WorldWideScience

Sample records for rocket exhaust clouds

  1. In situ exhaust cloud measurements. [particle size distribution and cloud physics of rocket exhaust clouds

    Science.gov (United States)

    Wornom, D.

    1980-01-01

    Airborne in situ exhaust cloud measurements were conducted to obtain definitions of cloud particle size range, Cl2 content, and HCl partitioning. Particle size distribution data and Cl2 measurements were made during the May, August, and September 1977 Titan launches. The measurements of three basic effluents - HCl, NO sub X, and particles - against minutes after launch are plotted. The maximum observed HCl concentration to the maximum Cl2 concentration are compared and the ratios of the Cl2 to the HCl is calculated.

  2. Atmospheric scavenging of solid rocket exhaust effluents

    Science.gov (United States)

    Fenton, D. L.; Purcell, R. Y.

    1978-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  3. Implementation of microwave transmissions for rocket exhaust plume diagnostics

    Science.gov (United States)

    Coutu, Nicholas George

    Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

  4. Infrared spectroradiometer for rocket exhaust analysis

    Science.gov (United States)

    Herget, W. F.

    1968-01-01

    Infrared spectroradiometer measures high-resolution spectral absorption, emission, temperature, and concentration of chemical species in radically symmetric zones of the exhaust plumes of large rocket engines undergoing static firing tests. Measurements are made along predetermined lines of sight through the plume.

  5. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  6. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  7. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    Science.gov (United States)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  8. Stratospheric aluminum oxide. [possibly from solid-fuel rocket exhausts

    Science.gov (United States)

    Brownlee, D. E.; Tomandl, D.; Ferry, G. V.

    1976-01-01

    Balloons and U-2 aircraft were used to collect micrometer-sized stratospheric aerosols. It was discovered that for the past 6 years at least, aluminum oxide spheres have been the major stratospheric particulate in the size range from 3 to 8 micrometers. The most probable source of the spheres is the exhaust from solid-fuel rockets.

  9. Ecological effects and environmental fate of solid rocket exhaust

    Science.gov (United States)

    Nimmo, B.; Stout, I. J.; Mickus, J.; Vickers, D.; Madsen, B.

    1974-01-01

    Specific target processes were classified as to the chemical, chemical-physical, and biological reactions and toxic effects of solid rocket emissions within selected ecosystems at Kennedy Space Center. Exposure of Citris seedlings, English peas, and bush beans to SRM exhaust under laboratory conditions demonstrated reduced growth rates, but at very high concentrations. Field studies of natural plant populations in three diverse ecosystems failed to reveal any structural damage at the concentration levels tested. Background information on elemental composition of selected woody plants from two terrestrial ecosystems is reported. LD sub 50 for a native mouse (peromysous gossypinus) exposed to SRM exhaust was determined to be 50 ppm/g body weight. Results strongly indicate that other components of the SRM exhaust act synergically to enhance the toxic effects of HCl gas when inhaled. A brief summary is given regarding the work on SRM exhaust and its possible impact on hatchability of incubating bird eggs.

  10. STS-31 Discovery, OV-103, rockets through low-lying clouds after KSC liftoff

    Science.gov (United States)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, rides above the firey glow of the solid rocket boosters (SRBs) and space shuttle main engines (SSMEs) and a long trail of exhaust as it heads toward Earth orbit. Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B is covered in an exhaust cloud moments after the liftoff of OV-103 at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The exhaust plume pierces the low-lying clouds as OV-103 soars into the clear skies above. A nearby waterway appears in the foreground.

  11. Bipropellant rocket exhaust plume analysis on the Galileo spacecraft

    Science.gov (United States)

    Guernsey, C. S.; Mcgregor, R. D.

    1986-01-01

    This paper describes efforts to quantify the contaminant flow field produced by 10 N thrust bipropellant rocket engines used on the Galileo spacecraft. The prediction of the composition of the rocket exhaust by conventional techniques is found to be inadequate to explain experimental observations of contaminant deposition on moderately cold (200 K) surfaces. It is hypothesized that low volatility contaminants are formed by chemical reactions which occur on the surfaces. The flow field calculations performed using the direct simulation Monte Carlo method give the expected result that the use of line-of-sight plume shields may have very little effect on the flux of vapor phase contaminant species to a surface, especially if the plume shields are located so close to the engine that the interaction of the plume with the shield is in the transition flow regime. It is shown that significant variations in the exhaust plume composition caused by nonequilibrium effects in the flow field lead to very low concentrations of species which have high molecular weights in the more rarefied regions of the flow field. Recommendations for the design of spacecraft plume shields and further work are made.

  12. Experimental and computational data from a small rocket exhaust diffuser

    Science.gov (United States)

    Stephens, Samuel E.

    1993-06-01

    The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.

  13. Sublimation of ice particles from rocket exhausts in the upper atmosphere

    OpenAIRE

    2003-01-01

    The process of sublimation of ice particles from a rocket exhaust in the upper atmosphere is examined. Heating by solar radiation and losses of energy by means thermal radiation and sublimation are taken into account in the thermal balance of the ice particles. The time dependences of size and temperature of the ice particles are obtained. An estimation of water vapor concentration around the rocket trajectory is made. The process of sublimation of the rocket exhaust ice particles may be impo...

  14. Lander rocket exhaust effects on Europa regolith nitrogen assays

    Science.gov (United States)

    Lorenz, Ralph D.

    2016-08-01

    Soft-landings on large worlds such as Europa or our Moon require near-surface retropropulsion, which leads to impingement of the rocket plume on the surface. Surface modification by such plumes was documented on Apollo and Surveyor, and on Mars by Viking, Curiosity and especially Phoenix. The low temperatures of the Europan regolith may lead to efficient trapping of ammonia, a principal component of the exhaust from monopropellant hydrazine thrusters. Deposited ammonia may react with any trace organics, and may overwhelm the chemical and isotopic signatures of any endogenous nitrogen compounds, which are likely rare on Europa. An empirical correlation of the photometrically-altered regions ('blast zones') around prior lunar and Mars landings is made, indicating A=0.02T1.5, where A is the area in m2 and W is the lander weight (thus, ~thrust) at landing in N: this suggests surface alteration will occur out to a distance of ~9 m from a 200 kg lander on Europa.

  15. Effects of Rocket Exhaust on Lunar Soil Reflectance Properties

    Science.gov (United States)

    Clegg, R. N.; Jolliff, B. L.; Robinson, M. S.; Hapke, B. W.; Plescia, J. B.

    2012-12-01

    The Apollo, Surveyor, and Luna spacecraft descent engine plumes affected the regolith at and surrounding their landing sites. Owing to the lack of rapid weathering processes on the Moon, surface alterations are still visible as photometric anomalies in Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images. These areas are interpreted as disturbance of the regolith by rocket exhaust during descent of the spacecraft, which we refer to as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters out from the landers. We use phase-ratio images for each landing site to determine the spatial extent of the disturbed regions and to quantify differences in reflectance and backscattering characteristics within the BZs compared to nearby undisturbed regolith. We also compare the reflectance changes and BZ dimensions at the Apollo sites with those at Luna and Surveyor sites. We seek to determine the effects of rocket exhaust in terms of erosion and particle redistribution, as well as the cause(s) of the reflectance variations, i.e., physical changes at the regolith surface. When approximated as an ellipse, the average Apollo BZ area is ~29,000 m2 (~175 ± 60 m by 200 ± 27 m) which is 10x larger than the average Luna BZ, and over 100x larger than the average Surveyor BZ. Moreover, BZ area scales roughly with lander mass (as a proxy for thrust). The LR-BZs are evident at the Apollo sites, especially where astronaut bioturbation has roughened the soil, leading to a 2-14% reduction in reflectance at ~30° phase. The LR-BZs at the Luna and Surveyor sites are less evident and may be mostly confined to the area below the landers. The average normalized reflectance in the HR-BZs for images with a 30° phase angle is 2-16% higher than in the undisturbed surrounding

  16. Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    Science.gov (United States)

    Stewart, R. B.; Grose, W. L.

    1975-01-01

    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

  17. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket plume impingement may cause significant damage and contaminate co-landed spacecraft and surrounding habitat structures during Lunar landing operations. Under...

  18. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket plume impingement can cause significant damage and contaminate co-landing spacecraft and surrounding habitat structures during lunar landing operations. CFDRC...

  19. Stennis Space Center's approach to liquid rocket engine health monitoring using exhaust plume diagnostics

    Science.gov (United States)

    Gardner, D. G.; Tejwani, G. D.; Bircher, F. E.; Loboda, J. A.; Van Dyke, D. B.; Chenevert, D. J.

    1991-01-01

    Details are presented of the approach used in a comprehensive program to utilize exhaust plume diagnostics for rocket engine health-and-condition monitoring and assessing SSME component wear and degradation. This approach incorporates both spectral and video monitoring of the exhaust plume. Video monitoring provides qualitative data for certain types of component wear while spectral monitoring allows both quantitative and qualitative information. Consideration is given to spectral identification of SSME materials and baseline plume emissions.

  20. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    OpenAIRE

    Jichao Hu; Juntao Chang; Wen Bao

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-je...

  1. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3

    Science.gov (United States)

    Susko, M.

    1979-01-01

    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  2. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  3. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  4. Status report on a real time Engine Diagnostics Console for rocket engine exhaust plume monitoring

    Science.gov (United States)

    Bircher, F. E.; Gardner, D. G.; Vandyke, D. B.; Harris, A. B.; Chenevert, D. J.

    1990-01-01

    This paper describes the work done on the Engine Diagnostics Console during the past year of development at Stennis Space Center. The Engine Diagnostics Console (EDC) is a hardware and software package which provides near real time monitoring of rocket engine exhaust plume emissions during ground testing. The long range goal of the EDC development program is to develop an instrument that can detect engine degradation leading to catastrophic failure, and respond by taking preventative measures. The immediate goal for the past year's effort is the ability to process spectral data, taken from a rocket engine's exhaust plume, and to identify in an automated and high speed manner, the elemental species and multielemental materials that are present in the exhaust plume.

  5. Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments

    Science.gov (United States)

    Stephens, J. B.; Stewart, R. B.

    1977-01-01

    The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.

  6. Characterization of rocket propellant combustion products: Description of sampling and analysis methods for rocket exhaust characterization studies

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.

    1990-06-07

    A systematic approach has been developed and experimentally validated for the sampling and chemical characterization of the rocket motor exhaust generated from the firing of scaled down test motors at the US Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama. The overall strategy was to sample and analyze major exhaust constituents in near real time, while performing off-site analyses of samples collected for the determination of trace constituents of the particulate and vapor phases. Initial interference studies were performed using atmospheric pressure burns of 1 g quantities of propellants in small chambers at Oak Ridge National Laboratory. Carbon monoxide and carbon dioxide were determined using non-dispersive infrared instrumentation. Hydrogen cyanide, hydrogen chloride, and ammonia determinations were made using ion selective electrode technology. Oxides of nitrogen were determined using chemiluminescence instrumentation. Airborne particulate mass concentration was determined using infrared forward scattering measurements and a tapered element oscillating microbalance, as well as conventional gravimetry. Particulate phase metals were determined by collection on Teflon membrane filters, followed by inductively coupled plasma and atomic absorption analysis. Particulate phase polynuclear aromatic hydrocarbons (PAH) and nitro-PAH were collected using high volume sampling on a two stage filter. Target species were extracted, and quantified by gas chromatography/mass spectrometry (GC/MS). Vapor phase species were collected on multi-sorbent resin traps, and subjected to thermal desorption GC/MS for analysis. 11 refs., 1 fig., 1 tab.

  7. Ionospheric effects of rocket exhaust products (HEAO-C, Skylab and SPS-HLLV)

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, J; Sutherland, D; Stone, S N; Duncan, L M; Behnke, R

    1980-10-01

    This paper reviews the current state of our understanding of the problem of ionospheric F-layer depletions produced by chemical effects of the exhaust gases from large rockets, with particular emphasis on the Heavy Lift Launch Vehicles (HLLV) proposed for use in the construction of solar power satellites. The currently planned HLLV flight profile calls for main second-stage propulsion confined to altitudes below 124 km, and a brief orbit-circularization maneuver at apogee. The second-stage engines deposit 9 x 10/sup 31/ H/sub 2/O and H/sub 2/ molecules between 56 and 124 km. Model computations show that they diffuse gradually into the ionospheric F region, where they lead to weak but widespread and persistent depletions of ionization and continuous production of H atoms. The orbit-circularization burn deposits 9 x 10/sup 29/ exhaust molecules at about 480-km altitude. These react rapidly with the F2 region 0/sup +/ ions, leading to a substantial (factor-of-three) reduction in plasma density, which extends over a 1000- by 2000-km region and persists for four to five hours. Also described are experimental airglow and incoherent-scatter radar measurements performed in conjunction with the 1979 launch of satellite HEAO-C, together with prelaunch and post-launch computations of the ionospheric effects. Several improvements in the model have been driven by the experimental observations. The computer model is described in some detail.

  8. Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Model calculation of the physical conditions in a jet exhaust

    Science.gov (United States)

    Platov, Yu. V.; Alpatov, V. V.; Klyushnikov, V. Yu.

    2014-01-01

    Model calculations have been performed for the temperature and pressure of combustion products in the jet exhaust of rocket engines of last stages of Proton, Molniya, and Start launchers operating in the upper atmosphere at altitudes above 120 km. It has been shown that the condensation of water vapor and carbon dioxide can begin at distances of 100-150 and 450-650 m away from the engine nozzle, respectively.

  9. An experimental and computational study of moderately underexpanded rocket exhaust plumes in a co-flowing hypersonic free stream

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.; Buttsworth, D.; Jones, T.; Brescianini, C. [Univ. of Oxford (United Kingdom)]|[Macquarie Univ., Sydney (Australia)

    1995-09-01

    Rocket plume exhaust structures are aerodynamically and thermochemically very complex and the prediction of plume properties such as temperature, velocity, pressure, chemical species concentrations and turbulence properties is a formidable task as there are no definitive models for viscous and chemical effects. Contemporary computational techniques are still in their infancy and cannot yet reliably predict plume properties. Only through validation of computer codes using experimental data, can computational models be developed to the point where they can be confidently used as design and predictive tools. The motivation for this study was to acquire well defined data for rocket plumes at low altitude hypersonic flight conditions so that the above issues could be investigated.

  10. Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing

  11. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  12. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  13. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    Science.gov (United States)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  14. Rocket

    Directory of Open Access Journals (Sweden)

    K. Karmarkar

    1952-09-01

    Full Text Available The rockets of World War II represented, not the invention of a new weapon, but the modernization of a very old one. As early as 1232 A.D, the Chinese launched rockets against the Mongols. About a hundred years later the knowledge of ledge of rockets was quite widespread and they were used to set fire to buildings and to terrorize the enemy. But as cannon developed, rockets declined in warfare. However rockets were used occasionally as weapons till about 1530 A.D. About this time improvements in artillery-rifled gun barrel and mechanism to absorb recoil-established a standard of efficiency with which rockets could not compare until World War II brought pew conditions

  15. On-board Optical Spectrometry for Detection of Mixture Ratio and Eroded Materials in Rocket Engine Exhaust Plume

    Science.gov (United States)

    Barkhoudarian, Sarkis; Kittinger, Scott

    2006-01-01

    Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.

  16. Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Heterogeneous condensation of combustion products

    Science.gov (United States)

    Platov, Yu. V.; Semenov, A. I.; Filippov, B. V.

    2014-01-01

    Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines during last stages of Proton, Molniya, and Start launchers operating in the upper atmospheric with different types of fuels is considered. Particle heating is taken into account with emission of latent heat of condensation and energy loss due to radiation and heat exchange with combustion products. Using the solution of the heat balance and condensed particle mass equations, the temporal change in the temperature and thickness of the condensate layer is obtained. Practically, no condensation of water vapor and carbon dioxide in the jet exhaust of a Start launcher occurs. In plumes of Proton and Molniya launchers, the condensation of water vapor and carbon dioxide can start at distances of 120-170 m and 450-650 m from the engine nozzle, respectively. In the course of condensation, the thickness of the "water" layer on particles can exceed 100 Å, and the thickness of carbon dioxide can exceed 60 Å.

  17. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    Science.gov (United States)

    Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet

  18. Analysis of large solid propellant rocket engine exhaust plumes using the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.

    1984-01-01

    A new solution procedure has been developed to analyze the flowfield properties in the vicinity of the Inertial Upper Stage/Spacecraft during the 1st stage (SRMI) burn. Continuum methods are used to compute the nozzle flow and the exhaust plume flowfield as far as the boundary where the breakdown of translational equilibrium leaves these methods invalid. The Direct Simulation Monte Carlo (DSMC) method is applied everywhere beyond this breakdown boundary. The flowfield distributions of density, velocity, temperature, relative abundance, surface flux density, and pressure are discussed for each species for 2 sets of boundary conditions: vacuum and freestream. The interaction of the exhaust plume and the freestream with the spacecraft and the 2-stream direct interaction are discussed. The results show that the low density, high velocity, counter flowing free-stream substantially modifies the flowfield properties and the flux density incident on the spacecraft. A freestream bow shock is observed in the data, located forward of the high density region of the exhaust plume into which the freestream gas does not penetrate. The total flux density incident on the spacecraft, integrated over the SRM1 burn interval is estimated to be of the order of 10 to the 22nd per sq m (about 1000 atomic layers).

