WorldWideScience

Sample records for rocket motor test

  1. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  2. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  3. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    Science.gov (United States)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  4. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  5. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  6. Test data from small solid propellant rocket motor plume measurements (FA-21)

    Science.gov (United States)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  7. Flow-Structural Interaction in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Murdock, John

    2004-01-01

    .... The static test failure of the Titan solid rocket motor upgrade (SRMU) that occurred on 1 April, 1991, demonstrated the importance of flow-structural modeling in the design of large, solid rocket motors...

  8. Ispitivanje piropatrona i raketnog motora pilotskog sedišta / Testing pyrocartridges and the rocket motor of the ejection seat

    Directory of Open Access Journals (Sweden)

    Milorad Savković

    2008-04-01

    Full Text Available Raketni motor pilotskog sedišta ima složen geometrijski oblik, tako da njegov potisak deluje pod određenim uglom u odnosu na ravan simetrije pilotskog sedišta. Radi određivanja intenziteta i napadne linije potiska izvršen je veći broj eksperimenata. Meren je potisak raketnog motora na višekomponentnom opitnom stolu. Letno ispitivanje pilotskog sedišta obavljeno je pomoću lutke koja simulira masu pilota. Takođe, analizirano je letno ispitivanje pilotskog sedišta u početnom periodu katapultiranja za vreme rada raketnog motora. Obrađeni su i rezultati merenja ubrzanja, koji su korišćeni za određivanje karakteristika leta pilotskog sedišta. U radu je prikazan teorijski model kretanja sedišta. / Due to a complex geometrical shape of the rocket motor of the ejection seat, the rocket motor thrust occurs under certain angle in relation to the plane of symmetry of the ejection seat. A number of tests were carried out in order to determine thrust intensity and angle of attack. The rocket motor thrust was measured on the multicomponent test stand. The ejection seat whit a dummy simulating a mass of a pilot was tested during ejection. The paper presents an analysis of the ejection seat flight in the initial phase of ejection, during the rocket motor running. The results of the acceleration read-outs were processed and then used for the determination of the characteristics of the ejection seat flight. A theoretical model of the ejection seat flight is given in the paper.

  9. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  10. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  11. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  12. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  13. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  14. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    Science.gov (United States)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  15. Design and Testing of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors

    OpenAIRE

    McCulley, Jonathan M.

    2013-01-01

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel g...

  16. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  17. The sky is falling III: The effect of deposition from static solid rocket motor tests on juvenile crops.

    Science.gov (United States)

    Doucette, William J; Curry, Eric; McNeill, Laurie S; Heavilin, Justin

    2017-12-01

    A mixture of combustion products (mainly hydrogen chloride, aluminum oxide, and water) and entrained soil, referred to as Test Fire Soil (TFS), can be deposited on crops during static solid rocket motor tests. The impact of a reported worst-case event was previously evaluated by exposing corn and alfalfa to 3200-gTFS/m 2 at 54days after emergence. Exposures via soil and leaves were evaluated separately. Reduced growth (soil exposure) and leaf "scorch" (leaf exposure) were attributed mainly to the high chloride concentrations in the TFS (56,000mg/kg). A follow-up study was conducted to evaluate the effect of a typical deposition event (70-gTFS/m 2 , estimated by radar during several tests) and exposure (soil and leaves simultaneously) on juvenile corn, alfalfa, and winter wheat. Younger crops were used to examine potential age sensitivity differences. Impact was evaluated by comparing the growth, elemental composition, and leaf chlorophyll content of treated and untreated plants. The relationship between deposition exposure and response was also addressed. Growth of corn, alfalfa, and winter wheat exposed to a typical TFS loading was not impacted, although slightly elevated concentrations of aluminum and iron were found in the leaves. At the highest loadings used for the exposure-response experiment, concentrations of chloride and calcium were higher in TFS-exposed corn leaves than in the untreated leaves. Overall results indicate that exposure to a typical deposition event does not adversely impact juvenile crops and that younger plants may be less vulnerable to TFS. However, higher TFS loadings can cause leaf scorch and increase the leaf concentrations of some elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  19. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  20. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  1. An example of successful international cooperation in rocket motor technology

    Science.gov (United States)

    Ellis, Russell A.; Berdoyes, Michel

    2002-07-01

    The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative

  2. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  3. Solid Rocket Testing at AFRL (Briefing Charts)

    Science.gov (United States)

    2016-10-21

    Distribution Unlimited. PA#16492 2 Agenda • Solid Rocket Motors • History of Sea Level Testing • Small Component Testing • Full-scale Testing • Altitude...Facility • History of Testing • Questions -Distribution A: Approved for Public Release; Distribution Unlimited. PA#16492 3 RQ-West • AFRL/RQ...INTEGRATION FACILITY NATIONAL HOVER TEST FACILITY TITAN SRM TEST FACILITY TS-1C1-125 LARGE ENGINE/COMPONENT TEST FACILITY TS-1A 1-120 1-115 X-33 LAUNCH

  4. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  5. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  6. Rotational flow in tapered slab rocket motors

    Science.gov (United States)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  7. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  8. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  9. Cooperative Threat Reduction: Solid Rocket Motor Disposition Facility Project (D-2003-131)

    National Research Council Canada - National Science Library

    2003-01-01

    .... DoD contracted with Lockheed Martin Advanced Environmental Systems for $52.4 million to design, develop, fabricate, and test a closed burn, solid rocket motor disposition facility for the Russian Federation in April 1997...

  10. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  11. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  12. Aluminum Agglomeration and Trajectory in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Coats, Douglas; Hylin, E. C; Babbitt, Deborah; Tullos, James A; Beckstead, Merrill; Webb, Michael; Davis, I. L; Dang, Anthony

    2007-01-01

    Report developed under STTR contract for Topic AF06-T012. The demand for higher performance rocket motors at a reduced cost requires continuous improvements in understanding and controlling propellant combustion...

  13. Design and Experimental Study on Spinning Solid Rocket Motor

    Science.gov (United States)

    Xue, Heng; Jiang, Chunlan; Wang, Zaicheng

    The study on spinning solid rocket motor (SRM) which used as power plant of twice throwing structure of aerial submunition was introduced. This kind of SRM which with the structure of tangential multi-nozzle consists of a combustion chamber, propellant charge, 4 tangential nozzles, ignition device, etc. Grain design, structure design and prediction of interior ballistic performance were described, and problem which need mainly considered in design were analyzed comprehensively. Finally, in order to research working performance of the SRM, measure pressure-time curve and its speed, static test and dynamic test were conducted respectively. And then calculated values and experimental data were compared and analyzed. The results indicate that the designed motor operates normally, and the stable performance of interior ballistic meet demands. And experimental results have the guidance meaning for the pre-research design of SRM.

  14. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  15. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  16. Determination of the availability of appropriate aged flight rocket motors. [captive tests to determine case bond separation and grain bore cracking

    Science.gov (United States)

    Martin, P. J.

    1974-01-01

    A program to identify surplus solid rocket propellant engines which would be available for a program of functional integrity testing was conducted. The engines are classified as: (1) upper stage and apogee engines, (2) sounding rocket and launch vehicle engines, and (3) jato, sled, and tactical engines. Nearly all the engines were available because their age exceeds the warranted shelf life. The preference for testing included tests at nominal flight conditions, at design limits, and to establish margin limits. The principal failure modes of interest were case bond separation and grain bore cracking. Data concerning the identification and characteristics of each engine are tabulated. Methods for conducting the tests are described.

  17. The sky is falling II: Impact of deposition produced during the static testing of solid rocket motors on corn and alfalfa.

    Science.gov (United States)

    Doucette, William J; Mendenhall, Scout; McNeill, Laurie S; Heavilin, Justin

    2014-06-01

    Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. Exposure to TFS, containing elevated levels of chloride (1000 times) and aluminum (2 times) relative to native soils, affected the germination, growth and tissue concentrations of various elements, depending on the type and level of exposure. Germination was inhibited by high concentrations of TFS in soil, but the impact was reduced if the TFS was pre-leached with water. Biomass production was reduced in the TFS amended soils and corn grown in TFS amended soils did not develop kernels. Chloride concentrations in corn and alfalfa grown in TFS amended soils were two orders of magnitude greater than controls. TFS exposed plants contained higher concentrations of several cations, although the concentrations were well below livestock feed recommendations. Foliar applications of TFS had no impact on biomass, but some differences in the elemental composition of leaves relative to controls were observed. Washing the TFS off the leaves lessened the impact. Results indicate that the TFS deposition could have an effect, depending on the amount and growth stage of the crops, but the impact could be mitigated with rainfall or the application of additional irrigation water. The high level of chloride associated with the TFS is the main cause of the observed impacts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  19. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  20. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  1. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  2. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  3. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  4. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  5. Applied algorithm in the liner inspection of solid rocket motors

    Science.gov (United States)

    Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet

    2018-03-01

    In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.

  6. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  7. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    Science.gov (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  8. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  9. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  10. Using PDV to Understand Damage in Rocket Motor Propellants

    Science.gov (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  11. Combustion Stability Assessments of the Black Brant Solid Rocket Motor

    Science.gov (United States)

    Fischbach, Sean

    2014-01-01

    The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.

  12. Regarding the perturbed operating process of DB propellant rocket motor at extreme initial grain temperatures

    Directory of Open Access Journals (Sweden)

    Ioan ION

    2012-03-01

    Full Text Available Despite many decades of study, the combustion instability of several DB propellants is still of particular concern, especially at extreme grain temperature conditions of rocket motor operating. The purpose of the first part of the paper is to give an overview of our main experimental results on combustion instabilities and pressure oscillations in DB propellant segmented grain rocket motors (SPRM-01, large L/D ratio, working at extreme initial grain temperatures. Thus, we recorded some particular pressure-time traces with significant perturbed pressure signal that was FFT analysed. An updated mathematical model incorporating transient frequency-dependent combustion response, in conjunction with pressure-dependent burning, is applied to investigate and predict the DB propellant combustion instability phenomenon. The susceptibility of the tested motor SPRM-01 with DB propellant to get a perturbed working and to go unstable with pressure was evidenced and this risk has to be evaluated. In the last part of our paper we evaluated the influence of recorded perturbed thrust on the rocket behaviour on the trajectory. The study revealed that at firing-table initial conditions, this kind of perturbed motor operating may not lead to an unstable rocket flight, but the ballistic parameters would be influenced in an unacceptable manner.

  13. Near noise field characteristics of Nike rocket motors for application to space vehicle payload acoustic qualification

    Science.gov (United States)

    Hilton, D. A.; Bruton, D.

    1977-01-01

    Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.

  14. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  15. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  16. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  17. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    hardware segments. The reusable solid rocket motor achieved significant reliability via process control, ground test programs, and postflight assessment. Process control is mandatory for a solid rocket motor as an acceptance test of the delivered product is not feasible. Process control included process failure modes and effects analysis, statistical process control, witness panels, and process product integrity audits. Material controls and inspections were maintained throughout the sub tier vendors. Material fingerprinting was employed to assess any drift in delivered material properties. The RSRM maintained both full scale and sub-scale test articles. These enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. These unique challenges, features of the reusable solid rocket motor, materials and manufacturing issues, and design improvements will be discussed in the paper.

  18. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  19. Nutation instability of spinning solid rocket motor spacecraft

    Directory of Open Access Journals (Sweden)

    Dan YANG

    2017-08-01

    Full Text Available The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB. The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn. The analysis of the results proposes the design conception of how to control the nutation motion. The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.

  20. Solid propellant processing factor in rocket motor design

    Science.gov (United States)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  1. The Potential for Ozone Depletion in Solid Rocket Motor Plumes by Heterogeneous Chemistry

    National Research Council Canada - National Science Library

    Hanning-Lee, M

    1996-01-01

    ... (hydroxylated alumina), respectively, over the temperature range -60 to 200 degrees C. This work addresses the potential for stratospheric ozone depletion by launch vehicle solid rocket motor exhaust...

  2. Internal Flow Analysis of Large L/D Solid Rocket Motors

    Science.gov (United States)

    Laubacher, Brian A.

    2000-01-01

    Traditionally, Solid Rocket Motor (SRM) internal ballistic performance has been analyzed and predicted with either zero-dimensional (volume filling) codes or one-dimensional ballistics codes. One dimensional simulation of SRM performance is only necessary for ignition modeling, or for motors that have large length to port diameter ratios which exhibit an axial "pressure drop" during the early burn times. This type of prediction works quite well for many types of motors, however, when motor aspect ratios get large, and port to throat ratios get closer to one, two dimensional effects can become significant. The initial propellant grain configuration for the Space Shuttle Reusable Solid Rocket Motor (RSRM) was analyzed with 2-D, steady, axi-symmetric computational fluid dynamics (CFD). The results of the CFD analysis show that the steady-state performance prediction at the initial burn geometry, in general, agrees well with 1-D transient prediction results at an early time, however, significant features of the 2-D flow are captured with the CFD results that would otherwise go unnoticed. Capturing these subtle differences gives a greater confidence to modeling accuracy, and additional insight with which to model secondary internal flow effects like erosive burning. Detailed analysis of the 2-D flowfield has led to the discovery of its hidden 1-D isentropic behavior, and provided the means for a thorough and simplified understanding of internal solid rocket motor flow. Performance parameters such as nozzle stagnation pressure, static pressure drop, characteristic velocity, thrust and specific impulse are discussed in detail and compared for different modeling and prediction methods. The predicted performance using both the 1-D codes and the CFD results are compared with measured data obtained from static tests of the RSRM. The differences and limitations of predictions using ID and 2-D flow fields are discussed and some suggestions for the design of large L/D motors and

  3. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  4. Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, D. R.; Phelps, W. J.

    2011-01-01

    The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.

  5. Maturation of Structural Health Management Systems for Solid Rocket Motors

    Science.gov (United States)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  6. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    Science.gov (United States)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  7. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  8. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  9. Motor actuated vacuum door. [for photography from sounding rockets

    Science.gov (United States)

    Hanagud, A. V.

    1986-01-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  10. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  11. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  12. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    Science.gov (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  13. Development of a new generation solid rocket motor ignition computer code

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  14. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  15. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  16. Radiometric probe design for the measurement of heat flux within a solid rocket motor nozzle

    Science.gov (United States)

    Goldey, Charles L.; Laughlin, William T.; Popper, Leslie A.

    1996-11-01

    Improvements to solid rocket motor (SRM) nozzle designs and material performance is based on the ability to instrument motors during test firings to understand the internal combustion processes and the response of nozzle components to the severe heating environment. Measuring the desired parameters is very difficult because the environment inside of an SRM is extremely severe. Instrumentation can be quickly destroyed if exposed to the internal rocket motor environment. An optical method is under development to quantify the heating of the internal nozzle surface. A radiometric probe designed for measuring the thermal response and material surface recession within a nozzle while simultaneously confining the combustion products has been devised and demonstrated. As part of the probe design, optical fibers lead to calibrated detectors that measure the interior nozzle thermal response. This two color radiometric measurement can be used for a direct determination of the total heat flux impinging on interior nozzle surfaces. This measurement has been demonstrated using a high power CO2 laser to simulate SRM nozzle heating conditions on carbon phenolic and graphite phenolic materials.

  17. Feasibility study of palm-based fuels for hybrid rocket motor applications

    Science.gov (United States)

    Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi

    2018-02-01

    This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.

  18. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  19. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  20. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    Science.gov (United States)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  1. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  2. Rocket Testing and Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  3. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    Science.gov (United States)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  4. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  5. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  6. Numerical simulation of a liquid propellant rocket motor

    Science.gov (United States)

    Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio

    2001-03-01

    This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.

  7. Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program

    Science.gov (United States)

    Clayton, Louie

    2011-01-01

    This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.

  8. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  9. Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.

  10. Modified computation of the nozzle damping coefficient in solid rocket motors

    Science.gov (United States)

    Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.

    2018-02-01

    In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.

  11. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez-Pagan, Carmen P.; Rahman, Shamim A.

    2009-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to

  12. Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System

    Directory of Open Access Journals (Sweden)

    Luciana de Barros

    2016-04-01

    Full Text Available The application of fluoropolymers in high-energy-release pyrotechnic compositions is common in the space and defense areas. Pyrotechnic compositions of magnesium/Teflon/Viton are widely used in military flares and pyrogen igniters for igniting the solid propellant of a rocket motor. Pyrotechnic components are considered high-risk products as they may cause catastrophic accidents if initiated or ignited inadvertently. To reduce the hazards involved in the handling, storage and transportation of these devices, the magnesium/Teflon/Viton composition was subjected to various sensitivity tests, DSC and had its stability and compatibility tested with other materials. This composition obtained satisfactory results in all the tests, which qualifies it as safe for production, handling, use, storage and transportation.

  13. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    International Nuclear Information System (INIS)

    Weaver, J.T.; Stowe, R.A.

    2004-01-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  14. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J.T. [Carleton Univ., Ottawa, Ontario (Canada)]. E-mail: jrweaver@storm.ca; Stowe, R.A. [Defence R and D Canada - Valcartier, Val-Belair, Quebec (Canada)

    2004-07-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  15. Laser Shearography Inspection of TPS (Thermal Protection System) Cork on RSRM (Reusable Solid Rocket Motors)

    Science.gov (United States)

    Lingbloom, Mike; Plaia, Jim; Newman, John

    2006-01-01

    Laser Shearography is a viable inspection method for detection of de-bonds and voids within the external TPS (thermal protection system) on to the Space Shuttle RSRM (reusable solid rocket motors). Cork samples with thicknesses up to 1 inch were tested at the LTI (Laser Technology Incorporated) laboratory using vacuum-applied stress in a vacuum chamber. The testing proved that the technology could detect cork to steel un-bonds using vacuum stress techniques in the laboratory environment. The next logical step was to inspect the TPS on a RSRM. Although detailed post flight inspection has confirmed that ATK Thiokol's cork bonding technique provides a reliable cork to case bond, due to the Space Shuttle Columbia incident there is a great interest in verifying bond-lines on the external TPS. This interest provided and opportunity to inspect a RSRM motor with Laser Shearography. This paper will describe the laboratory testing and RSRM testing that has been performed to date. Descriptions of the test equipment setup and techniques for data collection and detailed results will be given. The data from the test show that Laser Shearography is an effective technology and readily adaptable to inspect a RSRM.

  16. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  17. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Science.gov (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  18. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

    Science.gov (United States)

    Stefanski, Philip L.

    2015-01-01

    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  19. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  20. Distributed Rocket Engine Testing Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  1. Distributed Rocket Engine Testing Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  2. Validation of a Solid Rocket Motor Internal Environment Model

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    In a prior effort, a thermal/fluid model of the interior of Penn State University's laboratory-scale Insulation Test Motor (ITM) was constructed to predict both the convective and radiative heat transfer to the interior walls of the ITM with a minimum of empiricism. These predictions were then compared to values of total and radiative heat flux measured in a previous series of ITM test firings to assess the capabilities and shortcomings of the chosen modeling approach. Though the calculated fluxes reasonably agreed with those measured during testing, this exercise revealed means of improving the fidelity of the model to, in the case of the thermal radiation, enable direct comparison of the measured and calculated fluxes and, for the total heat flux, compute a value indicative of the average measured condition. By replacing the P1-Approximation with the discrete ordinates (DO) model for the solution of the gray radiative transfer equation, the radiation intensity field in the optically thin region near the radiometer is accurately estimated, allowing the thermal radiation flux to be calculated on the heat-flux sensor itself, which was then compared directly to the measured values. Though the fully coupling the wall thermal response with the flow model was not attempted due to the excessive computational time required, a separate wall thermal response model was used to better estimate the average temperature of the graphite surfaces upstream of the heat flux gauges and improve the accuracy of both the total and radiative heat flux computations. The success of this modeling approach increases confidence in the ability of state-of-the-art thermal and fluid modeling to accurately predict SRM internal environments, offers corrections to older methods, and supplies a tool for further studies of the dynamics of SRM interiors.

  3. Study of the Deposition of Ammonium Perchlorate Following the Static Firing of MK-58 Rocket Motors

    Science.gov (United States)

    2008-10-01

    hyperthyroidism , gas generators, electrolytes for lithium cells, and as chemical reagents. The occurrence of perchlorate in the environment is...and prevent their movement by the rocket motor plume (Fig. 5). The water in the traps was collected using 1-l amber glass containers and the exact...them. On day one, after the firing of the second motor, heavy rain and lightning prevented the collection of samples from the witness plates. Only

  4. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    OpenAIRE

    David R. Greatrix

    2009-01-01

    In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predi...

