computing. The purpose is to study astroparticle physics anytime and anywhere. In this paper, an example of the application of the paradigm to astrophysics is presented.

  2. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  3. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    OpenAIRE

    Eerland, Willem J.; Box, Simon; Sóbester, András

    2017-01-01

    The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of th...

  4. Progress report - physics and health sciences - physics section 1990 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1990-10-01

    This is the ninth semi-annual report on the Physics section of Physics and Health Sciences. Major areas of discussion include: nuclear physics, accelerator physics, general physics, neutron's solid state physics, theoretical physics and fusion

  5. The effect of immigration status on physics identity and physical science career intentions

    Science.gov (United States)

    Lung, Florin; Potvin, Geoff; Sonnert, Gerhard; Sadler, Philip M.

    2012-02-01

    Using data collected from a nationally-representative sample of first-year college students, we examine how students' identity development as physics persons and their likelihood to pursue a career in physical science is predicted by differing immigrant experiences. We consider broad factors having a social, economic, or cultural nature as covariates in a propensity score model that assesses differences due to immigrant generation. Our results show that, when controlling for such factors as race/ethnicity, socio-economic status, and gender, students' physics identities and the likelihood of choosing a career in physical science are significantly higher amongst first generation students than second generation (or later) students. We conclude that physical science as a career option can be influenced by the experiences of being an immigrant and through the relationship between origin and host culture.

  6. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  7. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  8. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  9. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  10. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  11. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  12. Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Directory of Open Access Journals (Sweden)

    Catherine H. Crouch

    2018-03-01

    Full Text Available In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students’ attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students’ skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students’ attitudes toward and their interest in physics. Whereas the same students’ attitudes declined during the standard first semester course, we found that students’ attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students’ interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  13. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  14. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  15. Fermilab | Science | Inquiring Minds | Questions About Physics

    Science.gov (United States)

    Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  16. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  17. Factors influencing students' physical science enrolment decision at ...

    African Journals Online (AJOL)

    The study used a modified 'multiple worlds' model to investigate how the various worlds of the students influenced their science subject choice. ... Students also reported building enough self-confidence to enrol in physical science by the encouragement they received through informal contact with physics lecturers.

  18. High School Physical Sciences Teachers' Competence in Some ...

    African Journals Online (AJOL)

    Teachers' lack of competence in cognitive skills and strategies would be an important limiting factor in the successful implementation of the Physical Sciences curriculum. An urgent need ... Keywords: Cognitive skills, thinking skills, questions testing skills, problem solving, teacher training, high school physical science ...

  19. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    Science.gov (United States)

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  20. Physical and Life Sciences 2008 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  1. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  2. Richard Feynman a life in science

    CERN Document Server

    Gribbin, John

    1998-01-01

    This text is a portrayal of one of the greatest scientists of the late 20th-century, which also provides a picture of the significant physics of the period. It combines personal anecdotes, writings and recollections with narrative. Richard Feynman's career included: war-time work on the atomic bomb at Los Alamos; a theory of quantum mechanics for which he won the Nobel prize; and major contributions to the sciences of gravity, nuclear physics and particle theory. In 1986, he was able to show that the Challenger disaster was due to the effect of cold on the booster rocket rubber sealings.

  3. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  4. Department of Physical Sciences

    African Journals Online (AJOL)

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  5. Collaborative Yet Independent: Information Practices in the Physical Sciences

    CERN Document Server

    Meyer, Eric T; Kyriakidou-Zacharoudiou, Avgousta; Power, Lucy; Williams, Peter; Venters, Will; Terras, Melissa; Wyatt, Sally

    2011-12-31

    In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data. This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research. Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network...

  6. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  7. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    Science.gov (United States)

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. R T Tagiyeva1. Institute of Physics, Azerbaijan National Academy of Sciences, Baku-AZ 1143, Azerbaijan Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey ...

  9. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Ungrin, J; Kim, S M; Sears, V F [eds.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs.

  10. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    International Nuclear Information System (INIS)

    Ungrin, J.; Kim, S.M.; Sears, V.F.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs

  11. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  12. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    International Nuclear Information System (INIS)

    Rusli, Aloysius

    2016-01-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  13. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  14. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  15. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  16. Statistics for Physical Sciences An Introduction

    CERN Document Server

    Martin, Brian

    2012-01-01

    Statistical Methods for the Physical Sciences is an informal, relatively short, but systematic, guide to the more commonly used ideas and techniques in statistical analysis, as used in physical sciences, together with explanations of their origins. It steers a path between the extremes of a recipe of methods with a collection of useful formulas, and a full mathematical account of statistics, while at the same time developing the subject in a logical way. The book can be read in its entirety by anyone with a basic exposure to mathematics at the level of a first-year undergraduate student

  17. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  18. Rockets: Educator's Guide with Activities in Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Shearer, Deborah A.; Vogt, Gregory L.

    2008-01-01

    This guide provides teachers and students many opportunities. Chapters within the guide present the history of rocketry, National Aeronautics and Space Administration's (NASA's) 21st Century Space Exploration Policy, rocketry principles, and practical rocketry. These topics lay the foundation for what follows--a wealth of dynamic rocket science…

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Faculty of Sciences, Ankara University, 06100-Tandoğan-Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, H-Cavid 33, Baku-370143, Azerbaijan ...

  20. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al 3 Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs

  1. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al{sub 3} Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs.

  2. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  3. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  4. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  5. Putting the spark into physical science and algebra

    Science.gov (United States)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  6. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  7. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  8. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  9. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  10. Working-cycle processes in solid-propellant rocket engines (Handbook). Rabochie protsessy v raketnykh dvigateliakh tverdogo topliva /Spravochnik/

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, A.A.; Panin, S.D.; Rumiantsev, B.V.

    1989-01-01

    Physical and mathematical models of processes taking place in solid-propellant rocket engines and gas generators are presented in a systematic manner. The discussion covers the main types of solid propellants, the general design and principal components of solid-propellant rocket engines, the combustion of a solid-propellant charge, thermodynamic calculation of combustion and outflow processes, and analysis of gasdynamic processes in solid-propellant rocket engines. 40 refs.

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Johns Hopkins University, Baltimore, MD, USA; Institute of Physics, 751 005, Bhubaneswar, India; Indian Institute of Science, 560 012, Bangalore, India; Brookhaven National Laboratory, Upton, NY, USA; Institute for Theoretical Physics, University of Vienna, Vienna, Austria; Indian Association for the Cultivation of Science ...

  12. Probing the Natural World, Level III, Student Guide: What's Up? Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about rockets, space, and principles of physics, as well as activities related to the subject and optional excursions. A section of introductory notes to the student discusses how the…

  13. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  14. The Rocket Investigation of Current Closure in the Ionosphere (RICCI) mission: A novel application of CubeSats from a sounding rocket platform

    Science.gov (United States)

    Cohen, I. J.; Anderson, B. J.; Lessard, M.; Bonnell, J. W.; Bounds, S. R.; Lysak, R. L.; Erlandson, R. E.

    2017-12-01

    The transfer of energy and momentum between the terrestrial magnetosphere and ionosphere is substantially mediated by large-scale field-aligned currents (FACs), driven by magnetopause dynamics and magnetospheric pressures and closing through the ionosphere where the dissipation and drag are governed. While significant insight into ionospheric electrodynamics and the nature of magnetosphere-ionosphere (M-I) coupling have been gained by rocket and satellite measurements, in situ measurement of these ionospheric closure currents remains challenging. To date the best estimates of ionospheric current densities are inferred from ground-based radar observations combining electric fields calculated from drifts with conductivities derived from densities. RICCI aims to observe the structure of the ionospheric currents in situ to determine how the altitude structure of these currents is related to precipitation and density cavities, electromagnetic dynamics, and governs energy dissipation in the ionosphere. In situ measurement of the current density using multi-point measurements of the magnetic field requires precise attitude knowledge for which the only demonstrated technique is the use of star camera systems. The low vehicle rotation rates required for miniature commercial off-the-shelf (COTS) star cameras prohibit the use of available rocket sub-payload technologies at Wallops Flight Facility (WFF) which use high rates of spin to stabilize attitude. However, CubeSat attitude systems are already designed to achieve low vehicle rotation rates, so RICCI will use a set of three CubeSat sub-payloads deployed from a main low altitude payload with apogee of 160 km to provide precise current density measurement through the ionospheric closure altitude regime, together with a second rocket with apogee near 320 km to measure the incident input energy flux and convection electric field. The two rocket payloads and CubeSate sub-payloads are all instrumented with star cameras and

  15. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    International Nuclear Information System (INIS)

    2014-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'A little something from physics for medicine', was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) 'Translational medicine as a basis of progress in hematology/oncology'; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) 'Promising nuclear medicine research at the INR, RAS'; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) 'Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics'; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) 'New approaches in laser mass-spectrometry of organic objects'. The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239–1243 (conferences and symposia)

  16. The Material Co-Construction of Hard Science Fiction and Physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-01-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of…

  17. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  18. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... and Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Science, Nanjing University of Science & Technology, ...

  20. Hypothetical Dark Matter/Axion rockets: What can be said about Dark Matter in terms of space physics propulsion

    International Nuclear Information System (INIS)

    Beckwith, Andrew

    2009-01-01

    This paper discusses dark matter (DM) particle candidates from non-supersymmetry (SUSY) processes and explores how a DM candidate particle in the 100-400 GeV range could be created. Thrust from DM particles is also proposed for Photon rocket and Axion rockets. It would use a magnetic field to convert DM particles to near photonlike particles in a chamber to create thrust from the discharge of the near-photon-like particles. The presence of DM particles would suggest that thrust from the emerging near-photon-like particle would be greater than with conventional photon rockets. This amplifies and improves on an 'axion rocket ramjet' for interstellar travel. It is assumed that the same methodology used in an axion ramjet could be used with DM, with perhaps greater thrust/power conversion efficiencies.

  1. Map of the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, Kevin W.

    1999-07-02

    Various efforts to map the structure of science have been undertaken over the years. Using a new tool, VxInsight{trademark}, we have mapped and displayed 3000 journals in the physical sciences. This map is navigable and interactively reveals the structure of science at many different levels. Science mapping studies are typically focused at either the macro-or micro-level. At a macro-level such studies seek to determine the basic structural units of science and their interrelationships. The majority of studies are performed at the discipline or specialty level, and seek to inform science policy and technical decision makers. Studies at both levels probe the dynamic nature of science, and the implications of the changes. A variety of databases and methods have been used for these studies. Primary among databases are the citation indices (SCI and SSCI) from the Institute for Scientific Information, which have gained widespread acceptance for bibliometric studies. Maps are most often based on computed similarities between journal articles (co-citation), keywords or topics (co-occurrence or co-classification), or journals (journal-journal citation counts). Once the similarity matrix is defined, algorithms are used to cluster the data.