  19. In-Flight Winds from the Drift of a Rocket Exhaust Trail.

    Science.gov (United States)

    Dolas, Prakash M.

    1991-12-01

    The study presents an analysis of free drift of the exhaust trail obtained from television photos of India's satellite launch vehicle, ASLV-D2, in flight. Triangulation is not possible, necessitating the use of in-flight trajectory data and a wind model for line-of-sight drift correction in the analysis. The crosswind component, up to the height of 11.7 km where the mission tailed, and the associated vertical wind shears have been estimated. The crosswind magnitude above 9 km appears close to the summer extreme (95th percentile) for the launch station. On a 300-m vertical scale, the in-flight estimate of wind velocity is observed to be significantly different from the only available rawin data obtained 6 h prior to launch. The analysis points to a possibility of the launch vehicle passing through a turbulence zone between the altitude range of 7.4-7.6 km.

  20. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles

    Science.gov (United States)

    Campbell, C. E.; Farley, J. M.

    1960-01-01

    An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.

  1. Cloud Climatologies for Rocket Triggered Lightning from Launches at Cape Canaveral Air Force Station and Kennedy Space Center

    Science.gov (United States)

    2012-03-01

    6  Figure 4.  Map indicating five nautical mile ring around the average launch site (light yellow...as a temperature constraint, a wind direction and speed limitation, to potential for lightning occurrence, or a specific cloud formation surrounding...meteorological conditions near the site of the Apollo XII incident (From: Merceret et al. 2010) As the Saturn V rocket with the manned space capsule ascended

  2. Characterization of rocket propellant combustion products. Chemical characterization and computer modeling of the exhaust products from four propellant formulations: Final report, September 23, 1987--April 1, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

    1991-12-09

    The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army`s Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

  3. 液体火箭发动机尾焰红外辐射计算方法%Calculation Method on Infrared Radiation of Liquid Rocket Exhaust Plume

    Institute of Scientific and Technical Information of China (English)

    王大锐; 张楠; 葛明和

    2015-01-01

    针对液体火箭发动机尾焰红外辐射传输方程计算方法、气体辐射参数计算方法以及发动机尾焰红外辐射一体化数值计算研究进行归纳总结。提出发展适用性更广的尾焰红外辐射传输方程计算方法,建立气体光谱数据库及加快开展高精度的尾焰一体化计算研究。%The liquid rocket engine exhaust plume infrared radiation transfer equation calculation method, gas parameters of radiation calculation method and research on the integration numerical calculation of infrared radiation of engine exhaust plume are summarized. The author proposes to develop an exhaust plume infrared radiation transfer equation calculation method with more applicability, establish gas spectrum database and speed up research on the high precision integration calculation of exhaust plume.

  4. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current modeling of Lunar and Martian soil erosion and debris transport caused by rocket plume impingement lacks essential physics from the peculiar granular...

  5. High temperature reformation of aluminum and chlorine compounds behind the Mach disk of a solid-fuel rocket exhaust

    Science.gov (United States)

    Park, C.

    1976-01-01

    Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.

  6. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    Science.gov (United States)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  7. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine

    Science.gov (United States)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  8. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  9. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  10. Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

    2005-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

  11. On the detection of mesospheric meteoric smoke particles embedded in noctilucent cloud particles with rocket-borne dust probes.

    Science.gov (United States)

    Antonsen, T; Havnes, O

    2015-03-01

    Mesospheric nanoparticles in the forms of water ice particles and meteoric smoke particles (MSPs) exist in the middle atmosphere where they often play a decisive role in cloud formation and in chemical processes. Direct in situ observations of mesospheric nanoparticles have been made possible by rocket probes developed during the last two decades. Although progress has been made in mapping properties such as electric charge, sizes, and interaction with the plasma and neutral gas, more observations are needed on the size distribution, chemical content, and structure of the MSP to determine their role in cloud formation and chemistry in the mesosphere and stratosphere. We here present the result of a detailed analysis of the performance of a new dust probe MUltiple Dust Detector (MUDD) [O. Havnes et al., J. Atmos Soll.-Terr. Phys. 118, 190 (2014); O. Havenes et al., ibid. (in press)], which should give information of the size distribution of MSP by fragmenting impacting ice particles and releasing a fraction of the MSP which most probably are embedded in them [O. Havnes and L. I. Naesheim, Ann. Geophys. 25, 623 (2007); M. E. Hervig et al., J. Atmos. Sol.-Terr. Phys. 84-85, 1 (2012)]. We first determine the electric field structure and neutral gas condition in the interior of the probe and from this compute, the dynamics and current contribution of the charged fragments to the currents measured as the probe scans the fragment energy. For the single MUDD probe flown in July 2011 on the PHOCUS payload, we find that the fragment currents at the three retarding potentials for MUDD of 0, 10, and 20 V correspond to fragment sizes of ≳0.6 nm, >1.5 nm, and >1.8 nm if the fragments have a negative unit charge. We also discuss the optimum choice of retarding potentials in future flights of MUDD probes. By launching 2 to 3 mechanically identical MUDD probes but with different retarding potentials, we will obtain a much more detailed and reliable fragment (MSP) size

  12. Three-dimensional Numerical Study of Impactive Flowfield of Liquid Rocket Exhaust Plume while Space Launching%航天发射火箭尾焰冲击流场三维数值研究

    Institute of Scientific and Technical Information of China (English)

    宋华; 蔡体敏; 李彬

    2012-01-01

    航天发射时火箭燃烧尾焰冲击干扰效应对发射稳定性和发射架、导流槽等地面设施有重要影响.采用压力隐式算子分裂算法,通过求解Navier-Stokes方程,对火箭外流场、发动机燃烧室内与尾焰流场进行了一体化三维数值计算.得到了火箭发射后尾焰与地面撞击产生的冲击流场.结果表明:尾焰流场计算模型、方法与结果合理;尾焰冲击干扰效应会大幅提高地面附近的压力和温度.火箭尾焰撞击地面后,高温区出现在离地面一定距离的高温层内,此时地面附近为低速区.尾焰对其正下面的地面区域产生冲击最大,主要干扰区域集中于半径为15 m的圆形区域.%The impactive and interferential effect of rocket combustion exhaust plume has important influence on launching stability and ground equipments including of rocket launcher and flow channel. Basing on PISO algorithm , three-dimensional numerical simulation both of plume flow field of hydrogen-oxygen liquid rocket and outside flow field of rocket is conducted by^olving Navier-Stokes equation. The impactive flow field while exhaust plume is impacting ground is obtained. The results show that the physical model, numerical method and flow field data herein are reasonable. The pressure and temperature increase greatly because of the impactive and interferential effect of plume. During impacting ground, plume has a high temperature zone appearing in a high temperature level near ground while the velocity in this zone is lower. The most impactive and interferential effect appears in ground area under exhaust plume, and the main interferential zone is focus on a round area with a radius of 15 m.

  13. A Study of Far-Ultraviolet Extinction in the Upper Scorpius Cloud Using the SPINR Sounding Rocket Experiment

    Science.gov (United States)

    Lewis, N. K.; Cook, T. A.; Chakrabarti, S.

    2005-01-01

    In this study, six new interstellar extinction curves in the far-ultraviolet are presented using data from a sounding rocket experiment. The sounding rocket data were combined with IUE data for six lines of sight in the Upper Scorpius group to cover the wavelength range of 912-3030 Å. The extinction curves were produced using the pair comparison method with B stars of similar spectral types. Parameterizations from Fitzpatrick & Massa, Cardelli et al., and Fitzpatrick were then fitted to the derived extinction curves. From the derived extinction curves, their corresponding fits, and the dust model of Weingartner & Draine, it is concluded that the dust population in the Upper Scorpius region exhibits a larger than average grain population with a depletion of smaller grains.

  14. Contrail formation in the tropopause region caused by emissions from an Ariane 5 rocket

    Science.gov (United States)

    Voigt, Ch.; Schumann, U.; Graf, K.

    2016-07-01

    Rockets directly inject water vapor and aerosol into the atmosphere, which promotes the formation of ice clouds in ice supersaturated layers of the atmosphere. Enhanced mesospheric cloud occurrence has frequently been detected near 80-kilometer altitude a few days after rocket launches. Here, unique evidence for cirrus formation in the tropopause region caused by ice nucleation in the exhaust plume from an Ariane 5-ECA rocket is presented. Meteorological reanalysis data from the European Centre for Medium-Range Weather Forecasts show significant ice supersaturation at the 100-hectopascal level in the American tropical tropopause region on November 26, 2011. Near 17-kilometer altitudes, the temperatures are below the Schmidt-Appleman threshold temperature for rocket condensation trail formation on that day. Immediately after the launch from the Ariane 5-ECA at 18:39 UT (universal time) from Kourou, French Guiana, the formation of a rocket contrail is detected in the high resolution visible channel from the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) on the METEOSAT9 satellite. The rocket contrail is transported to the south and its dispersion is followed in SEVIRI data for almost 2 h. The ice crystals predominantly nucleated on aluminum oxide particles emitted by the Ariane 5-ECA solid booster and further grow by uptake of water vapor emitted from the cryogenic main stage and entrained from the ice supersaturated ambient atmosphere. After rocket launches, the formation of rocket contrails can be a frequent phenomenon under ice supersaturated conditions. However, at present launch rates, the global climate impact from rocket contrail cirrus in the tropopause region is small.

  15. Rocket noise - A review

    Science.gov (United States)

    McInerny, S. A.

    1990-10-01

    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  16. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  17. Hydroxyl Tagging Velocimetry for Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A non-intrusive method for measuring velocities in a rocket exhaust is proposed in a joint effort by MetroLaser and Vanderbilt University. Hydroxyl Tagging...

  18. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  19. CFD analysis of a rocket exhaust diffuser

    Science.gov (United States)

    Bose, Tarit K.; Thanawala, R. H.; Annamalai, K.

    1992-11-01

    The nature of the complex shock structure responsible for the pressure recovery phenomenon in supersonic diffusers is investigated by means of a theoretical CFD analysis using a newly developed computer program for Navier-Stokes solution of an ejector system, and the Prandtl mixing length to model the turbulent boundary layer. The pressure recovery characteristics of an ejector diffuser system was studied for various geometric and flow conditions. A comparison of the results with those of pressure measurements along the diffuser length in an experimental facility showed discrepancies, which are attributed to the boundary conditions imposed.

  20. STS-31 Discovery, OV-103, is hidden in low-lying clouds after KSC liftoff

    Science.gov (United States)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, is hidden in low-lying cloud cover as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B just after its liftoff at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The glow of the solid rocket booster (SRB) and the space shuttle main engine (SSME) firings appears just below the cloud cover and is reflected in the nearby waterway (foreground). An exhaust plume trails from OV-103 and its SRBs and covers the launch pad area.

  1. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    is a vast and desolate world, this is a strip of mir- aculous land! How many struggling dramas full of power and * grandeur were cheered, resisted and...rocket officers and men, a group enormous and powerful , marched into this land soaked with the fresh blood of our ancestors. This place is about to...and tough pestering said he wanted an American aircraft ob- tained on the battlefield to transport goods from Lanzhou, Xian, Beijing, Guangzhou and

  2. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-02-01

    Full Text Available We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm and are the first such estimates with the unique spatial resolution of an in situ measurement.

  3. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, M.; Strelnikova, I.; Strelnikov, B. [Leibniz-Institute of Atmospheric Physics, Kuehlungsborn (DE)] (and others)

    2009-07-01

    We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density - which we here estimate to be on the order of {proportional_to}100 cm{sup -3} - and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82-88 km) seen on the upleg is replaced by a narrow layer from 84.5-86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range {proportional_to}2-8 x 10{sup -14} cm{sup 3}/cm{sup 3} (corresponding to mass densities of {proportional_to}20-80 ng/m{sup 3}, and water vapor mixing ratios of 3-12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement. (orig.)

  4. 基于动态云BP网络的液体火箭发动机故障诊断方法%Fault diagnosis method for liquid-propellant rocket engines based on the dynamic cloud-BP neural network

    Institute of Scientific and Technical Information of China (English)

    刘垠杰; 黄强; 程玉强; 吴建军

    2012-01-01

    将云模型与BP(backpropagation)神经网络以串联方式有机结合,首先利用云变换方法进行网络的结构辨识和云模型的特征提取,同时通过在输入层引入单位延时环节描述发动机工作过程动态特性,研究提出了基于动态云BP网络的液体火箭发动机故障诊断方法.结合实际试车数据的验证结果表明,该方法能够准确识别发动机已有的3种故障模式,通过在试车数据中添加0期望、0.2标准差的随机噪声的方法来模拟环境噪声和测试过程中产生的随机噪声,根据持续性原则,方法仍能够正确进行故障检测与分类.方法单步运行时长为1.124x10-4,完全能够满足实时性要求.%A fault diagnosis method for liquid-propellant rocket engines was proposed based on the dynamic cloud-BP(back propagation) neural network in the way of the integration of cloud model and BP neural network.The Cloud transform method was used to identify the network configuration and to extract the cloud features.And a unit time-delay was also introduced into the input layer to describe the dynamic characteristics of the engine.Results with test data show that the method can isolate the existed 3 fault modes precisely.A 0 expectation,0.2 standard deviation noise was used to simulate the entironmental noise and stochastic noise,and the method can still detect and classify the fault accurately acount to lasting-rule.The method can run in real-time with the single processing time being 1.124×10-4 s.

  5. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    Science.gov (United States)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  6. Rocket plume tomography of combustion species

    OpenAIRE

    2001-01-01

    Interest in accurate detection and targeting of aggressor missiles has received considerable interest with the national priority of developing a missile defense system. Understanding the thermal signatures of the exhaust plumes of such missiles is key to accomplishing that mission. Before signature models can be precisely developed for specific rockets, the radiation of the molecular or combustion species within those plumes must be accurately predicted. A combination translation / rotation s...

  7. Rocket propulsion elements

    CERN Document Server

    Sutton, George P

    2011-01-01

    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  8. Environmentally compatible solid rocket propellants

    Science.gov (United States)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  9. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  10. Solar Thermal Rocket Propulsion

    Science.gov (United States)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  11. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  12. Introduction to rocket science and engineering

    CERN Document Server

    Taylor, Travis S

    2009-01-01

    What Are Rockets? The History of RocketsRockets of the Modern EraRocket Anatomy and NomenclatureWhy Are Rockets Needed? Missions and PayloadsTrajectoriesOrbitsOrbit Changes and ManeuversBallistic Missile TrajectoriesHow Do Rockets Work? ThrustSpecific ImpulseWeight Flow RateTsiolkovsky's Rocket EquationStagingRocket Dynamics, Guidance, and ControlHow Do Rocket Engines Work? The Basic Rocket EngineThermodynamic Expansion and the Rocket NozzleExit VelocityRocket Engine Area Ratio and LengthsRocket Engine Design ExampleAre All Rockets the Same? Solid Rocket EnginesLiquid Propellant Rocket Engines

  13. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  14. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  15. Hyperventilation and exhaustion syndrome

    OpenAIRE

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-01-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed ...

  16. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  17. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  18. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  19. Exhaustion from prolonged gambling

    Institute of Scientific and Technical Information of China (English)

    Fatimah Lateef

    2013-01-01

    Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities.Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion.Recently, three patients were seen at theDepartment ofEmergencyMedicine, presenting with exhaustion from prolonged involvement in gambling activities.The cases serve to highlight some of the physical consequences of prolonged gambling.

  20. Anisotropic Kondo lattice without Nozieres exhaustion effect

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for Nano-Science, Ludwig-Maximilians Universitaet Muenchen, 80333 Munich (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K. [Ben-Gurion University of the Negev, Beer-Sheva, 84105 (Israel)]. E-mail: kikoin@bgumail.bgu.ac.il

    2006-05-01

    The properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction are studied. Each spin possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not arise. The excitation spectrum is gapless both in charge and spin sectors. Possible experimental realizations of the model are briefly discussed.

  1. The Ion Rocket

    Science.gov (United States)

    1961-05-29

    discharge velocity w and the speci- fic impulse lap respectively cannot be increased. At this limit condition the thermal rocket oecouos "choked up...structural quality is 900 t, 3) In the case of an atomic-driven thermal rocket ’,;lth specific Ipipulse ISjy«8C0 sec and thrust to weight ratio « 1, the

  2. Model Rockets and Microchips.

    Science.gov (United States)

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  3. Characterization of rocket propellant combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

    1991-12-09

    The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

  4. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...

  5. Investigations of Rocket Engine Combustion Emissions During ACCENT

    Science.gov (United States)

    Ross, M. N.; Friedl, R. R.

    2001-12-01

    The composition of rocket combustion emissions and the atmospheric processes that determine their stratospheric impacts are poorly understood. While present day rocket emissions do not significantly affect stratospheric chemistry, the potential for vigorous growth of the space transportation industry in coming decades suggests that rocket emissions and their stratospheric impacts should be better understood. A variety of in-situ measurements and modeling results were obtained during the Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) effort that will be used to evaluate the role of rocket exhaust in perturbing ozone chemistry in plume wakes and in the global stratosphere. We present a review of the ACCENT rocket emissions science objectives, summarize data obtained during the WB-57F plume wake sorties, and briefly discuss how the data will help resolve several outstanding questions regarding the impact of rocket emissions on the stratosphere. These include measurement of the emission indices for several important rocket engine combustion products and validation of plume wake chemistry models.