  5. Numerical Simulations of Flow and Fuel Regression Rate Coupling in Hybrid Rocket Motors

    Directory of Open Access Journals (Sweden)

    Marius STOIA-DJESKA

    2017-03-01

    Full Text Available The hybrid propulsion offers some remarkable advantages like high safety and high specific impulse and thus it is considered a promising technology for the next generation launchers and space systems. The purpose of this work is to validate a design tool for hybrid rocket motors (HRM through numerical simulations.

  6. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  7. Laser welding of maraging steel rocket motor casing

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-11-01

    Full Text Available This presentation looks at the experimental procedure and results of laser welding of maraging steel rocker motor casing. It concludes that a fracture occurred in weld metal of autogenous welding and that a fracture occurred in base material when...

  8. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  9. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  10. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    OpenAIRE

    David Greatrix

    2015-01-01

    The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave ...

  11. Particle size determination in small solid propellant rocket motors using the diffractively scattered light method.

    OpenAIRE

    Cramer, Robert Grewelle.

    1982-01-01

    Approved for public release; distribution unlimited A dual beam apparatus was developed which simultaneously measured particle size (D32) at the entrance and exit of an exhaust nozzle of a small solid propellant rocket motor. The diameters were determined using measurements of dif fractiveiy scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide powder. Measurements were successfully made at both locations. Because of...

  12. Development and Characterization of Fast Burning Solid Fuels/Propellants for Hybrid Rocket Motors with High Volumetric Efficiency

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed work is to develop several fast burning solid fuels/fuel-rich solid propellants for hybrid rocket motor applications. In the...

  13. Finite element analysis of propellant of solid rocket motor during ship motion

    Directory of Open Access Journals (Sweden)

    Kai Qu

    2013-03-01

    Full Text Available In order to simulate the stress and strain of solid rocket motors (SRMs, a finite element analysis model was established. The stress spectra of the SRM elements with respect to time in the case that the vessel cruises under a certain shipping condition were obtained by simulation. According to the analysis of the simulation results, a critical zone was confirmed, and the Mises stress amplitudes of the different critical zones were acquired. The results show that the maximum stress and strain of SRM are less than the maximum tensile strength and elongation, respectively, of the propellant. The cumulative damage of the motor must also be evaluated by random fatigue loading.

  14. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    Science.gov (United States)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  15. Parametric Study of Design Options aecting Solid Rocket Motor Start-up and Onset of Pressure Oscillations

    OpenAIRE

    Di Giacinto, M.; Cavallini, E.; Favini, B.; Steelant, Johan

    2014-01-01

    The start-up represents a very critical phase during the whole operational life of solid rocket motors. This paper provides a detailed study of the eects on the ignition transient of the main design parameters of solid propellant motors. The analysis is made with the use of a Q1D unsteady model of solid rocket ignition transient, extensively validated in the frame of the VEGA program, for ignition transient predictions and reconstructions, during the last ten years. Two baseline soli...

  16. An analysis of the orbital distribution of solid rocket motor slag

    Science.gov (United States)

    Horstman, Matthew F.; Mulrooney, Mark

    2009-01-01

    The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.

  17. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  18. Plume particle collection and sizing from static firing of solid rocket motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

  19. PCV Solid Rocket Motor: Design Status of the Motor Case Structure

    Science.gov (United States)

    Mataloni, A.; Zallo, A.; Perugini, P.; Di Cosmo, A.; Pasquale, N.; Mucci, R.

    2014-06-01

    For the VEGA Launch system new developments are running in order to allow: a) performances increase b) cost reduction c) introduction of new technologies.In the VEGA C configuration the PCV SRM replace the P80 in the first stage.The PCV design is based on the consolidate AVIO heritage with important improvements both from the material and from the technological side.Important improvements in skirts manufacturing will be tested as well, with the development of a customized automatic tape laying machine.From the material side a top class fiber will be selected on the bases of extensive trade-off plan which is under completion.The pre-preg material is based on an in-house resin formulation tailored to the specific motor case process requirements.

  20. Injection and swirl driven flowfields in solid and liquid rocket motors

    Science.gov (United States)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  1. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  2. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  3. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  4. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  5. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  6. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    Science.gov (United States)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  7. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  8. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  9. Design and Evaluation of a Turbojet Exhaust Simulator, Utilizing a Solid-Propellant Rocket Motor, for use in Free-Flight Aerodynamic Research Models

    Science.gov (United States)

    deMoraes, Carlos A.; Hagginbothom, William K., Jr.; Falanga, Ralph A.

    1954-01-01

    A method has been developed for modifying a rocket motor so that its exhaust characteristics simulate those of a turbojet engine. The analysis necessary to the design is presented along with tests from which the designs are evaluated. Simulation was found to be best if the exhaust characteristics to be duplicated were those of a turbojet engine at high altitudes and with the afterburner operative.

  10. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  11. A weak equivalence principle test on a suborbital rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Phillips, James D, E-mail: reasenberg@cfa.harvard.ed [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2010-05-07

    We describe a Galilean test of the weak equivalence principle, to be conducted during the free fall portion of a sounding rocket flight. The test of a single pair of substances is aimed at a measurement uncertainty of sigma(eta) < 10{sup -16} after averaging the results of eight separate drops. The weak equivalence principle measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. The discovery of a violation (eta not = 0) would have profound implications for physics, astrophysics and cosmology.

  12. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    Science.gov (United States)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  13. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors

    Science.gov (United States)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.

    2012-01-01

    Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations

  14. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    Science.gov (United States)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  15. Performance characteristics of conventional X-ray generator isotope source and high energy accelerator in rocket motor evaluation

    International Nuclear Information System (INIS)

    Viswanathan, K.; Rao, K.V.; Subbalah, C.; Uttam, M.C.

    1985-01-01

    Final qualification of solid rocket motors and other related components in the Indian Space Programme is carried out using radiographic sources of different energies. The necessity to have different sources of varying energies arises from the fact that the components in the space programme vary from small fastners to gigantic solid rocket motors. In order to achieve the best radiographic quality with the optimised exposure time different X-ray sources are used. To have 100% coverage and to reduce the inspection time, a Real Time Radiography for the high energy LINAC is also planned

  16. Basalt fiber and nanoclay compositions, articles incorporating the same, and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2010-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  17. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    Science.gov (United States)

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of

  18. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  19. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  20. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    Directory of Open Access Journals (Sweden)

    David Greatrix

    2015-02-01

    Full Text Available The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.

  1. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  2. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  3. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  4. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  5. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  6. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  7. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  8. Development Testing of 1-Newton ADN-Based Rocket Engines

    Science.gov (United States)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  9. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    Science.gov (United States)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  10. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  11. Software for Preprocessing Data from Rocket-Engine Tests

    Science.gov (United States)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  12. IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions

    Directory of Open Access Journals (Sweden)

    Qinglin NIU

    2017-06-01

    Full Text Available The infrared (IR irradiance signature from rocket motor exhaust plumes is closely related to motor type, propellant composition, burn time, rocket geometry, chamber parameters and flight conditions. In this paper, an infrared signature analysis tool (IRSAT was developed to understand the spectral characteristics of exhaust plumes in detail. Through a finite volume technique, flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach. A refined 13-species, 30-reaction chemistry scheme was used for combustion effects and a k-ε-Rt turbulence model for entrainment effects. Using flowfield properties as input data, the spectrum was integrated with a line of sight (LOS method based on a single line group (SLG model with Curtis-Godson approximation. The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 μm and had good agreement for its location with imaging spectrometer data. The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures: (a afterburning; (b chamber pressure from ignition to cutoff; and (c minor changes in the ratio of hydroxyl-terminated polybutadiene (HTPB binder to ammonium perchlorate (AP oxidizer in propellant. Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%. Also, the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff. An increase of chamber pressure can lead to more distinct diamonds, whose distance intervals are extended, and the position of the first diamond moving backwards. In addition, an increase in HTPB/AP causes a significant jump in spectral intensity. The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB

  13. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  14. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  15. Analysis of pressure blips in aft-finocyl solid rocket motor

    Science.gov (United States)

    Di Giacinto, M.; Favini, B.; Cavallini, E.

    2016-07-01

    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.

  16. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    Science.gov (United States)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of

  17. A multilayered thick cylindrical shell under internal pressure and thermal loads applicable to solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Renganathan, K.; Nageswara Rao, B.; Jana, M.K. [Vikram Sarabhai Space Centre, Trivandrum (India). Structural Engineering Group

    2000-09-01

    A solid propellant rocket motor can be considered to be made of various circumferential layers of different properties. A simple procedure is described here to obtain an analytical solution for the general case of multilayered thick cyclindrical shell for internal pressure and thermal loads. This analytical procedure is useful in the preliminary design analysis of solid propellant rocket motors. Since solid propellant material is of viscoelastic behaviour an approximate viscoelastic solution methodology for the multilayered shell is described for estimation of time dependent solutions of propellant grain in a rocket motor. The analytical solution for a two layer reinforced thick cylindrical shell available in the literature is shown to be a special case of the present analytical solution. The results from the present analytical solution for multilayers is found to be in good agreement with FEA results. (orig.) [German] Der grundlegende Aufbau von Feststoffraketenmotoren kann auf einen Zylinder aus mehreren Schichten mit unterschiedlichen Eigenschaften zurueckgefuehrt werden. Eine einfache Berechnungsprozedur fuer die analytische Loesung des allgemeinen Falles eines mehrschichtigen Zylinders unter innerem Druck und thermischer Belastung wird hier vorgestellt. Diese analytische Methodik ist fuer den Auslegungsprozess von Feststoffraketenmotoren von grundlegender Bedeutung. Das viskoelastische Fliessverhalten des festen Brennstoffes, das den zeitlichen Ablauf des Verbrennungsprozesses wesentlich bestimmt, wird durch ein Naeherungsverfahren gut erfasst. Ein in der Literatur enthaltenes spezielles Ergebnis fuer einen zweischaligen verstaerkten Zylinder ergibt sich als Sonderfall der hier vorgestellten Methodik. Die analytisch erhaltenen Loesungen fuer mehrschichtige Aufbauten sind in guter Uebereinstimmung mit mittels der FEM ermittelten Ergebnisse. (orig.)

  18. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2012-05-04

    ... Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable... electric motors and small electric motors. That supplemental proposal, along with an earlier proposal from...

  19. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  20. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  1. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  2. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  3. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  4. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    Science.gov (United States)

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  5. Effect of ITE and nozzle exit cone erosion on specific impulse of solid rocket motors

    Science.gov (United States)

    Smith-Kent, Randall; Ridder, Jeffrey P.; Loh, Hai-Tien; Abel, Ralph

    1993-06-01

    Specific impulse loss due to the use of a slowly eroding integral throat entrance, or a throat insert, with a faster eroding nozzle exit cone is studied. It is suggested that an oblique shock wave produced by step-off erosion results in loss of specific impulse. This is studied by use of a shock capturing CFD method. The shock loss predictions for first-stage Peacekeeper and Castor 25 motors are found to match the trends of the test data. This work suggests that a loss mechanism, previously unaccounted, should be considered in the specific impulse prediction procedure for nozzles with step-off exit cone erosion.

  6. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  7. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  8. Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles

    Directory of Open Access Journals (Sweden)

    Xiaodong He

    2017-04-01

    Full Text Available In the process of composite prepreg tape winding, the compaction force could influence the quality of winding products. According to the analysis and experiments, during the winding process of a rocket motor nozzle aft exit cone with a winding angle, there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller, which could influence the compaction force. Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles. Thus, a flexible winding system has been developed for rocket motor nozzle winding. In the system, feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force. According to experiments, the force deformation model of the winding tape is a time-varying system. Thus, a forgetting factor recursive least square based parameter estimation proportional-integral-differential (PID controller has been developed, which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process. According to the experimental results, a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.

  9. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  10. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    Science.gov (United States)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  11. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    Science.gov (United States)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  12. Seismic tests at the HDR facility using explosives and solid propellant rockets

    International Nuclear Information System (INIS)

    Corvin, P.; Steinhilber, H.

    1981-01-01

    In blast tests the HDR reactor building and its mechanical equipment were subjected to earthquake-type excitations through the soil and the foundation. A series of six tests was carried out, two tests being made with HDR facility under operating conditions (BWR conditions, 285 0 C, 70 bar). The charges were placed in boreholes at a depth of 4 to 10 m and a distance of 16 to 25 m from the reactor building. The tests with solid propellant rockets were made in order to try a new excitation technique. The rockets used in these tests were of compact design and had a short combustion period (500 ms) at high constant thrust (100 kN per combustion chamber). These rockets were fixed to the concrete dome of the building in such a way that the thrust generated during the combustion of the propellant resulted in an impulsive load acting on the building. This type of excitation was selected with a view to investigating the global effects of the load case 'aircraft impact' on the building and the mechanical equipment. In the four tests made so far, up to four rockets were ignited simultaneously, so that the maximum impulse was 2 x 10 5 Ns. The excitation level can be markedly increased by adding further rockets. This excitation technique was characterised by excellent reproducibility of the load parameters. (orig./HP)

  13. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  14. Solid propellant ignition motors for LH_2/LOX rocket engine system

    OpenAIRE

    ARAKI, Tetsuo; AKIBA, Ryojiro; HASHIMOTO, Yasunari; AIHARA, Kenji; TOMITA, Etsu; YASUDA, Seiichi; 荒木, 哲夫; 秋葉, 鐐二郎; 橋本, 保成; 相原, 賢二; 富田, 悦; 安田, 誠一

    1983-01-01

    Solid propellant ignition motors are used in the series of experiments of the 10 ton LH_2/LOX engine featured by the channel wall thrust chamber, This paper presents design specification, experiments and results obtained by actual applications of those ignition motors.

  15. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  16. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.

    1979-01-01

    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  17. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    Science.gov (United States)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  18. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  19. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  20. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Institute of Scientific and Technical Information of China (English)

    Zhu Hao; Tian Hui; Cai Guobiao

    2017-01-01

    Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO) method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncer-tainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO), probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM) used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  1. A parallel solution-adaptive scheme for predicting multi-phase core flows in solid propellant rocket motors

    International Nuclear Information System (INIS)

    Sachdev, J.S.; Groth, C.P.T.; Gottlieb, J.J.

    2003-01-01

    The development of a parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations for multi-phase (gas-particle) core flows in solid propellant rocket motors (SRM). An Eulerian formulation is used to described the coupled motion between the gas and particle phases. A cell-centred upwind finite-volume discretization and the use of limited solution reconstruction, Riemann solver based flux functions for the gas and particle phases, and explicit multi-stage time-stepping allows for high solution accuracy and computational robustness. A Riemann problem is formulated for prescribing boundary data at the burning surface. Efficient and scalable parallel implementations are achieved with domain decomposition on distributed memory multiprocessor architectures. Numerical results are described to demonstrate the capabilities of the approach for predicting SRM core flows. (author)

  2. Cold Regions Logistic Supportability Testing of Missiles and Rocket Systems.

    Science.gov (United States)

    1984-10-26

    006 APPENDIX B - POST-TEST CHECKLIST 1. Have test data been collected, recorded, and presented in accordance with this TOP? YES NO Comment : 2. Have all...data collected been reviewed for correctness and completeness? YES_ NO Comment : 3. Were the facilities, test equipment, instrumentation, and support...YES NO Comment : 5. Were the test results compromised in any way due to test performance procedures? YES_ NO Comment : 6. Were the test results

  3. An Automated Fluid-Structural Interaction Analysis of a Large Segmented Solid Rocket Motor

    National Research Council Canada - National Science Library

    Rex, Brian

    2003-01-01

    .... The fluid-structural interaction (FSI) analysis of the ETM-3 motor used PYTHON, a powerful programming language, and FEM BUILDER, a pre- and post processor developed by ATK Thiokol Propulsion under contract to the AFRL, to automatically...

  4. Off Like a Rocket: A Media Discourse Analysis of Tesla Motor Corporation

    OpenAIRE

    McKay, Jordan

    2016-01-01

    Energy and transportation are topics of great importance to global sustainable development.  Tesla Motor Corporation is an electric vehicle company with the objective to “accelerate the world’s transition to sustainable energy” (Musk, 2016).  This thesis, a media discourse analysis, examines media texts concerning Tesla Motors to provide a better understanding of the company’s hitherto success in penetrating the automotive market.  Qualitative analyses of text were utilized to first define th...

  5. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  6. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  7. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  8. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test

    Energy Technology Data Exchange (ETDEWEB)

    Barrio-Perotti, R; Blanco-Marigorta, E; Argueelles-Diaz, K; Fernandez-Oro, J [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33271 Gijon, Asturias (Spain)], E-mail: barrioraul@uniovi.es

    2009-09-15

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag coefficient of water rockets made from plastic soft drink bottles. The experiment is performed using relatively small fall distances (only about 14 m) in addition with a simple digital-sound-recording device. The fall time is inferred from the recorded signal with quite good precision, and it is subsequently introduced as an input of a Matlab (registered) program that estimates the magnitude of the drag coefficient. This procedure was tested first with a toy ball, obtaining a result with a deviation from the typical sphere value of only about 3%. For the particular water rocket used in the present investigation, a drag coefficient of 0.345 was estimated.

  9. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  10. Modification of Bonding Strength Test of WC HVOF Thermal Spray Coating on Rocket Nozzle

    Directory of Open Access Journals (Sweden)

    Bondan Sofyan

    2010-10-01

    Full Text Available One way to reduce structural weight of RX-100 rocket is by modifying the nozzle material and processing. Nozzle is the main target in weight reduction due to the fact that it contributes 30 % to the total weight of the structur. An alternative for this is by substitution of massive graphite, which is currently used as thermal protector in the nozzle, with thin layer of HVOF (High Velocity Oxy-Fuel thermal spray layer. This paper presents the characterization of nozzle base material as well as the modification of bonding strength test, by designing additional jig to facilitate testing processes while maintaining level of test accuracy. The results showed that the material used for  RX-100 rocket nozzle is confirmed to be S45C steel. Modification of the bonding strength test was conducted by utilizing chains, which improve test flexibility and maintains level of accuracy of the test.

  11. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    Science.gov (United States)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  12. Motor operated valves problems tests and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  13. Motor operated valves problems tests and simulations

    International Nuclear Information System (INIS)

    Pinier, D.; Haas, J.L.

    1996-01-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a open-quotes boilerclose quotes effect: determination of the necessary modifications: development and testing of anti-boiler effect systems

  14. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    Science.gov (United States)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  15. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  16. Comparison of the Effects of using Tygon Tubing in Rocket Propulsion Ground Test Pressure Transducer Measurements

    Science.gov (United States)

    Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick

    2005-01-01

    This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.

  17. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    Science.gov (United States)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  18. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    Science.gov (United States)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  19. Effect of propellant morphology on acoustics in a planar rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Daimon, Y.; Jackson, T.L. [University of Illinois at Urbana-Champaign, Center for Simulation of Advanced Rockets, Urbana, IL (United States); Topalian, V. [University of Illinois at Urbana-Champaign, Mechanical Science and Engineering, Urbana, IL (United States); Freund, J.B. [University of Illinois at Urbana-Champaign, Mechanical Science and Engineering, Aerospace Engineering, Urbana, IL (United States); Buckmaster, J. [Buckmaster Research, Urbana, IL (United States)

    2009-03-15

    This paper reports the results of numerical simulations of the acoustics in a two-dimensional (plane) motor using a high-order accurate, low-dissipation numerical solver. For verification we compare solutions to Culick's (AIAA J 4(8):1462-1464, 1966) asymptotic solution for constant injection, and to recent results of Hegab and Kassoy (AIAA J 44(4):812-826, 2006) for a space- and time-dependent mass injection. We present results when the injection boundary condition is described by propellant morphology and by white noise. Morphology strongly affects the amplitude of the longitudinal acoustic modes, and in this connection white noise is not a suitable surrogate. (orig.)

  20. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  1. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  2. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  3. Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities

    Science.gov (United States)

    Richter, Hanz

    2004-01-01

    A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.

  4. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  5. Strength Testing in Motor Neuron Diseases.

    Science.gov (United States)

    Shefner, Jeremy M

    2017-01-01

    Loss of muscle strength is a cardinal feature of all motor neuron diseases. Functional loss over time, including respiratory dysfunction, inability to ambulate, loss of ability to perform activities of daily living, and others are due, in large part, to decline in strength. Thus, the accurate measurement of limb muscle strength is essential in therapeutic trials to best understand the impact of therapy on vital function. While qualitative strength measurements show declines over time, the lack of reproducibility and linearity of measurement make qualitative techniques inadequate. A variety of quantitative measures have been developed; all have both positive attributes and limitations. However, with careful training and reliability testing, quantitative measures have proven to be reliable and sensitive indicators of both disease progression and the impact of experimental therapy. Quantitative strength measurements have demonstrated potentially important therapeutic effects in both amyotrophic lateral sclerosis and spinobulbar muscular atrophy, and have been shown feasible in children with spinal muscular atrophy. The spectrum of both qualitative and quantitative strength measurements are reviewed and their utility examined in this review.