  2. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  3. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  4. The Utility of a Physics Education in Science Policy

    Science.gov (United States)

    Roberts, Drew

    2016-03-01

    In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.

  5. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DEBMALYA DAS1 RITABRATA SENGUPTA2 ARVIND 1. Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India; Department of Mathematical Sciences, Indian Institute of Science Education and Research, Berhampur, Govt. ITI, Berhampur (Transit Campus), ...

  7. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  8. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  9. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  10. Statistical methods for physical science

    CERN Document Server

    Stanford, John L

    1994-01-01

    This volume of Methods of Experimental Physics provides an extensive introduction to probability and statistics in many areas of the physical sciences, with an emphasis on the emerging area of spatial statistics. The scope of topics covered is wide-ranging-the text discusses a variety of the most commonly used classical methods and addresses newer methods that are applicable or potentially important. The chapter authors motivate readers with their insightful discussions, augmenting their material withKey Features* Examines basic probability, including coverage of standard distributions, time s

  11. Progress report, physics and health sciences, physics section, 1986 January 01 - June 30

    International Nuclear Information System (INIS)

    1986-08-01

    The two progress reports PR-PHS-P-1 (AECL-9262) and PR-PHS-HS-1 (AECL-9263) are continuations of the former series in Physics, PR-P-142, (AECL-9103) and in Health Sciences, PH-HS-20 (AECL-9102). The new series have been initiated to take into account the reorganization of the Research Company effective 1986 February 1. It is intended to issue the reports semi-annually on June 30 and December 31 covering the previous six months. The new series cover the same areas as before except that the Accelerator Physics Branch and the Mathematics and Computation Branch activities are no longer included in Physics, and the activities of the Medical Biophysics Branch at Whiteshell are now included in Health Sciences. The latest progress report on the Medical Biophysics work appeared in the WNRE report PR-WHS-73. This report (AECL-9262) covers the research, business and commercial activities of Nuclear Physics, TASCC Operations, Neutron and Solid State Physics, Theoretical Physics and the Fusion Office

  12. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  13. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  14. Nuclear rockets: High-performance propulsion for Mars

    International Nuclear Information System (INIS)

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development

  15. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  16. Physics in Films: A New Approach to Teaching Science

    OpenAIRE

    Efthimiou, Costas J.; Llewellyn, Ralph

    2004-01-01

    Over the past year and a half we have developed an innovative approach to the teaching of `Physical Science', a general education course typically found in the curricula of nearly every college and university. The new approach uses popular movies to illustrate the principles of physical science, analyzing individual scenes against the background of the fundamental physical laws. The impact of being able to understand why, in reality, the scene could or could not have occurred as depicted in t...

  17. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  18. Field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.

    2006-01-01

    It was developed a physical model, which allowed calculating a field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket. For space launching site Baikonur it is shown that the nearest horizontal distance from launching site of rocket up to which arrive infrasound waves, produced by supersonic flight of a rocket, is 56 km. Amplitude of acoustic impulse decreases in 5 times on distance of 600 km. Duration of acoustic impulse increases from 1.5 to 3 s on the same distance. Values of acoustic field parameters on the earth surface, practically, do not depend from season of launching of rocket. (author)

  19. PREFACE: International Symposium on Physical Sciences in Space

    Science.gov (United States)

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International

  20. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  1. High school Physical Sciences teachers' competence in some basic cognitive skills

    OpenAIRE

    Selvaratnam, Mailoo

    2011-01-01

    The successful implementation of the national high school Physical Sciences curriculum in South Africa, which places strong emphasis on critical thinking and reasoning abilities of students, would need teachers who are competent in cognitive skills and strategies. The main objectives of this study were to test South African high school Physical Sciences teachers' competence in the cognitive skills and strategies needed for studying Physical Sciences effectively and also to identify possible r...

  2. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  3. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  4. Progress report - physical sciences TASCC division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1991-09-01

    This is the second in a new series of reports of the work of the TASCC Division since the creation of the Physical Sciences Unit in 1990. Physical Sciences comprises four main sectors, namely the TASCC, Physics and Chemistry Divisions, and the National Fusion Program Management Office. Physics Division is responsible for research and development in the areas of condensed matter physics, neutron and neutrino physics, and accelerator physics, while TASCC Division deals with research performed with the Tandem and Superconducting Cyclotron accelerators, primarily in the field of Heavy Ion Nuclear Physics

  5. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Science.gov (United States)

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  6. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  7. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  8. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31

  9. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  10. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  11. Recent trends in physics of material science and technology

    CERN Document Server

    Shrivastava, Keshav; Akhtar, Jamil

    2015-01-01

    This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers  of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics . The book is divided into three  scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.

  12. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  13. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    Science.gov (United States)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. P Udomsamuthirun1 C Kumvongsa2 A Burakorn1 P Changkanarth1. Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Department of Basic Science, School of Science, The University of the Thai Chamber of Commerce, Dindaeng, Bangkok 10400, Thailand ...

  15. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  16. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science Education · Sadhana · Current Science ... Proceedings of the MESODIS 2006: International Workshop on the Physics of ... pp 3-26 Research Articles ... The effect of instanton-induced interaction on -wave meson spectra in constituent quark model.

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Rangan Lahiri1 Arvind2 3 Anirban Sain4 5. Department of Physics, Indian Institute of Science, Bangalore 560 012, India; Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India; Department of Physics, University of ...

  19. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  20. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    Science.gov (United States)

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  1. Experimental Physical Sciences Vitae 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Eileen Frances [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kramer, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Richard Cecil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Carlos Genaro [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valdez, Sandra M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.

  2. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  3. Science and society the history of modern physical science in the twentieth century

    CERN Document Server

    Gordin, Michael; Kaiser, David

    2001-01-01

    Modern science has changed every aspect of life in ways that cannot be compared to developments of previous eras. This four volume set presents key developments within modern physical science and the effects of these discoveries on modern global life. The first two volumes explore the history of the concept of relativity, the cultural roots of science, the concept of time and gravity before, during, and after Einstein's theory, and the cultural reception of relativity. Volume three explores the impact of modern science upon global politics and the creation of a new kind of war, and Volume four details the old and new efforts surrounding the elucidation of the quantum world, as well as the cultural impact of particle physics. The collection also presents the historical and cultural context that made these scientific innovations possible. The transformation of everyday concepts of time and space for the individual and for society, the conduct of warfare, and the modern sense of mastering nature are all issues d...

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Proceedings of PHENO1: The First Workshop on Beyond Standard Model Physics at IISER Mohali ... on Computational Condensed Matter Physics and Materials Science ... Proceedings of the National Mathematics Initiative Workshop on Nonlinear ... Proceedings of the International Symposium on Nuclear Physics.

  5. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  6. Physics Problems Based on Up-to-Date Science and Technology.

    Science.gov (United States)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  7. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  8. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  9. Progress report. Physics and Health sciences, Physics Section (1988 January 01-June 30)

    International Nuclear Information System (INIS)

    1988-08-01

    A report on the progress made in the Physics and Health Sciences Physics Section between January 01 and June 30 1988 was compiled. This document contains an overview of operations and research carried out by the nuclear physics branch, the TASCC operations branch, and the cyclotron group. In addition, a general discussion of the tandem and cyclotron operations for this period was presented

  10. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  11. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Ankara University, Tandogan 06100, Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, Baku 370143, Azerbaijan ...

  13. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  14. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    Science.gov (United States)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  15. My views on physics and atomic physics, on science and human life

    International Nuclear Information System (INIS)

    Berenyi, Denes

    1999-01-01

    The modern physics research was started in the 16th century. From that time any knowledge on the natural processes is based on careful, systematic observation, experiment and measurement. The scope of atomic physics is very broad energetically from nano eV to GeV. From these experiments fundamental information can be obtained and the collision mechanism as well as details of atomic and ionic structure can be clarified. Science is a really special field of the human activity and culture. It is developing mainly with the help of the critique of its own results. Science produced in fact miraculous results but even then it is only one of the approaches to Reality in a broad meaning

  16. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  17. A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity

    Science.gov (United States)

    Brooks, Kristine M.

    nature of science and what is the balance of ethnic diversity in the participants in science (students and scientists) in physical science textbooks? To establish an answer to these questions, this investigation used content analysis. For the balance of the four aspects of the nature of science, the analysis was conducted on random page samples of five physical science textbooks. A random sampling of the pages within the physical science textbooks should be sufficient to represent the content of the textbooks (Garcia, 1985). For the balance of ethnic diversity of the participants in science, the analysis was conducted on all pictures or drawings of students and scientists within the content of the five textbooks. One of these IPC books is under current use in a large, local school district and the other four were published during the same, or similar, year. Coding procedures for the sample used two sets of coders. One set of coders have previously analyzed for the nature of science in a study on middle school science textbooks (Phillips, 2006) and the coders for ethnic diversity are public school teachers who have worked with ethnically diverse students for over ten years. Both sets of coders were trained and the reliability of their coding checked before coding the five textbooks. To check for inter-coder reliability, percent agreement, Cohen's kappa and Krippendorff's alpha were calculated. The results from this study indicate that science as a body of knowledge and science as a way of investigating are the prevalent themes of the nature of science in the five physical science textbooks. This investigation also found that there is an imbalance in the ethnic diversity of students and scientists portrayed within the chapters of the physical science textbooks studied. This imbalance reflects ratios that are neither equally balanced nor in align with the U.S. Census. Given that textbooks are the main sources of information in most classrooms, the imbalance of the nature of

  18. Sound. Physical Science in Action. Teacher's Manual and Workbook.

    Science.gov (United States)

    Chan, Janis Fisher; Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  19. Putting the “Spark” into Physical Science and Algebra

    Science.gov (United States)

    Dagenais, Andre; Pill, B.

    2006-12-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering

  20. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  1. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  2. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    International Nuclear Information System (INIS)

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO 2 laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs

  3. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO{sub 2} laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs.

  4. 16 CFR 1507.10 - Rockets with sticks.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...

  5. SCORE - Sounding-rocket Coronagraphic Experiment

    Science.gov (United States)

    Fineschi, Silvano; Moses, Dan; Romoli, Marco

    The Sounding-rocket Coronagraphic Experiment - SCORE - is a The Sounding-rocket Coronagraphic Experiment - SCORE - is a coronagraph for multi-wavelength imaging of the coronal Lyman-alpha lines, HeII 30.4 nm and HI 121.6 nm, and for the broad.band visible-light emission of the polarized K-corona. SCORE has flown successfully in 2009 acquiring the first images of the HeII line-emission from the extended corona. The simultaneous observation of the coronal Lyman-alpha HI 121.6 nm, has allowed the first determination of the absolute helium abundance in the extended corona. This presentation will describe the lesson learned from the first flight and will illustrate the preparations and the science perspectives for the second re-flight approved by NASA and scheduled for 2016. The SCORE optical design is flexible enough to be able to accommodate different experimental configurations with minor modifications. This presentation will describe one of such configurations that could include a polarimeter for the observation the expected Hanle effect in the coronal Lyman-alpha HI line. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV) can be modified by magnetic fields through the Hanle effect. Thus, space-based UV spectro-polarimetry would provide an additional new tool for the diagnostics of coronal magnetism.