  6. Rocket University at KSC

    Science.gov (United States)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  7. Lidar measurements of launch vehicle exhaust plumes

    Science.gov (United States)

    Dao, Phan D.; Curtis, David; Farley, Robert; Soletsky, Philip; Davidson, Gilbert; Gelbwachs, Jerry A.

    1997-10-01

    The Mobile Lidar Trailer (MLT) was developed and operated to characterize launch vehicle exhaust plume and its effects on the environment. Two recent applications of this facility are discussed in this paper. In the first application, the MLT was used to characterize plumes in the stratosphere up to 45 km in support of the Air Force Space and Missile Center's Rocket Impact on Stratospheric Ozone program. Solid rocket motors used by Titan IV and other heavy launch vehicles release large quantities of gaseous hydrochloric acid in the exhaust and cause concerns about a possible depletion of the ozone layer. The MLT was deployed to Cape Canaveral Air Station since October 1995 to monitor ozone and to investigate plume dynamics and properties. Six campaigns have been conducted and more are planned to provide unique data with the objective of addressing the environmental issues. The plume was observed to disperse rapidly into horizontally extended yet surprisingly thin layer with thickness recorded in over 700 lidar profiles to be less than 250 meters. MLT operates with the laser wavelengths of 532, 355 and 308 nm and a scanning receiving telescope. Data on particle backscattering at the three wavelengths suggest a consistent growth of particle size in the 2-3 hour observation sessions following the launch. In the second type of application, the MLT was used as a remote sensor of nitrogen dioxide, a caustic gaseous by-product of common liquid propellant oxidizer. Two campaigns were conducted at the Sol Se Mete Canyon test site in New Mexico in December 1996 an January 1997 to study the dispersion of nitrogen dioxide and rocket plume.

  8. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    studies for final analysis and interpretation. Twelve studies could be included in the data synthesis. Results: We found clear evidence that the prospect of exhaustion of benefits results in a significantly increased incentive for finding work. Discussion: The theoretical suggestion that the prospect......This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...... of exhaustion of benefits results in an increased incentive for finding work has been confirmed empirically by measures from seven different European countries, the United States, and Canada. The results are robust in the sense that sensitivity analyses evidenced no appreciable changes in the results. We found...

  9. Characterization of High-Power Rocket and Jet Noise Using Near-Field Acoustical Holography

    OpenAIRE

    2010-01-01

    Structural fatigue, hearing damage, and community disturbances are all consequences of rocket and jet noise, especially as they become more powerful. Noise-reduction schemes require accurate characterization of the noise sources within rocket plumes and jets. Nearfield acoustical holography (NAH) measurements were made to visualize the sound field in the jet exhaust region of an F-22 Raptor. This is one of the largest-scale applications of NAH since its development in the 1980s. A scan-based ...

  10. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  11. Rockets in World War I

    Science.gov (United States)

    2004-01-01

    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  12. An Evaluation Of Rocket Parameters

    Directory of Open Access Journals (Sweden)

    J. N. Beri

    1959-07-01

    Full Text Available The dependence of conventional parameters of internal ballistics of Solid Propellant Rockets using external burning cruciform charge, on the geometry of charge aad rocket motor is discussed and results applied in a special case.

  13. Kondo lattice without Nozieres exhaustion effect.

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.

    2006-01-01

    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.

  14. Multiple dopant injection system for small rocket engines

    Science.gov (United States)

    Sakala, G. G.; Raines, N. G.

    1992-07-01

    The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.

  15. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  16. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  17. Introduction to Rocket Propulsion

    Science.gov (United States)

    1991-12-01

    Von Braun; 1966. 4. Introduction to Ordnance Technology; IHSP 76-129; 1976. 5. Physics; D. Halliday and R. Resnick ; 1963. 6. Physics Tells Why: 0...to Luke Sky- walker in Star Wars when he said "Don’t get cocky." We never plan for EVERYTHING, though we like to think we do. As we’ve said, rocket

  18. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  19. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  20. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. Rocketing to the Skies

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    ONE sunny morning,we startedfor Yanqi Lake,Huairou District,Beijing,to try“rocket bungy”,so farthe only facility for this sport inChina.On the way there,wequestioned our courage and heartendurance. Entering the gate we saw,towering over a banner saying,

  2. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  3. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  4. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements...

  5. Hyperventilation and exhaustion syndrome.

    Science.gov (United States)

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p therapy such as Grounding.

  6. Hybrid Exhaust Component

    Science.gov (United States)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  7. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  8. Liquid rocket engine injectors

    Science.gov (United States)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  9. Ablative Rocket Deflector Testing and Computational Modeling

    Science.gov (United States)

    Allgood, Daniel C.; Lott, Jeffrey W.; Raines, Nickey

    2010-01-01

    A deflector risk mitigation program was recently conducted at the NASA Stennis Space Center. The primary objective was to develop a database that characterizes the behavior of industry-grade refractory materials subjected to rocket plume impingement conditions commonly experienced on static test stands. The program consisted of short and long duration engine tests where the supersonic exhaust flow from the engine impinged on an ablative panel. Quasi time-dependent erosion depths and patterns generated by the plume impingement were recorded for a variety of different ablative materials. The erosion behavior was found to be highly dependent on the material s composition and corresponding thermal properties. For example, in the case of the HP CAST 93Z ablative material, the erosion rate actually decreased under continued thermal heating conditions due to the formation of a low thermal conductivity "crystallization" layer. The "crystallization" layer produced near the surface of the material provided an effective insulation from the hot rocket exhaust plume. To gain further insight into the complex interaction of the plume with the ablative deflector, computational fluid dynamic modeling was performed in parallel to the ablative panel testing. The results from the current study demonstrated that locally high heating occurred due to shock reflections. These localized regions of shock-induced heat flux resulted in non-uniform erosion of the ablative panels. In turn, it was observed that the non-uniform erosion exacerbated the localized shock heating causing eventual plume separation and reversed flow for long duration tests under certain conditions. Overall, the flow simulations compared very well with the available experimental data obtained during this project.

  10. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    booster rocket engines • 6000-10000 psia capabilities – Can use gaseous nitrogen, helium, or hydrogen to pressurize propellant tanks 9Distribution A...Approved for Public Release; Distribution Unlimited. PA Clearance 16493 Simplified Test Stand Layout Oxidizer  TankFuel  Tank High  Pressure   Gas (GN2...requires large, complex facilities to deliver propellant at the proper pressure , temperature, and flow rates • The enormous energies involved

  11. Solid propellant rocket motor

    Science.gov (United States)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)

    1973-01-01

    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  12. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  13. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  14. Dual-fuel, dual-mode rocket engine

    Science.gov (United States)

    Martin, James A. (Inventor)

    1989-01-01

    The invention relates to a dual fuel, dual mode rocket engine designed to improve the performance of earth-to-orbit vehicles. For any vehicle that operates from the earth's surface to earth orbit, it is advantageous to use two different fuels during its ascent. A high density impulse fuel, such as kerosene, is most efficient during the first half of the trajectory. A high specific impulse fuel, such as hydrogen, is most efficient during the second half of the trajectory. The invention allows both fuels to be used with a single rocket engine. It does so by adding a minimum number of state-of-the-art components to baseline single made rocket engines, and is therefore relatively easy to develop for near term applications. The novelty of this invention resides in the mixing of fuels before exhaust nozzle cooling. This allows all of the engine fuel to cool the exhaust nozzle, and allows the ratio of fuels used throughout the flight depend solely on performance requirements, not cooling requirements.

  15. Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    2007-11-02

    NUCLEAR THERMAL ROCKET PROPULSION SYSTEMS, IAA WHITE PAPER PARIS, FRANCE, MARCH 2005 Lt Col Timothy J. Lawrence U.S. Air Force Academy...YYYY) 18-03-2005 2. REPORT TYPE White Paper 3. DATES COVERED (From - To) 18 Mar 2005 4. TITLE AND SUBTITLE NUCLEAR THERMAL ROCKET PROPULSION...reduce radiation exposure, is to have a high energy system like a nuclear thermal rocket that can get the payload to the destination in the fastest

  16. ProteoCloud: a full-featured open source proteomics cloud computing pipeline.

    Science.gov (United States)

    Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart

    2013-08-02

    We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com.

  17. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  18. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  19. Turbine exhaust pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.M. [Stone & Webster Engineering Corp., Boston, MA (United States); Hernandez, E. [Community Energy Alternatives Inc., Ridgewood, NJ (United States)

    1996-05-01

    This paper discusses the dynamic operating environment in the turbine-condenser steam space and the two sensors, basket tips and guideplates, that have been approved by ASME test codes for measurement of the static pressure within that exhaust region. It defines the rigorous geometry and construction requirements of these sensors in order that they be acceptable for guarantee/acceptance testing. The paper also offers a practical alternative to the classical ASME PTC 6 (Turbine Test Code) basket tip design that is easier to fabricate in the typical utility machine shop. The alternative design makes it less expensive, much faster to construct, and facilitates the drainage of any accumulated condensate. Comparative field tests by PSE&G`s Research and Testing Laboratory conducted in 1995 at the 300 MW Mercer Generating Station, Unit 1 will be described which demonstrate the modified basket tip pressure measurements are statistically indistinguishable from those of the PTC 6 design. Noting that basket tip turbine exhaust static pressure sensors are recommended by all the major U.S. turbine manufacturers, the paper also presents the limited available history of the empirical basket tip and the lack of any documented calibration history related to the accuracy of the guideplate. Finally, based on the success of this one basket tip variation, the paper concludes that other even more suitable designs could be developed by further research.

  20. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  1. Exhaust Plume Measurements of the VASIMR VX-200

    Science.gov (United States)

    Longmier, Benjamin; Bering, Edgar, III; Squire, Jared; Glover, Tim; Chang-Diaz, Franklin; Brukardt, Michael

    2008-11-01

    Recent progress is discussed in the development of an advanced RF electric propulsion concept: the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) VX-200 engine, a 200 kW flight-technology prototype. Results from high power Helicon only and Helicon with ICRH experiments are performed on the VX-200 using argon plasma. Recent measurements of axial plasma density and potential profiles, magnetic field-line shaping, charge exchange, and force measurements taken in the plume of the VX-200 exhaust are made within a new 125 cubic meter cryo-pumped vacuum chamber and are presented in the context of RF plasma thruster physics.

  2. What fuel for a rocket?

    CERN Document Server

    Miranda, E N

    2012-01-01

    Elementary concepts from general physics and thermodynamics have been used to analyze rocket propulsion. Making some reasonable assumptions, an expression for the exit velocity of the gases is found. From that expression one can conclude what are the desired properties for a rocket fuel.

  3. Rocket launchers as passive controllers

    Science.gov (United States)

    Cochran, J. E., Jr.; Gunnels, R. T.; McCutchen, R. K., Jr.

    1981-12-01

    A concept is advanced for using the motion of launchers of a free-flight launcher/rocket system which is caused by random imperfections of the rockets launched from it to reduce the total error caused by the imperfections. This concept is called 'passive launcher control' because no feedback is generated by an active energy source after an error is sensed; only the feedback inherent in the launcher/rocket interaction is used. Relatively simple launcher models with two degrees of freedom, pitch and yaw, were used in conjunction with a more detailed, variable-mass model in a digital simulation code to obtain rocket trajectories with and without thrust misalignment and dynamic imbalance. Angular deviations of rocket velocities and linear deviations of the positions of rocket centers of mass at burnout were computed for cases in which the launcher was allowed to move ('flexible' launcher) and was constrained so that it did not rotate ('rigid' launcher) and ratios of flexible to rigid deviations were determined. Curves of these error ratios versus launcher frequency are presented. These show that a launcher which has a transverse moment of inertia about its pivot point of the same magnitude as that of the centroidal transverse moments of inertia of the rockets launched from it can be tuned to passively reduce the errors caused by rocket imperfections.

  4. Facility for cold flow testing of solid rocket motor models

    Science.gov (United States)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  5. Understanding Exhaustive Pattern Learning

    CERN Document Server

    Shen, Libin

    2011-01-01

    Pattern learning in an important problem in Natural Language Processing (NLP). Some exhaustive pattern learning (EPL) methods (Bod, 1992) were proved to be flawed (Johnson, 2002), while similar algorithms (Och and Ney, 2004) showed great advantages on other tasks, such as machine translation. In this article, we first formalize EPL, and then show that the probability given by an EPL model is constant-factor approximation of the probability given by an ensemble method that integrates exponential number of models obtained with various segmentations of the training data. This work for the first time provides theoretical justification for the widely used EPL algorithm in NLP, which was previously viewed as a flawed heuristic method. Better understanding of EPL may lead to improved pattern learning algorithms in future.

  6. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  7. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  8. 14 CFR 27.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  9. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  10. British used Congreve Rockets to Attack Napoleon

    Science.gov (United States)

    2004-01-01

    Sir William Congreve developed a rocket with a range of about 9,000 feet. The incendiary rocket used black powder, an iron case, and a 16-foot guide stick. In 1806, British used Congreve rockets to attack Napoleon's headquarters in France. In 1807, Congreve directed a rocket attack against Copenhagen.

  11. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  12. The Exhaustive Lexicalisation Principle

    Directory of Open Access Journals (Sweden)

    Antonio Fábregas

    2007-12-01

    Full Text Available In this article I revisit the well-known empirical problem of manner of motion verbs with directional complements in Spanish. I present some data that, to my mind, had not received due attention in previous studies and I show that some manner of motion verbs actually allow directionals with the preposition a, while all of them allow them with prepositions like hacia or hasta. I argue that this pattern is due to a principle that states that every syntactic feature must be identified by lexical insertion, the Exhaustive Lexicalisation Principle. The crucial problem with directional complements is that the Spanish preposition a is locative, in contrast with English to, and, therefore, unable to identify the Path feature. Some verbs license the directional with a because they can lexicalise Path altogether with the verb; all verbs can combine with hasta or hacia because these prepositions lexicalise Path. When neither the verb nor the preposition lexicalise the Path, the construction is ungrammatical.

  13. Economics of exhaustible resources

    Energy Technology Data Exchange (ETDEWEB)

    Rabhan, S.A.

    1986-01-01

    This dissertation deals with various issues of resource depletion, beginning with a rather comprehensive review of the literature. The resource scarcity is the first issue dealt with, where differentiation is made between Ricardian and Pure scarcities of exhaustible resources. While the Ricardian scarcity is properly acknowledged and modeled in the resource literature, the fact that the resource stocks are always decreasing with extraction (i.e., the pure scarcity) is overlooked. One important conclusion of the scarcity analysis is that the steady-state point defining the equilibrium values for the nonresource output to capital and the resource flow to resource stock ratios, is found to be a moving one, as a result of the increasing scarcity mechanism. Another observation about the literature is that there is a marked bias in favor of long run, developed economies' problems and resource inputs as opposed to the problems of developing economies and resource exports. Thus, a theoretical framework is developed where not only resource inputs and exports are analyzed but resource exports are advanced as a vehicle for development. Within the context of this theoretical framework, it is concluded that optimality dictates that the resource inputs and exports, expressed per unit of the capital stock, be declining over time. Furthermore, the resource exports are proposed as the domestic substitute for foreign aid.

  14. Alternate Propellant Thermal Rocket Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  15. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  16. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  17. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)

    2007-10-15

    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  18. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  19. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    Science.gov (United States)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  20. Nuclear thermal rockets using indigenous extraterrestrial propellants

    Science.gov (United States)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  1. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  2. Particle Size Distributions Measured in the Stratospheric Plumes of Three Rockets During the ACCENT Missions

    Science.gov (United States)

    Wiedinmyer, C.; Brock, C. A.; Reeves, J. M.; Ross, M. N.; Schmid, O.; Toohey, D.; Wilson, J. C.

    2001-12-01

    The global impact of particles emitted by rocket engines on stratospheric ozone is not well understood, mainly due to the lack of comprehensive in situ measurements of the size distributions of these emitted particles. During the Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) missions in 1999, the NASA WB-57F aircraft carried the University of Denver N-MASS and FCAS instruments into the stratospheric plumes from three rockets. Size distributions of particles with diameters from 4 to approximately 2000 nm were calculated from the instrument measurements using numerical inversion techniques. The data have been averaged over 30-second intervals. The particle size distributions observed in all of the rocket plumes included a dominant mode near 60 nm diameter, probably composed of alumina particles. A smaller mode at approximately 25 nm, possibly composed of soot particles, was seen in only the plumes of rockets that used liquid oxygen and kerosene as a propellant. Aircraft exhaust emitted by the WB-57F was also sampled; the size distributions within these plumes are consistent with prior measurements in aircraft plumes. The size distributions for all rocket intercepts have been fitted to bimodal, lognormal distributions to provide input for global models of the stratosphere. Our data suggest that previous estimates of the solid rocket motor alumina size distributions may underestimate the alumina surface area emission index, and so underestimate the particle surface area available for heterogeneous chlorine activation reactions in the global stratosphere.

  3. 14 CFR 29.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  4. 14 CFR 25.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 25.1123 Section 25.1123... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant and auxiliary power unit installations, the following apply: (a) Exhaust piping must be heat...