  6. Reliability of a New Lower-Extremity Motor Coordination Test

    Directory of Open Access Journals (Sweden)

    Antosiak-Cyrak Katarzyna

    2015-12-01

    Full Text Available Introduction. Motor coordination is a basic motor ability necessary for daily life, which also allows athletes to win a sports rivalry and patients to assess their recovery progress after therapy and rehabilitation. The aim of the present study was to assess the reliability of a new lower-extremity rate of movements test and testing apparatus.

  7. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  8. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  9. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  10. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  11. Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.

  12. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  13. Realization of automatic test system for induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, R; Nuccio, S [Assessorato Regionale del Lavoro, Palermo (Italy). Centro Elaborazione Dati Palermo Univ. (Italy). Dip. di Ingegneria Elettrica

    1991-03-01

    In this paper, the general principles of the design of the hardware and software of an automatic test system, are outlined. With reference to the requirements of electric motor test laboratories, design principles, specific for such applications, are pointed out and an automatic test system for induction motors, developed at the Dipartimento di Ingegneria Elettrica of Palermo University, is described. The peculiarities of the hardware utilized and of the specific software developed are illustrated. Finally, some examples of applications are showed.

  14. A quick test of the WEP enabled by a sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Patla, Biju R; Phillips, James D; Popescu, Eugeniu E; Rocco, Emanuele; Thapa, Rajesh [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Lorenzini, Enrico C, E-mail: reasenberg@cfa.harvard.edu [Faculty of Engineering, Universita di Padova, Padova I-35122 (Italy)

    2011-05-07

    We describe SR-POEM, a Galilean test of the weak equivalence principle (WEP), which is to be conducted during the free fall portion of a sounding rocket flight. This test of a single pair of substances is aimed at a measurement uncertainty of {sigma}({eta}) < 10{sup -16} after averaging the results of eight separate drops, each of 40 s duration. The WEP measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. We address the two sources of systematic error that are currently of greatest concern: magnetic force and electrostatic (patch effect) force on the test mass assemblies. The discovery of a violation ({eta} {ne} 0) would have profound implications for physics, astrophysics and cosmology.

  15. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    Science.gov (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  16. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    Science.gov (United States)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  17. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  18. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  19. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  20. Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives

    Science.gov (United States)

    1992-01-01

    Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

  1. Evaluating rodent motor functions: Which tests to choose?

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  3. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  4. Research on the design of fixture for motor vibration test

    Science.gov (United States)

    Shen, W. X.; Ma, W. S.; Zhang, L. W.

    2018-03-01

    The vibration reliability of the new energy automobile motor plays a very important role in driving safety, so it is very important to test the vibration durability of the motor. In the vibration test process, the fixture is very important, simulated road spectrum signal vibration can be transmitted without distortion to the motor through the fixture, fixture design directly affect the result of vibration endurance test. On the basis of new energy electric vehicle motor concrete structure, Two fixture design and fixture installation schemes for lateral cantilever type and base bearing type are put forward in this article, the selection of material, weighting process, middle alignment process and manufacturing process are summarized.The modal analysis and frequency response calculation of the fixture are carried out in this design, combine with influence caused by fixture height and structure profile on response frequency, the response frequency of each order of the fixture is calculated, then ultimately achieve the purpose of guiding the design.

  5. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  6. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  7. Realization of station for testing asynchronous three-phase motors

    Science.gov (United States)

    Wróbel, A.; Surma, W.

    2016-08-01

    Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.

  8. Safety and Environment- Masterplan 2020 of DLR's Rocket Test Center Lampoldhausen

    Science.gov (United States)

    Haberzettl, Andreas; Dommers, Michael

    2013-09-01

    The German Aerospace Center DLR is the German research institute with approximately 7000 employees in 16 domestic locations. Among the research priorities of the German Aerospace Center DLR includes aerospace, energy and transport. DLR is institutionally supported by federal and state governments.Next funding sources arise in the context of third-party funds business (contract research and public contracts and subsidiaries). Main activities of the test center Lampoldshausen are testing of ARIANE's main and upper stage engines in the frame of ESA contracts.In the last years the test center of the DLR in Lampoldshausen has grown strongly, so that the number of employees is actually of about 230. The testing department is mainly responsible for rocket combustion testing according to customer requirements.Two kinds of test facilities are operated, sea level test benches and the altitude simulation test facilities.In addition to the DLR's growth also the activities of the industrial partner ASTRIUM has been elevated so that actually nearly 600 employees are present on site Lampoldshausen.The management of the site in relation to safety and security requires special measures with special respect to the presence of more people inside the testing area in order to guarantee trouble-free and safe experimental operation onsite the DLR's test plants. In order to meet with the future needs of continuing growth, the security and safety requirements have to be adopted.This report gives comprehensive outlook information about future possible scenarios of our coming tasks.Main driving force for future requests is the evolution of the rocket ARIANE. The testing of the new upper stage test facility for ARIANE 5 midlife evolution has been started. A new test position P5.2 is foreseen to perform the qualification of the new upper stage with the VINCI engine. This project will be very complex, in parallel running operation processes will require special procedures related to the overall

  9. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    Science.gov (United States)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  10. 42 CFR 84.145 - Motor-operated blower test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Motor-operated blower test; minimum requirements... Supplied-Air Respirators § 84.145 Motor-operated blower test; minimum requirements. (a) Motor-operated... connection between the motor and the blower shall be so constructed that the motor may be disengaged from the...

  11. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  12. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Science.gov (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  13. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  14. RELATION BETWEEN THE LATENT MOTOR DIMENSIONS RESPONSIBLE FOR MOVEMENTS OF STUDENTS IN ACQUIRING THE MOTOR TESTS

    Directory of Open Access Journals (Sweden)

    Viktor Mitrevski

    2012-09-01

    Full Text Available The research has been carried out on a sample defined by the population of students who attended regularly their training classes in primary school in the Republic of Macedonia (from the region of Prespa and Pelagonia and the Republic of Serbia (from the region of Banat, municipality Kikinda. The total number of entities is 179, of which 124 are from Macedonia, and 55 – from Serbia who are eight-grade students, aged 14-15 (± 3 months. The aim of the study is to establish the relation between the results and obtained marks in motor tests with the latent motor dimensions responsible for the movements of students. By using factor analysis – varimax rotation, there is determined the effect and relation between the marks obtained in acquiring the motor tests for estimating the explosive power, start speed, and precisity of students.

  15. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    Science.gov (United States)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  16. Motivation and motoric tests in sports.

    Science.gov (United States)

    Karaba-Jakovljević, Dea; Popadić-Gaćesa, Jelena; Grujić, Nikola; Barak, Otto; Drapsin, Miodrag

    2007-01-01

    Motivation in sport performance has been an interesting topic for many investigators during the past decade. This area can be considered from different viewpoints: motivation for participation in sport activity, achievement motivation, competitiveness etc. Motivation plays an important role in all out tests, as well as in sport activities and at all levels of competition. Motivation climate, or positive social environment may influence and modulate motivation of individuals involved in sports. Experience has shown that conventional encouragement and feedback during the test may affect its outcome. According to Wingate research team recommendations, verbal encouragement, as a motivation factor, was given to all examined subjects during Wingate anaerobic test, which is considered the most reliable test for assessing anaerobic capacity. The investigated group consisted of 30 young men--medical students, who were not actively involved in any programmed sport activity. The investigated group included second-year students of the Faculty of Medicine in Novi Sad chosen by random sampling. The Wingate anaerobic test was performed in all subjects, and changes of parameters when test was performed with verbal encouragement, were recorded The results show statistically significant increase of Wingate test parameters when conducted with verbal encouragement: anaerobic power (622/669 W); relative anaerobic power (7.70/8.27 W/kg); slope of the power (95.5/114 W/s); relative slope of the power (1.18/1.40 W/s/kg); anaerobic capacity (12.7/13.2 kJ) and relative anaerobic capacity (158/164 J/kg).

  17. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2011-01-05

    ... Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3... Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... motors and small electric motors, clarify the scope of energy conservation standards for electric motors...

  18. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  19. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    Science.gov (United States)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial

  20. Application of artificial intelligence to motor operated valve testing

    International Nuclear Information System (INIS)

    Bogard, T.; Bednar, F.; Matty, T.; Kent, R.

    1989-01-01

    Improper valve maintenance can be a significant roadblock to successful power plant operation. There have been events during which motor operated valves failed on demand due to improper switch settings. For nuclear electric generating stations, these events have led to regulatory requirements such as NRC Bulletin 85-03 and NRC Bulletin 89-10 Safety Related Motor Operated Valve Testing and Surveillance which imposes strict testing and programmatic requirements on motor operated valves (MOV). Part of the requirements include performing diagnostic testing to verify stem thrust loads and switch settings. Diagnostic equipment must be non-intrusive, minimize valve disassembly, and reduce plant refueling critical path time for testing. In this paper an on-line diagnostic system using sensors to measure stem forces, motor current, and valve position, and a portable system employing these same sensor inputs in addition to torque, limit and torque bypass switch inputs is described. Sophisticated graphic software is employed to display data or trace information. A rule based artificial intelligence (AI) system is used to analyze sensor outputs. Objectives for valve diagnostics, sample AI rules, results of actual field testing, and system software/hardware architecture are presented

  1. 78 FR 75961 - Energy Conservation Program: Test Procedures for Electric Motors

    Science.gov (United States)

    2013-12-13

    ... Conservation Program: Test Procedures for Electric Motors; Final Rule #0;#0;Federal Register / Vol. 78 , No... Procedures for Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... procedures for electric motors to allow currently unregulated motors to be tested by clarifying the test...

  2. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  3. Vibration Disturbance Damping System Design to Protect Payload of the Rocket

    Directory of Open Access Journals (Sweden)

    Sutisno Sutisno

    2012-12-01

    Full Text Available Rocket motor generates vibrations acting on whole rocket body including its contents. Part of the body which is sensitive to disturbance is the rocket payload. The payload consists of various electronic instruments including: transmitter, various sensors, accelerometer, gyro, the embedded controller system, and others. This paper presents research on rocket vibration influence to the payload and the method to avoid disturbance. Avoiding influence of vibration disturbance can be done using silicone gel material whose typical damping factors are relatively high. The rocket vibration was simulated using electromagnetic motor, and the vibrations were measured using an accelerometer sensor. The measurement results were displayed in the form of curve, indicating the vibration level on some parts of the tested material. Some measurement results can be applied to determine the good material to attenuate vibration disturbance on the instruments of the payload.

  4. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  5. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    Science.gov (United States)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  6. Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.

    2009-01-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…

  7. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  8. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  9. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  10. 40 CFR 85.1506 - Inspection and testing of imported motor vehicles and engines.

    Science.gov (United States)

    2010-07-01

    ... motor vehicles and engines. 85.1506 Section 85.1506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines § 85.1506 Inspection and testing of imported motor vehicles and...

  11. A Reusable, Oxidizer-Cooled, Hybrid Aerospike Rocket Motor for Flight Test, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use the refrigerant capabilities of nitrous oxide (N2O) to provide the cooling required for reusable operation of an aerospike nozzle...

  12. Motor operated valve testing and the 'rate of loading' phenomenon

    International Nuclear Information System (INIS)

    Black, B.R.

    1991-01-01

    This paper discusses valve design features which affect the ability to predict motor operated valve (MOV) performance and reviews factors which should be considered when selecting switch settings to limit stem loads. Considerable attention is given to the rate of loading phenomenon which affects the relationship between valve stem thrust and actuator spring pack deflection. Equations are developed, and testing is discussed which permit the construction of an MOV dynamic model. Factors which must be considered when maintaining switch settings correct throughout the life of the plant are discussed. And switch setting acceptance criteria for use with baseline Static and Design Basis testing are suggested

  13. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    Science.gov (United States)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  14. Development of the Astrobee F sounding rocket system.

    Science.gov (United States)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  15. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  16. The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    Science.gov (United States)

    Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G

    2018-05-01

    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are

  17. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  18. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  19. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    Science.gov (United States)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  20. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  1. Using an electron paramagnetic resonance method for testing motor oils

    Energy Technology Data Exchange (ETDEWEB)

    Krais, S; Tkac, T

    1982-01-01

    Using an ER-9 spectrometer from the Karl Zeiss company, the relative effectiveness is studied of antioxidation additives. Motor oils of the E group, M6AD, 465, M6AD, 466, M6AD 467, 15 W/40, S-3/2 M/4, R-950, which contain the antioxidation additive were tested in Petter AV-1 motors at a temperature of 50 degrees for 120 hours and Petter AVB at a temperature of 90 degrees for 53 hours. To measure the concentration of free radicals of the antioxidation additives one part of 2,2-diphenyl-1-picrylhydrazine (I), which forms stable dimagnetic products with the radicals of the antioxidation additives was introduced into each three parts of the oil. The reduction in the intensity of the signal of I was the measure of the radical concentration. The spectrum was taken for 1 to 2 minutes. The graphs of the dependence of the electron paramagnetic resonance on the test time and the concentration of I are built. The beginning and end of the induction period of oxidation of the oils and the change in the hourly activity of the PP was recorded.

  2. Motor sport in France: testing-ground for the world.

    Science.gov (United States)

    Cofaigh, Eamon O

    2011-01-01

    The birth of the automobile in the late nineteenth century was greeted with a mixture of awe, scepticism and sometimes even disdain from sections of the European public. In this article, the steps taken in France to pioneer and promote this new invention are examined. Unreliable and noisy, the early automobile owes a debt of gratitude to the French aristocracy who organised and codified motor racing in an effort to test these new inventions while at the same time introduce them to a wider public. City-to-city races demonstrated the potential of the automobile before the initiative of Gordon Bennett proved to be the catalyst for the birth of international motor sport as we recognise it today. Finally this article looks at the special connection between Le Mans and the automobile. Le Mans has, through its 24-hour race, maintained a strong link with the development of everyday automobile tourism and offers the enthusiast an alternative to the machines that reach incredible speeds on modern-day closed circuits. This article examines how French roads were veritable testing grounds for the earliest cars and how the public roads of Le Mans maintain the tradition to this day.

  3. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    Science.gov (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  4. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  5. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  6. Improving motor reliability in nuclear power plants: Volume 2, Functional indicator tests on a small electric motor subjected to accelerated aging

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Lofaro, R.; Sugarman, A.C.; Sheets, M.W.; Skreiner, K.M.

    1987-11-01

    A ten horsepower electric motor was artificially aged by plug reverse cycling for test purposes. The motor was manufactured in 1967 and was in service at a commercial nuclear power plant for twelve years. Various tests were performed on the motor throughout the aging process. The motor failed after 3.79 million reversals (3 seconds per reversal) over seven months of testing. Each test parameter was trended to assess its suitability in monitoring aging and service wear degradation in motors. Results and conclusions are discussed relative to the applicability of the tests performed to nuclear power plant motor maintenance programs. 15 refs., 28 figs., 1 tab

  7. Optimization of the stand for test of hybrid rocket engines of solid fuel

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay

    2017-01-01

    Full Text Available In the paper the laboratory experimental stand of the hybrid rocket engine of solid fuel to study ballistic parameters of the engine at burning of high-energy materials in flow of hot gas is presented. Mixture of air with nitrogen with a specified content of active oxygen is used as a gaseous oxidizer. The experimental stand has modular design and consists of system of gas supply, system of heating of gas, system for monitoring gas parameters, to which a load cell with a model engine was connected. The modular design of the stand allows to change its configuration under specific objective. This experimental stand allows to conduct a wide range of the pilot studies at interaction of a hot stream of gas with samples high-energy materials.

  8. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  9. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  10. Standardization on the specification, test and evaluation of high efficiency motors and inverters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Yong [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Hyun, Chang Soon [Korea Academy of Industrial Technology, Incheon (Korea, Republic of)

    1995-12-31

    Most of the power systems energy is consumed by electrical motors. This report proposes a method for the standardization on the specification, test and evaluation of the high efficiency motors and related inverters. The results of this report can be referred to the rebate program for promoting the use of high efficiency motors and inverters (author). 26 refs., 102 figs.

  11. Responsiveness of the Test of Basic Motor Skills of Children with Down Syndrome

    Science.gov (United States)

    van den Heuvel, Marieke E.; de Jong, Inge; Lauteslager, Peter E. M.; Volman, M. J. M.

    2009-01-01

    The aim of this study was to examine the responsiveness of the Test of Basic Motor Skills for Children with Down Syndrome (BMS). Forty-one children with Down Syndrome, 3 to 36 months of age, participated in the study. Gross motor skills were assessed three times using the BMS and the Gross Motor Function Measure (GMFM) before and after a baseline…

  12. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  13. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  14. Inter-examiner reproducibility of tests for lumbar motor control

    Directory of Open Access Journals (Sweden)

    Elkjaer Arne

    2011-05-01

    Full Text Available Abstract Background Many studies show a relation between reduced lumbar motor control (LMC and low back pain (LBP. However, test circumstances vary and during test performance, subjects may change position. In other words, the reliability - i.e. reproducibility and validity - of tests for LMC should be based on quantitative data. This has not been considered before. The aim was to analyse the reproducibility of five different quantitative tests for LMC commonly used in daily clinical practice. Methods The five tests for LMC were: repositioning (RPS, sitting forward lean (SFL, sitting knee extension (SKE, and bent knee fall out (BKFO, all measured in cm, and leg lowering (LL, measured in mm Hg. A total of 40 subjects (14 males, 26 females 25 with and 15 without LBP, with a mean age of 46.5 years (SD 14.8, were examined independently and in random order by two examiners on the same day. LBP subjects were recruited from three physiotherapy clinics with a connection to the clinic's gym or back-school. Non-LBP subjects were recruited from the clinic's staff acquaintances, and from patients without LBP. Results The means and standard deviations for each of the tests were 0.36 (0.27 cm for RPS, 1.01 (0.62 cm for SFL, 0.40 (0.29 cm for SKE, 1.07 (0.52 cm for BKFO, and 32.9 (7.1 mm Hg for LL. All five tests for LMC had reproducibility with the following ICCs: 0.90 for RPS, 0.96 for SFL, 0.96 for SKE, 0.94 for BKFO, and 0.98 for LL. Bland and Altman plots showed that most of the differences between examiners A and B were less than 0.20 cm. Conclusion These five tests for LMC displayed excellent reproducibility. However, the diagnostic accuracy of these tests needs to be addressed in larger cohorts of subjects, establishing values for the normal population. Also cut-points between subjects with and without LBP must be determined, taking into account age, level of activity, degree of impairment and participation in sports. Whether reproducibility of these

  15. One Dimensional Turing-Like Handshake Test for Motor Intelligence

    Science.gov (United States)

    Karniel, Amir; Avraham, Guy; Peles, Bat-Chen; Levy-Tzedek, Shelly; Nisky, Ilana

    2010-01-01

    In the Turing test, a computer model is deemed to "think intelligently" if it can generate answers that are not distinguishable from those of a human. However, this test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, and the movement of the human hand is a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human or artificial). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a two-alternative forced choice method and ask which of two systems is more human-like. We extract a quantitative grade for each model according to its resemblance to the human handshake motion and name it "Model Human-Likeness Grade" (MHLG). We present three methods to estimate the MHLG. (i) By calculating the proportion of subjects' answers that the model is more human-like than the human; (ii) By comparing two weighted sums of human and model handshakes we fit a psychometric curve and extract the point of subjective equality (PSE); (iii) By comparing a given model with a weighted sum of human and random signal, we fit a psychometric curve to the answers of the interrogator and extract the PSE for the weight of the human in the weighted sum. Altogether, we provide a protocol to test computational models of the human handshake. We believe that building a model is a necessary step in understanding any phenomenon and, in this case, in understanding the neural mechanisms responsible for the generation of the human handshake. PMID:21206462

  16. A study of performance and cost improvement potential of the 120 inch (3.05 m) diameter solid rocket motor. Volume 1: Summary report

    Science.gov (United States)

    Backlund, S. J.; Rossen, J. N.

    1971-01-01

    A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.