  6. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  7. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  8. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  9. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    Science.gov (United States)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  10. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  11. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  12. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  13. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  14. Progress report Physics and Health Sciences. Health Sciences section. 1987 July 01-December 31

    International Nuclear Information System (INIS)

    1988-03-01

    This report covers the fourth semi-annual period since the Research Company was reorganized. We now have eight research fellows on staff, six fully funded by Physics and Health Sciences (P and HS). The first section of this report contains an excellent topical review of the program in Health Sciences on tritium toxicity which involves scientists from all three of the Chalk River branches of Health Sciences. Their work on cancer proneness is expanding data on apparently normal people and has been extended to include cancer patients. All tests are now blind. The work was the subject of two very fine TV presentations, one each shown on the French and English networks of the CBC. Investigation also continues on the complex influence of hyperthermia on cancer induction and promotion. The potency of natural killer cells in human blood which have the ability to recognize and destroy cancerous cells have been shown to be very sensitive to temperature. A method may have been found for extending the life of T-lymphocytes grown in culture beyond the present 30 to 60-day limit. Activities in environmental research are moving in the direction of studies of a more fundamental nature so that the results will have a certain portability. Model studies form a large part of this new emphasis and notable among those is the Twin Lakes tracer study. Work is in progress to follow the plume the full 240 metres to the discharge zone with considerable success in the mathematical modelling. Members of the Health Sciences unit at CRNL were active as resource people for the Hare Commission on Ontario Nuclear Safety Review during the late fall. At Partnerships for Profit, which brought 85 senior executives of Canadian business in contact with the Research Company's capabilities, Physics and Health Sciences manned four booths on cancer screening, environmental protection, ANDI and nuclear physics instrumentation. Discussions with MOSST and other government departments were initiated on the

  15. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  16. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  17. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  18. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  19. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    Science.gov (United States)

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  20. Physics for computer science students with emphasis on atomic and semiconductor physics

    CERN Document Server

    Garcia, Narciso

    1991-01-01

    This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech­ nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks p...

  1. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  2. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  3. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  4. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012. The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) O n the threshold of a peta era ; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) S cientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute ; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) M ajor stages of the Soviet Atomic Project ; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) H istory of the Astronomy history . Papers written on the basis of the reports are published below. . On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486–492 . Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493–502 . Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502–509. History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509–530 (conferences and symposia)

  5. Causal modeling of secondary science students' intentions to enroll in physics

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  6. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  7. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  8. A Physics-Inspired Introduction to Political Science

    Science.gov (United States)

    Taagepera, Rein

    1976-01-01

    This paper analyzes what is involved in patterning part of an introduction to politics along the lines of physical sciences, and it presents contents and results of a course in which the author did this. (Author/ND)

  9. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  11. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  12. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  13. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  14. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  15. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  16. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  17. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  18. Does Everyone's Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents' Achievement Motivation Trajectories in Physics and Chemistry.

    Science.gov (United States)

    Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue

    2017-08-01

    Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

  19. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  20. Weerts to lead Physical Sciences and Engineering directorate | Argonne

    Science.gov (United States)

    Physical Sciences and Engineering directorate By Lynn Tefft Hoff * August 10, 2015 Tweet EmailPrint Hendrik Engineering (PSE) directorate at the U.S. Department of Energy's Argonne National Laboratory. Weerts has , chemistry, materials science and nanotechnology. Weerts joined Argonne in 2005 as director of Argonne's High

  1. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan; Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Str. 10, 60325 Frankfurt ...

  2. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  3. Sounding-rocket experiments for detailed studies of magnetospheric substorm phenomena

    International Nuclear Information System (INIS)

    Stuedemann, W.; Wilhelm, K.

    1975-01-01

    Many of the substorm effects occur at or near the auroral oval in the upper atmosphere and can thus be studied by sounding-rocket experiments. As emphasis should be laid on understanding the physical processes, close co-ordination with other study programmes is of great importance. This co-ordination can best be accomplished within the framework of the ''International Magnetospheric Study 1976-1978''

  4. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    Directory of Open Access Journals (Sweden)

    Willem J. Eerland

    2017-02-01

    Full Text Available The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of the resulting trajectories, including nominal performance and uncertainty analysis, e.g. a splash-down region with confidence bounds. The project is available on SourceForge, and is written in Java (GUI, C++ (simulation core, and Python (visualization. While all parts can be executed from the GUI, the three components share information via XML, accommodating modifications, and re-use of individual components.

  5. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  6. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  7. Photometric observations of local rocket-atmosphere interactions

    Science.gov (United States)

    Greer, R. G. H.; Murtagh, D. P.; Witt, G.; Stegman, J.

    1983-06-01

    Photometric measurements from rocket flights which recorded a strong foreign luminance in the altitude region between 90 and 130 km are reported. From one Nike-Orion rocket the luminance appeared on both up-leg and down-leg; from a series of Petrel rockets the luminance was apparent only on the down-leg. The data suggest that the luminance may be distributed mainly in the wake region along the rocket trajectory. The luminance is believed to be due to a local interaction between the rocket and the atmosphere although the precise nature of the interaction is unknown. It was measured at wavelengths ranging from 275 nm to 1.61 microns and may be caused by a combination of reactions.

  8. Factors that encourage females to pursue physical science careers: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.

  9. The Science Shop for Physics: an interface between practical problems in society and physical knowledge

    Science.gov (United States)

    van den Berg, G. P.

    1998-03-01

    Since some 20 years most Dutch universities have one or more science shops. Central shops handle research questions for all disciplines. Specialized shops are part of a department of chemistry or medicine, history, social science, etc. The shops have evolved rather differently, but their main mission still is to help social groups that lack money and have no easy access to scientific knowledge, e.g. neighbourhood, environmental, third world or patient groups. Most also help non-commercial organizations such as schools, trade unions or local authorities. Low-cost help can be provided because students do the work as part of their training, mainly in student projects (literature search, practical work, graduation, etc.). A total staff of 80, helped by 600 students, 250 voluntary and 50 paid researchers, handle 1500 questions resulting in 300 reports (estimated figures 1995). Science shops for physics (`Physics Shop', PS) have to deal with practical problems, generally involving classical physics. Major topics are noise, vibration, radiation, indoor climate and energy: most of the work lies in estimating/measuring relevant parameters, assessing impact, seeking solutions. The 3 Dutch PS's have developed in different directions. One is run entirely by students and deals with small, concrete problems. The second PS is managed by a co-ordinator who mediates between client groups and physics staff members who assist students in small and larger projects. The third has a lot of in-house expertise, and the shop staff is in direct contact with client groups as well as students who work in the PS itself. In questions submitted to the PS it is not always immediately clear what to do or how to do it because of the non-scientific phrasing of the problems and problems include non-physical (e.g. technical, health or legal) aspects. Also, difficulties in solving the problems are typically not in the underlying physics, but in the lack of accurate data and of control of the complex

  10. PHYSICAL SCIENCE TEACHERS’ PERCEPTIONS OF AN ADVANCED CERTIFICATE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2016-04-01

    Full Text Available Advanced Certificate in Education programmes was offered by many South African universities to provide opportunities for teachers to upgrade their positions. The purpose of the study was to explore Physical Science teachers’ perceptions of their professional development. In this study we considered three domains of professional development which are content knowledge, pedagogic content knowledge and teacher beliefs and attitudes. This study used a mixed method approach using the form of an embedded design. The study was conducted with 156 students enrolled in an ACE Physical Science programme. The teachers stated that their content knowledge and pedagogic content knowledge had not only improved, but also their engagement with actual laboratories, and conducting experiments contributed to their teaching experiences. Hence, their self-confidence of physical science teaching evolved. The authors recommend that the ACE programme should also include a mentoring system with teaching practicum via school leadership and subject advisers.

  11. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  12. Exploring what contributes to the knowledge development of secondary physics and physical science teachers in a continuous professional development context

    Science.gov (United States)

    Nelms, April Wagnon

    This dissertation used qualitative methodologies, specifically phenomenological research, to investigate what contributes to the development of pedagogical content knowledge (PCK) of physics and physical science teachers who participate in a content-specific continuous professional development program. There were five participants in this study. The researcher conducted participant observations and interviews, rated participants degree of reformed teaching practices using the Reformed Teaching Observation Protocol, surveyed participants' self-efficacy beliefs using the Science Teacher Efficacy Belief Instrument "A," and rated participants'' level of PCK using the PCK Rubrics.. All data were analyzed, and a composite description of what contributes to physics and physical science teachers' PCK development through a continuous professional development program emerged. A theory also emerged from the participants' experiences pertaining to how teachers' assimilate new conditions into their existing teaching schema, how conditions change teachers' perceptions of their practice, and outcomes of teachers' new ideas towards their practice. This study contributed to the literature by suggesting emergent themes and a theory on the development of physics and physical science teachers' PCK. PCK development is theorized to be a spiral process incorporating new conditions into the spiral as teachers employ new science content knowledge and pedagogical practices in their individual classroom contexts.

  13. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 4. Issue front cover thumbnail. Volume 68, Issue 4. April 2007, pages 535-706. pp 535-545 Research Articles ..... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ramazan Koç1 M Yakup Haciibrahimoğlu1 Mehmet Koca2. Department of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey; Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman ...

  16. Progress report - physical sciences - physics division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    1991-09-01

    This is the second in the new series of reports for the Physics Division since the creation of the Physical Sciences Unit in 1990. This report has been subdivided into three self-contained sections covering the activities in the branches for Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics. It is noteworthy that the RFQ1 program with the original vanes has come to a successful conclusion having accelerated 79 mA of protons to 600 keV. The new vanes to achieve a high energy of 1.2 MeV have now been installed and will form the basis for the low energy end of high current proton accelerator development. The progress in the neutron scattering program has been hampered by the NRU reactor being down for repairs since January 1991. Nevertheless a very successful opening ceremony was held to mark the completion of the new DUALSPEC spectrometers and several workshops have been held to promote the understanding of neutron scattering

  17. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  18. Space science comes of age: Perspectives in the history of the space sciences Proceedings of the Symposium, Washington, DC, March 23, 24, 1981

    International Nuclear Information System (INIS)

    Hanle, P.A.; Chamberlain, V.D.