  5. 46 CFR 169.609 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...

  6. 49 CFR 325.91 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  7. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  8. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  9. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  10. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  11. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  12. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  13. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  14. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  15. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  16. Integrated Composite Rocket Nozzle Extension Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  17. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  18. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  19. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  20. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  1. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  2. Summarization on variable liquid thrust rocket engines

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The technology actuality and development trend of variable thrust rocket engines at home and abroad are summarized. Key technologies of developing variable thrust rocket engines are analyzed. Development advices on developing variable thrust rocket engines that are adapted to the situation of our country are brought forward.

  3. Nuclear-Thermal Rocket Orbits Mars

    Science.gov (United States)

    1960-01-01

    Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.

  4. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  5. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  6. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  7. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    Kent by Newcastle University and the Terramare Institute. Samples of raw seawater and scrubber washwater were collected at the inlet and discharge of...from Ships. Research Centre Terramare . Wilhelmshaven, Germany. Couple Systems. 2010. Dry EGCS Process Dry Exhaust Gas Cleaning System (http...BP Marine. Research Centre Terramare , Wilhelmshaven, Germany and School of Marine Science and Technology, University of Newcastle, Newcastle upon

  8. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be achiev

  9. In-situ Measurements of Aerosol-Cloud-Precipitation Interactions During the 2011 E-PEACE Campaign: Case Studies of Clouds Perturbed by Ship Emissions

    Science.gov (United States)

    Metcalf, A. R.; Sorooshian, A.; Craven, J. S.; Coggon, M.; Lin, J. J.; Wang, Z.; Shingler, T.; Song, S.; Jung, E.; Albrecht, B. A.; Jonsson, H.; Nenes, A.; Seinfeld, J.

    2011-12-01

    The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosol-cloud-precipitation interactions during the 2011 Eastern-Pacific Emitted Aerosol Cloud Experiment (E-PEACE) off the central coast of California. During the project, ship exhaust in a major north-south shipping lane used by large cargo and tanker ships off the coast of Monterey, CA was probed in order to study its effect on the marine stratocumulus commonly found in the summer months. During the course of a single experiment, fresh ship exhaust was sampled near the ship and followed downwind for approximately 20 miles before ascending to sample the plume at multiple heights in cloud. The chemical and physical properties of the ship exhaust was characterized below cloud by an Aerosol Mass Spectrometer (AMS), a Cloud Condensation Nuclei Counter (CCNC), multiple Condensation Particle Counters (CPCs), parallel Differential Mobility Analyzers (DMAs), a Passive Cavity Aerosol Spectrometer Probe, a Single Particle Soot Photometer (SP2), and a Photoacoustic Soot Spectrometer (PASS3). An upward-facing Doppler cloud radar (3 mm wavelength) captured the vertical microphysical and velocity structure of the clouds. The cloud droplet number and size distributions were characterized within the cloud with a Cloud, Aerosol, and Precipitation Spectrometer, a Forward Scattering Spectrometer Probe, and a Phase Doppler Interferometer, as were the cloud droplet nuclei chemistry and physical properties by several instruments (AMS, DMA, PASS3, SP2, CCNC, and CPC) sampling behind a Counterflow Virtual Impactor inlet. This presentation provides an overview of our findings.

  10. Experimental/Analytical Characterization of the RBCC Rocket-Ejector Mode

    Science.gov (United States)

    Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.

    2000-01-01

    are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.

  11. CFD Simulation of Liquid Rocket Engine Injectors

    Science.gov (United States)

    Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)

    2001-01-01

    Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by

  12. Advanced Deuterium Fusion Rocket Propulsion For Manned Deep Space Missions

    CERN Document Server

    Winterberg, Dr Friedwardt

    2009-01-01

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite well possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion, can there be refueled. To obtain a high thrust with a high specific impulse, favors the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of propulsion system in space would be very high, but it can also be developed on earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, rather than deuterium-tritium ...

  13. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  14. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  15. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  16. An expert system for spectroscopic analysis of rocket engine plumes

    Science.gov (United States)

    Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy

    The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.

  17. Unique nuclear thermal rocket engine

    Energy Technology Data Exchange (ETDEWEB)

    Culver, D.W. (Aerojet Propulsion Division, P.O. Box 13222, Sacramento, California 95813-6000 (United States)); Rochow, R. (Babcock Wilcox Space Nuclear Systems, P.O. Box 11165, Lynchburg, Virginia 24506-1165 (United States))

    1993-01-15

    Earlier this year Aerojet Propulsion Division (APD) introduced a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars. This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection (E-D) rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1)Reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2)Eliminate need for a new, uncooled nozzle throat material suitable for long life application; (3)Practical provision for reactor power control; and (4)Use near term, long life turbopumps.

  18. Nanoparticles for solid rocket propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Galfetti, L [Politecnico di Milano, SPLab, Milan (Italy); De Luca, L T [Politecnico di Milano, SPLab, Milan (Italy); Severini, F [Politecnico di Milano, SPLab, Milan (Italy); Meda, L [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marra, G [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marchetti, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Regi, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Bellucci, S [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

    2006-08-23

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  19. Unique nuclear thermal rocket engine

    Science.gov (United States)

    Culver, Donald W.; Rochow, Richard

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps.

  20. Nanoparticles for solid rocket propulsion

    Science.gov (United States)

    Galfetti, L.; DeLuca, L. T.; Severini, F.; Meda, L.; Marra, G.; Marchetti, M.; Regi, M.; Bellucci, S.

    2006-08-01

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  1. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  2. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  3. Extended temperature range rocket injector

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    1991-01-01

    A rocket injector is provided with multiple sets of manifolds for supplying propellants to injector elements. Sensors transmit the temperatures of the propellants to a suitable controller which is operably connnected to valves between these manifolds and propellant storage tanks. When cryogenic propellant temperatures are sensed, only a portion of the valves are opened to furnish propellants to some of the manifolds. When lower temperatures are sensed, additional valves are opened to furnish propellants to more of the manifolds.

  4. Mini-Rocket User Guide

    Science.gov (United States)

    2007-08-01

    Missile Research , Development, and Engineering Center and Ray Sells DESE Research , Inc. 315 Wynn Drive Huntsville, AL 35805 August 2007...with the minirock command, you are prompted for a filename: Mini-Rocket v1.01 by Ray Sells, DESE Research , Inc. Input file: - Output is printed...nancv.bucher@us.army.mil Commander, U.S. Army ARDEC Picatinny Arsenal, NJ 07806-5000 ATTN: AMSRD-AR-AIS -SA DESE Research , Inc. 3 15 Wynn Drive

  5. Optimization Problem of Multistage Rocket

    Directory of Open Access Journals (Sweden)

    V. B. Tawakley

    1972-04-01

    Full Text Available The necessary conditions for the existence of minimum of a function of initial and final values of mass, position and velocity components and time of a multistage rocket have been reviewed when the thrust levels in each stage are considered to bounded and variation in gravity with height has been taken into account. The nature of the extremal subarcs comprising the complete extremal are has been studied. A few simple examples have been given as illustrations.

  6. Residual Fuel Expulsion from a Simulated 50,000 Pound Thrust Liquid-Propellant Rocket Engine Having a Continuous Rocket-Type Igniter

    Science.gov (United States)

    Messing, Wesley E.

    1959-01-01

    Tests have been conducted to determine the starting characteristics of a 50,000-pound-thrust rocket engine with the conditions of a quantity of fuel lying dormant in the simulated main thrust chamber. Ignition was provided by a smaller rocket firing rearwardly along the center line. Both alcohol-water and anhydrous ammonia were used as the residual fuel. The igniter successfully expelled the maximum amount of residual fuel (3 1/2 gal) in 2.9 seconds when the igniter.was equipped with a sonic discharge nozzle operating at propellant flow rates of 3 pounds per second. Lesser amounts of residual fuel required correspondingly lower expulsion times. When the igniter was equipped with a supersonic exhaust nozzle operating at a flow of 4 pounds per second, a slightly less effective expulsion rate was encountered.

  7. Exhaust emission control and diagnostics

    Science.gov (United States)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  8. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  9. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  10. Electrophysiologic Study of Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    MA Babaee Bigi

    2010-12-01

    Full Text Available Background: Exhaustive exercise is well known to pose a variety ofhealth hazards, such as sudden cardiac death reported in ultra-marathon runners.Depressed parasympathetic tone is associated with increased risk of suddencardiac death, thus parasympathetic withdrawal in post-exercise phase may be ahigh risk period for sudden death. To date, the effect on cardiacelectrophysiology after exhaustive strenuous exercise has not been described.The aim of this study was to evaluate the impact of severe exhaustive exerciseon cardiac electrophysiology.Methods: The subjects in ranger training were invited to participatein this prospective study. The parameters measured consisted of PR interval, QRSduration, and macro T wave alternans as well as corrected QT, QTc dispersion,Tpeak –Tend interval and Tpeak –Tend dispersion.Results: The study group consisted of 40 consecutive male rangers whocompleted training and the control group (22 healthy age and height matched malesubjects. In regard to electrocardiographic criteria, no differences were foundbetween rangers before and after training program. In respect of therepolarization markers, there were no significant differences between therangers before and after training program.

  11. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    Science.gov (United States)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  12. Simulation of UV atomic radiation for application in exhaust plume spectrometry

    Science.gov (United States)

    Wallace, T. L.; Powers, W. T.; Cooper, A. E.

    1993-06-01

    Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.

  13. Reusable rocket engine optical condition monitoring

    Science.gov (United States)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  14. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    Science.gov (United States)

    2010-10-28

    traveled by microwaves from transmitter 35  16. Sphere configuration (A) Single and (B) Double 36  xi Distribution A: Approved for public release...relatively low power sources have been developed. One of the most prominent environments for application is in space. Many interstellar particles emit...are created by using explosive emission cathodes. They have durations less than nanoseconds per pulse. A gyro- traveling - wave-tube (TWT) mechanism

  15. Performance of Reinforced Polymer Ablators Exposed to a Solid Rocket Motor Exhaust

    Science.gov (United States)

    1992-10-01

    developed and manufactured by FMI. a. constituents:9 n 1) - percent phenolic resin 2) - percent chopped carbon fibers 3) - percent epoxy impregnated into...fibers 4) - percent chopped carbon fibers 1 5) - percent chopped ceramic fibers m 7 NAVSWC TR 91-645 a b. specific gravity (g/cc): c. virgin thermal

  16. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of the Saha Equation to High Temperature (> or = 6000K) Rocket Exhaust

    Science.gov (United States)

    1992-11-01

    McGraw Hill, 1963? [12] Barrow, Gordon M., Physical Chemistry , New York: McGraw Hill, 1966 [13] McQuarrie , D.A., Statistical Mechanics, New York: Harper...dissociate into their atomic components, chemistry simplifies. Although probability increases with temperature that a molecule will O occupy a higher...total angular momentum quantum number; O.ot represents the characteristic temperature for rotation of the ground state (electronic) of the molecule, and

  18. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  19. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... of resource sharing takes a wider and deeper meaning, creating the foundations for a global real-time multidimensional resource pool, the underlying infrastructure for shareconomy. Above all, this is an inspiring book for anyone who is concerned about the future of wireless and mobile communications networks...... and their relationship with Social networks. Key Features: Provides fundamental ideas and promising concepts for exploiting opportunistic cooperation and cognition in wireless and mobile networks Gives clear definitions of mobile clouds from different perspectives Associates mobile and wireless networks with social...

  20. The four INTA-300 rocket prototypes

    Science.gov (United States)

    Calero, J. S.

    1985-03-01

    A development history and performance capability assessment is presented for the INTA-300 'Flamenco' sounding rocket prototype specimens. The Flamenco is a two-stage solid fuel rocket, based on British sounding rocket technology, that can lift 50 km payloads to altitudes of about 300 km. The flight of the first two prototypes, in 1974 and 1975, pointed to vibration problems which reduced the achievable apogee, and the third prototype's flight was marred by a premature detonation that destroyed the rocket. The fourth Flamenco flight, however, yielded much reliable data.

  1. Demilitarization of Lance rocket motors

    Science.gov (United States)

    Sargent, Peter

    1995-02-01

    In 1992 Royal Ordnance was awarded contract by NAMSA for the demilitarization of NATO's European stock of Lance missile rocket motors. Lance is a liquid fueled surface to surface guided missile designed to give general battlefield support with either a nuclear or conventional capability at ranges of up to 130 km. The NAMSA contract required Royal Ordnance to undertake the following: (1) transportation of missiles from NATO depots in Europe to Royal Ordnance's factory at Bishopton in Scotland; (2) establishment of a dedicated demilitarization facility at Bishopton; and (3) demilitarization of live M5 and M6 training missiles by the end of 1994.

  2. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  3. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  4. Cloud radiative properties and aerosol - cloud interaction

    Science.gov (United States)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  5. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  6. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas;

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...

  7. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  8. Solid Rocket Booster-Illustration

    Science.gov (United States)

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  9. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  10. Occurrence of lower cloud albedo in ship tracks

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-05-01

    Full Text Available The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, cloud regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air, nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  11. Occurrence of lower cloud albedo in ship tracks

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-09-01

    Full Text Available The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air, nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  12. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging

    Science.gov (United States)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2016-11-01

    The hot rocket staging is to separate the lowest stage by directly ignite the continuing-stage-motor. During the hot staging, the rocket stages move in a harsh dynamic environment. In this work, the hot staging dynamics of a multistage rocket is studied using the coupled simulation of Computational Fluid Dynamics and Flight Mechanics. Plume modeling is crucial for a coupled simulation with high fidelity. A 2-species-gas model is proposed to simulate the flow system of the rocket during the staging: the free-stream is modeled as "cold air" and the exhausted plume from the continuing-stage-motor is modeled with an equivalent calorically-perfect-gas that approximates the properties of the plume at the nozzle exit. This gas model can well comprise between the computation accuracy and efficiency. In the coupled simulations, the Navier-Stokes equations are time-accurately solved in moving system, with which the Flight Mechanics equations can be fully coupled. The Chimera mesh technique is utilized to deal with the relative motions of the separated stages. A few representative staging cases with different initial flight conditions of the rocket are studied with the coupled simulation. The torque led by the plume-induced-flow-separation at the aft-wall of the continuing-stage is captured during the staging, which can assist the design of the controller of the rocket. With the increasing of the initial angle-of-attack of the rocket, the staging quality becomes evidently poorer, but the separated stages are generally stable when the initial angle-of-attack of the rocket is small.

  13. Multi-spectral measurements program and guiding a rocket to hover

    Science.gov (United States)

    Taylor, W. G.

    1986-10-01

    The Multi-Spectral Measurement Program (MSMP) was a large and sophisticated sounding rocket endeavor to examine in space the exhaust plume of rocket engines. The MSMP required that the plumes be analyzed at different wavelengths, from various aspects, and from varying distances. The ELF III provided the guidance signals necessary to orient the 'sensor' vehicle. UV, IR, television, and long-focal-length still-camera picture data were taken. Most of the data were telemetered down in real time. Because of the nature of the experiments, the number of data-gathering devices, and the monitoring of the large three-stage missile, the telemetering of data became a very complex subproject in itself.

  14. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  15. Reducing Thrusts In Solid-Fuel Rockets

    Science.gov (United States)

    Bement, Laurence J.

    1989-01-01

    Thrust-terminating system conceived to reduce thrust of solid-propellant rocket motor in controlled manner such that thrust loads not increased or decreased beyond predictable levels. Concept involves explosively cutting opposing venting pairs in case of rocket motor above nozzles to initiate venting of chamber and reduction of thrust. Vents sized and numbered to control amount and rate of reduction in thrust.

  16. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  17. Hybrid Rocket Experiment Station for Capstone Design

    Science.gov (United States)

    Conley, Edgar; Hull, Bethanne J.

    2012-01-01

    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  18. Integrated approach for hybrid rocket technology development

    Science.gov (United States)

    Barato, Francesco; Bellomo, Nicolas; Pavarin, Daniele

    2016-11-01

    Hybrid rocket motors tend generally to be simple from a mechanical point of view but difficult to optimize because of their complex and still not well understood cross-coupled physics. This paper addresses the previous issue presenting the integrated approach established at University of Padua to develop hybrid rocket based systems. The methodology tightly combines together system analysis and design, numerical modeling from elementary to sophisticated CFD, and experimental testing done with incremental philosophy. As an example of the approach, the paper presents the experience done in the successful development of a hybrid rocket booster designed for rocket assisted take off operations. It is thought that following the proposed approach and selecting carefully the most promising applications it is possible to finally exploit the major advantages of hybrid rocket motors as safety, simplicity, low cost and reliability.

  19. Numerical and experimental capabilities for studying rocket plume-regolith interactions

    Science.gov (United States)

    White, C.; Scanlon, T. J.; Merrifield, J. A.; Kontis, K.; Langener, T.; Alves, J.