  17. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  18. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  19. Substituição de amianto por silicato de alumínio e grafite expansível em compósito de poliuretano utilizado em motor-foguete Substitution of asbestos for aluminosiliacate and expandable graphite in polyurethane composites used in rocket motors

    Directory of Open Access Journals (Sweden)

    Henrique Crespim

    2007-09-01

    Full Text Available Compósitos de poliuretano e amianto (liner são utilizados como revestimento interno em paredes de motor-foguete, conferindo proteção térmica e garantindo a adesão entre o propelente e as paredes do motor. No entanto, o uso do amianto tem sido restringido devido à sua toxidade. No presente trabalho, o amianto foi substituído por um silicato de alumínio hidratado (SA e pelo grafite expansível (GE em diferentes teores no liner. Resultados de análise termogravimétrica (TG mostraram que a estabilidade térmica do liner praticamente não é afetada pela substituição das cargas, embora a energia de ativação (Ea obtida para a decomposição tenha mudado, mostrando maiores valores para as amostras contendo as cargas SA e GE. A análise termomecânica (TMA mostrou que o coeficiente de expansão térmica linear do liner contendo SA foi menor que aquele encontrado para o liner contendo amianto. O liner contendo a carga SA também apresentou os maiores valores de tensão nos testes mecânicos de tração.Composites of polyurethane (PU and asbestos (liner are used as internal coating of rocket motors, providing thermal protection and assuring the adhesion between propellant and the motor walls. However, the use of asbestos has been restricted due to its hazardous nature. In the present work, asbestos was replaced by hydrated alumina silicate (SA and expandable graphite (GE in different contents. Thermogravimetric analysis (TG showed that the thermal stability of liners was practically unaffected by the filler replacement although the activation energy obtained for the decomposition has changed. Thermomechanical analysis (TMA showed that coefficients of thermal expansion of SA/liners were lower than asbestos/liner. SA/liners also presented the highest tension values in mechanical tests.

  20. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    Science.gov (United States)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  1. Results of the motor-operated valve engineering and testing program

    International Nuclear Information System (INIS)

    Black, B.R.

    1994-01-01

    The Texas Utilities Electric Company (TU Electric) motor-operated valve (MOV) program for implementing the recommendations of Generic Letter 89-10 has typically included the following: refurbishing each actuator, verifying each actuator's as-built configuration, testing each actuator's motor on a dynamometer, testing each actuator's torque spring pack (which is used to control the torque developed), testing each fully refurbished and reassembled actuator on a torque test stand, and testing as many MOVs as practicable both without fluid flow through the valve and with the maximum test conditions reasonably achievable (static and differential pressures (DP) conditions, respectively). Test data are acquired at 1,000 samples per second for stem thrust, stem torque, stem position, actuator compensator spring pack deflection, actuator torque spring pack deflection, motor current, motor voltage, motor three-phase power, valve upstream pressure, and valve downstream pressure, wherever practicable

  2. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  3. Scale effects on quasi-steady solid rocket internal ballistic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B2K3 (Canada)

    2010-11-15

    The ability to predict with some accuracy a given solid rocket motor's performance before undertaking one or several costly experimental test firings is important. On the numerical prediction side, as various component models evolve, their incorporation into an overall internal ballistics simulation program allows for new motor firing simulations to take place, which in turn allows for updated comparisons to experimental firing data. In the present investigation, utilizing an updated simulation program, the focus is on quasi-steady performance analysis and scale effects (influence of motor size). The predicted effects of negative/positive erosive burning and propellant/casing deflection, as tied to motor size, on a reference cylindrical-grain motor's internal ballistics, are included in this evaluation. Propellant deflection has only a minor influence on the reference motor's internal ballistics, regardless of motor size. Erosive burning, on the other hand, is distinctly affected by motor scale. (author)

  4. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  5. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  6. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  7. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  8. 10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sampling Plan for Enforcement Testing of Electric Motors A Appendix A to Subpart U of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... to Subpart U of Part 431—Sampling Plan for Enforcement Testing of Electric Motors Step 1. The first...

  9. Flight performance summary for three NASA Terrier-Malemute II sounding rockets

    Science.gov (United States)

    Patterson, R. A.

    1982-01-01

    The subject of this paper is the presentation of flight data for three Terrier-Malemute II sounding rocket vehicles. The Malemute motor was modified by adding insulation and using a propellant that produced less Al2O3 agglomerate in the chamber. This modification, designated Malemute II, reduced the sensitivity of the motor to the roll rate induced motor case burnthrough experienced on some earlier Malemute flights. Two flight tests, including a single stage Malemute II and a Terrier-Malemute II, were made by Sandia to qualify this modification. The three NASA operational flights that are the subject of this paper were made using the modified Malemute II motors.

  10. COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    Science.gov (United States)

    Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas

    2016-01-01

    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.

  11. RESULTS OF ACCELERATED LIFE TESTING OF LCLS-II CAVITY TUNER MOTOR

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Edward F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pischalnikov, Yuriy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2018-04-01

    An Accelerated Life Test (ALT) of the Phytron stepper motor used in the LCLS-II cavity tuner has been conducted at JLab. Since the motor will reside inside the cryomodule, any failure would lead to a very costly and arduous repair. As such, the motor was tested for the equivalent of 30 lifetimes before being approved for use in the production cryomodules. The 9-cell LCLS-II cavity is simulated by disc springs with an equivalent spring constant. Plots of the motor position vs. tuner position ' measured via an installed linear variable differential transformer (LVDT) ' are used to measure motor motion. The titanium spindle was inspected for loss of lubrication. The motor passed the ALT, and is set to be installed in the LCLS-II cryomodules.

  12. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  13. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  14. Testing a Novel Geopolymer Binder as a Refractory Material for Rocket Plume Environments at SSC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project involved the development and testing of a new alumina-silicate based multi-purpose, cost-effective, ‘green’ cementitious binder (geopolymer)...

  15. Air Force Research Laboratory's Rocket Engine Program Enters Fast-Paced Test Phase

    National Research Council Canada - National Science Library

    Thornburg, Jeff

    2002-01-01

    .... Recent tests of the Integrated Powerhead Demonstration project here established a technical first for the United States and mark the first advancements in boost engine technology since the space...

  16. Motor Testing at 1 Year Improves the Prediction of Motor and Mental Outcome at 2 Years after Perinatal Hypoxic-Ischaemic Encephalopathy

    Science.gov (United States)

    van Schie, Petra Em; Becher, Jules G.; Dallmeijer, Annet J.; Barkhof, Frederik; van Weissenbruch, Mirjam M.; Vermeulen, R. Jeroen

    2010-01-01

    Aim: To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Method: Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12…

  17. Test results of a 5 kW fully superconducting homopolar motor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K. [Woosuk University, Wanju (Korea, Republic of); Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K. [Korea Polytechnic University,Siheong (Korea, Republic of); Hahm, S. Y. [Electrical Engineering and Science Research Institute,Seoul (Korea, Republic of)

    2013-05-15

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  18. Test results of a 5 kW fully superconducting homopolar motor

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K.; Hahm, S. Y.

    2013-01-01

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  19. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  20. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges

    Science.gov (United States)

    2008-01-01

    the firing points ranged from 33 to 60 cm, with depths exceeding 120 cm downrange at Range 6.5. No precipitation accumulated during testing, al- though...collected on the floor of the muf- fler. Results obtained with classical gravimetry were compared with those obtained with differential thermal analysis...nitrate ester functions. It is insoluble in aqueous solution and thus will not dissolve in precipitation . However, the added constituents such as NG

  1. A Test of Motor (Not Executive) Planning in Developmental Coordination Disorder and Autism

    NARCIS (Netherlands)

    van Swieten, Lisa M.; van Bergen, Elsje; Williams, Justin H G; Wilson, Andrew D.; Plumb, Mandy S.; Kent, Samuel W.; Mon-Williams, Mark A.

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  2. A test of motor (not executive) planning in developmental coordination disorder and autism

    NARCIS (Netherlands)

    van Swieten, L.M.; van Bergen, E.; Williams, J.H.G.; Wilson, A.D.; Plumb, M.S.; Kent, S.W.; Mon-Williams, M.A.

    2010-01-01

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  3. Motor Control Test Responses to Balance Perturbations in Adults with an Intellectual Disability

    Science.gov (United States)

    Hale, Leigh; Miller, Rebekah; Barach, Alice; Skinner, Margot; Gray, Andrew

    2009-01-01

    Background: The aims of this small exploratory study were to determine (1) whether adults with intellectual disability who had a recent history of falling had slower motor responses to postural perturbations than a sample of adults without disability when measured with the Motor Control Test (MCT) and (2) to identify any learning effects…

  4. Fine-motor skills testing and prediction of endovascular performance

    DEFF Research Database (Denmark)

    Bech, Bo; Lönn, Lars; Schroeder, Torben V

    2013-01-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice...

  5. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  6. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  7. Flight test of a spin parachute for use with a Super Arcas sounding rocket

    Science.gov (United States)

    Silbert, M. N.

    1975-01-01

    The development and flight testing of a specially configured 16.6 ft Disc Band Gap (DBG) Spin Parachute is discussed. The parachute is integrated with a modified Super Arcas launch vehicle. Total payload weight was 17.6 lbs including the Spin Parachute and a scientific payload, and lift-off weight was 100.3 lbs. The Super Arcas vehicle was despun from 18.4 cps. After payload separation at 244,170 ft the Spin Parachute and its payload attained a maximum spin rate of 2.4 cps. Total suspended weight of the Spin Parachute and its payload was 14.64 lbs.

  8. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    Science.gov (United States)

    2000-01-01

    - The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  9. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    Science.gov (United States)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  10. Human Factors Evaluation of the High Mobility Artillery Rocket System (HIMARS) in the Combined HIMARS-Guided Multiple Launch Rocket System (GMLRS) Initial Operational Test

    National Research Council Canada - National Science Library

    Hernandez, Charles L

    2007-01-01

    .... Using questionnaires specifically designed for this initial operational test (IOT), Soldier participant comments, we recorded impressions and recommendations for improving the HIMARS launcher and its associated support vehicles...

  11. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  12. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    Science.gov (United States)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  13. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    Science.gov (United States)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  14. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  15. Aging and motor variability: a test of the neural noise hypothesis.

    Science.gov (United States)

    Sosnoff, Jacob J; Newell, Karl M

    2011-07-01

    Experimental tests of the neural noise hypothesis of aging, which holds that aging-related increments in motor variability are due to increases in white noise in the perceptual-motor system, were conducted. Young (20-29 years old) and old (60-69 and 70-79 years old) adults performed several perceptual-motor tasks. Older adults were progressively more variable in their performance outcome, but there was no age-related difference in white noise in the motor output. Older adults had a greater frequency-dependent structure in their motor variability that was associated with performance decrements. The findings challenge the main tenet of the neural noise hypothesis of aging in that the increased variability of older adults was due to a decreased ability to adapt to the constraints of the task rather than an increment of neural noise per se.

  16. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  17. Irradiation tests of a small-sized motor with radiation resistance

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2007-01-01

    In the Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER), tritium production and release behavior will be studied using neutrons from fusion reactions, as the blanket development for a demonstration (DEMO) reactor. For development of the TBM, in-pile functional tests are planned, including an integrated irradiation experiment of a fusion blanket mock-up for pulsed operation simulating the ITER operation mode, using the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA).Due to be installed in an irradiation rig, a small-sized motor has to be developed for rotating a neutron absorber with a window to realize the simulated pulse operation. Since degradation of materials of the motor may be caused by radiation damage due to neutron and gamma-ray irradiation, it is important to examine the soundness of the motor materials under the neutron and gamma irradiation.In the present study, a small-sized motor with increased radiation resistance was developed as follows. A design of a commercial alternate current (AC) servomotor was adopted in the base structure, and some components of the motor were replaced by those made of radiation-proof materials, through elimination of organic materials. Polyester-coated wire for field coil and epoxy for fixed resin were replaced by polyimide-coated wire and polysiloxane filled with MgO and Al 2 O 3 , respectively. Furthermore, inorganic lubricant (Mo-based coating of 4 micro meter in thickness) was treated on the surface of a gear, instead of organic (polyphenylether) oil.Radiation-induced degradation of the components of the developed small-sized motor was examined using JMTR and the Japan Research Reactor No.4 (JRR-4) of JAEA. The motor was operating normally up to a gamma-ray dose of 7 x 10 8 Gy, a fast neutron (E>1 MeV) fluence of 2 x 10 21 m -2 and a thermal neutron (E 22 m -2 . The irradiated gamma-ray dose for this motor is about 700 times as high as the operation

  18. Novel test of motor and other dysfunctions in mouse neurological disease models.

    Science.gov (United States)

    Barth, Albert M I; Mody, Istvan

    2014-01-15

    Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). We investigated 3 groups of mice with various neurological deficits: (1) unilateral motor cortical stroke; (2) effects of moderate ethanol doses; and (3) aging (96-99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1

  20. A Review of Standardized Tests of Nonverbal Oral and Speech Motor Performance in Children

    Science.gov (United States)

    McCauley, Rebecca J.; Strand, Edythe A.

    2008-01-01

    Purpose: To review the content and psychometric characteristics of 6 published tests currently available to aid in the study, diagnosis, and treatment of motor speech disorders in children. Method: We compared the content of the 6 tests and critically evaluated the degree to which important psychometric characteristics support the tests' use for…

  1. Design and Testing of Boost Type DC/DC Converter for DC Motor Control Applications

    OpenAIRE

    Samman, Faizal Arya; Akil, Yusri Syam; Noor, Nirwan A.

    2017-01-01

    in The Proceeding of The 2nd International Symposium on Smart Material and Mechatronics 2015 This paper presents the design and testing of a boost type DC/DC converter circuit, which can be used for DC motor control applications. The Boost converter is designed using DC chopper and DC chopper cascade configurations. The experimental setup was made by connecting the boost converter circuit with four types of DC motor, i.e. self-excited DC motor shunt, series, compound and separately exci...

  2. Imparting motion to a test object such as a motor vehicle in a controlled fashion

    OpenAIRE

    2011-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electro...

  3. Design and Research on Vehicles Motor Testing System Based on Improvement PID

    Directory of Open Access Journals (Sweden)

    Fan Kuangang

    2014-08-01

    Full Text Available Motor is the important parts in vehicles. It is the key parts for achieving automation. It is the critical technology to test vehicle motors. We take the PID (Proportion Integration Differentiation as based fundamental controlling algorithm, and we test motor parameters through LabVIEW for single-chip AT89C52. According to practical working condition, we build circuit electric field boundary, and analyze electric field distribution of hard circuit. In addition, we also design filtering circuit for main interrupt frequency (below 1 kHz, and we improved PID for direct motor speed which is controlled by PWM (pulse-width modulation to reach speed astatic regulation. At the same time, the system achieves soft start-up.

  4. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  5. Improving motor reliability in nuclear power plants: Volume 3, Failure analysis and diagnostic tests on a naturally aged large electric motor

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Sheets, M.W.

    1987-11-01

    Stator coils of a naturally failed 400 hp motor from the Brookhaven National Laboratory test reactor facility were tested for their dielectric integrities. The motor was used to drive the primary reactor coolant pump for the last 20 years. Maintenance activities on this motor during its entire service life were minimal, with the exception of meggering it periodically. The stator consisted of ninety individual coils which were separated for testing. Seven different dielectric tests were performed on the coils. Each set of data from the tested coils indicated a spectrum of variation depending on their aging conditions and characteristics. By comparing the test data to baseline data, the test methods were assessed for application to motor maintenance programs in nuclear power plants. Also included in this study are results of an investigation to determine the cause of this motor failure. Recommendations are provided on the aged condition of a second identical primary pump motor which is the same age and presently in operation. Recommendations are also presented relating to each of the dielectric test methods applicability to motor maintenance programs. 6 refs., 11 figs., 5 tabs

  6. Refining Ovarian Cancer Test accuracy Scores (ROCkeTS): protocol for a prospective longitudinal test accuracy study to validate new risk scores in women with symptoms of suspected ovarian cancer

    Science.gov (United States)

    Sundar, Sudha; Rick, Caroline; Dowling, Francis; Au, Pui; Rai, Nirmala; Champaneria, Rita; Stobart, Hilary; Neal, Richard; Davenport, Clare; Mallett, Susan; Sutton, Andrew; Kehoe, Sean; Timmerman, Dirk; Bourne, Tom; Van Calster, Ben; Gentry-Maharaj, Aleksandra; Deeks, Jon

    2016-01-01

    Introduction Ovarian cancer (OC) is associated with non-specific symptoms such as bloating, making accurate diagnosis challenging: only 1 in 3 women with OC presents through primary care referral. National Institute for Health and Care Excellence guidelines recommends sequential testing with CA125 and routine ultrasound in primary care. However, these diagnostic tests have limited sensitivity or specificity. Improving accurate triage in women with vague symptoms is likely to improve mortality by streamlining referral and care pathways. The Refining Ovarian Cancer Test Accuracy Scores (ROCkeTS; HTA 13/13/01) project will derive and validate new tests/risk prediction models that estimate the probability of having OC in women with symptoms. This protocol refers to the prospective study only (phase III). Methods and analysis ROCkeTS comprises four parallel phases. The full ROCkeTS protocol can be found at http://www.birmingham.ac.uk/ROCKETS. Phase III is a prospective test accuracy study. The study will recruit 2450 patients from 15 UK sites. Recruited patients complete symptom and anxiety questionnaires, donate a serum sample and undergo ultrasound scored as per International Ovarian Tumour Analysis (IOTA) criteria. Recruitment is at rapid access clinics, emergency departments and elective clinics. Models to be evaluated include those based on ultrasound derived by the IOTA group and novel models derived from analysis of existing data sets. Estimates of sensitivity, specificity, c-statistic (area under receiver operating curve), positive predictive value and negative predictive value of diagnostic tests are evaluated and a calibration plot for models will be presented. ROCkeTS has received ethical approval from the NHS West Midlands REC (14/WM/1241) and is registered on the controlled trials website (ISRCTN17160843) and the National Institute of Health Research Cancer and Reproductive Health portfolios. PMID:27507231

  7. Refining Ovarian Cancer Test accuracy Scores (ROCkeTS): protocol for a prospective longitudinal test accuracy study to validate new risk scores in women with symptoms of suspected ovarian cancer.

    Science.gov (United States)

    Sundar, Sudha; Rick, Caroline; Dowling, Francis; Au, Pui; Snell, Kym; Rai, Nirmala; Champaneria, Rita; Stobart, Hilary; Neal, Richard; Davenport, Clare; Mallett, Susan; Sutton, Andrew; Kehoe, Sean; Timmerman, Dirk; Bourne, Tom; Van Calster, Ben; Gentry-Maharaj, Aleksandra; Menon, Usha; Deeks, Jon

    2016-08-09

    Ovarian cancer (OC) is associated with non-specific symptoms such as bloating, making accurate diagnosis challenging: only 1 in 3 women with OC presents through primary care referral. National Institute for Health and Care Excellence guidelines recommends sequential testing with CA125 and routine ultrasound in primary care. However, these diagnostic tests have limited sensitivity or specificity. Improving accurate triage in women with vague symptoms is likely to improve mortality by streamlining referral and care pathways. The Refining Ovarian Cancer Test Accuracy Scores (ROCkeTS; HTA 13/13/01) project will derive and validate new tests/risk prediction models that estimate the probability of having OC in women with symptoms. This protocol refers to the prospective study only (phase III). ROCkeTS comprises four parallel phases. The full ROCkeTS protocol can be found at http://www.birmingham.ac.uk/ROCKETS. Phase III is a prospective test accuracy study. The study will recruit 2450 patients from 15 UK sites. Recruited patients complete symptom and anxiety questionnaires, donate a serum sample and undergo ultrasound scored as per International Ovarian Tumour Analysis (IOTA) criteria. Recruitment is at rapid access clinics, emergency departments and elective clinics. Models to be evaluated include those based on ultrasound derived by the IOTA group and novel models derived from analysis of existing data sets. Estimates of sensitivity, specificity, c-statistic (area under receiver operating curve), positive predictive value and negative predictive value of diagnostic tests are evaluated and a calibration plot for models will be presented. ROCkeTS has received ethical approval from the NHS West Midlands REC (14/WM/1241) and is registered on the controlled trials website (ISRCTN17160843) and the National Institute of Health Research Cancer and Reproductive Health portfolios. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted

  8. The Development of Rocketry Capability in New Zealand—World Record Rocket and First of Its Kind Rocketry Course

    Directory of Open Access Journals (Sweden)

    George Buchanan

    2015-02-01

    Full Text Available The University of Canterbury has developed a rocket research group, UC Rocketry, which recently broke the world altitude record for an I-class motor (impulse of 320–640 Ns and has run a rocketry course for the first time in New Zealand. This paper discusses the development and results of the world record rocket “Milly” and details all the fundamental elements of the rocketry final year engineering course, including the manufacturing processes, wind tunnel testing, avionics, control and the final rocket launch of “Smokey”. The rockets Milly and Smokey are an example of the design, implementation and testing methodologies that have significantly contributed to research and graduates for New Zealand’s space program.