    1981-01-01

    The development of space science is recounted in two parts, the first written by founders and pioneers in the field who recount some of the important scientific discoveries in their areas, the second offering a preliminary view of space science by professional historians. The subjects of the first part are solar physics, rocket astronomy, the ultraviolet spectra of stars, lunar exploration and geology. James Van Allen's lecture first disclosing his discovery of the radiation belts surrounding the earth is reprinted. The second part includes the story of the development of theories about the origin of the solar system before 1960, a discussion of studies of the upper atmosphere, a concise history of space-launch vehicles, and a review of the politics and funding of the Landsat project

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 1 ..... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has ... Please take note of this change.

  20. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  1. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  2. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    Science.gov (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  3. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M

    2014-01-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  4. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  5. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 1. The origin of the solar magnetic cycle. Arnab Rai Choudhuri. Volume 77 ... Keywords. Sun: activity; Sun: magnetic fields; sunspots. ... Author Affiliations. Arnab Rai Choudhuri1. Department of Physics, Indian Institute of Science, Bangalore 560 012, India ...

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 1. Issue front cover thumbnail. Volume 89, Issue 1. July 2017. Proceedings of the 3rd E-Workshop/Conference on Computational Condensed Matter Physics and Materials Science. Article ID 1 Special Issue.

  8. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  9. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    Science.gov (United States)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  10. Space Processing Applications rocket project SPAR III. Final report

    International Nuclear Information System (INIS)

    Reeves, F.

    1978-01-01

    This document presents the engineering report and science payload III test report and summarizes the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies

  11. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  12. Excel 2013 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching physical sciences statistics effectively. Similar to the previously published Excel 2010 for Physical Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their ...

  13. Performance Determinants in Physical Sciences for ODL ...

    African Journals Online (AJOL)

    Identifying performance determinants in physical science subjects for students studying through open and distance learning modes in higher learning institutions requires wider range of intuition than it is for conventional institutions. Using data from The Open University of Tanzania, this paper has unearthed some of the ...

  14. Differences within: A comparative analysis of women in the physical sciences --- Motivation and background factors

    Science.gov (United States)

    Dabney, Katherine Patricia Traudel

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive

  15. Science and Cooking: Motivating the Study of Freshman Physics

    Science.gov (United States)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  16. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  17. Measurement in Physical Education and Exercise Science: A Brief Report on 2017

    Science.gov (United States)

    Myers, Nicholas D.; Lee, Seungmin; Kostelis, Kimberly T.

    2018-01-01

    The purpose of this annual report is to provide a summary of measurement in physical education and exercise science-related activities in 2017. A recent trend for an annual increase in manuscript submissions to measurement in physical education and exercise science continued in 2017. Twenty-nine countries were represented (i.e., corresponding…

  18. For the Love of Science: Learning Orientation and Physical Science Success

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert; Almarode, John

    2010-02-01

    An individual's motivational orientation serves as a drive to action and can influence their productivity. This study examines how the goal orientation of students towards the pursuit of their graduate degree in physics and chemistry influences their future success outcomes as practicing scientists. Two main orientations are focused on: performance (or ego/ability) orientation and learning (or task/mastery) orientation. The data was obtained as part of Project Crossover, which applied a mixed methodological approach to studying the transition from graduate student to scientist in the physical sciences. Using regression analysis on survey data from 2353 PhD holders in physics and chemistry, we found that individuals exhibiting a learning orientation were more productive than those exhibiting a performance orientation in terms of first-author publications and grant funding. Furthermore, given equal salary, learning-oriented physical scientists produced more first-author publications than average. )

  19. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  20. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  1. Analytical description of ascending motion of rockets in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, H; Pinho, M O de; Portes, D Jr [Centro Federal de Educacao Tecnologica do Rio de Janeiro, 20271-110, Rio de Janeiro, RJ (Brazil); Santiago, A [Instituto de Fisica, Universidade Estadual do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil)], E-mail: harg@cbpf.br, E-mail: ajsant@uerj.br

    2009-01-15

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and discussed. This paper is intended for undergraduate physics teachers and for graduate students.

  2. Teaching the history of science in physics classrooms—the story of the neutrino

    Science.gov (United States)

    Demirci, Neset

    2016-07-01

    Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.

  3. Influence of culture and language sensitive physics on science attitude enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2015-12-01

    The study critically explored how culture and language sensitive curriculum materials in physics improve Pangasinan learners' attitude towards science. Their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning process determined their cultural preference or profile. Design and development of culture and language sensitive curriculum materials in physics were heavily influenced by these learners' cultural preference or profile. Pilot-study using interviews and focus group discussions with natives of Pangasinan and document analysis were conducted to identify the culture, practices, and traditions integrated in the lesson development. Comparison of experimental participants' pretest and posttest results on science attitude measure showed significant statistical difference. Appraisal of science attitude enhancement favored the experimental group over the control group. Qualitative data deduced from post implementation interviews, focus group discussions, and journal log entries showed the same trend in favor of the experimental participants. The study revealed that culture and language integration in the teaching and learning process of physics concepts enabled students to develop positive attitude to science, their culture, and native language.

  4. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  5. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  6. Professional preferences of students in physical education and sport sciences

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2013-01-01

    Full Text Available The actual context has enhanced job opportunities in the field of sport in order to respond to the current market demand. Thus, Physical Education and Sport Science graduates who begin to do differents jobs to the traditional ones but relate to their study field. The aim of this study was to guess which are the job preferences of the students of Physical Education and Sport Science of Seville University by gender and age doing the second cycle of their college degree and determine if there are significant differences. A descriptive analysis was carried out, using a questionnaire based on several researches, it was related to professional opportunities in sport sciences. The sample was of 118 students which represented 40.7% of the overall registered students. Results shown that sport management is the most preferable professional opportunity for women and men of the total sample, following in second place by teaching in secondary school for people older than 25 years of both sexes and teaching in primary school for the younger than 25 years. These findings announce changes in occupational trends in sports, to be taken into account in the framework of the European higher education (Degree of Science in Sport and Physical Activity, own US Masters and Official, lifelong learning programs....

  7. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  8. Popular Science: Introductory Physics Textbooks for Home Economics Students

    Science.gov (United States)

    Behrman, Joanna

    2014-03-01

    For many decades now there has been an ongoing debate about the way and extent to which physics ought to be popularized by appealing to a student's every day experience. Part of this debate has focused on how textbooks, a major factor shaping students' education, ought to be written and presented. I examine the background, passages, and problems of two examples drawn from the special genre of ``Household Physics'' textbooks which were published largely between 1910 and 1940. The pedagogy of applying or relating physics to the everyday experience engenders values defining how and by whom science is to be applied. These books are particularly evocative, as well, of the extent to which gender can be tied to differing everyday experiences and the consequences therefore of using experiential examples. Using popular science textbooks can alienate students by drawing an implicit division between the reader and the practicing scientist.

  9. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  10. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    Science.gov (United States)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic

  11. 75 FR 6651 - Office of Science; High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Office of Science; High Energy Physics Advisory Panel AGENCY: Department of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Public Law 92- 463, 86 Stat. 770) requires...; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  12. The Nobel Prize in the Physics Class: Science, History, and Glamour

    Science.gov (United States)

    Eshach, Haim

    2009-01-01

    This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize…

  13. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  14. A Study of Common Beliefs and Misconceptions in Physical Science

    Science.gov (United States)

    Stein, Mary; Larrabee, Timothy G.; Barman, Charles R.

    2008-01-01

    The Science Belief Test is an online instrument comprised of 47 statements that require true or false responses and request written explanations to accompany these responses. It targets topics in chemistry, physics, biology, earth science, and astronomy and was initially designed to assess preservice elementary teachers' beliefs about general…

  15. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

  16. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  17. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  18. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  19. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  20. Progress report. Physics and Health Sciences, Physics Section (1987 January 01-June 30)

    International Nuclear Information System (INIS)

    1987-12-01

    This report covers the third semi-annual period since the Research Company was reorganized. A highlight of the period was the first peer review of all the activities in Physics and Health Sciences by external examiners. The review was conducted in April by three separate Technical Review Committees (TRC) one for each of the three main areas: health sciences, nuclear physics and condensed matter physics. In all cases the TRCs gave strong support to our programs under the following mandate. To assess research programs with respect to (a) their quality, and (b) their relevance to Canada. The programs by the Nuclear Physics TRC reviewed were: heavy ion reaction studies; gamma-ray studies of high spin states; exotic nuclei and weak interactions; neutron and neutrino physics; TASCC operation and development; and theoretical physics. The programs reviewed by the Condensed Matter TRC were: liquid helium; amorphous ice; orientationally disordered solids; structural phase transitions; low dimensional systems; actinide magnetism and heavy fermion superconductors; molecular biophysics; applied neutron diffraction (ANDI); and theoretical solid state physics. A mechanism for the evaluation of the strategy for the National Fusion Program has been developed and the process is under way. The successful completion of the 8-pi spectrometer by Chalk River and the Universities of Montreal and McMaster, plus the vigorous and highly successful experimental program in progress on it were the outstanding achievement of the period. Good progress is being made in the detailing of a program in heavy ion nuclear reactions, and the specification of equipment for that program have been made. Some difficulties with the new Vivirad resistors for the MP tandem were encountered, however the manufacturer now seems to have solved the problem

  1. A natural user interface to integrate citizen science and physical exercise.

    Science.gov (United States)

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  2. A natural user interface to integrate citizen science and physical exercise.

    Directory of Open Access Journals (Sweden)

    Eduardo Palermo

    Full Text Available Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  3. Comparison of solar irradiances measured by SBUV, SME, and rockets

    International Nuclear Information System (INIS)

    Schlesinger, B.M.; Heath, D.F.

    1988-01-01

    Solar Backscatter Ultraviolet (SBUV) measurements of the solar irradiance between 170 and 320 nm have been compared with rocket and Solar Mesosphere Explorer (SME) ultraviolet spectrometer measurements. The SBUV and SME data were those available from the National Space Sciences Data Center (NSSDC). The published rocket measurement are sensitive enough to detect substantial systematic changes with time in other instruments and to check absolute calibration but not sufficiently sensitive to validate claims of changes in the solar ultraviolet irradiance longer than 170 nm. The SBUV irradiances show as systematic decrease with time not seen in the rocket measurements; a correction for this decrease, based on changes between the instrument properties measured in 1980--1981 and those in 1984, is introduced. Ratios of spectra in early 1982 to those in mid-1984, calculated using the SME and SBUV solar irradiances, have been compared with each other asnd with those predicted from Mg 280-nm variations. The scatter and overall structure in the SME spectra from the NSSDC is 3--5%, of the order of or larger than most of the changes predicted by the Mg index. The corrected SBUV ratio and the Mg index prediction for it agree to within 1% such agreement supports a common origin for variations between solar maximum and minimum and those for individual rotations: the degree to which active regions cover the visible hemisphere of the Sun. copyright American Geophysical Union 1988

  4. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  5. A natural user interface to integrate citizen science and physical exercise

    OpenAIRE

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed envir...