    2016-11-01

    Soft landings on extra-terrestrial airless bodies will be required for future sample return missions, such as the Phobos Sample Return (PhSR). PhSR is a candidate mission of ESA's Mars Robotic Exploration Preparation (MREP-2) Programme. Its main objective is to acquire and return a sample from the Martian moon Phobos, after a scientific characterisation phase of the moon and of the landing site. If a rocket is used to slow down the spacecraft to a vertical descent velocity that it will be able to free-fall from, care has to be taken to ensure that the rocket exhaust does not contaminate the surface regolith that is to be collected, and that the rocket does not cause unacceptable levels of erosion to the surface, which could jeopardise the mission. In addition to the work being done in the scope of PhSR, the European Space Agency is funding an experimental facility for investigating these nozzle expansion problems; the current progress of this is described. To support this work, an uncoupled hybrid computational fluid dynamics-direct simulation Monte Carlo method is developed and used to simulate the exhaust of a mono-propellant rocket above the surface of an airless body. The pressure, shear stress, and heat flux at the surface are compared to an analytical free-molecul solution to determine the altitude above which the free-molecular solution is suffcient for predicting these properties. The pressures match well as low as 15 m above the surface, but the heat flux and shear stress are not in agreement until an altitude of 40 m. A new adsorption/desorption boundary condition for the direct simulation Monte Carlo code has also been developed for future use in in-depth contamination studies.

  20. Exhaust gas bypass valve control for thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  1. Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines

    Science.gov (United States)

    Tejwani, Gopal D.

    2010-01-01

    The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present

  2. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  3. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    The second half of the 20th century has been characterized by an explosive development in information technology (Maney, Hamm, & O'Brien, 2011). Processing power, storage capacity and network bandwidth have increased exponentially, resulting in new possibilities and shifting IT paradigms. In step...... with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production...

  4. Rocket Experiment For Neutral Upwelling

    Science.gov (United States)

    Kenward, D. R.; Lessard, M.

    2015-12-01

    Observations from the CHAMP satellite from 2004 show relatively small scale heating in the thermosphere. Several different mechanisms have been proposed to explain this phenomenon. The RENU 2 rocket mission includes a suite of 14 instruments which will acquire data to help understand processes involved in neutral upwelling in the cusp. Neutral, ion, and electron measurements will be made to provide an assessment of the upwelling process. SUPERDarn measurements of large- scale Joule heating in the cusp during overflight will also be acquired. Small-scale data which could possibly be associated with Alfvén waves, will be acquired using onboard electric field measurements. In-situ measurement of precipitating electrons and all other measurements will be used in thermodynamic and electrodynamic models for comparison to the observed upwelling.

  5. Heterogeneous fuel for hybrid rocket

    Science.gov (United States)

    Stickler, David B. (Inventor)

    1996-01-01

    Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.

  6. Local Exhaust Optimization and Worker Exposure

    DEFF Research Database (Denmark)

    Heiselberg, Per; Pedersen, Morten; Plath, Thomas

    This paper describes a process of optimisation of exhaust efficiency and of minimisation of worker exposure at a semiautomatic printing machine at a printing office.......This paper describes a process of optimisation of exhaust efficiency and of minimisation of worker exposure at a semiautomatic printing machine at a printing office....

  7. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva;

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...

  8. 49 CFR 393.83 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 393.83 Section 393.83... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.83 Exhaust systems. (a) Every motor... shall have a system to direct the discharge of such fumes. No part shall be located where its location...

  9. Radiation characteristics of intermittence exhaust noise

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shengdun; SHANG Chunyang; ZHAO Zhigang; SHI Weixiang

    2000-01-01

    Aerodynamic characteristics, the noise characteristics in the course of intermittence exhaust are investigated and the expressions for sound pressure level of the noise generated by single-pole source and quadrupole source in the intermittence exhaust noise are established. The effects of all parameters in pneumatic system on the noise are also comprehensively studied.

  10. 40 CFR 1065.130 - Engine exhaust.

    Science.gov (United States)

    2010-07-01

    ... emission constituents. (2) Minimize the number of bends in the laboratory crankcase tubing and maximize the radius of any unavoidable bend. (3) Use laboratory crankcase exhaust tubing that meets the engine... point, or first point of dilution. If laboratory exhaust tubing consists of several different outside...

  11. Cloud Interactions

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara

  12. Centaur Rocket Installation in PSL #1

    Science.gov (United States)

    1962-01-01

    Centaur Rocket Installation in PSL - Propulsion Systems Laboratory #1. The RL-10 Rocket was developed by Pratt and Whitney in the late 1950's and tested at the Lewis Research Center (now known as the John H. Glenn Research Lewis Field). This power plant was the propulsion system for NASA's upper stage Centaur rocket and was significant for being the first to use liquid hydrogen and oxygen as fuel. The Centaur suffered a number of early failures, but later proved to be a very successful upper stage for numerous commercial, NASA and military payloads.

  13. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  14. Early Spin-Stabilised Rockets - the Rockets of Bergrat Heinrich Gottlob Kuhn

    Science.gov (United States)

    Fricke, H.-D.

    19th century's war rockets were at first stabilised by sticks, but these sticks produced a very uncertain flight path and it often happened that rockets changed their direction and even flew back to their firing position. So very many early inventors in Europe, America, and British-India tried to stabilise the rocket's flight in a better way. They tried fins and even rotation but they did not succeed. It is said in history that William Hale was the first who succeeded in constructing a spin stabilised (i.e. rotating) rocket which worked. But before him, in the thirties of that century, a German amateur rocket inventor succeeded as well and secretly proved his stickless rotating rockets in trials for Prussian officers and some years later officially for Saxon artillery officers. His invention was then bought by the kingdom of Saxony, but these were never use in the field because of lack of money.

  15. Measurements of mesospheric ice aerosols using radars and rockets

    Energy Technology Data Exchange (ETDEWEB)

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  16. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  17. 21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein...

  18. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  19. Martian Clouds

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure. Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  20. Cloud Computing (4)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ 8 Case Study Cloud computing is still a new phenomenon. Although many IT giants are developing their own cloud computing infrastructures,platforms, software, and services, few have really succeeded in becoming cloud computing providers.

  1. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  2. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  3. Magnesium Based Rockets for Martian Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, we will continue the development of Mg bipropellant rockets for Martian PAV applications. In Phase I, we proved the feasibility of...

  4. Magnesium Based Rockets for Martian Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop Mg rockets for Martian ascent vehicle applications. The propellant can be acquired in-situ from MgO in the Martian regolith (5.1% Mg by mass)...

  5. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  6. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  8. Hydroxyl Tagging Velocimetry for Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the need for non-intrusive sensors for rocket plume properties, we propose a laser-based velocity diagnostic that does not require seeding, works in high...

  9. Electrodynamic actuators for rocket engine valves

    Science.gov (United States)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  10. Manufacturing Advanced Channel Wall Rocket Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  11. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    Science.gov (United States)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  12. Estimation of Initial Disturbances for Rockets Based on Interactions of Rockets and Directional Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the range of the rockets/launcher system itself, the dynamic equations for rocket and directional tube during semi-constraint period have been constructed by using Newton-Euler method. Considering the interaction of rockets and directional tubes when clearances exist, the method of estimating initial disturbances for the rocket by using vibration data of the directional tube has been given. The estimated results have been compared with the simulation results computed by the dynamic simulating software ADAMS. Results computed by the two methods are basically consistent and the computing errors do not increase with the variation of the clearance. The validity of the proposed method has been proved.

  13. Stability of Rocket Flight during Burning

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1967-10-01

    Full Text Available Stability of the rocket motion during burning is discussed taking into consideration gravity, aerodynamic forces and torques. Conditions for stabilizing the rocket motion are investigated. Analysis for initial and final phases of burning is given separately. Stability regions of the projected motions on two dimensional co-ordinate planes are obtained and thereby stability region of the actual motion is derived. Stability diagrams illustrate statically and dynamically stable and unstable regions.

  14. Rocket Rendezvous at Preassigned Destinations with Optimum

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1982-10-01

    Full Text Available The problem of rendezvous of an interceptor rocket vehicle through optimal exit path with a destination rocket vehicle at a preassigned location on the destination orbit has been investigated for non-coaxial coplanar elliptic launch and destination orbits in an inverse square gravitational field. The case, when launch and destination orbits are coplanar circular, is also discussed. In the end numerical results for rendezvous have been obtained taking Earth and Mars orbits as launch and destination orbits respectively.

  15. Computational modeling of nuclear thermal rockets

    Science.gov (United States)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  16. The CODEX sounding rocket payload

    Science.gov (United States)

    Zeiger, B.; Shipley, A.; Cash, W.; Rogers, T.; Schultz, T.; McEntaffer, R.; Kaiser, M.

    2011-05-01

    We present the CODEX sounding rocket payload, a soft x-ray (0.1-1.0 keV) spectrometer designed to observe diffuse high-surface brightness astronomical sources. The payload is composed of two modules, each with a 3.25° x 3.25° field of view defined by a stack of wire grids that block light not coming to a 3.0 m focus and admit only nearly-collimated light onto an array of 67 diffraction gratings in an off-plane mount. After a 2.0 m throw, the spectrum is detected by offset large-format gaseous electron multiplier (GEM) detectors. CODEX will target the Vela supernova remnant later this year to measure the temperature and abundances and to determine the contributions of various soft x-ray emission mechanisms to the remnant's energy budget; resulting spectra will have resolution (E/▵E) ranging from 50 to 100 across the band. CODEX is the third-generation of similar payloads from the University of Colorado, with an increased bandpass, higher throughput, and a more robust mechanical structure than its predecessors.

  17. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  18. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  19. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  20. Exhaustion and the Pathologization of Modernity.

    Science.gov (United States)

    Schaffner, Anna Katharina

    2016-09-01

    This essay analyses six case studies of theories of exhaustion-related conditions from the early eighteenth century to the present day. It explores the ways in which George Cheyne, George Beard, Richard von Krafft-Ebing, Sigmund Freud, Alain Ehrenberg and Jonathan Crary use medical ideas about exhaustion as a starting point for more wide-ranging cultural critiques related to specific social and technological transformations. In these accounts, physical and psychological symptoms are associated with particular external developments, which are thus not just construed as pathology-generators but also pathologized. The essay challenges some of the persistently repeated claims about exhaustion and its unhappy relationship with modernity.

  1. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  2. A3 Subscale Rocket Hot Fire Testing

    Science.gov (United States)

    Saunders, G. P.; Yen, J.

    2009-01-01

    This paper gives a description of the methodology and results of J2-X Subscale Simulator (JSS) hot fire testing supporting the A3 Subscale Diffuser Test (SDT) project at the E3 test facility at Stennis Space Center, MS (SSC). The A3 subscale diffuser is a geometrically accurate scale model of the A3 altitude simulating rocket test facility. This paper focuses on the methods used to operate the facility and obtain the data to support the aerodynamic verification of the A3 rocket diffuser design and experimental data quantifying the heat flux throughout the facility. The JSS was operated at both 80% and 100% power levels and at gimbal angle from 0 to 7 degrees to verify the simulated altitude produced by the rocket-rocket diffuser combination. This was done with various secondary GN purge loads to quantify the pumping performance of the rocket diffuser. Also, special tests were conducted to obtain detailed heat flux measurements in the rocket diffuser at various gimbal angles and in the facility elbow where the flow turns from vertical to horizontal upstream of the 2nd stage steam ejector.

  3. Advanced Solid Rocket Launcher and Its Evolution

    Science.gov (United States)

    Morita, Yasuhiro; Imoto, Takayuki; Habu, Hiroto; Ohtsuka, Hirohito; Hori, Keiichi; Koreki, Takemasa; Fukuchi, Apollo; Uekusa, Yasuyuki; Akiba, Ryojiro

    The research on next generation solid propellant rockets is actively underway in various spectra. JAXA is developing the Advanced Solid Rocket (ASR) as a successor to the M-V launch vehicle, which was utilized over past ten years for space science programs including planetary missions. ASR is a result of the development of the next generation technology including a highly intelligent autonomous check-out system, which is connected to not only the solid rocket but also future transportation systems. It is expected to improve the efficiency of the launch system and double the cost performance. Far beyond this effort, the passion of the volunteers among the industry-government-academia cooperation has been united to establish the society of the freewheeling thinking “Next generation Solid Rocket Society (NSRS)”. It aims at a larger revolution than what the ASR provides so that the order of the cost performance is further improved. A study of the Low melting temperature Thermoplastic Propellant (LTP) is now at the experimental stage, which is expected to reform the manufacturing process of the solid rocket propellant and lead to a significant increase in cost performance. This paper indicates the direction of the big flow towards the next generation solid-propellant rockets: the concept of the intelligent ASR under development; and the innovation behind LTP.

  4. Ozone depletion in the plume of a solid-fuelled rocket

    Directory of Open Access Journals (Sweden)

    B. C. Krüger

    Full Text Available The local effects of the emission of a solid-fuelled rocket on the stratospheric ozone concentration have been investigated by photochemical model calculations. A one-dimensional horizontal model has been applied which calculates the trace gas composition at a single atmospheric altitude spatially resolved around the exhaust plume. Different cases were tested for the emissions of the Space Shuttle concerning the composition of the exhaust and the effects of heterogeneous reactions on atmospheric background aerosol.

    The strongest depletion of ozone is achieved when a high amount of the emitted chlorine is Cl2. If it is purely HCl, the effect is smallest, though in this case the heterogeneous reactions show their largest influence. From the results it may be estimated whether ozone depletion caused by rocket launches can be detected by satellite instruments. It appears that the chance of coincidental detection of such an event is rather small.

  5. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  6. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  7. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    Science.gov (United States)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.

  8. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    1900-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  9. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  10. Exhaustivity and intonation: a unified theory

    NARCIS (Netherlands)

    Westera, M.

    2017-01-01

    This dissertation presents a precise, unified and explanatory theory of human conversation, centered on two broad phenomena: exhaustivity implications and intonational meaning. In a nutshell: (i) speakers have two types of communicative intentions, namely information sharing and attention sharing, (

  11. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  12. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  13. Sorption dehumidification of natural gas exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    The calorific value of natural gas can be fully utilized only if the water vapour in the exhaust gases is condensed. This can be achieved in condensing boilers. Another possibility is to dry the exhaust before discharge by sorption dehumidification. The sorbent can be regenerated directly by the boiler. The vapour developed in the regenerator can be condensed in a condenser with useful effect. Simulations given an efficiency higher than 97% with respect to the Gross Calorific value. (author).

  14. Exhaust Gas Energy Recovery Technology Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Robert M [ORNL; Szybist, James P [ORNL

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  15. Application of phase coherent transform to cloud clutter suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  16. Rockets and People. Volume 1

    Science.gov (United States)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  17. Development of a miniature solid propellant rocket motor for use in plume simulation studies

    Science.gov (United States)

    Baran, W. J.

    1974-01-01

    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  18. Simulation of an advanced techniques of ion propulsion Rocket system

    Science.gov (United States)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  19. Substitution among exhaustible resources and intergenerational equity

    Energy Technology Data Exchange (ETDEWEB)

    Hartwick, J.M.

    1978-06-01

    Hartwick (American Econ. Rev., 66 (Dec. 1977)) showed that implicit in R.M. Solow's model of intergenerational equity and exhaustible resources (Rev. Econ. Studies (Symposium, 1974) 29-46) was the savings-investment rule: society should invest in reproducible capital precisely the current returns from the use of flows of exhaustible resources in order to maintain per capita consumption constant. Population was assumed to remain constant. Solow and Hartwick assumed that there was only one exhaustible resource. Beckmann (American Econ. Rev., 65, 695-99 (Sept 1975)) investigated optimal growth in models with many exhaustible resources. In this paper the case of many exhaustible resources is considered and results are derived on substitution among resources and on the nature of paths of development. One of Beckmann's results on substitution is analyzed. The approach is first to analyze efficient paths under the assumption of general savings functions and then to analyze efficient paths under the assumption of the special savings function referred to above. Results indicate the Solow's existence theorem remains valid for the case of many exhaustible resources and some light is shed on the existence of paths for production functions not of the Cobb-Douglas form. 12 references.

  20. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    Science.gov (United States)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  1. Cloud Computing (1)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series will discuss cloud computing technology in the following aspects: The first part provides a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  2. Cloud Computing (2)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series discusses cloud computing technology in the following aspects: The first part provided a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  3. Cloud storage for dummies

    CERN Document Server

    Xu, Linda; Loughlin, Tanya

    2010-01-01

    Understand cloud computing and save your organization time and money! Cloud computing is taking IT by storm, but what is it and what are the benefits to your organization? Hitachi Data Systems' Cloud Storage For Dummies provides all the answers, With this book, you discover a clear explanation of cloud storage, and tips for how to choose the right type of cloud storage for your organization's needs. You also find out how cloud storage can free up valuable IT resources, saving time and money. Cloud Storage For Dummies presents useful information on setting up a

  4. Robots and sensor clouds

    CERN Document Server

    Shakshuki, Elhadi

    2016-01-01

    This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.  .

  5. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... exhaust systems must ensure minimum risk of injury to personnel. Protection must be provided in compliance... in bulkhead penetration glands for dry exhaust systems. A wet exhaust pipe may be welded to a steel... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section...

  6. 46 CFR 182.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... installation. (a) The design of all exhaust systems must ensure minimum risk of injury to personnel. Protection... be used in bulkhead penetration glands for dry exhaust systems. A wet exhaust pipe may be welded to a... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 182.430 Section...

  7. 14 CFR 29.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 29.1125 Section 29... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have...

  8. 14 CFR 25.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 25.1125 Section 25... exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... provisions wherever it is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or...