  9. Electric-stepping-motor tests for a control-drum actuator of a nuclear reactor

    Science.gov (United States)

    Kieffer, A. W.

    1972-01-01

    Experimental tests were conducted on two stepping motors for application as reactor control-drum actuators. Various control-drum loads with frictional resistances ranging from approximately zero to 40 N-m and inertias ranging from zero to 0.424 kg-sq m were tested.

  10. 2005 40th Annual Armament Systems: Guns - Ammunition - Rockets - Missiles Conference and Exhibition. Volume 2: Wednesday

    Science.gov (United States)

    2005-04-28

    PM] Abraham Overview, Mr. Robert Daunfeldt, Bofors Defence Summary Overview of an Advanced 2.75 Hypervelocity Weapon, Mr. Larry Bradford , CAT Flight...Substantially Improves 2.75 Rocket Lethality, Safety, Survivability Mr. Larry Bradford , CAT Flight Services, Inc. APKWS Flight Test Results Mr. Larry S...Company Lead: Larry Bradford Atlantic Research Propellant Mixing/Loading, Nozzle Manufacturing, Corporation Motor Static Testing Company Lead: Steve

  11. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Science.gov (United States)

    2010-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... alternative sampling and testing requirements apply to importers who transport motor vehicle diesel fuel, NRLM...

  12. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  13. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  14. A Test Device Module of the Step Motor Driver for HANARO CAR Operation

    Energy Technology Data Exchange (ETDEWEB)

    Im, Yun-Taek; Doo, Seung-Gyu; Shin, Jin-Won; Kim, Ki-Hyun; Choi, Young-San; Lee, Jung-Hee; Kim, Hyung-Kyoo; Lee, Choong-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The brand-new control system is reliable and has advantages compared with the old control system, and the installed system covers all functional operations of old system. Nevertheless, packaged RTP systems do not include a step motor or driver, and it is necessary to develop a proper test device to check the step motor and driver without using the RTP system. In particular, the operation of a CAR (Control Absorber Rod) requires many complicated procedures. Occasionally, it takes significant time to prepare for a field test. In this work, a test device module for a step motor diver is shown to emulate a HANARO CAR operation, and the test device system architecture, operational principle, and experiment results are presented. A commercial 8-bit μ-processor is applied to implement the device. A portable test device for HANARO CAR operation is presented. An 8-bit μ-controller is used to emulate a HANARO CAR operation. The digital interface, as well as the functional operation, of the test device module matches that of the currently used driver. This device can be used to check the functional validity of the step motor and driver.

  15. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  16. Adaption and Standardization of the Test of Visual-Motor Skills Revised

    Directory of Open Access Journals (Sweden)

    Mozhgan Farahbod

    2004-06-01

    Full Text Available Objective: This research has been carried out with the aim of adaptation, standardization and finding the validity and reliability of Visual-Motor Skills-revised Test for children. Materials & Methods: A multi-stage sampling from the children of the city of Tehran resulted in a sample of 1281 subjects, ages 2,11 through 13,11.the test consisted of 23 geometric designs and each of the designs was assessed through a definite criteria and was scored as errors(weakness and accuracies(strength.For adaptation and standardization of this test, at first step the examiner`s manual and the test items were translated into Farsi. The final form of the test was obtained after performing the pre-tryout and tryout stages, and doing the data analysis by classic model of reliability. Internal consistency coefficients of the subtests were obtained by Cronbach`s Alpha time consistency of the subtests and compound scores were obtained by test-retest. Alpha coefficients for the compound scores were obtained by Guilford formula, which is designed for estimating the compound scores. To obtain the content validity, criterion-related validity and construct validity of the subtests and compound scores, appropriate methods were used. Results: The results obtained ensure the applicability of this test for the evaluation of visual-motor skills of children of Tehran. Conclusion: According to the findings, this test can be used for the disorders in eye-hand coordination, the identification of children with disorders in visual – motor skills. It can also be used for the documentation of the development of fine – motor skills specially in visual – motor skills in 3-14 years – old children.

  17. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  18. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  19. Results of experimental testing of hee girl students’ motor skills at aerobic trainings

    Directory of Open Access Journals (Sweden)

    N. P. Martinova

    2015-10-01

    Full Text Available Purpose: to analyze dynamic of motor skills’ formation in girl students, who practice aerobic by experimental program. Material: in the research 40 girl students participated. Motor skills level was tested with the help of state and additional tests. Results: it was found that for training quickness it is necessary to use rope skipping in mode, corresponding to development of this quality. For training maximal strength it is purposeful to use more complex power exercises in ground part of the complex. Conclusions: implementation of rope skipping means in dance aerobic trainings increases training influence on practically all motor skills. Rope skipping permits to doze and regulate training load. The same under musical accompaniment develop sense of rhythm. In some modes such jumps facilitate training of speed power qualities and power endurance.

  20. Ballistic Missile Propellant Evaluation Test Motor System (Super BATES)

    Science.gov (United States)

    1974-11-25

    eiastomeric additive carbon phenolic NBR Buna-N rubber NDT nondestructive testing O&QR operation and quality record P pressure PB.AN polybutadiene...nozzle except for the 450 entrance angle. The same ablative and insulative materials are used in both nozzles. Silica-asbestos filled NBR insulation is...vendor’s option and with UTC approval. The rubber insulation used on the submerged nozzle is fabricated by laying up unvulcanized sheets of rubber to

  1. Evaluating fine motor coordination in children who are not ready for handwriting : which test should we take?

    NARCIS (Netherlands)

    de Vries, Liesbeth; van Hartingsveldt, Margo J.; Cup, Edith H.C.; Nijhuis-van der Sanden, Maria W.G.; de Groot, Imelda J.M.

    2015-01-01

    When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting

  2. Evaluating fine motor coordination in children who are not ready for handwriting: which test should we take?

    NARCIS (Netherlands)

    Vries, L. de; Hartingsveldt, M.J. van; Cup, E.H.C.; Nijhuis-Van der Sanden, M.W.G.; Groot, I.J.M. de

    2015-01-01

    When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting

  3. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  4. Development of a Computerized Adaptive Test of Children's Gross Motor Skills.

    Science.gov (United States)

    Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Wu, Hing-Man; Chen, Kuan-Lin; Hsieh, Ching-Lin

    2018-03-01

    To (1) develop a computerized adaptive test for gross motor skills (GM-CAT) as a diagnostic test and an outcome measure, using the gross motor skills subscale of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT-GM) as the candidate item bank; and (2) examine the psychometric properties and the efficiency of the GM-CAT. Retrospective study. A developmental center of a medical center. Children with and without developmental delay (N=1738). Not applicable. The CDIIT-GM contains 56 universal items on gross motor skills assessing children's antigravity control, locomotion, and body movement coordination. The item bank of the GM-CAT had 44 items that met the dichotomous Rasch model's assumptions. High Rasch person reliabilities were found for each estimated gross motor skill for the GM-CAT (Rasch person reliabilities =.940-.995, SE=.68-2.43). For children aged 6 to 71 months, the GM-CAT had good concurrent validity (r values =.97-.98), adequate to excellent diagnostic accuracy (area under receiver operating characteristics curve =.80-.98), and moderate to large responsiveness (effect size =.65-5.82). The averages of items administered for the GM-CAT were 7 to 11, depending on the age group. The results of this study support the use of the GM-CAT as a diagnostic and outcome measure to estimate children's gross motor skills in both research and clinical settings. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases

    Science.gov (United States)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-04-01

    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  6. Speech production in people who stutter: Testing the motor plan assembly hypothesis

    NARCIS (Netherlands)

    Lieshout, P.H.H.M. van; Hulstijn, W.; Peters, H.F.M.

    1996-01-01

    The main purpose of the present study was to test the hypothesis that persons who stutter, when compared to persons who do not stutter, are less able to assemble abstract motor plans for short verbal responses. Subjects were adult males who stutter and age- and sex-matched control speakers, who were

  7. On-line PWR RHR pump performance testing following motor and impeller replacement

    International Nuclear Information System (INIS)

    DiMarzo, J.T.

    1996-01-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump's 'B' impeller. The spare was installed into the 'B' train. The motor had never been run in the system before. A pump performance test was developed to verify it's operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the 'B' Train showed performance well in excess of the minimum required. The motor that was originally in the 'B' train was similarly overhauled and equipped with 'A' pump's original impeller, re-installed in the 'A' train, and tested. Analysis of the 'A' train results indicate that the RHR pump's performance was also well in excess of the vendors requirements

  8. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  9. ELIMINATION OF ROCKET IGNITION SIDE LOADS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to Topic H10: Ground Processing and in particular to Subtopic H10.02. When a rocket motor/engine is ignited at low altitude its...

  10. MEASURE CHARACTERISTICS OF MOTOR TESTS OF MOVEMENT FREQUENCY WITH STUDENT FROM MACEDONIA AND KOSOVO

    Directory of Open Access Journals (Sweden)

    Georgi Georgiev

    2014-06-01

    Full Text Available Introduction: The tests of good measure characteristics are a multiple matter of interest. They can be property used in the work of selecting young athletes as well as programming the physical activities and giving marks in classes. There are many authors who have conducted researches and established measure characteristics of motor tests. Measure characteristics are constantly an actual issue for research. This research was conducted with the aim of establishing and comparing the measure characteristics of the used motor tests of movement frequencies with 11-year-old students from Macedonia and Kosovo. Methods: The sample of respondents consists of 180 male students at the age of 11 (100 from Macedonia and 80 from Kosovo. They were tested with three composite motor tests to assess the movement frequency. For the obtained data there calculated: basic descriptive parameters, Pearson coefficient of correlation, factor analyse, Cronbach α and Spearman-Brown’s coefficients (Vincent, 2005. Results: On the based of the received results, it is obvious that regarding the three tests satisfactory measure characteristics are established (validity and reliability. Discussion: In kinesiology, by using motor tests, we indirectly form a concept about the motor abilities of the respondents. That is why, it is of great importance to use tests that have satisfactory measure characteristics. The used tests are recommended for application in assessing motor abilities’ movement frequency. The final results correspond to a great extent with the researches of Metikos et al, (1989, Georgiev (1996, 2007, Pireva (2013 and other. References: Georgiev G (1996. Definiranje na stepenot na faktorskata validnost, relijabilnost i drugi merni karakteristiki vo biomotorniot prostor kaj učenicite od dvata pola od 11-godišna vozrast. (Magisterski trud, Univerzitet “Sv. Kiril i Metodij”, Fakultet za fizička kultura, Skopje. Georgiev G (2007. Sport i nauka, 5, 224

  11. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    Science.gov (United States)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  12. Motor proficiency in normal children and with learning difficulty: a comparative and correlational study based on the motor proficiency test of Bruininks-Oseretsky

    Directory of Open Access Journals (Sweden)

    Nilson Roberto Moreira

    2008-06-01

    Full Text Available The aim of this investigation is to verify the difference between children with learning disabilities and children without learning disabilities through motor proficiency test of Bruininks and Ozeretsky (1978. The sample was constituted by 30 children, with 8-year average age, 15 males and 15 females, subdivided into two groups of 15 children from both sexes: children without learning disabilities attending 3rd grade and children with learning disabilities attending 2nd grade having failed a term once. All of them came from a middle class background, according to Grafar scale (adapted by Fonseca, 1991. All children presenting any other disabilities were excluded from the sample. Intelligence factor “G” was controlled by using a percentile, higher or equal to 50 (middle and high level, measured by Raven’s (1974 progressive combinations test. In motor proficiency, children with learning disabilities showed significant differences when compared with normal children of the same age, in all components of global, composed and fine motricity. The tests administered showed a strong correlation between the variables of the motor proficiency components. The results lead to the conclusion that there were significant differences in motor proficiency between normal children and children with learning disabilities, who showed specific motor difficulties evincing a more vulnerable motor profile and not the presence of neurological dysfunction signs.

  13. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  14. Test of Gross Motor Development: expert validity, confirmatory validity and internal consistence

    Directory of Open Access Journals (Sweden)

    Nadia Cristina Valentini

    2008-01-01

    The Test of Gross Motor Development (TGMD-2 is an instrument used to evaluate children’s level of motor development. The objective of this study was to translate and verify the clarity and pertinence of the TGMD-2 items by experts and the confirmatory factorial validity and the internal consistence by means of test-retest of the Portuguese TGMD-2. A cross-cultural translation was used to construct the Portuguese version. The participants of this study were 7 professionals and 587 children, from 27 schools (kindergarten and elementary from 3 to 10 years old (51.1% boys and 48.9% girls. Each child was videotaped performing the test twice. The videotaped tests were then scored. The results indicated that the Portuguese version of the TGMD-2 contains clear and pertinent motor items; demonstrated satisfactory indices of confirmatory factorial validity (÷2/gl = 3.38; Goodness-of-fit Index = 0.95; Adjusted Goodness-of-fit index = 0.92 and Tucker and Lewis’s Index of Fit = 0.83 and test-retest internal consistency (locomotion r = 0.82; control of object: r = 0.88. The Portuguese TGMD-2 demonstrated validity and reliability for the sample investigated.

  15. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  16. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  17. Effects of Motor Learning on Clinical Isokinetic Test Performance in Knee Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    José Messias Rodrigues-da-Silva

    Full Text Available OBJECTIVES: To analyze the effects of motor learning on knee extension-flexion isokinetic performance in knee osteoarthritis patients. METHODS: One hundred and thirty-six middle-aged and older sedentary individuals (111 women, 64.3±9.9 years with knee osteoarthritis (130 patients with bilateral and who had never performed isokinetic testing underwent two bilateral knee extension-flexion (concentric-concentric isokinetic evaluations (5 repetitions at 60°/sec. The tests were first performed on the dominant leg with 2 min of recovery between test, and following a standardized warm-up that included 3 submaximal isokinetic repetitions. The same procedure was repeated on the non-dominant leg. The peak torque, peak torque adjusted for the body weight, total work, coefficient of variation and agonist/antagonist ratio were compared between tests. RESULTS: Patients showed significant improvements in test 2 compared to test 1, including higher levels of peak torque, peak torque adjusted for body weight and total work, as well as lower coefficients of variation. The agonist/antagonist relationship did not significantly change between tests. No significant differences were found between the right and left legs for all variables. CONCLUSION: The results suggest that performing two tests with a short recovery (2 min between them could be used to reduce motor learning effects on clinical isokinetic testing of the knee joint in knee osteoarthritis patients.

  18. Comparison between two motor tests used for muscular strength/endurance analysis

    Directory of Open Access Journals (Sweden)

    Matheus Amarante do Nascimento

    2013-04-01

    Full Text Available The aim of this study was to compare motor performance in modified pull-up (MPUand flexed knee push-up (FKPU tests in young women. Thirty-five apparently healthy women (20.1±2.2 years were submitted to each one of the tests at an interval of48 hours in a random balanced design. Most individuals performed between 0 an d 10 repetitions (86% of the MPU test, and approximately 17% did not perform even one repetitions. On the other hand, the highest prevalence of outcomes for the FKPUtest was between 16 and 35 repetitions (71%. The Wilcoxon test identified statistically significant differences (p MPU. A moderate agreement (kappa =0.40 was found between the performance in both tests. Negative correlations of low magnitude (r=-0.23 to 0.46 were found between morphological variables (body weight,height, fat mass, and lean body mass and motor performance in both tests. The results suggest that the FKPU test is presented as a better indicator ofmuscular endurance levels, where as the MPU test seems to better discriminate muscular strength in young women.

  19. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  20. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  1. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  2. Eye and hand motor interactions with the Symbol Digit Modalities Test in early multiple sclerosis.

    Science.gov (United States)

    Nygaard, Gro O; de Rodez Benavent, Sigrid A; Harbo, Hanne F; Laeng, Bruno; Sowa, Piotr; Damangir, Soheil; Bernhard Nilsen, Kristian; Etholm, Lars; Tønnesen, Siren; Kerty, Emilia; Drolsum, Liv; Inge Landrø, Nils; Celius, Elisabeth G

    2015-11-01

    Eye and hand motor dysfunction may be present early in the disease course of relapsing-remitting multiple sclerosis (RRMS), and can affect the results on visual and written cognitive tests. We aimed to test for differences in saccadic initiation time (SI time) between RRMS patients and healthy controls, and whether SI time and hand motor speed interacted with the written version of the Symbol Digit Modalities Test (wSDMT). Patients with RRMS (N = 44, age 35.1 ± 7.3 years), time since diagnosis < 3 years and matched controls (N = 41, age 33.2 ± 6.8 years) were examined with ophthalmological, neurological and neuropsychological tests, as well as structural MRI (white matter lesion load (WMLL) and brainstem lesions), visual evoked potentials (VEP) and eye-tracker examinations of saccades. SI time was longer in RRMS than controls (p < 0.05). SI time was not related to the Paced Auditory Serial Addition Test (PASAT), WMLL or to the presence of brainstem lesions. 9 hole peg test (9HP) correlated significantly with WMLL (r = 0.58, p < 0.01). Both SI time and 9HP correlated negatively with the results of wSDMT (r = -0.32, p < 0.05, r = -0.47, p < 0.01), but none correlated with the results of PASAT. RRMS patients have an increased SI time compared to controls. Cognitive tests results, exemplified by the wSDMT, may be confounded by eye and hand motor function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Rasch Analysis of the Bruininks-Oseretsky Test of Motor Proficiency--Second Edition in Intellectual Disabilities

    Science.gov (United States)

    Wuang, Yee-Pay; Lin, Yueh-Hsien; Su, Chwen-Yng

    2009-01-01

    The Bruininks-Oseretsky Test of Motor Proficiency-Second Edition (BOT-2) is widely used to assess motor skills for both clinical and research purposes; however, its validity has not been adequately assessed in intellectual disabilities (ID). This study used partial credit Rasch model to examine the measurement properties of the BOT-2 among 446…

  4. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  5. Motor competence assessment in children: convergent and discriminant validity between the BOT-2 Short Form and KTK testing batteries.

    Science.gov (United States)

    Fransen, Job; D'Hondt, Eva; Bourgois, Jan; Vaeyens, Roel; Philippaerts, Renaat M; Lenoir, Matthieu

    2014-06-01

    This study investigated convergent and discriminant validity between two motor competence assessment instruments in 2485 Flemish children: the Bruininks-Oseretsky Test of Motor Proficiency 2 Short Form (BOT-2 Short Form) and the KörperKoördinationsTest für Kinder (KTK). A Pearson correlation assessed the relationship between BOT-2 Short Form total, gross and fine motor composite scores and KTK Motor Quotient in three age cohorts (6-7, 8-9, 10-11 years). Crosstabs were used to measure agreement in classification in children scoring below percentile 5 and 15 and above percentile 85 and 95. Moderately strong positive (r=0.44-0.64) associations between BOT-2 total and gross motor composite scores and KTK Motor Quotient and weak positive correlations between BOT-2 Short Form fine motor composite and KTK Motor Quotient scores (r=0.25-0.37) were found. Levels of agreement were fair to moderate. Therefore, some proof of convergent and discriminant validity between BOT-2 Short Form and KTK was established in this study, underlining the notion that the evaluation of motor competence should not be based upon a single assessment instrument. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Development of a Test for Evaluating Beginning Taekwondo Students’ Motor Skills

    Directory of Open Access Journals (Sweden)

    Willy Pieter

    2012-07-01

    Full Text Available The purpose of the present investigation was to develop a motor skills test for beginners in tae-kwondo. Subjects were students enrolled in a beginning taekwondo class at a university on the West Coast of the USA. The taekwondo skills test battery was based on previous work in gymnastics and wrestling. Test-retest reliability, i.e., repeatability of the test, and objectivity coefficients, i.e., an index of the consistency between the raters, were calculated. The objectivity, i.e., a measure of the consistency between the raters over both days for Group 1 was very high, and for Group 2, high. The reliability, or the consistency of the results of the test when administered on two different occasions, was very high for both groups. Future research should comprise more subjects, while test batteries for intermediate and advanced students should be developed.

  7. Testing objective measures of motor impairment in early Parkinson's disease: Feasibility study of an at-home testing device.