  6. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion

    Science.gov (United States)

    King, Abby C.; Winter, Sandra J.; Sheats, Jylana L.; Rosas, Lisa G.; Buman, Matthew P.; Salvo, Deborah; Rodriguez, Nicole M.; Seguin, Rebecca A.; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G.; Sarmiento, Olga Lucia; Gonzalez, Silvia A.; Banchoff, Ann; Dommarco, Juan Rivera

    2016-01-01

    PURPOSE While technology is a major driver of many of society’s comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people’s daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged “citizen science,” in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. METHOD The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. RESULTS Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called “Our Voice”, are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. CONCLUSIONS The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide. PMID:27525309

  7. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. V P Patel. Articles written in Pramana – Journal of Physics. Volume 59 Issue 5 November 2002 pp 753-759. New modifications in 15 UD pelletron at Nuclear Science Centre · S Chopra N S Pawar M P Singh Rakesh Kumar J Prasad V P Patel Raj Pal B Kumar S Ojha K ...

  9. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  10. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  11. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  12. Experimental Physical Sciences Vistas: MaRIE (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack [Los Alamos National Laboratory

    2010-09-08

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national

  13. The Norwegian sounding rocket programme 1978-81

    International Nuclear Information System (INIS)

    Landmark, B.

    1978-01-01

    The Norwegian sounding rocket programme is reasonably well defined up to and including the winter of 1981/82. All the projects have been planned and will be carried out in international cooperation. Norwegian scientists so far plan to participate in a number of 24 rocket payloads over the period. Out of these 18 will be launched from the Andoya rocket range, 3 from Esrange and 3 from the siple station in the antarctic. (author)

  14. The Role of CFD Simulation in Rocket Propulsion Support Activities

    Science.gov (United States)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  15. Some Critical Points in the Methods and Philosphy of Physical Sciences

    OpenAIRE

    Bozdemir, Süleyman

    2018-01-01

    Nowadays, it seems that there are not enough studies on the philosophy and methods of physical sciences that would be attractive to the researchers in the field. However, many revolutionary inventions have come from the mechanism of the philosophical thought of the physical sciences. This is, of course, a vast and very interesting topic that must be investigated in detail by philosophers, scientists or philosopher-scientists such as physicists. In order to do justice to it one has to write a ...

  16. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  17. Noted astrophysicist Michael S. Turner to Head NSF'S mathematical and physical sciences directorate

    CERN Multimedia

    2003-01-01

    "The National Science Foundation has named celebrated astrophysicist Michael S. Turner of the University of Chicago as Assistant Director for Mathematical and Physical Sciences. He will head a $1 billion directorate that supports research in mathematics, physics, chemistry, materials and astronomy, as well as multidisciplinary programs and education" (1/2 page).

  18. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  19. Towson University's Professional Science Master's Program in Applied Physics: The first 5 years

    Science.gov (United States)

    Kolagani, Rajeswari

    It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.

  20. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  1. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  2. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  3. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  4. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DRECAM, Ecole Polytechnique, 91128 Palaiseau, France; Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, ...

  6. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  7. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  8. 100th anniversary of the discovery of cosmic rays (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 October 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled ''100th anniversary of the discovery of cosmic rays'', was held on 24 October 2012 in the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session announced on the RAS Physical Sciences Division website www.gpad.ac.ru included the following reports: (1) Panasyuk M I (Skobeltsyn Institute of Nuclear Physics of the Lomonosov State University, Moscow) T he contribution of Russian scientists to the centennial history of the development of the physics of cosmic rays ; (2) Ryazhskaya O G (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) O n experiments in underground physics ; (3) Krymskii G F, Berezhko E G (Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences, Yakutsk) T he origin of cosmic rays ; (4) Stozhkov Yu I (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) C osmic rays in the heliosphere ; (5) Troitsky S V (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) ''Cosmic particles of energies >10 19 eV: a short review of results''. Papers based on reports 2 and 5 are presented below. . On experiments in Underground Physics, O G Ryazhskaya Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 296–304 . Cosmic particles with energies above 10 19 eV: a brief summary of results, S V Troitsky Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 304–310 (conferences and symposia)

  9. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  10. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  11. Physics and Mathematics as Interwoven Disciplines in Science Education

    Science.gov (United States)

    Galili, Igal

    2018-03-01

    The relationship between physics and mathematics is reviewed upgrading the common in physics classes' perspective of mathematics as a toolkit for physics. The nature of the physics-mathematics relationship is considered along a certain historical path. The triadic hierarchical structure of discipline-culture helps to identify different ways in which mathematics is used in physics and to appreciate its contribution, to recognize the difference between mathematics and physics as disciplines in approaches, values, methods, and forms. We mentioned certain forms of mathematical knowledge important for physics but often missing in school curricula. The geometrical mode of codification of mathematical knowledge is compared with the analytical one in context of teaching school physics and mathematics; their complementarity is exemplified. Teaching may adopt the examples facilitating the claims of the study to reach science literacy and meaningful learning.

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ashraful Islam, Mohammed1 2 Jamal Nazrul Islam1. Research Centre for Mathematical and Physical Sciences, University of Chittagong, Chittagong, Bangladesh; Department of Mathematics, University of Chittagong, Chittagong, Bangladesh ...

  13. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  14. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  15. African Journal for Physical Activity and Health Sciences: Editorial ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... in conjunction with appointed reviewers throughout Africa and overseas for special topics. ... Professor A.L. Toriola (Exercise and Sports Science) Tshwane University of ...

  16. Flow-Structural Interaction in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Murdock, John

    2004-01-01

    .... The static test failure of the Titan solid rocket motor upgrade (SRMU) that occurred on 1 April, 1991, demonstrated the importance of flow-structural modeling in the design of large, solid rocket motors...

  17. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  18. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  19. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    Science.gov (United States)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  20. Origin of how steam rockets can reduce space transport cost by orders of magnitude

    International Nuclear Information System (INIS)

    Zuppero, A.; Larson, T.K.; Schnitzler, B.G.; Rice, J.W.; Hill, T.J.; Richins, W.D.; Parlier, L.; Werner, J.E.

    1999-01-01

    A brief sketch shows the origin of why and how thermal rocket propulsion has the unique potential to dramatically reduce the cost of space transportation for most inner solar system missions of interest. Orders of magnitude reduction in cost are apparently possible when compared to all processes requiring electrolysis for the production of rocket fuels or propellants and to all electric propulsion systems. An order of magnitude advantage can be attributed to rocket propellant tank factors associated with storing water propellant, compared to cryogenic liquids. An order of magnitude can also be attributed to the simplicity of the extraction and processing of ice on the lunar surface, into an easily stored, non-cryogenic rocket propellant (water). A nuclear heated thermal rocket can deliver thousands of times its mass to Low Earth Orbit from the Lunar surface, providing the equivalent to orders of magnitude drop in launch cost for mass in Earth orbit. Mass includes water ice. These cost reductions depend (exponentially) on the mission delta-v requirements being less than about 6 km/s, or about 3 times the specific velocity of steam rockets (2 km/s, from Isp 200 sec). Such missions include: from the lunar surface to Low Lunar Orbit, (LLO), from LLO to lunar escape, from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO), from LEO to Earth Escape, from LEO to Mars Transfer Orbit, from LLO to GEO, missions returning payloads from about 10% of the periodic comets using propulsive capture to orbits around Earth itself, and fast, 100 day missions from Lunar Escape to Mars. All the assertions depend entirely and completely on the existence of abundant, nearly pure ice at the permanently dark North and South Poles of the Moon. copyright 1999 American Institute of Physics

  1. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.

    2014-06-01

    The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  2. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    Directory of Open Access Journals (Sweden)

    Katherine P. Dabney

    2014-02-01

    Full Text Available The majority of existing science, technology, engineering, and mathematics (STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n=1137. A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  3. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  4. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  5. Analysis on the science literacy ability of vocational school physics teacher using NOSLiT indicators

    Science.gov (United States)

    Rahayu, P. P.; Masykuri, M.; Soeparmi

    2018-04-01

    Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.

  6. Predictors of gender achievement in physical science at the secondary level

    Science.gov (United States)

    Kozlenko, Brittany Hunter

    This study used the 2009 National Assessment of Educational Progress (NAEP) science restricted data-set for twelfth graders. The NAEP data used in this research study is derived from a sample group of 11,100 twelfth grade students that represented a national population of over 3,000,000 twelfth grade students enrolled in science in the United States in 2009. The researcher chose the NAEP data set because it provided a national sample using uniform questions. This study investigated how the factors of socioeconomic status (SES), parental education level, mode of instruction, and affective disposition affect twelfth grade students' physical science achievement levels in school for the sample population and subgroups for gender. The factors mode of instruction and affective disposition were built through factor analysis based on available questions from the student surveys. All four factors were found to be significant predictors of physical science achievement for the sample population. NAEP exams are administered to a national sample that represents the population of American students enrolled in public and private schools. This was a non-experimental study that adds to the literature on factors that impact physical science for both genders. A gender gap is essentially nonexistent at the fourth grade level but appears at the eighth grade level in science based on information from NAEP (NCES, 1997). The results of the study can be used to make recommendation for policy change to diminish this gender gap in the future. Educators need to be using research to make instructional decisions; research-based instruction helps all students.

  7. The emergence of time's arrows and special science laws from physics.

    Science.gov (United States)

    Loewer, Barry

    2012-02-06

    In this paper, I will argue that there is an important connection between two questions concerning how certain features of the macro world emerge from the laws and processes of fundamental microphysics and suggest an approach to answering these questions. The approach involves a kind of emergence but quite different from 'top-down' emergence discussed at the conference, for which an earlier version of this paper was written. The two questions are (i) How do 'the arrows of time' emerge from microphysics? (ii) How do macroscopic special science laws and causation emerge from microphysics? Answering these questions is especially urgent for those, who like myself, think that a certain version of physicalism, which I call 'micro-physical completeness' (MC), is true. According to MC, there are fundamental dynamical laws that completely govern (deterministically or probabilistically), the evolution of all micro-physical events and there are no additional ontologically independent dynamical or causal special science laws. In other words, there is no ontologically independent 'top-down' causation. Of course, MC does not imply that physicists now or ever will know or propose the complete laws of physics. Or even if the complete laws were known we would know how special science properties and laws reduce to laws and properties of fundamental physics. Rather, MC is a contingent metaphysical claim about the laws of our world. After a discussion of the two questions, I will argue the key to showing how it is possible for the arrows of time and the special science laws to emerge from microphysics and a certain account of how thermodynamics is related to fundamental dynamical laws.

  8. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  9. Formation of a science of physical culture in Ukraine.

    Directory of Open Access Journals (Sweden)

    Timoshenko Ju.O.