  9. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  10. Cloud Computing (3)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: In the preceding two parts of this series, several aspects of cloud computing-including definition, classification, characteristics, typical applications, and service levels-were discussed. This part continues with a discussion of Cloud Computing Oopen Architecture and Market-Oriented Cloud. A comparison is made between cloud computing and other distributed computing technologies, and Google's cloud platform is analyzed to determine how distributed computing is implemented in its particular model.

  11. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  12. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    Science.gov (United States)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  13. Regenerative Cooling for Liquid Rocket Engines

    Institute of Scientific and Technical Information of China (English)

    QiFeng

    1995-01-01

    Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocket engines.Regenerative cooling is and advanced method which can ensure not only the proper running but also higher performance of a rocket engine.The theoretical model is complicated,it relates to fluid bynamics,heat transfer,combustion.etc…,In this paper,a regenerative cooling model is presented.Effects such as radiation,heat transfer to environment,variable thermal properties and coking are included in the model.This model can be applied to all kinds of liquid propellant rocket engines as well as similar constructions.The modularized computer code is completed in the work.

  14. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  15. Laser-fusion rocket for interplanetary propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  16. The Norwegian Sounding Rocket and Balloon Program

    Science.gov (United States)

    Skatteboe, Rolf

    2001-08-01

    The status and recent developments of the Norwegian Sounding Rocket and Balloon Program are presented with focus on national activities and recent achievements. The main part of the Norwegian program is sounding rocket launches conducted by Andøya Rocket Range from the launch facilities on Andøya and at Svalbard. For the majority of the programs, the scientific goal is investigation of processes in the middle and upper atmosphere. The in situ measurements are supplemented by a large number of ground-based support instruments located at the ALOMAR Observatory. The ongoing and planned projects are described and the highlights of the latest completed projects are given. The scientific program for the period 2001-2003 will be reviewed. Several new programs have been started to improve the services available to the international science comunity. The Hotel Payload project and MiniDusty are important examples that will be introduced in the paper. Available space related infrastructure is summarized.

  17. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  18. Performance of Installed Cooking Exhaust Devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

    2011-11-01

    The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

  19. 3D reconstruction of tropospheric cirrus clouds

    Science.gov (United States)

    Kouahla, M. N.; Faivre, M.; Moreels, G.; Seridi, H.

    2016-10-01

    In this paper, we present a series of results from stereo-imagery of cirrus clouds in the troposphere. These clouds are either of natural origin or are created by aircraft exhausts. They are presently considered to be a major cause for the climate change. Two observation campaigns were conducted in France in 2013 and 2014. The observing sites were located in Marnay (47°17‧31.5″ N, 5°44‧58.8″ E; altitude 275 m) and in Mont Poupet (46°58‧31.5″ N, 5°52‧22.7″ E; altitude 600 m). The distance between both sites was 36 km. We used numeric CMOS photographic cameras. The image processing sequence included a contrast enhancement and a perspective inversion to obtain a satellite-type view. Finally, the triangulation procedure was used in an area that is a common part of both fields of view.

  20. CODEX sounding rocket wire grid collimator design

    Science.gov (United States)

    Shipley, Ann; Zeiger, Ben; Rogers, Thomas

    2011-05-01

    CODEX is a sounding rocket payload designed to operate in the soft x-ray (0.1-1.0 kV) regime. The instrument has a 3.25 degree square field of view that uses a one meter long wire grid collimator to create a beam that converges to a line in the focal plane. Wire grid collimator performance is directly correlated to the geometric accuracy of actual grid features and their relative locations. Utilizing a strategic combination of manufacturing and assembly techniques, this design is engineered for precision within the confines of a typical rocket budget. Expected resilience of the collimator under flight conditions is predicted by mechanical analysis.

  1. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  2. Cusp Alfven and Plasma Electrodynamics Rocket (CAPER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch a single rocket from Andoya Rocket Range into an active cusp event. Observe electric and magnetic fields, HF waves, electron and ion distributions and...

  3. Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/ Marshall Space Flight Center (MSFC) needs sensors that can be operated on rocket engine plume environments to improve NASA/SSC rocket engine performance. In...

  4. A study of early korean rockets (1377-1600)

    Science.gov (United States)

    Chae, Yeon Seok

    The first Korean rocket was fired between 1377 and 1389 and began the Korean development of rockets as a tactical weapon. Although, Korea had successfully demonstrated the use of rockets as firearms in the fifteenth century, there had been no effort to present the historical development of the early Korean rockets in a paper which will be useful to both historians and scientists. The book entitled Kuk Cho Ore Sorye (1474) in the Korean language provided extensive rocket system description, however it required considerable research to interpret them. This paper is the first study of early Korean rockets and launchers. The major effort in this study is directed toward the development of design concepts and details of early Korean rockets. Also, to substantiate support of the historical data presented, some versions of the early Korean rockets were made according to their specifications and fired successfully by the author in 1981.

  5. Characterization and analysis of diesel exhaust odor

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, P.A.; Shala, F.J.; Cernansky, N.P.; Suffet, I.H.

    1987-04-01

    An analytical method was developed to determine which compound or compounds in the oxygenated fraction of diesel exhaust were changing in intensity and number with respect to the odor correlation between human sensory panels and diesel exhaust samples as developed at Arthur D. Little, Inc. A sample fractionation with silica Sep-Pak cartridges and gas chromatography analysis procedures were developed to analyze exhaust odor samples. By use of a chromatographic computer profiling method, correlations were developed indicating a linear relation between log (odor intensity) and log (concentration) of specific character impact peaks (which may or may not be odorous themselves). Excellent correlations were obtained with the character impact peaks identified as benzaldehyde and a methylbenzaldehyde isomer in this study. Correlation coefficients of 0.97 and 0.90, respectively, were obtained for the sample set. 17 references, 5 figures, 2 tables.

  6. Monitoring of occupational exposure to diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, P.

    1994-12-01

    In Chapter 1 the origin and toxicity of incomplete combustion products of diesel fuel are discussed. Chapter 2 deals with methods that can be used for the identification and quantitation of airborne diesel exhaust-derived contaminants in the working place (environmental monitoring). Chemical substances may be used as indicators for source apportionment or markers for toxicity. A short-term in vitro bioassay may be used for (semi)quantitative determination of the mutagenic potency of diesel exhaust-derived airborne contaminants. Results are presented that support the use of 1-nitropyrene as a marker for the mutagenic activity of diesel exhaust particulate extracts. In Chapter 3 the development of methods for the determination of diesel exhaust-derived metabolites in biological samples is described. The application of new Salmonella typhimurium strains for the detection of urinary metabolites of nitroarenes is investigated. An immunoassay is presented as a method that may be used to track down persons with high occupational exposure to diesel exhaust. The possibilities for measurement of early biological effects are explored in Chapter 4. A method for the determination of hemoglobin adducts was used to investigate the role of the intestinal micro flora in the formation of such adducts derived from diesel exhaust constituents in rats equipped with a human micro flora. The formation of hemoglobin adducts is compared to the formation of DNA adducts in rats treated with two model compounds, in the presence or absence of a micro flora. The applicability of the described methods is discussed in Chapter 5. Prospects and recommendations for future research are given. 23 figs., 41 tabs., 660 refs., 4 appendices

  7. Brain glycogen supercompensation following exhaustive exercise.

    Science.gov (United States)

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals.

  8. Regression Rate Study in HTPB/GOX Hybrid Rocket Motors.

    OpenAIRE

    Philmon George; Krishnan, S; Lalitha Ramachandran; P. M. Varkey; Raveendran, M.

    1996-01-01

    The theoretical and experimenIal studies on hybrid rocket motor combustion research are briefly reviewed and the need for a clear understanding of hybrid rocket fuel regression rate mechanism is brought out. A test facility established at the Indian Institute of Technology, Madras, for hybrid rocket motor research study is described.The results of an experimental study on hydroxyl terminated polybutadiene and gaseous oxygen hybrid rocket motor are presented. Fuel grains with ammonium perchlor...

  9. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  10. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  11. Nuclear Thermal Rocket (NTR) Development Risk Communication

    Science.gov (United States)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  12. Humans differ in their personal microbial cloud

    Directory of Open Access Journals (Sweden)

    James F. Meadow

    2015-09-01

    Full Text Available Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.

  13. Influence of Rocket Engine Characteristics on Shaft Sealing Technology Needs

    Science.gov (United States)

    Keba, John E.

    1999-01-01

    This paper presents viewgraphs of The Influence of Rocket Engine Characteristics on Shaft Sealing Technology Needs. The topics include: 1) Rocket Turbomachinery Shaft Seals (Inter-Propellant-Seal (IPS) Systems, Lift-off Seal Systems, and Technology Development Needs); 2) Rocket Engine Characteristics (Engine cycles, propellants, missions, etc., Influence on shaft sealing requirements); and 3) Conclusions.

  14. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and...

  15. Exhaust gas system for space heating equipment. Abgassystem fuer Raumheizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.; Kramp, A.

    1980-11-06

    The invention concerns an exhaust gas system for space heating equipment, particularly for equipment operated by liquid gas and used in caravans and similar vehicles. According to the invention, the exhaust gas system consists of a double walled pipe and a damming valve. This exhaust gas system makes it possible to cool the exhaust gas and therefore prevents too much heating at the outlet of the exhaust chimney and the penetration through the appropriate roof. If the outlet opening of the exhaust chimney should be blocked, the exhaust gases are taken to the outside through the space between the double-walled pipe via the damming valve. The usual non-return valve only operates if there is direct return flow in the exhaust chimney and therefore in the inner exhaust gas pipe of the double-walled pipe. This considerably increases the working safety of the whole system of space hating.

  16. Specific Impulses Losses in Solid Propellant Rockets

    Science.gov (United States)

    1974-12-17

    to use the collision function form proposed by Golovin to simplify this production term: 4C><=) <P- .: Accordingly: m hence, by integration: Now, we...November 21, 1940 in Paris, Seine. VFirst Thesis. "Contribution to the Study of Specific i Impulse Loss in Solid Propellant Rockets." Second Thesis

  17. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  18. The rocket problem in general relativity

    CERN Document Server

    Henriques, Pedro G

    2011-01-01

    We derive the covariant optimality conditions for rocket trajectories in general relativity, with and without a bound on the magnitude of the proper acceleration. The resulting theory is then applied to solve two specific problems: the minimum fuel consumption transfer between two galaxies in a FLRW model, and between two stable circular orbits in the Schwarzschild spacetime.

  19. Rocket and Laboratory Studies in Astronomy

    Science.gov (United States)

    Feldman, Paul D.

    2001-01-01

    This is the final report for NASA Grant NAG5-5122 and covers the period from March 1, 1997 to February 28, 2001. This grant was a continuation of a program in rocket and laboratory studies in ultraviolet astronomy that was supported by NASA grant NAG5-619. As of March 1, 2001, this program is continuing under grant NAG5-5315. During the period of the grant, annual status reports have been submitted detailing the scientific achievements and current objectives of each report period. These will not be repeated here. Among the highlights of the program are four successful rocket launches including participation in the campaign to study comet Hale-Bopp in April 1997. We have continued our emphasis on long-slit spectroscopy of extended sources in the shorter wavelength far-ultraviolet, necessitating the development of evacuated telescope/spectrograph payloads. Finally, we also note the use of our ultraviolet calibration facilities in support of other sounding rocket investigators and for other space missions such as the Far Ultraviolet Spectroscopic Explorer. We include a list of the sounding rocket launches performed under NASA sponsorship during this period, a list of Ph.D. degrees awarded to students who worked in this program, and a summary bibliography of publications between 1997 and 2001.

  20. NASA Sounding Rocket Program educational outreach

    Science.gov (United States)

    Eberspeaker, P. J.

    2005-08-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NASA Sounding Rocket Program engages in a host of student flight projects providing unique and exciting hands-on student space flight experiences. These projects include single stage Orion missions carrying "active" high school experiments and "passive" Explorer School modules, university level Orion and Terrier-Orion flights, and small hybrid rocket flights as part of the Small-scale Educational Rocketry Initiative (SERI) currently under development. Efforts also include educational programs conducted as part of major campaigns. The student flight projects are designed to reach students ranging from Kindergarteners to university undergraduates. The programs are also designed to accommodate student teams with varying levels of technical capabilities - from teams that can fabricate their own payloads to groups that are barely capable of drilling and tapping their own holes. The program also conducts a hands-on student flight project for blind students in collaboration with the National Federation of the Blind. The NASA Sounding Rocket Program is proud of its role in inspiring the "next generation of explorers" and is working to expand its reach to all regions of the United States and the international community as well.

  1. Straw Rockets Are out of This World

    Science.gov (United States)

    Gillman, Joan

    2013-01-01

    To capture students' excitement and engage their interest in rocketships and visiting planets in the solar system, the author designed lessons that give students the opportunity to experience the joys and challenges of developing straw rockets, and then observing which design can travel the longest distance. The lessons are appropriate for…

  2. Government Relations: It's Not Rocket Science

    Science.gov (United States)

    Radway, Mike

    2007-01-01

    Many people in the early childhood education field are afraid of government relations work, intimidated by politicians, and believe the whole process is unseemly. The author asserts that they should not be afraid nor be intimidated because government relations is not rocket science and fundamentally officeholders are no different from the rest of…

  3. Simulation of Airplane and Rocket Trajectories

    Science.gov (United States)

    Wahbah, Magdy M.; Berning, Michael J.; Choy, Tony S.

    1987-01-01

    Simulation and Optimization of Rocket Trajectories program (SORT) contains comprehensive mathematical models for simulating aircraft dynamics, freely falling objects, and many types of ballistic trajectories. Provides high-fidelity, three-degrees-of-freedom simulation for atmospheric and exoatmospheric flight. It numerically models vehicle subsystems and vehicle environment. Used for wide range of simulations. Written in machine-independent FORTRAN 77.

  4. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  5. Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines

    Indian Academy of Sciences (India)

    Avinash Kumar Agrawal; Shrawan Kumar Singh; Shailendra Sinha; Mritunjay Kumar Shukla

    2004-06-01

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of reducing the NOx emission of a diesel engine is by late injection of fuel into the combustion chamber. This technique is effective but increases fuel consumption by 10–15%, which necessitates the use of more effective NOx reduction techniques like exhaust gas recirculation (EGR). Re-circulating part of the exhaust gas helps in reducing NOx, but appreciable particulate emissions are observed at high loads, hence there is a trade-off between NOx and smoke emission. To get maximum benefit from this trade-off, a particulate trap may be used to reduce the amount of unburnt particulates in EGR, which in turn reduce the particulate emission also. An experimental investigation was conducted to observe the effect of exhaust gas re-circulation on the exhaust gas temperatures and exhaust opacity. The experimental setup for the proposed experiments was developed on a two-cylinder, direct injection, air-cooled, compression ignition engine. A matrix of experiments was conducted for observing the effect of different quantities of EGR on exhaust gas temperatures and opacity.

  6. Model analysis of the chemical conversion of exhaust species in the expanding plumes of subsonic aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moellhoff, M.; Hendricks, J.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie; Sausen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A box model and two different one-dimensional models are used to investigate the chemical conversion of exhaust species in the dispersing plume of a subsonic aircraft flying at cruise altitude. The effect of varying daytime of release as well as the impact of changing dispersion time is studied with special respect to the aircraft induced O{sub 3} production. Effective emission amounts for consideration in mesoscale and global models are calculated. Simulations with modified photolysis rates are performed to show the sensitivity of the photochemistry to the occurrence of cirrus clouds. (author) 8 refs.

  7. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  8. Cloud Processed CCN Affect Cloud Microphysics

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  9. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    OpenAIRE

    Novi Andria

    2013-01-01

    Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 ...

  10. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    Science.gov (United States)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  11. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  12. Peregrine 100-km Sounding Rocket Project

    Science.gov (United States)

    Zilliac, Gregory

    2012-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University, and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of this technology to a small launch system. The approach is to design, build, and fly a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked off in October of 2006 and has seen considerable progress in the subsequent 18 months. This research group began studying liquifying hybrid rocket fuel technology more than a decade ago. The overall goal of the research was to gain a better understanding of the fundamental physics of the liquid layer entrainment process responsible for the large increase in regression rate observed in these fuels, and to demonstrate the effect of increased regression rate on hybrid rocket motor performance. At the time of this reporting, more than 400 motor tests were conducted with a variety of oxidizers (N2O, GOx, LOx) at ever increasing scales with thrust levels from 5 to over 15,000 pounds (22 N to over 66 kN) in order to move this technology from the laboratory to practical applications. The Peregrine program is the natural next step in this development. A number of small sounding rockets with diameters of 3, 4, and 6 in. (7.6, 10.2, and 15.2 cm) have been flown, but Peregrine at a diameter of 15 in. (38.1 cm) and 14,000-lb (62.3-kN) thrust is by far the largest system ever attempted and will be one of the largest hybrids ever flown. Successful Peregrine flights will set the stage for a wide range of applications of this technology.

  13. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  14. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  15. In the clouds

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Clouds always used to be the least understood element of the weather system, but that is rapidly changing . Computer clouds increasingly correspond with those in the sky, which promises weather forecasts at street level and more accurate climate scenarios.

  16. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  17. GreenCube and RocketCube: Low-Resource Sensorcraft for Atmospheric and Ionospheric Science

    Science.gov (United States)

    Bracikowski, P. J.; Lynch, K. A.; Slagle, A. K.; Fagin, M. H.; Currey, S. R.; Siddiqui, M. U.