    Science.gov (United States)

    Goetz, Christopher G; Stebbins, Glenn T; Wolff, David; DeLeeuw, William; Bronte-Stewart, Helen; Elble, Rodger; Hallett, Mark; Nutt, John; Ramig, Lorraine; Sanger, Terence; Wu, Allan D; Kraus, Peter H; Blasucci, Lucia M; Shamim, Ejaz A; Sethi, Kapil D; Spielman, Jennifer; Kubota, Ken; Grove, Andrew S; Dishman, Eric; Taylor, C Barr

    2009-03-15

    We tested the feasibility of a computer based at-home testing device (AHTD) in early-stage, unmedicated Parkinson's disease (PD) patients over 6 months. We measured compliance, technical reliability, and patient satisfaction to weekly assessments of tremor, small and large muscle bradykinesia, speech, reaction/movement times, and complex motor control. relative to the UPDRS motor score. The AHTD is a 6.5'' x 10'' computerized assessment battery. Data are stored on a USB memory stick and sent by internet to a central data repository as encrypted data packets. Although not designed or powered to measure change, the study collected data to observe patterns relative to UPDRS motor scores. Fifty-two PD patients enrolled, and 50 completed the 6 month trial, 48 remaining without medication. Patients complied with 90.6% of weekly 30-minute assessments, and 98.5% of data packets were successfully transmitted and decrypted. On a 100-point scale, patient satisfaction with the program at study end was 87.2 (range: 80-100). UPDRS motor scores significantly worsened over 6 months, and trends for worsening over time occurred for alternating finger taps (P = 0.08), tremor (P = 0.06) and speech (P = 0.11). Change in tremor was a significant predictor of change in UPDRS (P = 0.047) and was detected in the first month of the study. This new computer-based technology offers a feasible format for assessing PD-related impairment from home. The high patient compliance and satisfaction suggest the feasibility of its incorporation into larger clinical trials, especially when travel is difficult and early changes or frequent data collection are considered important to document.

  8. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  9. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    Science.gov (United States)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  10. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  11. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2016-08-01

    Full Text Available Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  12. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  13. Medida de autocontrol motor en tiradores de esgrima mediante el Tapping Test

    Directory of Open Access Journals (Sweden)

    Omar Estrada Contreras

    2013-01-01

    Full Text Available El Tapping Test es una prueba neurológica habitual en las evaluaciones de los equipos nacionales de Cuba. Nuestro objetivo fue medir el autocontrol motor con esta prueba y su respuesta psicofisiológica en deportistas de la selección nacional de esgrima de Cuba. Comparando dos versiones del Tapping Test: modo 1 (habitual de lápiz-papel y modo 2 (versión propuesta ejecutando acción técnica con el arma. Fueron 12 participantes (edadM = 22.19 años, DE = 3.50 años. Se utilizó un equipo de registro psicofisiológico inalámbrico (Biofeedback 2000. Los resultados, indican un autocontrol motor, siendo el modo 1 significativo F(1,10 = 44.29, p < .001; ya que la cantidad de toques o golpes fueron coherentes de acuerdo al ritmo de ejecución. El modo 2 tuvo una motilidad o aceleración significativa en las diferentes fases de la prueba F(1.58,15.8 = 8.14, p = .006, además mostró un mayor nivel de activación psicofisiológica. Este grupo de esgrimistas de alto nivel a pesar del incremento en la activación mostraron un autocontrol motor, ya que controlaron su movimiento de acuerdo al ritmo que se pedía (modo 1.

  14. Psychometric evaluation of a motor control test battery of the craniofacial region.

    Science.gov (United States)

    von Piekartz, H; Stotz, E; Both, A; Bahn, G; Armijo-Olivo, S; Ballenberger, N

    2017-12-01

    The primary objective of this study was to determine the structural and known-group validity as well as the inter-rater reliability of a test battery to evaluate the motor control of the craniofacial region. Seventy volunteers without TMD and 25 subjects with TMD (Axes I) per the DC/TMD were asked to execute a test battery consisting of eight tests. The tests were video-taped in the same sequence in a standardised manner. Two experienced physical therapists participated in this study as blinded assessors. We used exploratory factor analysis to identify the underlying component structure of the eight tests. Internal consistency (Cronbach's α), inter-rater reliability (intra-class correlation coefficient) and construct validity (ie, hypothesis testing-known-group validity) (receiver operating curves) were also explored for the test battery. The structural validity showed the presence of one factor underlying the construct of the test battery. The internal consistency was excellent (0.90) as well as the inter-rater reliability. All values of reliability were close to 0.9 or above indicating very high inter-rater reliability. The area under the curve (AUC) was 0.93 for rater 1 and 0.94 for rater two, respectively, indicating excellent discrimination between subjects with TMD and healthy controls. The results of the present study support the psychometric properties of test battery to measure motor control of the craniofacial region when evaluated through videotaping. This test battery could be used to differentiate between healthy subjects and subjects with musculoskeletal impairments in the cervical and oro-facial regions. In addition, this test battery could be used to assess the effectiveness of management strategies in the craniofacial region. © 2017 John Wiley & Sons Ltd.

  15. Measurement of talent in team handball: the questionable use of motor and physical tests.

    Science.gov (United States)

    Lidor, Ronnie; Falk, Bareket; Arnon, Michal; Cohen, Yoram; Segal, Gil; Lander, Yael

    2005-05-01

    Testing for selection is one of the most important fundamentals in any multistep sport program. In most ball games, coaches assess motor, physical, and technical skills on a regular basis in early stages of talent identification and development. However, selection processes are complex, are often unstructured, and lack clear-cut theory-based knowledge. For example, little is known about the relevance of the testing process to the final selection of the young prospects. The purpose of this study was to identify motor, physical, and skill variables that could provide coaches with relevant information in the selection process of young team handball players. In total, 405 players (12-13 years of age at the beginning of the testing period) were recommended by their coaches to undergo a battery of tests prior to selection to the Junior National Team. This number is the sum of all players participating in the different phases of the program. However, not all of them took part in each testing phase. The battery included physical measurements (height and weight), a 4 x 10-m running test, explosive power tests (medicine ball throw and standing long jump), speed tests (a 20-m sprint from a standing position and a 20-m sprint with a flying start), and a slalom dribbling test. Comparisons between those players eventually selected to the Junior National Team 2-3 years later with those not selected demonstrated that only the skill test served as a good indicator. In all other measurements, a wide overlap could be seen between the results of the selected and nonselected players. It is suggested that future studies investigate the usefulness of tests reflecting more specific physical ability and cognitive characteristics.

  16. Physical capacity and the motor tests relative for the health promotion in children and adolescents

    Directory of Open Access Journals (Sweden)

    Roberto Jerônimo dos Santos Silva

    2003-06-01

    Full Text Available This article discusses physical capacity and health-promotion-oriented motor tests in children and adolescents, in order to provide a foundation for future studies that intend to debate this topic. The idea of evaluating physical activity levels in a population is aimed to determine the level of physical fi tness, and to verify that this is in line with criteria for good health. From a functional point of view, .good health is defined by the following components: body composition (not considered in this article, strength, muscular endurance capacity and fl exibility. These components are measured by test batteries that are intended to measure the health of individuals and/or populations. The starting point for this debate is the published reference literature that classifi es motor tests as either norm-referenced or criterion-referenced standards. RESUMO Este artigo discute as capacidades físicas e os testes motores voltados à promoção da saúde em crianças e adolescentes, de forma a subsidiar trabalhos em que este tema esteja em voga. A idéia de avaliar a atividade física em uma população é baseada no desejo de determinar o estado de atividade atual da mesma, e verifi car se ela está de acordo com os critérios apropriados para uma boa saúde. Do ponto de vista morfofuncional, uma boa “saúde relatada” é defi nida a partir dos componentes: composição corporal (não abordado neste trabalho, força e resistência muscular e fl exibilidade, componentes estes que são verifi cados a partir da aplicação de testes ou baterias de testes que pretendem medir e verifi car os níveis individuais e/ou populacionais de saúde relatada. A literatura de referência, que classifi ca os testes motores como referenciados a partir de normas ou critérios é o ponto de partida para esse debate.

  17. Test of Gross Motor Development : Expert Validity, confirmatory validity and internal consistence

    Directory of Open Access Journals (Sweden)

    Nadia Cristina Valentini

    2008-12-01

    Full Text Available The Test of Gross Motor Development (TGMD-2 is an instrument used to evaluate children’s level of motordevelopment. The objective of this study was to translate and verify the clarity and pertinence of the TGMD-2 items by expertsand the confirmatory factorial validity and the internal consistence by means of test-retest of the Portuguese TGMD-2. Across-cultural translation was used to construct the Portuguese version. The participants of this study were 7 professionalsand 587 children, from 27 schools (kindergarten and elementary from 3 to 10 years old (51.1% boys and 48.9% girls.Each child was videotaped performing the test twice. The videotaped tests were then scored. The results indicated thatthe Portuguese version of the TGMD-2 contains clear and pertinent motor items; demonstrated satisfactory indices ofconfirmatory factorial validity (χ2/gl = 3.38; Goodness-of-fit Index = 0.95; Adjusted Goodness-of-fit index = 0.92 and Tuckerand Lewis’s Index of Fit = 0.83 and test-retest internal consistency (locomotion r = 0.82; control of object: r = 0.88. ThePortuguese TGMD-2 demonstrated validity and reliability for the sample investigated.

  18. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  19. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    International Nuclear Information System (INIS)

    Christie, B.

    1996-01-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. open-quotes Conditional Probabilitiesclose quotes of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps

  20. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age.

    Science.gov (United States)

    Peyton, Colleen; Schreiber, Michael D; Msall, Michael E

    2018-03-13

    To determine the relationship between the Test of Infant Motor Performance (TIMP) at 3 months and cognitive, language, and motor outcomes on the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) at 2 years of age in high-risk infants born preterm. One hundred and six infants (47 females, 59 males) born at earlier than 31 weeks gestational age were prospectively tested with the TIMP at 10 to 15 weeks after term age and were assessed again with the Bayley-III at 2 years corrected age. Sensitivity and specificity were calculated for various cut points of the TIMP z-score and Bayley-III composite scores of no more than 85. The TIMP z-scores at 10 to 15 weeks of age were significantly associated with all three subscales on the Bayley-III at 2 years of age (pcognitive (87%), language (88%), and motor (89%) outcomes, but sensitivity was low (cognitive 41%, language 49%, motor 57%). This study demonstrates that the TIMP is related to cognitive, language, and motor outcomes on the Bayley-III at 2 years of age in high-risk infants born preterm. The Test of Infant Motor Performance (TIMP) predicts Bayley Scales of Infant and Toddler Development, Third Edition outcomes at 2 years of age. The TIMP is relatively good at discriminating between children who will and will not have typical development. © 2018 Mac Keith Press.

  1. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  2. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  3. The Application of Lean Thinking Principles and Kaizen Practices for the Successful Development and Implementation of the Ares I-X Flight Test Rocket and Mission

    Science.gov (United States)

    Askins, B. R.; Davis, S. R.; Heitzman, K. S.; Olsen, R. A.

    2011-01-01

    On October 28, 2009 the Ares I-X flight test rocket launched from Kennedy Space Center and flew its suborbital trajectory as designed. The mission was successfully completed as data from the test, and associated development activities were analyzed, transferred to stakeholders, and well documented. A positive lesson learned from Ares I-X was that the application of lean thinking principles and kaizen practices was very effective in streamlining development activities. Ares I-X, like other historical rocket development projects, was hampered by technical, cost, and schedule challenges and if not addressed boldly could have resulted in cancellation of the test. The mission management team conducted nine major meetings, referred to as lean events, across its elements to assess plans, procedures, processes, requirements, controls, culture, organization, use of resources, and anything that could be changed to optimize schedule or reduce risk. The preeminent aspect of the lean events was the focus on value added activities and the removal or at least reduction in non-value added activities. Trained Lean Six Sigma facilitators assisted the Ares I-X developers in conducting the lean events. They indirectly helped formulate the mission s own unique methodology for assessing schedule. A core team was selected to lead the events and report to the mission manager. Each activity leveraged specialized participants to analyze the subject matter and its related processes and then recommended alternatives and solutions. Stakeholders were the event champions. They empowered and encouraged the team to succeed. The keys to success were thorough preparation, honest dialog, small groups, adherence to the Ares I-X ground rules, and accountability through disciplined reporting and tracking of actions. This lean event formula was game-changing as demonstrated by Ares I-X. It is highly recommended as a management tool to help develop other complex systems efficiently. The key benefits for

  4. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  5. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  6. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  7. Natural Frequency Testing and Model Correlation of Rocket Engine Structures in Liquid Hydrogen - Phase I, Cantilever Beam

    Science.gov (United States)

    Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.

    2018-01-01

    Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.

  8. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  9. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  10. Q-Sync Motors in Commercial Refrigeration. Preliminary Test Results and Projected Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Becker, Bryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    This report provides background information on various fractional-horsepower electric motor technologies, summarizes initial data from a DOE-sponsored Q-Sync motor demonstration project, and extrapolates that data to project the potential economic and environmental benefits resulting from upgrading the current installed base of 9–12 W evaporator fan motors to Q-Sync motors.

  11. Sea-Level Static Testing of the Penn State Two-Dimensional Rocket-Based Combined Cycle (RBCC) Testbed

    Science.gov (United States)

    Cramer, J. M.; Marshall, W. M.; Pal, S.; Santoro, R. J.

    2003-01-01

    Twin thruster tests have been conducted with the Penn State RBCC test article operating at sea- level static conditions. Significant differences were observed in the performance characteristics for two different thruster centerline spacings. Changing the thruster spacing from 2.50 to 1.75 in. reduced the entrained air velocity (-17%) and the thrust (-7%) for tests at a thruster chamber pressure of 200 psia and MR = 8. In addition, significant differences were seen in the static pressure profiles, the Raman spectroscopy profiles, and the acoustic power spectrum for these two configurations.

  12. Current and Future Critical Issues in Rocket Propulsion Systems

    Science.gov (United States)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  13. DC Brushless Motor Control Design and Preliminary Testing for Independent 4-Wheel Drive Rev-11 Robotic Platform

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2012-03-01

    Full Text Available This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11. The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform. 

  14. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  15. Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plum Constituents Under Test Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II STTR project is to develop a prototype multi-analyte sensor system to detect gaseous analytes present in the test stands during...

  16. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  17. The motor system resonates to the distal goal of observed actions: testing the inverse pliers paradigm in an ecological setting.

    Science.gov (United States)

    Cattaneo, Luigi; Maule, Francesca; Barchiesi, Guido; Rizzolatti, Giacomo

    2013-11-01

    Does motor mirroring in humans reflect the observed movements or the goal of the observed motor acts? Tools that dissociate the agent/object dynamics from the movements of the body parts used to operate them provide a model for testing resonance to both movements and goals. Here, we describe the temporal relationship of the observer's motor excitability, assessed with transcranial magnetic stimulation (TMS), with the observed goal-directed tool actions, in an ecological setting. Motor-evoked potentials (MEPs) to TMS were recorded from the opponens pollicis (OP, thumb flexor) and the extensor indicis proprius (EIP, index extensor) muscles of participants while they observed a person moving several small objects with a pair of normal pliers (closed by finger flexion) or reverse pliers (opened by finger flexion). The MEPs were a significant predictor of the pliers' kinematics that occurred in a variable time interval between -400 and +300 ms from TMS. Whatever pliers' type was being observed, OP MEPs correlated positively and EIP MEPs correlated negatively with the velocity of pliers' tips closure. This datum was confirmed both at individual and at a group level. Motor simulation can be demonstrated in single observers in a "real-life" ecological setting. The relation of motor resonance to the tool type shows that the observer's motor system codes the distal goal of the observed acts (i.e., grasping and releasing objects) in terms of its own motor vocabulary, irrespective of the actual finger movements that were performed by the observed actor.

  18. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  19. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  20. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  1. Long-term retention of a divided attention psycho-motor test combining choice reaction test and postural balance test: A preliminary study.

    Science.gov (United States)

    Rossi, R; Pascolo, P B

    2015-09-01

    Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  3. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  4. Content validity and reliability of test of gross motor development in Chilean children

    Directory of Open Access Journals (Sweden)

    Marcelo Cano-Cappellacci

    2015-01-01

    Full Text Available ABSTRACT OBJECTIVE To validate a Spanish version of the Test of Gross Motor Development (TGMD-2 for the Chilean population. METHODS Descriptive, transversal, non-experimental validity and reliability study. Four translators, three experts and 92 Chilean children, from five to 10 years, students from a primary school in Santiago, Chile, have participated. The Committee of Experts has carried out translation, back-translation and revision processes to determine the translinguistic equivalence and content validity of the test, using the content validity index in 2013. In addition, a pilot implementation was achieved to determine test reliability in Spanish, by using the intraclass correlation coefficient and Bland-Altman method. We evaluated whether the results presented significant differences by replacing the bat with a racket, using T-test. RESULTS We obtained a content validity index higher than 0.80 for language clarity and relevance of the TGMD-2 for children. There were significant differences in the object control subtest when comparing the results with bat and racket. The intraclass correlation coefficient for reliability inter-rater, intra-rater and test-retest reliability was greater than 0.80 in all cases. CONCLUSIONS The TGMD-2 has appropriate content validity to be applied in the Chilean population. The reliability of this test is within the appropriate parameters and its use could be recommended in this population after the establishment of normative data, setting a further precedent for the validation in other Latin American countries.

  5. Motor unit firing frequency of lower limb muscles during an incremental slide board skating test.

    Science.gov (United States)

    Piucco, Tatiane; Bini, Rodrigo; Sakaguchi, Masanori; Diefenthaeler, Fernando; Stefanyshyn, Darren

    2017-11-01

    This study investigated how the combination of workload and fatigue affected the frequency components of muscle activation and possible recruitment priority of motor units during skating to exhaustion. Ten male competitive speed skaters performed an incremental maximal test on a slide board. Activation of six muscles from the right leg was recorded throughout the test. A time-frequency analysis was performed to compute overall, high, and low frequency bands from the whole signal at 10, 40, 70, and 90% of total test time. Overall activation increased for all muscles throughout the test (p  0.80). There was an increase in low frequency (90 vs. 10%, p = 0.035, ES = 1.06) and a decrease in high frequency (90 vs. 10%, p = 0.009, ES = 1.38, and 90 vs. 40%, p = 0.025, ES = 1.12) components of gluteus maximus. Strong correlations were found between the maximal cadence and vastus lateralis, gluteus maximus and gluteus medius activation at the end of the test. In conclusion, the incremental skating test lead to an increase in activation of lower limb muscles, but only gluteus maximus was sensitive to changes in frequency components, probably caused by a pronounced fatigue.

  6. 78 FR 38455 - Energy Conservation Program: Test Procedures for Electric Motors

    Science.gov (United States)

    2013-06-26

    ... windings, which protects them from condensation, moisture, dirt, and debris. This insulation typically... and Moisture Resistant Windings 4. Inverter-Capable Electric Motors 5. Totally Enclosed Non-Ventilated... set. [cir] Definite-purpose inverter- fed electric motor. [cir] Electric motor with moisture resistant...

  7. Application of signature analysis for determining the operational readiness of motor-operated valves under blowdown test conditions

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1990-01-01

    In support of the NRC-funded Nuclear Plant Aging Research (NPAR) program, Oak Ridge National Laboratory (ORNL) has carried out a comprehensive aging assessment of motor-operated valves (MOVs). As part of this work, ORNL participated in the gate valve flow interrruption blowdown (GVFIB) tests carried out in Huntsville, Alabama. The tests provided an excellent opportunity to evaluate signature analysis methods for determining the operability of MOVs under accident conditions. ORNL acquired motor current and torque switch shaft angular position signatures on two test MOVs during several GVFIB tests. The reduction in operating ''margin'' of both MOVs due to the presence of additional valve running loads imposed by high flow was clearly observed in motor current and torque switch angular position signatures. In addition, the effects of differential pressure, fluid temperature, and line voltage on MOV operations were observed and more clearly understood as a result of utilizing the signature analysis techniques. (orig.)