    2011-07-01

    Full Text Available The process of Ukrainian physical culture science institutional development is researched, its historical particularities and trends are shown. The author used only the archive data. They helped to define the structure and quality stuff of scientific institution, social and sports problems which influenced the research. It is established that the appearance of the Ukrainian Research Institute of Physical Education has identified a new trend of Soviet life.

  10. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples

    Science.gov (United States)

    Carter, M.; Lehnert, K.

    2016-02-01

    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  11. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  12. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    Science.gov (United States)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  13. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  14. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    Science.gov (United States)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  15. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  16. A weak equivalence principle test on a suborbital rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Phillips, James D, E-mail: reasenberg@cfa.harvard.ed [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2010-05-07

    We describe a Galilean test of the weak equivalence principle, to be conducted during the free fall portion of a sounding rocket flight. The test of a single pair of substances is aimed at a measurement uncertainty of sigma(eta) < 10{sup -16} after averaging the results of eight separate drops. The weak equivalence principle measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. The discovery of a violation (eta not = 0) would have profound implications for physics, astrophysics and cosmology.

  17. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  18. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  19. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  20. 78 FR 37590 - Advisory Committee for Mathematical and Physical Sciences #66; Notice of Meeting

    Science.gov (United States)

    2013-06-21

    ... Science Foundation and to provide advice and recommendations concerning research in mathematics and... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences 66; Notice... National Science Foundation announces the following meeting. Name: Advisory Committee for Mathematical and...

  1. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  2. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    decays; CP violation. Abstract. This report summarises the work done during WHEPP-6 (Institute of Mathematical Sciences, Chennai, India, Jan 3–15, 2000) in Working group on ' and collider physics'. Author Affiliations. Debajyoti Choudhury1 ...

  4. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content .... identify the core issues surrounding teachers' views on the new topics, and ... A were generated, enabling us to construct a profile of schools and teachers.

  5. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content knowledge compe- tency of these ..... version 18.0 for Windows software. Firstly, frequency ... Data were then coded and classified, a process largely guided by ...

  6. Dr Skateboard's Action Science: Teaching Physics in Context

    Science.gov (United States)

    Robertson, William H.

    2009-01-01

    In order to create student interest and promote new connections to the understanding of fundamental physics concepts, there is a need for new approaches and methods that are both contemporary and relevant. Dr Skateboard's Action Science, a curriculum supplement comprising video instruction and classroom activities, is an example that focuses on…

  7. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  8. Before big science the pursuit of modern chemistry and physics, 1800-1940

    CERN Document Server

    Nye, Mary Jo

    1999-01-01

    Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science. Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mecha...

  9. Current and Future Critical Issues in Rocket Propulsion Systems

    Science.gov (United States)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  10. Science With A Vengeance

    Science.gov (United States)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  11. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  12. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  13. History of science, physics, and art: a complex approach in Brazilian syllabuses

    Science.gov (United States)

    Braga, Marco; Guerra, Andreia; Reis, José Claudio

    2013-09-01

    This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th century, when a new conception arose with the physics of Einstein. These changes were accompanied by new visions of space and time in both physics and arts. Comparison between these two expressions of human culture is used to introduce science as a human construct inserted into history.

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 4 ... in a quintic oscillator driven by a low-frequency force and a high-frequency force. ... School of Mathematics and Information Science, Shaanxi Normal University, Xi'an ...

  15. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  16. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  17. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    International Nuclear Information System (INIS)

    Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M.; Braxmaier, Claus

    2016-01-01

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10"5 "8"7Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  18. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm, 28359 Bremen (Germany); Rasel, Ernst M. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)

    2016-06-15

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{sup 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  19. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  20. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  1. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  2. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  3. Production of Space-rocket Technique: Psychological Factor

    Science.gov (United States)

    Vashchuk, S. P.; Sviderskiy, O. A.; Ezhova, O. N.; Rovenskaya, V. V.

    2018-01-01

    The article is devoted to the issues of studying the mental and physical condition of the shop workers who assemble carrier rockets and ways of processing their internal conflicts. It is shown that the complexity of the ongoing labor processes, the intensity of production activities and the responsibility for its end result lead to a high level of neurotic workers. The tendency to a long experience of a stressful situation helps them to increase the level of various forms of aggression and create a negative assessment of their official capabilities and successes. It is established that the duration of experiencing a stressful situation depends on coping strategies in the behavioral and emotional spheres.

  4. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  5. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Amitabha Nandi1 Ram Ramaswamy1 2. School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Center for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Delhi 110 067, India ...

  7. Space activity impact on science and technology. Proceedings of the twenty-fourth international astronautical congress, Baku, USSR, October 7--13, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, L G; Contensou, P; Hilton, W F [eds.

    1976-01-01

    Topics covered include: Soviet automatic vehicles for lunar exploration and their influence on the progress of automatics and control theory; the problems of space technology and their influence on science and technics; industrial use of aerospace technology; development of liquid-propellant rocket engine engineering and its influence on science and technology in the USSR; space medicine and public health; impact of space activity on technology in a country the size of France; astronautics as a stimulus for celestial mechanics; space activity impact on the science and technology of rotating bodies; skylab systems flight performance, an interim report; the design and utilization of a spacelab for sortie missions; the spacelab program; man and the environment, remote sensing from space; EOLE application program for meteorological experiments, complementary experiences; machine processing methods for earth observational data; recent advances in geologic applications of remote sensing from space; infrared scanning for meteorological purposes; spatial antartic glaciology; reflection spectra usage in recognition of plant covers; experimental investigation of aeronautical and maritime communications and surveillance using satellites; the ESRO MAROTS program; the problem of habitability in spaceships; atmosphere revitalization for manned spacecraft; prospects of international cooperation in medical sciences; developing a technology base in planetary entry aerothermodynamics; scientific results of the automatic ionospheric laboratory Yantar 4 flight; nonlinear unsteady motions in solid propellant rockets with application to large motors; investigation of the physical and mechanical properties of the lunar sample brought by Luna 20 and along the route of motion of Lunokhod 2; orbiting astronomical observatory Copernicus; the delta launch vehicle model 2914 series; space tug mission and program planning; space and education; and safety in youth rocket experiments. (GHT)

  8. PREFACE: 1st International Conference in Applied Physics and Materials Science

    Science.gov (United States)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  9. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number

  10. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Science.gov (United States)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume

  11. A Model for the Sounding Rocket Measurement on an Ionospheric E-F Valley at the Hainan Low Latitude Station

    International Nuclear Information System (INIS)

    Wang Zheng; Shi Jiankui; Guan Yibing; Liu Chao; Zhu Guangwu; Torkar Klaus; Fredrich Martin

    2014-01-01

    To understand the physics of an ionospheric E-F valley, a new overlapping three-Chapman-layer model is developed to interpret the sounding rocket measurement in the morning (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, respectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid development of the photochemical process in the ionosphere should be the underlying reason. (astrophysics and space plasma)

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K Murali1 Sudeshna Sinha2 William L Ditto3. Department of Physics, Anna University, Chennai 600 025, India; The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India; Department of Biomedical Engineering, University of Florida, Gainesville, FL 326611-6131, USA ...

  13. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    Science.gov (United States)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  14. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  15. PHYSICAL EDUCATION BETWEEN ART AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2011-08-01

    Full Text Available Physical Education has its own definition inside the system of anthropomorphological sciences. But, there is a question whether it is possible to explain the phenomenon of physical education only inside of the system of abstrct atitudes based on an objective observation of reality or it is (at least some of its parts are an activity which has for an object the stimulation of human senses, mind or spirit. In this essey we discuss, in a very subjective way, the matter which concerns the culture in order to define the position of physical education inside the art system. The word "art" can relate to the variety of subjects, feelings or activities. Because of it, the fragments of art can be defined as creative interpretations of indefinite concepts or ideas. Having in mind the fact that in a world of art it is not possible to define standards that determine the art itself, according to the criteria which are generally accepted, it is still possible to make connection between sport and art by some rational observation. This work can enter the history thanks to the initiative to accept the sport as an aspect of art

  16. Remote control video cameras on a suborbital rocket

    International Nuclear Information System (INIS)

    Wessling, Francis C.

    1997-01-01

    Three video cameras were controlled in real time from the ground to a sub-orbital rocket during a fifteen minute flight from White Sands Missile Range in New Mexico. Telemetry communications with the rocket allowed the control of the cameras. The pan, tilt, zoom, focus, and iris of two of the camera lenses, the power and record functions of the three cameras, and also the analog video signal that would be sent to the ground was controlled by separate microprocessors. A microprocessor was used to record data from three miniature accelerometers, temperature sensors and a differential pressure sensor. In addition to the selected video signal sent to the ground and recorded there, the video signals from the three cameras also were recorded on board the rocket. These recorders were mounted inside the pressurized segment of the rocket payload. The lenses, lens control mechanisms, and the three small television cameras were located in a portion of the rocket payload that was exposed to the vacuum of space. The accelerometers were also exposed to the vacuum of space

  17. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  18. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  19. Exploring the Impact of Culture- and Language-Influenced Physics on Science Attitude Enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2016-02-01

    "Culture," a set of principles that trace and familiarize human beings within their existential realities, may provide an invisible lens through which reality could be discerned. Critically explored in this study is how culture- and language-sensitive curriculum materials in physics improve Pangasinan learners' attitude toward science. Their cultural preference or profile defined their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning processes. The culture- and language-influenced curriculum materials in physics were heavily influenced by Pangasinan learners' cultural preference or profile. Results of the experimental participants' pretest and posttest on science attitude measure, when compared, showed significant statistical difference. Assessment of science attitude enhancement favored the experimental group over the control group. Qualitative data gathered from postimplementation interviews, focus group discussions, and journal log entries indicated the same trend in favor of the experimental participants. The study yielded that culture and language integration in the teaching and learning processes of physics concepts allowed students to develop positive attitude to science, their culture, and native language.

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... M Senthilvelan1 V K Chandrasekar2 R Mohanasubha1. Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, ...

  1. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  2. Outline of scientific and research activities of the Faculty of Nuclear Science and Physical Engineering

    International Nuclear Information System (INIS)

    Loncar, G.

    1982-01-01

    A survey is presented of scientific and research activities carried out in the departments of the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. The first section lists the principal results achieved in the course of the 6th Five-Year Plan in Physical Electronics, Solid State Engineering, Materials Structure and Properties, Nuclear Physics, Theory and Technology of Nuclear Reactors, Dosimetry and Application of Ionizing Radiation and Nuclear Chemistry. The second part gives a summary of scientific and research work carried out in the Faculty of Nuclear Science and Physical Engineering in the 7th Five-Year Plan in all branches of science represented. The Faculty's achievements in international scientific cooperation are assessed. (author)

  3. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  4. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  5. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  6. A Systemic Functional Linguistic Analysis of the Utterances of Three South African Physical Sciences Teachers

    Science.gov (United States)

    Jawahar, Kavish; Dempster, Edith R.