    2009-12-01

    In situ atmospheric and ionospheric studies benefit greatly from the ability to separate variations in space from variations in time. Arrays of many probes are a method of doing this, but because of the technical character and expense of developing large arrays, so far probe arrays have been the domain of well-funded science missions. CubeSats and low-resource craft (``Picosats") are an avenue for bringing array-based studies of the atmosphere and ionosphere into the mainstream. The Lynch Rocket Lab at Dartmouth College is attempting to develop the instruments, experience, and heritage to implement arrays of many low-resource sensorcraft while doing worthwhile science in the development process. We are working on two CubeSat projects to reach this goal: GreenCube for atmospheric studies and RocketCube for ionospheric studies. GreenCube is an undergraduate student-directed high-altitude balloon-borne 3U CubeSat. GreenCube I was a bus, telemetry, and mechanical system development project. GreenCube I flew in the fall of 2008. The flight was successfully recovered and tracked over the 97km range and through the 29km altitude rise. GreenCube I carried six thermal housekeeping sensors, a GPS, a magnetometer, and a HAM radio telemetry system with a reporting rate of once every 30 seconds. The velocity profile obtained from the GPS data implies the presence of atmospheric gravity waves during the flight. GreenCube II flew in August 2009 with the science goal of detecting atmospheric gravity waves over the White Mountains of New Hampshire. Two balloons with identical payloads were released 90 seconds apart to make 2-point observations. Each payload carried a magnetometer, 5 thermistors for ambient temperature readings, a GPS, and an amateur radio telemetry system with a 7 second reporting cadence. A vertically oriented video camera on one payload and a horizontally oriented video camera on the other recorded the characteristics of gravity waves in the nearby clouds. We

  18. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  19. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  20. Propagation of light through ship exhaust plumes

    NARCIS (Netherlands)

    Iersel, M. van; Mack, A.; Eijk, A.M.J. van; Schleijpen, H.M.A.

    2014-01-01

    Looking through the atmosphere, it is sometimes difficult to see the details of an object. Effects like scintillation and blur are the cause of these difficulties. Exhaust plumes of e.g. a ship can cause extreme scintillation and blur, making it even harder to see the details of what lies behind the

  1. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  2. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  3. Comparing Point Clouds

    Science.gov (United States)

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  4. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  5. Governmental Cloud - Part of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-01-01

    Full Text Available Large IT (Information Technology companies propose cloud government's (G-Cloud development model through investment from the private sector, which will facilitate the access of users from public sector to the new generation IT services. Through the G-Cloud private operators that operate governmental cloud infrastructure by adding specific SaaS (Software as a Service functionalities, proposed model by big companies, supports public institutions in optimizing costs and increased operational efficiency, bringing tangible benefits in relation with citizens and thus with the whole society. These optimizations are achieved by moving the initial investment to the private sector, through type subscription model cost by eliminating dependency on human factors (technical and by providing a low cost [1]. This paper aims to bring to the attention of specialists, some aspects of Governmental Cloud from the European Union (EU countries to be understood and implemented in Romania.

  6. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  7. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  8. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  9. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  10. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  11. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  12. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  13. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  14. Mixing and reaction processes in rocket based combined cycle and conventional rocket engines

    Science.gov (United States)

    Lehman, Matthew Kurt

    Raman spectroscopy was used to make species measurements in two rocket engines. An airbreathing rocket, the rocket based combined cycle (RBCC) engine, and a conventional rocket were investigated. A supersonic rocket plume mixing with subsonic coflowing air characterizes the ejector mode of the RBCC engine. The mixing length required for the air and plume to become homogenous is a critical dimension. For the conventional rocket experiments, a gaseous oxygen/gaseous hydrogen single-element shear coaxial injector was used. Three chamber Mach number conditions, 0.1, 0.2 and 0.3, were chosen to assess the effect of Mach number on mixing. The flow within the chamber was entirely subsonic. For the RBCC experiments, vertical Raman line measurements were made at multiple axial locations downstream from the rocket nozzle plane. Species profiles assessed the mixing progress between the supersonic plume and subsonic air. For the conventional rocket, Raman line measurements were made downstream from the injector face. The goal was to evaluate the effect of increased chamber Mach number on injector mixing/reaction. For both engines, quantitative and qualitative information was collected for computational fluid dynamics (CFD development. The RBCC experiments were conducted for three distinct geometries. The primary flow path was a diffuse and afterburner design with a direct-connect air supply. A sea-level static (SLS) version and a thermally choked variant were also tested. The experimental results show that mixing length increases with additional coflow air in the DAB geometry. Operation of variable rocket mixture ratios at identical air flow rates did not significantly affect the mixing length. The thermally choked variant had a longer mixing length compared to the DAB geometry, and the SLS modification had a shorter mixing length due to a reduced air flow. The conventional rocket studies focused on the effect of chamber Mach number on primary injector mixing. Chamber Mach

  15. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  16. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  17. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  18. A subscale facility for liquid rocket propulsion diagnostics at Stennis Space Center

    Science.gov (United States)

    Raines, N. G.; Bircher, F. E.; Chenevert, D. J.

    1991-01-01

    The Diagnostics Testbed Facility (DTF) at NASA's John C. Stennis Space Center in Mississippi was designed to provide a testbed for the development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen/gaseous hydrogen thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aerothermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.

  19. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    Science.gov (United States)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  20. 46 CFR 111.33-9 - Ventilation exhaust.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-9 Ventilation exhaust. The exhaust of each forced-air semiconductor rectifier system must: (a) Terminate in a location other than a hazardous...

  1. Intergalactic HI Clouds

    CERN Document Server

    Briggs, F H

    2005-01-01

    Neutral intergalactic clouds are so greatly out numbered by galaxies that their integral HI content is negligible in comparison to that contained in optically luminous galaxies. In fact, no HI cloud that is not associated with a galaxy or grouping of galaxies has yet been identified. This points to a causal relationship that relies on gravitational potentials that bind galaxies also being responsible for confining HI clouds to sufficient density that they can become self-shielding to the ionizing background radiation. Unconfined clouds of low density become ionized, but confined clouds find themselves vulnerable to instability and collapse, leading to star formation.

  2. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  3. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  4. Cloud Computing Technologies

    Directory of Open Access Journals (Sweden)

    Sean Carlin

    2012-06-01

    Full Text Available This paper outlines the key characteristics that cloud computing technologies possess and illustrates the cloud computing stack containing the three essential services (SaaS, PaaS and IaaS that have come to define the technology and its delivery model. The underlying virtualization technologies that make cloud computing possible are also identified and explained. The various challenges that face cloud computing technologies today are investigated and discussed. The future of cloud computing technologies along with its various applications and trends are also explored, giving a brief outlook of where and how the technology will progress into the future.

  5. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  6. Acoustically shielded exhaust system for high thrust jet engines

    Science.gov (United States)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  7. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  8. Community Cloud Computing

    CERN Document Server

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  9. Nuclear rocket using indigenous Martian fuel NIMF

    Science.gov (United States)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  10. Ignition transient analysis of solid rocket motor

    Science.gov (United States)

    Han, Samuel S.

    1991-01-01

    Measurement data on the performance of Space Shuttle Solid Rocket Motor show wide variations in the head-end pressure changes and the total thrust build-up during the ignition transient periods. To analyze the flow and thermal behavior in the tested solid rocket motors, a 1-dimensional, ideal gas flow model via the SIMPLE algorithm was developed. Numerical results showed that burning patterns in the star-shaped head-end segment of the propellant and the erosive burning rate are two important factors controlling the ignition transients. The objective of this study is to extend the model to include the effects of aluminum particle commonly used in solid propellants. To treat the effects of aluminum-oxide particles in the combustion gas, conservation of mass, momentum, and energy equations for the particles are added in the numerical formulation and integrated by an inter-phase-slip algorithm.

  11. Performance Charts for Multistage Rocket Boosters

    Science.gov (United States)

    MacKay, John S.; Weber, Richard J.

    1961-01-01

    Charts relating the stage propellant fractions are given for two-and three-stage rockets launching payloads into nominal low-altitude circular orbits about the earth. A simple method is described for extending these data to higher orbit or escape missions. Various combinations of stages using RP - liquid-oxygen and hydrogen - liquid-oxygen propellants are considered. However, the results can be generalized with little error to any other propellant combination.Charts relating the stage propellant fractions are given for two-and three-stage rockets launching payloads into nominal low-altitude circular orbits about the earth. A simple method is described for extending these data to higher orbit or escape missions. Various combinations of stages using RP - liquid-oxygen and hydrogen - liquid-oxygen propellants are considered. However, the results can be generalized with little error to any other propellant combination.

  12. Design Study: Rocket Based MHD Generator

    Science.gov (United States)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  13. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  14. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  15. 14 CFR 23.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 23.1125 Section 23... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia,...

  16. 46 CFR 182.425 - Engine exhaust cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as... of this chapter. (b) The exhaust pipe cooling water system must comply with the requirements of...

  17. 40 CFR 202.22 - Visual exhaust system inspection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system...

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  19. Computational simulation of liquid rocket injector anomalies

    Science.gov (United States)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  20. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  1. Jet Engine Exhaust Analysis by Subtractive Chromatography

    Science.gov (United States)

    1978-12-01

    and J. J. Brooks. Development of a portable miniature collection system for the exposure as- sessment within the microenvironment for carcinogens ...65 A-2. Recovery of acrylonitrile from standard sample generation system ...... ............. 66 B-I. Jet engine exhaust sampling and analysis...7 n-Butane 0.16 2.6 minutes 8 Propylene oxide 3.14 52 minutes 9 Acrylonitrile 9.35 2.6 hours 10 Phenanthrene 1.9 x 106 61 years 11 4-Bromodiphenyl

  2. Operational test report, 500 CFM portable exhauster

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, O.D.

    1997-05-15

    A 500 cubic foot per minute (CFM) portable exhauster system was fabricated for use on 241-A-101 [a Hydrogen Watch List tank] during saltwell pumping activities. An operational test was performed on this unit during 9/20/96 through 1O/14/96 in the 241-A Tank Farm. This operational test was done in accordance with OTP-060-001 Rev 0 (See Appendix A of this report). The test was performed with exceptions.

  3. Jet Engine Exhaust Nozzle Flow Effector

    Science.gov (United States)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  4. Ageing characterization of exhaust flexible couplings

    OpenAIRE

    2012-01-01

    The aim of this work is to investigate the mechanical strength of automotive exhaust flexible couplings subjected to thermo-mechanical fatigue and corrosion. Five different types of flexible coupling have been considered, realised by four different king of materials: three stainless steels (AISI 309, AISI 321, AISI 321 Ti) and a nickel alloy (Incoloy 825). These components have been tested by a dedicated procedure consisting of different cycles of fatigue, heating and corrosion. Performances ...

  5. Thermal radiation of heterogeneous combustion products in the model rocket engine plume

    Science.gov (United States)

    Kuzmin, V. A.; Maratkanova, E. I.; Zagray, I. A.; Rukavishnikova, R. V.

    2015-05-01

    The work presents a method of complex investigation of thermal radiation emitted by heterogeneous combustion products in the model rocket engine plume. Realization of the method has allowed us to obtain full information on the results in all stages of calculations. Dependence of the optical properties (complex refractive index), the radiation characteristics (coefficients and cross sections) and emission characteristics (flux densities, emissivity factors) of the main determining factors and parameters was analyzed. It was found by the method of computational experiment that the presence of the gaseous phase in the combustion products causes a strongly marked selectivity of emission, due to which the use of gray approximation in the calculation of thermal radiation is unnecessary. The influence of the optical properties, mass fraction, the function of particle size distribution, and the temperature of combustion products on thermal radiation in the model rocket engine plume was investigated. The role of "spotlight" effect-increasing the amount of energy of emission exhaust combustion products due to scattering by condensate particles radiation from the combustion chamber-was established quantitatively.

  6. Calculation of Free-Atom Fractions in Hydrocarbon-Fueled Rocket Engine Plume

    Science.gov (United States)

    Verma, Satyajit

    2006-01-01

    Free atom fractions (Beta) of nine elements are calculated in the exhaust plume of CH4- oxygen and RP-1-oxygen fueled rocket engines using free energy minimization method. The Chemical Equilibrium and Applications (CEA) computer program developed by the Glenn Research Center, NASA is used for this purpose. Data on variation of Beta in both fuels as a function of temperature (1600 K - 3100 K) and oxygen to fuel ratios (1.75 to 2.25 by weight) is presented in both tabular and graphical forms. Recommendation is made for the Beta value for a tenth element, Palladium. The CEA computer code was also run to compare with experimentally determined Beta values reported in literature for some of these elements. A reasonable agreement, within a factor of three, between the calculated and reported values is observed. Values reported in this work will be used as a first approximation for pilot rocket engine testing studies at the Stennis Space Center for at least six elements Al, Ca, Cr, Cu, Fe and Ni - until experimental values are generated. The current estimates will be improved when more complete thermodynamic data on the remaining four elements Ag, Co, Mn and Pd are added to the database. A critique of the CEA code is also included.

  7. Security Problems in Cloud Computing

    OpenAIRE

    Rola Motawie; Mahmoud M. El-Khouly; Samir Abou El-Seoud

    2016-01-01

    Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sh...

  8. Low temperature operation and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J.

    1987-01-01

    Ambient temperature has the greatest effect on the exhaust emissions of internal combustion engines during the initial cold star and before the engine is fully warmed-up. Fuel evaporation is poor in a cold engine and the fuel-air mixture must be made richer to ensure that the engine weill start and be driveable. However, the combustion of a rich fuel-air mixture is incomplete because of the lack of oxygen, and the exhaust gases will contain an excessive amount of carbon monoxide (CO). The formation of nitrogen oxides (NO/sub x/) in a combustion engine is tied to high temperatures and oxygen concentrations. The conditions in a non-warmed engine using a rich fuel-air mixture are unfavourable for the formation of NO/sub x/ and the emission of NO/sub x/ may even diminish with falling ambient temperature. When the engine has reached its normal operating temperature the exhaust emissions are usually independent of the ambient temperature if the engine is equipped with intake air preheating that is sufficiently powerful. The reduction efficiency of a catalytic converter mainly depends on its operation temperature. Continuous operation at low temperatures may cause rapid poisoning of the converter. At low temperatures, carbon and other particles that do not burn collect on the active surface of the converter reducing its effectiveness.

  9. Exhaustivity in questions with non-factives

    Directory of Open Access Journals (Sweden)

    Daniel Rothschild

    2011-07-01

    Full Text Available This paper is concerned with the conditions under which a person can be said to have told someone or predicted (the answer to a question like 'who sang'. It is standardly claimed that while (i the true answer must be completely specified, it is not necessary that (ii it be specified *as being* the complete answer. Here the non-factive verbs 'tell' and 'predict' are said to differ from the factive verb 'know', which typically does impose the *strong exhaustivity* requirement in (ii. We argue for an intermediate reading of 'tell' and 'predict' that requires more than (i but less than (ii. To account for this reading we claim that the exhaustivity requirement (ii imposed by 'know' is due to an operator than can apply non-locally. Applying the operator above a non-factive verb derives the intermediate reading, whereas doing so is vacuous in the case of factives. Thus, we derive the intermediate reading, and differences in the exhaustivity requirements imposed by factives and non-factives, without lexical stipulation. doi:10.3765/sp.4.2 BibTeX info

  10. Cross-Cloud Testing Strategies Over Cloud Computing

    Directory of Open Access Journals (Sweden)

    Mr. Nageswararao,

    2014-06-01

    Full Text Available Cloud computing is the new paradigm to deliver all the hosted services over internet on demand. The ultimate goal of cloud computing paradigm is to realize computing as a utility. The cloud is rapidly maturing towards its goal to support a wide variety of enterprise and consumer services and real-world applications. Recently a movement towards cross cloud also called as multi-clouds or inters clouds or cloud-of-clouds has emerged which take advantage of multiple independent cloud provider offers for cloud resilience and dependability. This cross cloud represents the next logical wave in computing, enabling complex hybrid applications, cost and performance optimization, enhanced reliability, customer flexibility and lock-in avoidance. Providing testing as a service (TaaS in cross clouds become hot topics in industry. Testing heterogeneous e-commerce sites, Software as a Service solutions, and Cloud based applications is extremely challenging.

  11. Secure Cloud Architecture

    Directory of Open Access Journals (Sweden)

    Kashif Munir

    2013-02-01

    Full Text Available Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. Cloud computing depends on the internet as a medium for users to access the required services at any time on pay-per-use pattern. However this technology is still in its initial stages of development, as it suffers from threats and vulnerabilities that prevent the users from trusting it. Various malicious activitiesfrom illegal users have threatened this technology such as data misuse, inflexible access control and limited monitoring. The occurrence of these threats may result into damaging or illegal access of critical and confidential data of users. In this paper we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know a bout the k ey security threats associated with cloud computing and propose relevant solution directives to strengthen security in the Cloud environment. We also propose secure cloud architecture for organizations to strengthen the security.