  8. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  9. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  10. Intra-rater reliability of cervical sensory motor function and cervical reconstruction test in healthy subjects

    Directory of Open Access Journals (Sweden)

    Hatamvand S

    2016-07-01

    Full Text Available Impairment of cervicocephalic and head joint position sense has an important role in the recurrent and chronic of cervicocephalic pain. The various tools are suggested for evaluating the cervicocephalic joint position sense. Although reconstruction of cervical angle is a clinical criterion for measuring the cervicocephalic proprioception, the reliability of this method has not been completely accepted. The purpose of this study was to evaluate intra-rater reliability of cervical sensory motor function and cervical reconstruction test in healthy subjects. twenty four healthy subjects (25.70±6.08 y through simple non-probability sampling participated in this single-group repeatedmeasures reliability study. Participants were asked to relocate the neck, as accurately as possible, after full active cervical flexion, extension and rotation to the left and right sides. Five trials were performed for each movement. Laser pointer was used in head of patient. The distance between zero spot and joint position which patient had been reconstructed, was measured by centimeter. Intra-class correlation Coefficient (ICCs and Pearson's correlation coefficient test was used to determine intra-rater reliability of variables. The results showed that intra-class correlation Coefficient (ICCs values with 95% confidence interval (CI and the standard error of the measurement (SEM were good to excellent agreement for a single investigator between measurement occasions. Intra-class correlation Coefficient (ICCs values were obtained for flexion movement (ICCs:0.75, good, extension movement (ICCs:0.81, very good, right rotation (ICCs:0.64, good and left rotation (ICCs:0.64, good. The cervicocephalic relocation test to neutral head position by laser pointer is a reliable method to measure cervical sensory motor function. Therefore, it can be used for evaluating cervicocephalic proprioception of patient with cervicocephalic pain.

  11. How Funding and Policy Affect Access to and Modernization of Major Air Force Ground Test Infrastructure Assets

    Science.gov (United States)

    2017-04-06

    annually for the DoD, other government agencies, allies, and commercial customers at the world’s largest ground test flight simulation facility...center’s wind tunnels, gas turbine sea level and altitude test cells, space chambers, altitude rocket cells, ballistic ranges, arc heaters and other...complex and the second was an 12 altitude solid rocket motor test facility called J6.xx The first was the result of a herculean effort that took

  12. The influence of a real job on upper limb performance in motor skill tests: which abilities are transferred?

    Science.gov (United States)

    Giangiardi, Vivian Farahte; Alouche, Sandra Regina; de Freitas, Sandra Maria Sbeghen Ferreira; Pires, Raquel Simoni; Padula, Rosimeire Simprini

    2018-06-01

    To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, 24 participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling and strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in other tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job-specific task is the basis for allocating training and guidance to workers.

  13. Improving the utility of the fine motor skills subscale of the comprehensive developmental inventory for infants and toddlers: a computerized adaptive test.

    Science.gov (United States)

    Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Chou, Willy; Chen, Kuan-Lin; Hsieh, Ching-Lin

    2017-07-27

    This study aimed at improving the utility of the fine motor subscale of the comprehensive developmental inventory for infants and toddlers (CDIIT) by developing a computerized adaptive test of fine motor skills. We built an item bank for the computerized adaptive test of fine motor skills using the fine motor subscale of the CDIIT items fitting the Rasch model. We also examined the psychometric properties and efficiency of the computerized adaptive test of fine motor skills with simulated computerized adaptive tests. Data from 1742 children with suspected developmental delays were retrieved. The mean scores of the fine motor subscale of the CDIIT increased along with age groups (mean scores = 1.36-36.97). The computerized adaptive test of fine motor skills contains 31 items meeting the Rasch model's assumptions (infit mean square = 0.57-1.21, outfit mean square = 0.11-1.17). For children of 6-71 months, the computerized adaptive test of fine motor skills had high Rasch person reliability (average reliability >0.90), high concurrent validity (rs = 0.67-0.99), adequate to excellent diagnostic accuracy (area under receiver operating characteristic = 0.71-1.00), and large responsiveness (effect size = 1.05-3.93). The computerized adaptive test of fine motor skills used 48-84% fewer items than the fine motor subscale of the CDIIT. The computerized adaptive test of fine motor skills used fewer items for assessment but was as reliable and valid as the fine motor subscale of the CDIIT. Implications for Rehabilitation We developed a computerized adaptive test based on the comprehensive developmental inventory for infants and toddlers (CDIIT) for assessing fine motor skills. The computerized adaptive test has been shown to be efficient because it uses fewer items than the original measure and automatically presents the results right after the test is completed. The computerized adaptive test is as reliable and valid as the CDIIT.

  14. Reliability and concurrent validity of a motor skill competence test among 4- to 12-year old children

    NARCIS (Netherlands)

    Hoeboer, Joris; Krijger-Hombergen, Michiel; Savelsbergh, Geert; De Vries, Sanne

    2017-01-01

    The purpose of this study was to examine the test-retest reliability, internal consistency and concurrent validity of the Athletic Skills Track (AST). During a regular PE lesson, 930 4- to 12-year old children (448 girls, 482 boys) completed two motor skill competence tests: (1) the

  15. Sequential motor task (Luria's Fist-Edge-Palm Test in children with benign focal epilepsy of childhood with centrotemporal spikes

    Directory of Open Access Journals (Sweden)

    Carmen Silvia Molleis Galego Miziara

    2013-06-01

    Full Text Available This study evaluated the sequential motor manual actions in children with benign focal epilepsy of childhood with centrotemporal spikes (BECTS and compares the results with matched control group, through the application of Luria's fist-edge-palm test. The children with BECTS underwent interictal single photon emission computed tomography (SPECT and School Performance Test (SPT. Significant difference occurred between the study and control groups for manual motor action through three equal and three different movements. Children with lower school performance had higher error rate in the imitation of hand gestures. Another factor significantly associated with the failure was the abnormality in SPECT. Children with BECTS showed abnormalities in the test that evaluated manual motor programming/planning. This study may suggest that the functional changes related to epileptiform activity in rolandic region interfere with the executive function in children with BECTS.

  16. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  17. Clinical implications of using the arm motor ability test in stroke rehabilitation.

    Science.gov (United States)

    O'Dell, Michael W; Kim, Grace; Finnen, Lisa Rivera; Polistena, Caitlin

    2011-05-01

    To identify all published studies using the Arm Motor Ability Test (AMAT), a standardized, laboratory-based measure for selected upper extremity activities of daily living (ADLs); and to summarize its current uses and provide recommendations for its future use. An Ovid online search was performed using the terms "Arm Motor Ability Test" and "AMAT." The reference lists of all articles obtained were reviewed for additional studies not appearing in the literature search. In addition, the original manual for the use and administration of the AMAT was reviewed. All studies examining the psychometric properties of the AMAT or using the AMAT as an outcome measure were identified. Articles simply mentioning the AMAT without providing data and case reports or abstracts (other than those addressing a specific aspect of the scale of interest) were excluded. Studies were reviewed by the primary author. No formal system of quality review was used. The AMAT has been used as an outcome measure in stroke rehabilitation research examining upper extremity robotics, functional electrical stimulation, and cortical stimulation. The most recent version contains 10 ADL tasks, each of which is composed of 1 to 3 subtasks. Of the 3 domains originally proposed, only the "functional ability" domain is routinely assessed. Psychometric studies have demonstrated good reliability and at least reasonable construct validity. The instrument's sensitivity to change over time is less well established, and no recommendation can be made regarding a minimal clinically important difference. We recommend that the 10-item version of the AMAT and assessment of only the functional ability domain be adopted as standard going forward. Further research should include examination of sensitivity over time, minimal clinically important change, reliability and validity in the mid and lower range of scores, and in neurologic diagnoses other than stroke. Copyright © 2011 American Congress of Rehabilitation Medicine

  18. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  19. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    . In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing

  20. QUANTITATIVE DIFFERENCES IN ACQUIRING THE MOTOR TESTS WITH STUDENTS FROM THE REPUBLIC OF MACEDONIA AND REPUBLIC OF SERBIA

    Directory of Open Access Journals (Sweden)

    Georgi Georgiev

    2012-09-01

    Full Text Available The research has been conducted on two sub-samples of male gender from the Republics of Macedonia and Serbia, aged from 14 to 15 years (±3 months who had their training classes in urban areas. The number of entities participating in the tests was 119 in total. The aim is to establish if there are differences in motor abilities through acquiring the motor tests for assessing explosivity, start speed, and precisity. Statistically significant difference between the two groups is established with the estimating precisity only.

  1. Evaluar la Coordinación Motriz Global en Educación Secundaria: El Test Motor SportComp. [Motor co-ordination assessment in Secondary Education: The SportComp Test].

    Directory of Open Access Journals (Sweden)

    Luis Miguel Ruiz-Perez

    2017-07-01

    Full Text Available El objetivo de este estudio fue el desarrollo y evaluación métrica del Test Motor SportComp, instrumento diseñado para ayudar a los profesores de educación física en la evaluación de la coordinación motriz global de sus alumnos de Educación Secundaria. En la actualidad no existen tests que evalúen la coordinación motriz de forma válida y fiable y que puedan ser empleados por el profesorado de educación física en el contexto de sus clases de manera rápida y económica. El presente test se construyó a partir de una revisión de la literatura científica sobre medición motriz entre los 12 y 17 años. La validez de contenido de las pruebas empleadas fue evaluada por expertos y las pruebas seleccionadas fueron aplicadas a 5732 escolares de estas edades. Se analizaron los resultados mediante la técnica de componentes principales que permitió la extracción de un solo factor formado por 5 tareas motrices relacionadas con la coordinación motriz global. El Coeficiente de Correlación Intraclase (CCI permitió obtener una fiabilidad test-retest de (CCI=0,91. Asimismo, mostró una satisfactoria validez criterial con la batería MABC-2 uno de los más reconocidos para la detección de problemas de coordinación motriz. Las propiedades métricas del presente test son muy satisfactorias y ofrecen buenas posibilidades para ser empleado por los profesores de educación física en sus clases por su bajo coste económico, poco tiempo de aplicación reclamado y poseer normas ajustadas por edad y sexo. Asimismo, este test ofrece el potencial de poder servir para detectar a los alumnos con sospecha de poseer problemas de coordinación motriz y por lo tanto contribuir a la mejora de los programas de educación física que palíen esta condición. Abstract The purpose of this study was the development and metric evaluation of the SportComp Motor Test, an instrument designed to aid physical education teachers in the assessment of gross motor

  2. A Methodology for Evaluation of Inservice Test Intervals for Pumps and Motor-Operated Valves

    International Nuclear Information System (INIS)

    Cox, D.F.; Haynes, H.D.; McElhaney, K.L.; Otaduy, P.J.; Staunton, R.H.; Vesely, W.E.

    1999-01-01

    Recent nuclear industry reevaluation of component inservice testing (IST) requirements is resulting in requests for IST interval extensions and changes to traditional IST programs. To evaluate these requests, long-term component performance and the methods for mitigating degradation need to be understood. Determining the appropriate IST intervals, along with component testing, monitoring, trending, and maintenance effects, has become necessary. This study provides guidelines to support the evaluation of IST intervals for pumps and motor-operated valves (MOVs). It presents specific engineering information pertinent to the performance and monitoring/testing of pumps and MOVs, provides an analytical methodology for assessing the bounding effects of aging on component margin behavior, and identifies basic elements of an overall program to help ensure component operability. Guidance for assessing probabilistic methods and the risk importance and safety consequences of the performance of pumps and MOVs has not been specifically included within the scope of this report, but these elements may be included in licensee change requests

  3. Test of gross motor development-2 for Filipino children with intellectual disability: validity and reliability.

    Science.gov (United States)

    Capio, Catherine M; Eguia, Kathlynne F; Simons, Johan

    2016-01-01

    This study aimed to examine aspects of validity and reliability of the Test of Gross Motor Development-2 (TGMD-2) in Filipino children with intellectual disability. Content and construct validity were verified, as well as inter-rater and intra-rater reliability. Two paediatric physiotherapists tested 81 children with intellectual disability (mean age = 9.29 ± 2.71 years) on locomotor and object control skills. Analysis of covariance, confirmatory factor analysis and analysis of variance were used to test validity, while Cronbach's alpha, intra-class correlation coefficients (ICC) and Bland-Altman plots were used to examine reliability. Age was a significant predictor of locomotor and object control scores (P = 0.004). The data fit the hypothesised two-factor model with fit indices as follows: χ(2) = 33.525, DF = 34, P = 0.491, χ(2)/DF = 0.986. As hypothesised, gender was a significant predictor for object control skills (P = 0.038). Participants' mean scores were significantly below mastery (locomotor, P intellectual disability.

  4. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  5. Irradiation test of component for radiation-resistant small sized motor

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2009-01-01

    A small-sized motor with a resistance to radiation was developed. This motor has been able to operate at a gamma-ray dose of a value 700 times as high as the specification of a commercial motor. The present work describes results of post-irradiation examinations (PIEs) to evaluate effects of neutron irradiation on the lifetime of some major components of the motor such as a bearing, a magnet and a fixation agent for a field coil wire. It became clear from the results of PIEs that the radiation-resistance dose of the motor using a Sm-Co magnet will be expected to be one order of magnitude higher than that of the motor using a Nb-Fe-B magnet.

  6. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  7. Application of signature analysis for determining the operational readiness of motor-operated valves under blowdown test conditions

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1988-01-01

    In support of the NRC-funded Nuclear Plant Aging Research (NPAR) program, Oak Ridge National Laboratory (ORNL) has carried out a comprehensive aging assessment of Motor-Operated Valves (MOVs). As part of this work, ORNL participated in the Gate Valve Flow Interruption Blowdown (GVFIB) tests carried out in Huntsville, Alabama. The GVFIB tests were intended primarily to determine the behavior of motor-operated gate valves under the temperature, pressure, and flow conditions expected to be experienced by isolation valves in Boiling Water Reactors (BWRs) during a high energy line break (blowdown) outside of containment. In addition, the tests provided an excellent opportunity to evaluate signature analysis methods for determining the operational readiness of the MOVs under those accident conditions. ORNL acquired motor current and torque switch shaft angular position data on two test MOVs during various times of the GVFIB tests. The reduction in operating ''margin'' of both MOVs due to the presence of additional valve running loads imposed by high flow was clearly observed in motor current and torque switch angular position signatures. In addition, the effects of differential pressure, fluid temperature, and line voltage on MOV operations were observed and more clearly understood as a result of utilizing signature analysis techniques. 1 ref.; 16 figs

  8. The ACTH4–9 analog ORG 2766 ‘normalizes’ the changes in motor activities of rats elicited by housing and test conditions

    NARCIS (Netherlands)

    Wolterink, G.; Ree, J.M. van

    1987-01-01

    Motor activities of rats were decreased by short-term (7 days) social isolation as well as by intense light test conditions. The ACTH4-9 analog ORG 2766, s.c. administered 50 min before testing, dose-dependently decreased the high motor activities of group-housed housed rats tested under low light

  9. Building the Vocational Phase of the Computerized Motor Skills Testing System for Use in the Electronics and Electrical Engineering Group and Hospitality Group

    Science.gov (United States)

    Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Kunde

    2016-01-01

    Technical and vocational education emphasizes the development and training of hand motor skills. However, some problems exist in the current career and aptitude tests in that they do not truly measure the hand motor skills. This study used the Nintendo Wii Remote Controller as the testing device in developing a set of computerized testing tools to…

  10. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar.

    Science.gov (United States)

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar.

  11. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  12. Interrater reliability assessment using the Test of Gross Motor Development-2.

    Science.gov (United States)

    Barnett, Lisa M; Minto, Christine; Lander, Natalie; Hardy, Louise L

    2014-11-01

    The aim was to examine interrater reliability of the object control subtest from the Test of Gross Motor Development-2 by live observation in a school field setting. Reliability Study--cross sectional. Raters were rated on their ability to agree on (1) the raw total for the six object control skills; (2) each skill performance and (3) the skill components. Agreement for the object control subtest and the individual skills was assessed by an intraclass correlation (ICC) and a kappa statistic assessed for skill component agreement. A total of 37 children (65% girls) aged 4-8 years (M = 6.2, SD = 0.8) were assessed in six skills by two raters; equating to 222 skill tests. Interrater reliability was excellent for the object control subset (ICC = 0.93), and for individual skills, highest for the dribble (ICC = 0.94) followed by strike (ICC = 0.85), overhand throw (ICC = 0.84), underhand roll (ICC = 0.82), kick (ICC = 0.80) and the catch (ICC = 0.71). The strike and the throw had more components with less agreement. Even though the overall subtest score and individual skill agreement was good, some skill components had lower agreement, suggesting these may be more problematic to assess. This may mean some skill components need to be specified differently in order to improve component reliability. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. The development and testing of a linear induction motor being fed from the source with limited electric power

    Science.gov (United States)

    Tiunov, V. V.

    2018-02-01

    The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.

  14. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  15. Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg

    Directory of Open Access Journals (Sweden)

    Kevin Dwi Prasetio

    2017-01-01

    Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done

  16. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  17. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  18. Scale Effects on Solid Rocket Combustion Instability Behaviour

    OpenAIRE

    David R. Greatrix

    2011-01-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combusti...

  19. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  20. RELATIONS BETWEEN GENERAL MOTOR SKILLS AND HANDBALL SPECIFIC TEST "BALL SLALOM" IN STUDENTS OF THE IV GRADE OF PRIMARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Dragan Branković

    2012-09-01

    Full Text Available Teaching physical education and physical training of children, should be appropriate to their age abilities and needs. Acquire the diversified movement experience is a priority of physical education in junior school age. Students fourth grade of primary school - age 10-11 years, in the sensitive period for developing coordination and speed capabilities. Sports game handball and mode of the game "mini-handball", which is adapted to students age abilities and spatial characteristics of the majority of primary schools, abundant with various tasks, specifically dominated by natural forms of movement - running, jumping, throwing. Therefore, handball has a significant role in solving the tasks of physical education. The specific motor tests and relations with the general motor skills are particularly important for continuous monitoring of motor development of children. The survey was conducted on 79 boys fourth grade of primary school who participated in the electoral sport of handball in the regular physical education classes. The results of the handball test "ball slalom" and its relation with general motor skills of students fourth grade of primary school, should contribute to the perception of the value of handball as the content of physical education, but also to contribute to the selection and forecast performance of children in handball.

  1. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  2. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  3. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  4. Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation

    Science.gov (United States)

    Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif

    2018-04-01

    A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.

  5. Comparação entre os processos de Cold Test e Hot Test em uma empresa fabricante de motores diesel

    Directory of Open Access Journals (Sweden)

    Pablo Fogaça

    2017-10-01

    Full Text Available Resumo O teste a frio (Cold Test é um processo inovador no Brasil com relação aos testes em motores diesel. Esse processo foi implementado em uma empresa fabricante de motores diesel, com o intuito de ser o principal teste de validação antes de os motores serem enviados ao cliente. Partindo-se dessa hipótese, surgiu o principal motivo desta investigação: é possível a substituição plena do teste a quente (Hot Test pelo teste a frio (Cold Test? Essa foi uma pergunta impactante, visto que o Hot Test é um processo confiável e consagrado há mais de 18 anos. O método utilizado nesta pesquisa foi o estudo de caso. A investigação detalhada identificou vários critérios de comparação dos dois processos, tais como: fluxogramas, eficácia, eficiência, complexidade, níveis de aprovação, planilhas de bordo e documentos FMEA da empresa. Os resultados mostraram que o processo Cold Test é mais vantajoso e sustentável, entretanto os dois processos são complementares. O estudo comprovou que não foi possível a plena substituição do Hot Test pelo Cold Test, principalmente pelo fato da não detecção de vazamentos no processo Cold Test.

  6. Rocket-Powered Parachutes Rescue Entire Planes

    Science.gov (United States)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  7. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  8. Test of a motor theory of long-term auditory memory.

    Science.gov (United States)

    Schulze, Katrin; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2012-05-01

    Monkeys can easily form lasting central representations of visual and tactile stimuli, yet they seem unable to do the same with sounds. Humans, by contrast, are highly proficient in auditory long-term memory (LTM). These mnemonic differences within and between species raise the question of whether the human ability is supported in some way by speech and language, e.g., through subvocal reproduction of speech sounds and by covert verbal labeling of environmental stimuli. If so, the explanation could be that storing rapidly fluctuating acoustic signals requires assistance from the motor system, which is uniquely organized to chain-link rapid sequences. To test this hypothesis, we compared the ability of normal participants to recognize lists of stimuli that can be easily reproduced, labeled, or both (pseudowords, nonverbal sounds, and words, respectively) versus their ability to recognize a list of stimuli that can be reproduced or labeled only with great difficulty (reversed words, i.e., words played backward). Recognition scores after 5-min delays filled with articulatory-suppression tasks were relatively high (75-80% correct) for all sound types except reversed words; the latter yielded scores that were not far above chance (58% correct), even though these stimuli were discriminated nearly perfectly when presented as reversed-word pairs at short intrapair intervals. The combined results provide preliminary support for the hypothesis that participation of the oromotor system may be essential for laying down the memory of speech sounds and, indeed, that speech and auditory memory may be so critically dependent on each other that they had to coevolve.