    2013-06-01

    In this study, the sociocultural view of science as a language and some quantitative language features of the complementary theoretical framework of systemic functional linguistics are employed to analyse the utterances of three South African Physical Sciences teachers. Using a multi-case study methodology, this study provides a sophisticated description of the utterances of Pietermaritzburg Physical Sciences teachers in language contexts characterised by varying proportions of English Second Language (ESL) students in each class. The results reveal that, as expected, lexical cohesion as measured by the cohesive harmony index and proportion of repeated content words relative to total words, increased with an increasing proportion of ESL students. However, the use of nominalisation by the teachers and the lexical density of their utterances did not decrease with an increasing proportion of ESL students. Furthermore, the results reveal that each individual Physical Sciences teacher had a 'signature' talk, unrelated to the language context in which they taught. This study signals the urgent and critical need for South African science teacher training programmes to place a greater emphasis on the functional use of language for different language contexts in order to empower South African Physical Sciences teachers to adequately apprentice their students into the use of the register of scientific English.

  7. A dialogue regarding "The material co-construction of hard science fiction and physics"

    Science.gov (United States)

    Geelan, David; Prain, Vaughan; Hasse, Cathrine

    2015-12-01

    Science fiction and the `technofantasies' of the future that it provides may attract some students to study physics. The details and assumptions informing these `imaginaries' may, on the other hand, be unattractive to other students, or imply that there is not a place for them. This forum discussion complements Cathrine Hasse's paper discussing the ways in which gender and other interests interact in the `entanglement' of physics and science fiction. The conversation interrogates some of the issues in Cathrine's paper, and brings in complementary literatures and perspectives. It discusses the possibility of a `successor science' and new, more inclusive ways of imagining and constructing our possible futures.

  8. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  9. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 5 .... A perturbed angular correlation spectrometer for material science studies ... Scattering of light by a periodic structure in the presence of randomness VII: Application .... Dissociation of deuteron,He andBe from Coulomb dissociation reaction cross-section.

  11. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  12. Operational Health Physics-Science or Philosophy?

    International Nuclear Information System (INIS)

    Carter, M. W.

    2004-01-01

    Operational health physics is concerned with protecting workers and the public from harm due to ionizing radiation. This requires the application of philosophy (ethics) as well as science. Operational health physics philosophy has been dominated by the ICRP. A particular aspect of ICRP's philosophy that is often misunderstood is (As low as reasonably achievable, economic and social factors being taken into account). (ALARA) Although the ALARA philosophy has been interpreted as a cost-benefit approach it is in fact a risk-benefit approach including social considerations as the ICRP has emphasised from time to time. A recent report has accused the ICRP of using a discarded philosophical approach, namely Utilitarianism, as a result of which its recommendations are unethical. The report suggests that a (rights) based philosophy such as Rawls' Theory of Justice would be a more appropriate basis. This paper discusses this accusation, considers some relevant philosophies and concludes that the accusation is not valid and that ICRP's recommendations are ethical but are frequently misinterpreted. (Author)

  13. Progress report - physical sciences TASCC division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the TASCC Division. During the period covered by this report, the operation of the superconducting cyclotron has matured considerably, with over 30 accelerated ion beams more-or-less routinely available for a wide variety of nuclear physics experiments. The TASCC team, together with all the engineers, trades-people and other staff members who contributed to the design, constructed and commissioning of the Tandem Accelerator Superconducting Cyclotron facility, are to be heartily congratulated on bringing it to its present highly successful state in an unusually short period of time. In conjunction with our many outside collaborators, we are now engaged on exciting experiments in several areas of nuclear physics research, as reported in the following pages. We are well on the way to the establishment of a truly National Centre for Nuclear Physics research in Canada

  14. Optical measurements in rocket engine liquid sprays

    Science.gov (United States)

    Feikema, Douglas A.

    1994-01-01

    The performance of liquid propellant rocket engines is dependent upon many elements of the entire system. One of the most fundamental and most critical is the performance of the injector elements. Their characterization is an important part of the development of combustion devices. Optical measurements within these environments have proven to be invaluable tools in quantifying the physical environment of two phase flows. The effort reported herein involves the measurement of drop velocity, drop size, and most importantly mass flux using Phase-Doppler Particle Anemometry within a spray generated by a single swirl injector element operating in atmospheric pressure conditions. The mass flux has been determined and validated by mechanical patternation methods and by profile integration of the mass flux.

  15. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  16. Nuclear Science Outreach in the World Year of Physics

    Science.gov (United States)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  17. Radioisotopes in the Physical Sciences and Industry. Proceedings of the Conference on the Use of Radioisotopes in the Physical Sciences and Industry. V. III

    International Nuclear Information System (INIS)

    1962-01-01

    The Conference on the Use of Radioisotopes in the Physical Sciences and Industry, which took place in Copenhagen in September 1960, was the latest of a series of isotope conferences which began in 1951 at Oxford and continued with those held in 1954, again at Oxford, and in 1957 in Paris. The development of the uses of radioisotopes had been so rapid and many-sided that this Copenhagen Conference, organized by the IAEA with the co-operation of UNESCO, had to be restricted to applications in the physical sciences and industry. Applications of radioisotopes in animal biology and the medical sciences were discussed at the Conference held in Mexico City in November 1961. Even so, more than 500 scientists attended the Conference in Copenhagen and over 140 contributions were presented and discussed by this international gathering. Many more papers of great interest were submitted but could not be fitted into the programme. The proceedings of this Conference demonstrate the advances which had taken place since the earlier meetings in Oxford and Paris. It is hoped that this publication will contribute towards the stimulation of further research in the application of radioactive techniques.

  18. Institute of physics

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A survey is given of the personnel and activities of the Institute of Physics. Research by staff of the Nuclear Physics Group includes mainly work on heavy ion reactions and investigations of rare earth nuclei. The Elementary Particle Group has studied antineutron and antiproton annihilations, neutral current pions minus and has used the CERN ISRs. The Cosmic Physics Group has used rockets, satellite data and balloons to study the electron and proton precipitation in the upper atmosphere and magnetosphere, and aurorae. (JIW)

  19. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-31

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov

  20. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  1. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Science.gov (United States)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  2. Injection and swirl driven flowfields in solid and liquid rocket motors

    Science.gov (United States)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  3. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  4. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  5. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  6. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    Science.gov (United States)

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  7. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

    International Nuclear Information System (INIS)

    Lepore, J.L.

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

  8. African Journal for Physical Activity and Health Sciences - Vol 21 ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences - Vol 21, No 3 (2015) ... Factors Influencing the Health of Men in Polygynous Relationship · EMAIL FULL ... Views of HIV Positive Pregnant Women on Accessibility of the Prevention of ...

  9. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  10. Progress report - Physics and Health Sciences - Health Sciences Section 1987 January 1 - June 30

    International Nuclear Information System (INIS)

    1987-08-01

    This report covers the third semi-annual period since the Reserach Company was reorganized. A highlight of the period was the first peer review of all the activities in Physics and Health Sciences by external examiners. The review was conducted in April by three separate Technical Review Committees (TRC) one for each of the three main areas: health sciences, nuclear physics and condensed matter physics. In all cases the TRCs gave strong support to our programs having a mandate to assess research programs with respect to (a) their quality and (b) their relevance to Canada. The principal programs reviewed were: DNA damage and repair mechanisms; synergistic effects of chemicals and radiation; the tritium RBE study; radiosensitivity of human bone marrow cells; radioprotective enzymes; radiation biochemistry; chemistry of oxazolinones, benzofuroxanes and cyclodextrins; myeloid leukemia in mice; tritium monitoring, and quality factors; metabolic modeling; neutron dosimetry; groundwater/contaminant modeling; sediment exchange and speciation; and atmospheric dispersion. Very considerable effort was spent on preparing a proposal for a centre of excellence in toxicology for presentation in March to the Premier's Council in the Province of Ontario. Although the proposal was not one of the 7 (out of 28) successful proposals, much useful preparatory work was done towards the establishing of a centre for health and environmental research on toxic agents

  11. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2015-01-28

    Jan 28, 2015 ... Author Affiliations. Neeraj Kumar Kamal1 2 Pooja Rani Sharma3 2 Manish Dev Shrimali2. The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India; Department of Physics, Central University of Rajasthan, Ajmer 305 801, India; The LNM Institute of Information Technology, Jaipur 302 ...

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The dispersion of the relaxation time due to the emission of confined LO-phonons depends strongly on the total energy. Author Affiliations. D Abouelaoualim1. L.P.S.C.M., Physics Department, Faculty of Sciences-Semlalia, BP:2390, 40000, Marrakech, Morocco. Dates. Manuscript received: 6 July 2004; Manuscript revised ...

  14. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  15. Perspectives on the Contribution of Social Science to Adapted Physical Activity: Looking Forward, Looking Back

    Science.gov (United States)

    Causgrove Dunn, Janice; Cairney, John; Zimmer, Chantelle

    2016-01-01

    In this article, we reflect on the contributions of the social sciences to the field of adapted physical activity by examining the theories and methods that have been adopted from the social science disciplines. To broaden our perspective on adapted physical activity and provide new avenues for theoretical and empirical exploration, we discuss and…

  16. Global Social Challenges: insights from the physical sciences and their relevance to the evolution of social science

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The complex challenges confronting humanity today point to the need for new thinking and new theory in the social sciences which overcomes the limitations of compartmentalized, sectoral concepts, strategies and policies and mechanistic approaches to living social systems. The World Academy of Art & Science is convening a consortium of leading institutions and thinkers from different sectors to contribute ideas for formulation of a cohesive framework capable of addressing global social challenges in their totality and complex interrelationships. The objective of my presentation will be to explore the potential for collaboration between the physical and social sciences to arrive at a more cohesive and effective framework by exploring a series of questions, including - - Is an integrated science of society possible that transcends disciplinary boundaries based on common underlying principles as we find in the natural sciences? - To what extent can principles of natural science serve as valid models and a...

  17. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  18. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  19. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  20. Science with a vengeance: How the Military created the US Space Sciences after World War II

    Science.gov (United States)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  1. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  2. Frontiers of Physics and Plasma Science

    International Nuclear Information System (INIS)

    Sharma, Prerana

    2017-01-01

    Preface to the conference proceedingsWe are very pleased to introduce the proceeding of FPPS-2016; the international conference “Frontiers of Physics and Plasma Science” that took place on 7 and 8 November, 2016 in the campus of Ujjain Engineering College, Ujjain (India). The goal of the meeting was to provide a broad prospective to the plasma science emphasizing physics with a new plasma technologies. The scientific program of the conference focused on the advancement of the all branches of physics in achieving all applications of the plasma science. The conference spans a wide range of topics, reporting experiments, techniques and ideas that advance the plasma science worldwide.There were 20 invited lectures and 04 oral presentations covering the different area of the conference. The keynote lecture was delivered by Dr. Rajdeep Singh Rawat (NTU, Singapore) on “Density plasma focus: novel high energy density plasma device”. Prof. Y.C. Saxena (IPR, Gandhinagar, Ahmedabad), Prof. R. P. Sharma (IIT, New Delhi), Prof. Fernando Haas (Brazil), Prof. Davoud Dorranian (Tehran, Iran), Dr. Raju Khanal (Tribhuwan University, Nepal), Prof. Avinash Khare (IIT, New Delhi), Dr. Navin Dwivedi (Israel), Prof. V.K. Tripathi (IIT New Delhi), Dr. J. Ghosh (IPR, Gandhinagar, Gujarat), Dr. Devendra Sharma (IPR, Gandhinagar, Gujarat), Prof. R.K. Thareja (IIT Kanpur), Dr. Vipul Arora (RRCAT, Indore), Prof. M. P. Bora (Gauhati University, Guwahati) and many more have delivered their lecture in the field of plasma science and its applications. The program was chaired in a professional and efficient way by the session chairmen who were selected for their international standing in the subject.The 165 abstracts that were presented in two days (during parallel poster session) formed a heart of the conference and provided ample opportunity for the discussion. The 170 participants, 110 of whom were students had many fruitful discussions and exchange that contributed to the success of the

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 3. Peakons and compactons on the background of periodic wave. Chao-Qing Dai Cui-Yun Liu ... Author Affiliations. Chao-Qing Dai1 Cui-Yun Liu1. School of Sciences, Zhejiang Agriculture and Forestry University, Lin'an 311300, People's Republic of China ...

  4. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  5. The correlation between physical activity and grade point average for health science graduate students.

    Science.gov (United States)

    Gonzalez, Eugenia C; Hernandez, Erika C; Coltrane, Ambrosia K; Mancera, Jayme M

    2014-01-01

    Researchers have reported positive associations between physical activity and academic achievement. However, a common belief is that improving academic performance comes at the cost of reducing time for and resources spent on extracurricular activities that encourage physical activity. The purpose of this study was to examine the relationship between self-reported physical activity and grade point average (GPA) for health science graduate students. Graduate students in health science programs completed the International Physical Activity Questionnaire and reported their academic progress. Most participants (76%) reported moderate to vigorous physical activity levels that met or exceeded the recommended levels for adults. However, there was no significant correlation between GPA and level of physical activity. Negative findings for this study may be associated with the limited range of GPA scores for graduate students. Future studies need to consider more sensitive measures of cognitive function, as well as the impact of physical activity on occupational balance and health for graduate students in the health fields. Copyright 2014, SLACK Incorporated.

  6. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  7. Lessons Don't Have To Be Rocket Science!

    Science.gov (United States)

    Morris, Andrew

    2002-01-01

    Describes an experimental program to teach adults who are curious about, but poorly educated in, science. Learning began with questions arising from that curiosity and discussion was encouraged by the teacher. Students felt empowered by the process and freely asked questions. (JOW)

  8. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  9. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  10. Von Braun Rocket Team at Fort Bliss, Texas

    Science.gov (United States)

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The 10th Workshop on High Energy Physics Phenomenology (WHEPP-10) was held at the Institute of Mathematical Sciences, Chennai during January 2–13, 2008. One of our working grops (WG) is QCD and QGP. The discussions of QGP WG include matter at high density, lattice QCD, charmonium states in QGP, viscous ...

  12. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  13. Proceedings of conference on AI applications in physical sciences

    International Nuclear Information System (INIS)

    1993-01-01

    A Conference cum workshop on AI applications in Physical Sciences was organised by the Indian Physics Association at Bhabha Atomic Research Centre, Bombay during January 15-17, 1992. It was held in memory of Late Shri S.N. Seshadri, who was the moving spirit behind self reliance in instrumentation development for research and industry. The two day conference which was followed by one day workshop covered the following broad spectrum of topics in Artificial Intelligence: AI Tools and Techniques, Neural Networks, Robotics and Machine Vision, Fuzzy Control and Applications, Natural Language and Speech Processing, Knowledge based Systems, and AI and Allied applications. The conference dealt with recent advances and achievements in AI. It provided a forum for the exchange of valuable information and expertise in this fast emerging field. Over 200 scientists, engineers and computer professionals from various universities, R and D institutes and industries actively participated. 45 contributed papers and 8 invited talks were presented in the symposium. The volume contains selected papers which were contributed by the participants. Some of them dealt with AI applications in nuclear science and technology. (original)

  14. Enhancing Middle School Science Lessons with Playground Activities: A Study of the Impact of Playground Physics

    Science.gov (United States)

    Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng

    2017-01-01

    Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…

  15. The Inclusion of Science Process Skills in Yemeni Secondary School Physics Textbooks

    Science.gov (United States)

    Aziz, Majed S.; Zain, Ahmad Nurulazam Md

    2010-01-01

    The aim of this study is to compare and contrast the science process skills (SPS) included in the 10th-12th grade physics textbooks content utilized in Yemeni schools. The study revealed weaknesses and strengths in the textbooks' content. For instance, a number of science process skills (SPS), such as measuring, predicting and hypothesizing, have…

  16. Operational Health Physics-Science or Philosophy?

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M. W.

    2004-07-01

    Operational health physics is concerned with protecting workers and the public from harm due to ionizing radiation. This requires the application of philosophy (ethics) as well as science. Operational health physics philosophy has been dominated by the ICRP. A particular aspect of ICRP's philosophy that is often misunderstood is (As low as reasonably achievable, economic and social factors being taken into account). (ALARA) Although the ALARA philosophy has been interpreted as a cost-benefit approach it is in fact a risk-benefit approach including social considerations as the ICRP has emphasised from time to time. A recent report has accused the ICRP of using a discarded philosophical approach, namely Utilitarianism, as a result of which its recommendations are unethical. The report suggests that a (rights) based philosophy such as Rawls' Theory of Justice would be a more appropriate basis. This paper discusses this accusation, considers some relevant philosophies and concludes that the accusation is not valid and that ICRP's recommendations are ethical but are frequently misinterpreted. (Author)

  17. Semantic e-Science in Space Physics - A Case Study

    Science.gov (United States)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  18. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  19. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  20. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  1. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  2. Physics teacher use of the history of science

    Science.gov (United States)

    Winrich, Charles

    The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics (CHOP). ITOP participants self-report changes to their teaching practices as a result of their participation in ITOP. The purpose of this study was to verify and characterize those changes in the specific area of the participants' use of history after their study of CHOP. Ten recent ITOP participants were observed, interviewed, and asked to provide lesson plans and samples of student work from their classes. Case studies of each participant's teaching were constructed from the data. The individual cases were synthesized to characterize the impact of CHOP on the ITOP participants. The results show that the participants integrate CHOP into their pedagogical content knowledge (PCK) to inform their understanding of: (1) the relationship between physics and other disciplines, (2) the relationship between specific physics concepts, (3) student understanding of physics concepts, (4) student difficulties in learning physics concepts, and (5) methods for teaching physics concepts. The participants use history to teach a variety of topics, although the most common were mechanics and electromagnetism. All of the participants used history to teach aspects of the nature of science (NOS) and to increase student interest in physics, while eight participants taught physics concepts through history. The predominant mode of incorporating history was through adding anecdotes about the scientists who worked on the concepts, but seven participants had their students study the historical development of physical concepts. All the participants discussed a lack of time as a factor that inhibits a greater use of history in their courses. Eight

  3. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  4. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  5. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    Science.gov (United States)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  6. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    Science.gov (United States)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  7. Competence of matric physical science teachers in some basic problem-solving strategies

    Directory of Open Access Journals (Sweden)

    Mailoo Selvaratnam

    2011-01-01

    Full Text Available The National Curriculum Statement for matric physical science places strong emphasis on the development of critical thinking and reasoning abilities of pupils. The successful implementation of this curriculum therefore requires teachers who are competent in the cognitive (intellectual skills and strategies needed for learning science effectively. Testing of teachers’ competence in this aspect is therefore important. I therefore analysed teachers’ answers to questions that were carefully designed to test competence in some basic intellectual strategies that are important for problem solving in physical science courses. A total of 73 matric physical science teachers, from about 50 Dinaledi schools in the North West and KwaZulu-Natal provinces in South Africa, were tested in five intellectual strategies: clear representation of problems, identifying and focusing on the goal, identification and use of relevant principles, use of equations for deductions and proceeding step-by-step with the solution. The teachers’ competence was poor in all the intellectual strategies tested. About 60% (the average performance in all 13 questions used for testing of teachers tested were unable to solve the questions correctly. An important objective of the curriculum is the development of critical thinking, scientific reasoning and strategies of pupils. This study shows that the achievement of this objective will be seriously handicapped because of the lack of competence of many teachers in intellectual strategies. There is therefore a need to train teachers in order to increase their competence in this aspect.

  8. Beacons of discovery the worldwide science of particle physics

    CERN Document Server

    International Committee for Future Accelerators (ICFA)

    2011-01-01

    To discover what our world is made of and how it works at the most fundamental level is the challenge of particle physics. The tools of particle physics—experiments at particle accelerators and underground laboratories, together with observations of space—bring opportunities for discovery never before within reach. Thousands of scientists from universities and laboratories around the world collaborate to design, build and use unique detectors and accelerators to explore the fundamental physics of matter, energy, space and time. Together, in a common world-wide program of discovery, they provide a deep understanding of the world around us and countless benefits to society. Beacons of Discovery presents a vision of the global science of particle physics at the dawn of a new light on the mystery and beauty of the universe.

  9. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  10. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  11. From ancient Greece to the cognitive revolution: A comprehensive view of physical rehabilitation sciences.

    Science.gov (United States)

    Martínez-Pernía, David; González-Castán, Óscar; Huepe, David

    2017-02-01

    The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.

  12. Jorge Luis Borges and the New Physics: the Literature of Modern Science and the Science of Modern Literature

    Science.gov (United States)

    Mosher, Mark Robert

    1992-01-01

    By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.

  13. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  14. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    Science.gov (United States)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  15. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  16. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  17. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975. [LBL

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.L. (ed.)

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures. (RWR)

  18. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) ''Introductory word''; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) ''Contribution of the SAGE results to the understanding of solar physics and neutrino physics''; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) ''Baikal neutrino experiment''; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) ''Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory''; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) ''Neutrino T2K experiment: the first results''; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) ''Fields of study of condensed media at the neutron facility at the INR, RAS''; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) ''Production of isotopes at the INR, RAS: reality and prospects''. The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper ''High-power diode-pumped alkali lasers'' by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. . Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 . The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54

  19. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  20. Comparative Analysis of Female Physicists in the Physical Sciences: Motivation and Background Variables

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.

    2014-01-01

    The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average,…