  9. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  10. Risk evaluation for motor operated valves in an Inservice Testing Program at a PWR nuclear power plant in Taiwan

    International Nuclear Information System (INIS)

    Li, Y.C.; Chen, K.T.; Su, Y.L.; Ting, K.; Chien, F.T.; Li, G.D.; Huang, S.H.

    2012-01-01

    Safety related valves such as Motor Operated Valves (MOV), Air Operated Valves (AOV) or Check Valves (CV) play an important role in nuclear power plant. Functioning of these valves mainly aim at emergency reactivity control, post-accident residue heat removal, post-accident radioactivity removal and containment isolation when a design basis accident occurred. In order to maintain these valves under operable conditions, an Inservice Testing Program (IST) is defined for routine testing tasks based on the ASME Boiler and Pressure Vessel Code section XI code requirements. Risk based Inservice Testing Programs have been studied and developed extensively in the nuclear energy industry since the 1990s. Risk Based evaluations of IST can bring positive advantages to the licensee such as identifying the vulnerability of the system, reducing unnecessary testing burden, concentrating testing resources on the critical pass oriented valves and saving plant’s personnel dose exposure. This risk evaluation is incorporated with quantitative and qualitative analyses to the Motor Operated Valves under current Inservice Testing Program for PWR nuclear power plant in Taiwan. With the outcome of the risk classifications for the safety related MOVs through numerical or deterministic analyses, a risk based testing frequency relief is suggested to demonstrate the benefits received from the risk based Inservice Testing Program. The goal made of this study, it could be as a reference and cornerstone for the licensee to perform overall scope Risk-Informed Inservice Testing Program (RI-IST) evaluation by referring relevant methodologies established in this study.

  11. Testing the Motor Simulation Account of Source Errors for Actions in Recall

    Directory of Open Access Journals (Sweden)

    Nicholas Lange

    2017-09-01

    Full Text Available Observing someone else perform an action can lead to false memories of self-performance – the observation inflation effect. One explanation is that action simulation via mirror neuron activation during action observation is responsible for observation inflation by enriching memories of observed actions with motor representations. In three experiments we investigated this account of source memory failures, using a novel paradigm that minimized influences of verbalization and prior object knowledge. Participants worked in pairs to take turns acting out geometric shapes and letters. The next day, participants recalled either actions they had performed or those they had observed. Experiment 1 showed that participants falsely retrieved observed actions as self-performed, but also retrieved self-performed actions as observed. Experiment 2 showed that preventing participants from encoding observed actions motorically by taxing their motor system with a concurrent motor task did not lead to the predicted decrease in false claims of self-performance. Indeed, Experiment 3 showed that this was the case even if participants were asked to carefully monitor their recall. Because our data provide no evidence for a motor activation account, we also discussed our results in light of a source monitoring account.

  12. Project NEO Specific Impulse Testing Solutions

    Science.gov (United States)

    Baffa, Bill

    2018-01-01

    The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.

  13. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  14. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  15. AUTOMATED MEASURING COMPLEX FOR ACCEPTANCE TESTING OF DC AND UNDULATED-CURRENT TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    A. Yu. Drubetskyi

    2016-12-01

    Full Text Available Purpose. In the paper it is necessary: 1 to familiarize the reader with the modern classification of measurement and diagnostics, familiarize with problems of automating the measurement of basic parameters during program execution of qualification tests of traction motors; 2 to make recommendations to improve the measurement ac-curacy, reduce labor intensity of work for carrying out measurements, and reduce the requirements for the qualification of the staff; 3 to provide practical implementation of measurement system, built on the basis of the practical recommendations contained in the article. Methodology. The work presents the classification of measurement and diagnostic tools. The author considered a list of equipment that can be used in measurement systems, as well as third-party options for measuring complex and measuring complex using stand management system. Their functional schemes were proposed. The author compared the advantages and disadvantages of these schemes to make recommendations on areas of their optimal use. Findings. Having analyzed the functional scheme of measuring systems, it was found that the use of the control system microcontroller as a measuring complex is expedient if the measurements have largely a test process control function. The use of a third-party measuring complex is more appropriate in cases when it is required: to eliminate dependence on the stand management system, to provide high mobility and reduce the requirements for the qualification of the staff. Originality. The work presents a brief over-view of the measurement means. The author developed the functional schemes of measuring systems using stand management system and third-party measuring complex, proposed the criteria for evaluating their optimal use. Practical value. Based on the proposed functional diagram, the measuring system on National Instruments hard-ware and software basis was set up. The sensors by LEM Company were used as primary

  16. Performance in normal subjects on a novel battery of driving-related sensory-motor and cognitive tests.

    Science.gov (United States)

    Innes, Carrie R H; Jones, Richard D; Anderson, Tim J; Hollobon, Susan G; Dalrymple-Alford, John C

    2009-05-01

    Currently, there is no international standard for the assessment of fitness to drive for cognitively or physically impaired persons. A computerized battery of driving-related sensory-motor and cognitive tests (SMCTests) has been developed, comprising tests of visuoperception, visuomotor ability, complex attention, visual search, decision making, impulse control, planning, and divided attention. Construct validity analysis was conducted in 60 normal, healthy subjects and showed that, overall, the novel cognitive tests assessed cognitive functions similar to a set of standard neuropsychological tests. The novel tests were found to have greater perceived face validity for predicting on-road driving ability than was found in the equivalent standard tests. Test-retest stability and reliability of SMCTests measures, as well as correlations between SMCTests and on-road driving, were determined in a subset of 12 subjects. The majority of test measures were stable and reliable across two sessions, and significant correlations were found between on-road driving scores and measures from ballistic movement, footbrake reaction, hand-control reaction, and complex attention. The substantial face validity, construct validity, stability, and reliability of SMCTests, together with the battery's level of correlation with on-road driving in normal subjects, strengthen our confidence in the ability of SMCTests to detect and identify sensory-motor and cognitive deficits related to unsafe driving and increased risk of accidents.

  17. CANONICAL RELATIONS MORPHOLOGIC FEATURES, MOTOR ABILITIES AND TESTS WITH SITACIONI BASKETBALL PLAYERS AGED 12-14 YEARS

    Directory of Open Access Journals (Sweden)

    Zulfo Aruković

    2013-07-01

    Full Text Available The aim of this istraživanjua is identifying the canonical correlation between two multidimensional space, the space of morphological characteristics and basic mo¬tor skills room, basketball od12 to 14 years of success on the result of situ¬atio¬nal-motor tests of basketball games. The study was conducted on a sample of 70 players.

  18. A test of speech motor control on word level productions: The SPA Test (Dutch: Screening Pittige Articulatie)

    NARCIS (Netherlands)

    P. Dejonckere; F. Wijnen; Dr. Yvonne van Zaalen

    2009-01-01

    The primary objective of this article is to study whether an assessment instrument specifically designed to assess speech motor control on word level productions would be able to add differential diagnostic speech characteristics between people who clutter and people who stutter. It was hypothesized

  19. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  20. Design and qualification of an UHV system for operation on sounding rockets

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, 28359, Germany and German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Seidel, Stephan Tobias; Becker, Dennis; Lachmann, Maike Diana [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167 (Germany); Scharringhausen, Marco [German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Rasel, Ernst Maria [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167, Bremen (Germany)

    2016-05-15

    The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, as well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.

  1. 78 FR 78474 - Knowledge Testing of New Entrant Motor Carriers, Freight Forwarders and Brokers

    Science.gov (United States)

    2013-12-26

    ... regulations and industry practices for persons seeking registration authority as motor carriers (property... held at the Music City Center, 201 Fifth Ave. South, Nashville, TN 37203 in Room 202 C. In addition to... evidence of the individuals' knowledge of related rules, regulations, and industry practices.'' In...

  2. Motor coordination, working memory, and academic achievement in a normative adolescent sample: testing a mediation model

    NARCIS (Netherlands)

    Rigoli, D; Piek, J.P.; Kane, R; Oosterlaan, J.

    2012-01-01

    The aim of the present study was to examine whether the relationship between motor coordination and academic achievement is mediated by working memory (WM) in a normative adolescent sample. Participants included 93 adolescents aged 12-16. The Movement Assessment Battery for Children-2 provided three

  3. Antigravity posture for analysis of motor unit recruitment: the "45 degree test".

    Science.gov (United States)

    Petajan, J H

    1990-04-01

    The maximum number of different motor unit action potentials (MUAPs), their firing rates, and total MUAP spikes/second recorded by monopolar needle electrode were determined for the biceps brachii muscle during 45-degree elbow flexion. There were 4.2 +/- 1.6 different MUAPs exceeding 100 microV. Mean firing rate was 10.0 +/- 1.7 Hz, and total MUAP spikes/second were 40.3 +/- 18. Recordings from 16 patients with neurogenic atrophy (NA) and just detectable weakness revealed corresponding values of 3.1 +/- 1.7 different MUAPs, a mean rate of 10.2 +/- 1.5 Hz and 30.6 +/- 19 total MUAP spikes/second, not different from normal. In these patients, increased force of muscle contraction was required to activate high threshold motor units firing at high rates. In each of 4 patients just able to hold the arm against gravity, 1 or 2 "overdriven" motor units firing at a mean rate greater than 20 Hz were recorded. In 8 patients with myopathy and just detectable weakness, greater than 100 total MUAP spikes/second were recorded. Antigravity posture as a reference level of innervation has the advantage that motor unit firing rate is set about that of physiologic tremor (10-13 Hz). Its application was helpful in quantifying recruitment.

  4. Developmental Differences in Motor Task Integration: A Test of Pascual-Leone's Theory of Constructive Operators.

    Science.gov (United States)

    Todor, John I.

    1979-01-01

    Assesses the ability of Pascual-Leone's Theory of Constructive Operators to predict the minimum age or maturational level at which integration of a motor task could be achieved. Subjects were 114 elementary school children ranging in age from 5 to 12. (Author/MP)

  5. Field test of motor cars running on methanol-petrol mixtures. Field test methanol/benzine variabele mengsels in 15 auto's

    Energy Technology Data Exchange (ETDEWEB)

    Hollemans, B; Van der Weide, J

    1985-01-01

    As part of the Dutch National Program Plan on Energy Research the Research Institute for Road Vehicles of the Netherlands Organization for Applied Scientific Research TNO carried out a field test of motor cars using as motor fuel methanol-petrol mixtures ranging from 0% to 100% methanol. This has been made possible by using a sensor developed for alcohol-petrol mixtures coupled with a control system. The fleet, 15 Volvo 340 cars, was tested in the period July 1982-April 1985. They covered together 1,118,558 km; 'average mixture': 65% methanol; 'average fuel consumption': 14.4 liter per 100 km. Detailed information is given on: fuel consumption, performance, troubles, maintenance, etc. A special and separate appendix gives information on complaints and troubles in general and for each car individually.

  6. Measurement properties of the upright motor control test for adults with stroke: a systematic review.

    Science.gov (United States)

    Gorgon, Edward James R; Lazaro, Rolando T

    2016-01-01

    The Upright Motor Control Test (UMCT) has been used in clinical practice and research to assess functional strength of the hemiparetic lower limb in adults with stroke. It is unclear if evidence is sufficient to warrant its use. The purpose of this systematic review was to synthesize available evidence on the measurement properties of the UMCT for stroke rehabilitation. Electronic databases that indexed biomedical literature were systematically searched from inception until October 2015 (week 4): Embase, PubMed, Web of Science, CINAHL, PEDro, Cochrane Library, Scopus, ScienceDirect, SPORTDiscus, LILACS, DOAJ, and Google Scholar. All studies that had used the UMCT in the time period covered underwent hand searching for any additional study. Observational studies involving adults with stroke that explored any measurement property of the UMCT were included. The COnsensus-based Standards for the selection of health Measurement INstruments was used to assess the methodological quality of included studies. The CanChild Outcome Measures Rating Form was used for extracting data on measurement properties and clinical utility. The search yielded three methodologic studies that addressed criterion-related validity and contruct validity. Two studies of fair methodological quality demonstrated moderate-level evidence that Knee Extension and Knee Flexion subtest scores were predictive of community-level and household-level ambulation. One study of fair methodological quality provided limited-level evidence for the correlation of Knee Extension subtest scores with a laboratory measure of ground reaction forces. No published studies formally assessed reliability, responsiveness, or clinical utility. Limited information on responsiveness and clinical utility dimensions could be inferred from the included studies. The UMCT is a practical assessment tool for voluntary control or functional strength of the hemiparetic lower limb in standing in adults with stroke. Although different

  7. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  8. Transient and steady-state tests of the space power research engine with resistive and motor loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  9. Pegasus Rocket Model

    Science.gov (United States)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  10. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    Science.gov (United States)

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  11. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  12. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.

    Science.gov (United States)

    Gabbard, Carl; Ammar, Diala; Cordova, Alberto

    2009-01-01

    We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.

  13. Preliminary Results Obtained from Flight Test of a 1/7-Scale Rocket-Powered Model of the Grumman XF10F Airplane Configuration in the Swept-Wing Condition, TED No. NACA DE 354

    Science.gov (United States)

    Gardner, William N.

    1951-01-01

    A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  15. Considerations for the selection of an applicable energy efficiency test procedure for electric motors in Malaysia: Lessons for other developing countries

    International Nuclear Information System (INIS)

    Yanti, P.A.A.; Mahlia, T.M.I.

    2009-01-01

    Electric motors are a major energy-consuming appliance in the industrial sector. According to a survey, electric motors account for more than 70% of the total growth from 1991 to 2004 in electricity consumption in this sector in Malaysia. To reduce electricity consumption, Malaysia should consider resetting the minimum energy efficiency standards for electric motors sometime in the coming year. The first step towards adopting energy efficiency standards is the creation of a procedure for testing and rating equipment. An energy test procedure is the technical foundation for all energy efficiency standards, energy labels and other related programs. The test conditions in the test procedure must represent the conditions of the country. This paper presents the process for the selection of an energy test procedure for electric motors in Malaysia based on the country's conditions and requirements. The adoption of test procedures for electric motors internationally by several countries is also discussed in this paper. Even though the paper only discusses the test procedure for electric motors in Malaysia, the methods can be directly applied in other countries without major modifications.

  16. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  17. Design and testing of a novel piezoelectric micro-motor actuated by asymmetrical inertial impact driving principle.

    Science.gov (United States)

    Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming

    2014-03-01

    In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.

  18. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  19. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  20. A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets

    Science.gov (United States)

    Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele

    2016-12-01

    Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.

  1. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  2. Development of method for detecting signs deterioration in insulator of high-voltage motors. 2. Test Results of a new on-line partial discharge monitor for high-voltage motors in nuclear power stations

    International Nuclear Information System (INIS)

    Tochio, Atsushi; Kaneda, Yoshiharu; Urakawa, Nobuo

    2000-01-01

    For the purpose of early detection of deterioration of insulators in high-voltage motors which are widely utilized in nuclear power stations, a new on-line partial discharge (PD) monitor was developed and was tested for sixteen motors which were practically running in nuclear power stations. From the test results, it is seen that (1) good signal to noise ratio is obtained by adopting a two frequency correlation method, (2) a resistance temperature detector (RTD) in a motor has sufficient sensitivity to detect PD, (3) when RTD is not installed or is unable to use for this purpose, a radio frequency current transformer (RFCT) can be utilized, although its sensitivity is about 1/10 of that of the RTD monitor. Finally we found a good correlation between the results of this on-line method and the conventional off-line method in which the insulator resistance of a concerned motor was measured during its shut-down, and thereby we demonstrated that this method could be applicable to the on-line test of high-voltage motors in nuclear power stations. (author)

  3. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

    Science.gov (United States)

    Kibbey, Timothy P.

    2012-01-01

    Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

  4. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  5. A test of motor skill-specific action embodiment in ice-hockey players.

    Science.gov (United States)

    Ong, Nicole T; Lohse, Keith R; Chua, Romeo; Sinnett, Scott; Hodges, Nicola J

    2014-07-01

    To further our understanding of the role of the motor system in comprehending action-related sentences, we compared action experts (athletes) to visual experts (fans) and novices when responding with an action-specific effector (either hand or foot). These conditions allowed inferences about the degree and specificity of embodiment in language comprehension. Ice hockey players, fans and novices made speeded judgments regarding the congruence between an auditorily presented sentence and a subsequently presented picture. Picture stimuli consisted of either hockey or everyday items. Half of these pictures 'matched' the action implied in the preceding sentence. Further, the action in these images involved either primarily the hand or the foot. For everyday items, action-matched items were responded to faster than action-mismatched items. However, only the players and fans showed the action-match effect for hockey items. There were no consistent effector-stimuli compatibility effects, nor skill-based interactions with compatibility, suggesting that the action-match effect was not based on motor ability per se, but rather a construction of the action based on knowledge or visual experience with the hockey related sentences. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Dynamic testing of POSI-SEAL motor-operated butterfly valves using strain gages

    International Nuclear Information System (INIS)

    Richard, M.C.; Chiou, D.

    1994-01-01

    Utilities operating nuclear power plants recognize that the correct functioning of all motor-operated valves, and particularly those in safety-related systems, is of paramount importance. The U.S. Nuclear Regulatory Commission has issued Generic Letter 89-10 relative to this concern. Operability must be demonstrated under design-basis conditions. In order to demonstrate operability of motor-operated butterfly valves, the valve stem torque must be determined. The valve stem torque is a function of seat material, stem packing, stem bearing friction, and hydrodynamic lift and drag. The total valve operating hydrodynamic torque can be predicted using the valve manufacturer's data and the differential pressure. In order to validate the valve manufacturer's data, the actual total valve hydrodynamic torque is measured using strain gages mounted directly on the valve stem. This paper presents the results of comparing the predicted total valve operating hydrodynamic torque with the actual total valve operating hydrodynamic torque for six POSI-SEAL Class 150 high performance butterfly valves

  7. Motor imagery in Asperger syndrome: testing action simulation by the hand laterality task.

    Directory of Open Access Journals (Sweden)

    Massimiliano Conson

    Full Text Available Asperger syndrome (AS is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right; mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms.

  8. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  9. Acute food deprivation separates motor-activating from anxiolytic effects of caffeine in a rat open field test model.

    Science.gov (United States)

    Schulz, Daniela

    2018-03-14

    Similar doses of caffeine have been shown to produce either anxiolytic or anxiogenic effects in rats. The reasons for these conflicting results are not known. We hypothesized that food deprivation stress interacts with the stimulant effects of caffeine to increase anxiety-like behavior. We tested 32 female Sprague Dawley rats in a dim open field for 10 min. Half of the animals were food deprived for 24 h and injected (intraperitoneal) with caffeine (30 mg/kg; n=7) or deionized water (n=8) 20 min before the open field test. The other half was nondeprived and injected with caffeine (30 mg/kg; n=8) or deionized water (n=9). Results showed that nondeprived rats injected with caffeine moved longer distances and at a greater speed in the periphery and moved longer distances and spent more time in the center than rats treated with vehicle, indicative of motor-activating and/or anxiolytic effects of caffeine. Rats that were food deprived and injected with caffeine moved longer distances in the center and tended to spend more time there, indicative of anxiolysis. We conclude that caffeine had two effects on behavior, motor activation and a reduction of anxiety, and that food deprivation separated these effects.

  10. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  11. Rocket Based Combined Cycle (RBCC) Engine

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  12. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)

  13. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    Science.gov (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  14. A Methodology for Evaluation of Inservice Test Intervals for Pumps and Motor Operated Valves

    International Nuclear Information System (INIS)

    McElhaney, K.L.

    1999-01-01

    The nuclear industry has begun efforts to reevaluate inservice tests (ISTs) for key components such as pumps and valves. At issue are two important questions--What kinds of tests provide the most meaningful information about component health, and what periodic test intervals are appropriate? In the past, requirements for component testing were prescribed by the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. The tests and test intervals specified in the Code were generic in nature and test intervals were relatively short. Operating experience has shown, however, that performance and safety improvements and cost savings could be realized by tailoring IST programs to similar components with comparable safety importance and service conditions. In many cases, test intervals may be lengthened, resulting in cost savings for utilities and their customers

  15. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    Science.gov (United States)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  16. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  17. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  18. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  19. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Science.gov (United States)

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Beginning on June 1...

  20. 10 CFR Appendix B to Subpart B of... - Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors

    Science.gov (United States)

    2010-01-01

    ... Efficiency of Electric Motors B Appendix B to Subpart B of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Pt. 431... Efficiency of Electric Motors 1. Definitions. Definitions contained in §§ 431.2 and 431.12 are applicable to...