  12. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  13. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    Science.gov (United States)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  14. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  15. Experimental testing of a liquid bipropellant rocket engine using nitrous oxide and ethanol diluted with water

    Science.gov (United States)

    Phillip, Jeff; Morales, Rudy; Youngblood, Stewart; Saul, W. Venner; Grubelich, Mark; Hargather, Michael

    2016-11-01

    A research scale liquid bipropellant rocket engine testing facility was constructed at New Mexico Tech to perform research with various propellants. The facility uses a modular engine design that allows for variation of nozzle geometry and injector configurations. Initial testing focused on pure nitrous oxide and ethanol propellants, operating in the range of 5.5-6.9 MPa (800-1000 psi) chamber pressure with approximately 667 N (150 lbf) thrust. The system is instrumented with sensors for temperature, pressure, and thrust. Experimentally found values for specific impulse are in the range of 250-260 s which match computational predictions. Exhaust flow visualization is performed using high speed schlieren imaging. The engine startup and steady state exhaust flow features are studied through these videos. Computational and experimental data are presented for a study of dilution of the ethanol-nitrous oxide propellants with water. The study has shown a significant drop in chamber temperature compared to a small drop in specific impulse with increasing water dilution.

  16. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode

    Science.gov (United States)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bin; Liu, Jie

    2016-10-01

    A ready-made central strut-based rocket-based combined-cycle (RBCC) engine was numerically investigated in the ejector mode. The flow features in the RBCC inlet and the matching characteristics between the inlet and the embedded rocket during different flight regimes were examined in detail. It was necessary to perform integrated numerical simulations in the ejector mode within considerable pressure far fields around the inlet/exhaust system. The observed flow features and operation characteristics in the RBCC inlet were strongly correlated with the flight conditions, inlet configuration, and operation of the embedded rocket. It was further found that the integrated function status of multiple factors significantly influenced the performance of the RBCC engine in the ejector mode. The two parameters that macroscopically affected the performance most were the air entrainment mass and the drag of the RBCC inlet. To improve these parameters, it is vital to employ an appropriate design of the RBCC inlet and establish the optimal flight trajectory of the flight vehicle.

  17. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation......, along with protocols for using the encoding scheme in practice. Protocols for cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not delete their data illegitimately. Current solutions, e.g., based...

  18. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  19. Cloud Robotics Model

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2015-01-01

    Full Text Available Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen active research projects around the world. The presentation summarizes the main idea, the definition, the cloud model composed of essential characteristics, service models and deployment models, planning task execution and beyond. Finally some cloud robotics projects are discussed.

  20. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  1. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  2. Cryptographic Cloud Storage

    Science.gov (United States)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  3. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    DANISH JAMIL,

    2011-04-01

    Full Text Available It is no secret that cloud computing is becoming more and more popular today and is ever increasing inpopularity with large companies as they share valuable resources in a cost effective way. Due to this increasingdemand for more clouds there is an ever growing threat of security becoming a major issue. This paper shalllook at ways in which security threats can be a danger to cloud computing and how they can be avoided.

  4. Geodesics on Point Clouds

    OpenAIRE

    Hongchuan Yu; Zhang, Jian J.; Zheng Jiao

    2014-01-01

    We present a novel framework to compute geodesics on implicit surfaces and point clouds. Our framework consists of three parts, particle based approximate geodesics on implicit surfaces, Cartesian grid based approximate geodesics on point clouds, and geodesic correction. The first two parts can effectively generate approximate geodesics on implicit surfaces and point clouds, respectively. By introducing the geodesic curvature flow, the third part produces smooth and accurate geodesic solution...

  5. Cloud Detection with MATLAB

    OpenAIRE

    P. Shrivastava

    2013-01-01

    The accurate detection of clouds in satellite imagery is important in research and operational applications. Cloud cover influences the distribution of solar radiation reaching the ground where it is absorbed. Resulting fluxes of sensible and latent heat are critical to the accurate characterization of boundary layer behavior and mesoscale circulations that often lead to convective development. Therefore the spatial and temporal variation in cloud cover can greatly affect regional an...

  6. Core of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Prof. C.P.Chandgude

    2017-04-01

    Full Text Available Advancement in computing facilities marks back from 1960’s with introduction of mainframes. Each of the computing has one or the other issues, so keeping this in mind cloud computing was introduced. Cloud computing has its roots in older technologies such as hardware virtualization, distributed computing, internet technologies, and autonomic computing. Cloud computing can be described with two models, one is service model and second is deployment model. While providing several services, cloud management’s primary role is resource provisioning. While there are several such benefits of cloud computing, there are challenges in adopting public clouds because of dependency on infrastructure that is shared by many enterprises. In this paper, we present core knowledge of cloud computing, highlighting its key concepts, deployment models, service models, benefits as well as security issues related to cloud data. The aim of this paper is to provide a better understanding of the cloud computing and to identify important research directions in this field

  7. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  8. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  9. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  10. Regression Rate Study in HTPB/GOX Hybrid Rocket Motors.

    Directory of Open Access Journals (Sweden)

    Philmon George

    1996-12-01

    Full Text Available The theoretical and experimenIal studies on hybrid rocket motor combustion research are briefly reviewed and the need for a clear understanding of hybrid rocket fuel regression rate mechanism is brought out. A test facility established at the Indian Institute of Technology, Madras, for hybrid rocket motor research study is described.The results of an experimental study on hydroxyl terminated polybutadiene and gaseous oxygen hybrid rocket motor are presented. Fuel grains with ammonium perchlorate "additive" have shownenhanced oxidizermass flux dependence. Smallergrains have higher regression rates than those of the larger ones.

  11. Unsupervised Anomaly Detection for Liquid-Fueled Rocket Prop...

    Data.gov (United States)

    National Aeronautics and Space Administration — Title: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. Abstract: This article describes the results of applying four...

  12. Potential Climate and Ozone Impacts From Hybrid Rocket Engine Emissions

    Science.gov (United States)

    Ross, M.

    2009-12-01

    Hybrid rocket engines that use N2O as an oxidizer and a solid hydrocarbon (such as rubber) as a fuel are relatively new. Little is known about the composition of such hybrid engine emissions. General principles and visual inspection of hybrid plumes suggest significant soot and possibly NO emissions. Understanding hybrid rocket emissions is important because of the possibility that a fleet of hybrid powered suborbital rockets will be flying on the order of 1000 flights per year by 2020. The annual stratospheric emission for these rockets would be about 10 kilotons, equal to present day solid rocket motor (SRM) emissions. We present a preliminary analysis of the magnitude of (1) the radiative forcing from soot emissions and (2) the ozone depletion from soot and NO emissions associated with such a fleet of suborbital hybrid rockets. Because the details of the composition of hybrid emissions are unknown, it is not clear if the ozone depletion caused by these hybrid rockets would be more or less than the ozone depletion from SRMs. We also consider the climate implications associated with the N2O production and use requirements for hybrid rockets. Finally, we identify the most important data collection and modeling needs that are required to reliably assess the complete range of environmental impacts of a fleet of hybrid rockets.

  13. Coning motion stability of wrap around fin rockets

    Institute of Scientific and Technical Information of China (English)

    MAO XueRui; YANG ShuXing; XU Yong

    2007-01-01

    Both the asymptotical stability criterion and the bounded stability criterion of the coning motion for wrap around fin (WAF) rockets are proposed through the analysis of coning motion equations, which can be easily used to determine the existence of the coning motion during the rocket design. The correctness of the criterions is verified by mathematical simulation examples of a WAF rocket with different setting angles. It is also found that the setting angle of WAF has great effects on the rolling moment and side moment of the rocket.

  14. Coning motion stability of wrap around fin rockets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Both the asymptotical stability criterion and the bounded stability criterion of the coning motion for wrap around fin(WAF) rockets are proposed through the analy-sis of coning motion equations,which can be easily used to determine the exis-tence of the coning motion during the rocket design. The correctness of the crite-rions is verified by mathematical simulation examples of a WAF rocket with differ-ent setting angles. It is also found that the setting angle of WAF has great effects on the rolling moment and side moment of the rocket.

  15. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Soil debris liberated by spacecraft landing on the lunar surface may damage and contaminate surrounding spacecraft and habitat structures. Current numerical...

  16. Gravity wave reflection: Case study based on rocket data

    Science.gov (United States)

    Wüst, Sabine; Bittner, Michael

    2008-03-01

    Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection. In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)--as reported by Wüst and Bittner [2006. Non-linear wave-wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959-976]--are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880-883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves' phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.

  17. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  18. A cloud storage overlay to aggregate heterogeneous cloud services

    OpenAIRE

    Machado, Guilherme Sperb; Bocek, Thomas; Ammann, Michael; Stiller, Burkhard

    2013-01-01

    Many Cloud services provide generic (e.g., Amazon S3 or Dropbox) or data-specific Cloud storage (e.g., Google Picasa or SoundCloud). Although both Cloud storage service types have the data storage in common, they present heterogeneous characteristics: different interfaces, accounting and charging schemes, privacy and security levels, functionality and, among the data-specific Cloud storage services, different data type restrictions. This paper proposes PiCsMu (Platform-independent Cloud Stora...

  19. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    Science.gov (United States)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-09-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  20. Parallelization of Rocket Engine System Software (Press)

    Science.gov (United States)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  1. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket).

    Science.gov (United States)

    Bennett, Richard N; Rosa, Eduardo A S; Mellon, Fred A; Kroon, Paul A

    2006-05-31

    As an influence of the Mediterranean diet, rocket species such as Eruca sativa L., Diplotaxis species, and Bunias orientalis L. are eaten all over the world at different ontogenic stages in salads and soups. They are all species within the plant order Capparales (glucosinolate-containing species), and all are from the family Brassicaceae. Predominantly, the leaves of these species are eaten raw or cooked, although Eruca flowers are also consumed. There is considerable potential with raw plant material for a higher exposure to bioactive phytochemicals such as glucosinolates, their hydrolysis products, and also phenolics, flavonoids, and vitamins such as vitamin C. These compounds are susceptible to ontogenic variation, and the few published studies that have addressed this topic have been inconsistent. Thus, an ontogenic study was performed and all samples were analyzed using a previously developed robust liquid chromatography/mass spectrometry method for the identification and quantification of the major phytochemicals in all tissues of the rocket species. Seeds and roots of both Eruca and Diplotaxis contained predominantly 4-methylthiobutylglucosinolate. Leaves of Eruca and Diplotaxis contained high amounts of 4-mercaptobutylglucosinolate with lower levels of 4-methylthiobutlyglucosinolate and 4-methylsulfinylbutylglucosinolate. Flowers of Eruca and Diplotaxiscontained predominantly 4-methylsulfinylbutyl-glucosinolate. In addition, roots of both Diplotaxisspecies contained 4-hydroxybenzylglucosinolate but 4-hydroxybenzylglucosinolate was absent from roots of Eruca. Seeds and seedlings of all Eruca contained N-heterocyclic compounds but no sinapine, whereas Diplotaxis contained sinapine but not the N-heterocycles. In all tissues of B. orientalis, 4-hydroxybenzylglucosinolate and 4-methylsulfinyl-3-butenylglucosinolate were predominant. All rocket tissues, except roots, contained significant levels of polyglycosylated flavonoids, with/without hydroxycinnamoyl

  2. Lyman alpha coronagraph research sounding rocket program

    Science.gov (United States)

    Parkinson, W. H.; Kohl, J. L.

    1985-01-01

    The ultraviolet light coronagraph was developed and successfully flown on three rocket flights on 13 April 1979, 16 February 1980 and 20 July 1982. During each of these flights, the Ultraviolet Light Coronagraph was flown jointly with the White Light Coronagraph provided by the High Altitude Observatory. Ultraviolet diagnostic techniques and instrumentation for determining the basic plasma parameters of solar wind acceleration regions in the extended corona were developed and verified and the understanding of the physics of the corona through the performance, analysis and interpretation of solar observations advanced. Valuable UV diagnostics can be performed in the absence of a natural solar eclipse.

  3. Rocket-Powered Parachutes Rescue Entire Planes

    Science.gov (United States)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  4. Nuclear thermal rocket engine operation and control

    Science.gov (United States)

    Gunn, Stanley V.; Savoie, Margarita T.; Hundal, Rolv

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation.

  5. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  6. Air expansion in the water rocket

    CERN Document Server

    Romanelli, Alejandro; Madina, Federico González

    2012-01-01

    We study the thermodynamics of the water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation and the energy taken from the environment. We set up a simple experimental device with a stationary bottle and verified that the gas expansion in the bottle is well approximated by a polytropic process $PV^\\beta$= constant, where the parameter $\\beta$ depends on the initial conditions. We find an analytical expression for $\\beta $ that only depends on the thermodynamic initial conditions and is in good agreement with the experimental results.

  7. Analysis of a Radioisotope Thermal Rocket Engine

    Science.gov (United States)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  8. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    Science.gov (United States)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  9. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  10. Microwave-Regenerated Diesel Exhaust Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  11. Vital Exhaustion and Coronary Heart Disease Risk

    DEFF Research Database (Denmark)

    Frestad, Daria; Prescott, Eva

    2017-01-01

    OBJECTIVES: The construct of vital exhaustion has been identified as a potential independent psychological risk factor for incident and recurrent coronary heart disease (CHD). Despite several decades of research, no systematic review or meta-analysis has previously attempted to collate.......22-1.85) for prospective studies, and 2.61 (95% CI = 1.66-4.10) for case-control studies using hospital controls. Risk of recurrent events in patients with CHD was 2.03 (95% CI = 1.54-2.68). The pooled adjusted risk of chronic heart failure in healthy populations was 1.37 (95% CI = 1.21-1.56), but this was based...

  12. Note on the economics of exhaustible resources

    Energy Technology Data Exchange (ETDEWEB)

    Aivazian, V.A.; Callen, J.L.

    1979-02-01

    The nature of a firm's structure and its production policies are shown to be a factor in whether the company achieves an optimal resource extraction rate. A Cournot oligopoly model is used to illustrate the divergence between the oligopolist and the monopolist response to competition in resource extraction. A decreasing sensitivity to resource exhaustion is evident with a corresponding increase in competition. Social welfare, from the point of view of resource conservation, will be enhanced by the monopolistic structure. 6 references.

  13. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  14. Winds and Ion Drifts Measured in the Thermospheric Footprint of Earth's Northern Magnetic Cusp During the C-REX Sounding Rocket Mission

    Science.gov (United States)

    Conde, M.; Larsen, M. F.; Hampton, D.; Dhadly, M. S.; Ahrns, M. J.; Aruliah, A. L.; Kakinami, Y.; Barker, B.; Kiene, A.; Sigernes, F.; Lorentzen, D. A.

    2015-12-01

    We report here on neutral wind and ion drift measurements recorded during the November 24, 2014, "C-REX" sounding rocket mission into the thermosphere beneath Earth's northern geomagnetic cusp. The rocket released ten tracer clouds, each comprised of a mixture of barium and strontium, at altitudes between 190 and 400 km. The clouds were created by launching rocket-propelled "grenades" at high velocity out from the parent payload, and were dispersed across a 3D volume extending over many tens of km around the main trajectory. Cameras located at Longyearbyen, Ny-Alesund, and aboard an aircraft stationed north of Bear Island were used to image the tracer clouds and to triangulate on their position and 3D motion. Sunlight striking the clouds ionized the barium within a few tens of seconds, whereas the strontium remained neutral. We were thus able to independently measure the flow velocity of both neutrals and ions at the release locations. Here we will present high-resolution maps of the tracer cloud motion, along with the resulting estimates of neutral and ion flow velocities. These results show very substantial ion-neutral velocity differences: the ions' drift direction was roughly perpendicular to that of the neutrals, while the magnitude of their velocity difference was of order 500 meters per second. Combining these data with ground-based measurements of temperature and electron density allows us to estimate that the specific power density for Joule heating at heights above 200 km was very substantial during the time of this experiment. If such Joule heating is typical, it is very likely to play a major role in establishing the (currently poorly understood) permanent enhancements in the neutral mass density of Earth's thermosphere in the geomagnetic cusp regions at altitudes of around 400 km.

  15. The California Molecular Cloud

    CERN Document Server

    Lada, Charles J; Alves, Joao F

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). From comparison of foreground star counts with Galactic models we derive a distance of 450 +/- 23 parsecs to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of approximately 10^5 solar masses, rivaling the Orion (A) Molecular Cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion Molecular Cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps ...

  16. On Cloud Nine

    Science.gov (United States)

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  17. Cloud speed sensor

    Directory of Open Access Journals (Sweden)

    V. Fung

    2013-10-01

    Full Text Available Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE, and a UC San Diego Sky Imager (USI. The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s−1 when compared to USI and 33° and 1.5 m s−1 when compared to LCE results.

  18. Clouds in Planetary Atmospheres

    Science.gov (United States)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  19. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  20. The Chameleon Solid Rocket Propulsion Model

    Science.gov (United States)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  1. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  2. Physiological and phytosanitary potential of rocket seeds

    Directory of Open Access Journals (Sweden)

    Jucilayne Fernandes Vieira

    2015-02-01

    Full Text Available The objective of this study was to evaluate the physiological and sanitary quality of seeds of rocket; the research was done at the Laboratory of Seed Analysis and greenhouse of the Department of Plant Science, Federal University of Pelotas (UFPel. Four lots of the cultivar "Antonella'' were tested for following features: initial and final moisture content, germination rate, first count of germination, accelerated aging with saline solution, dry matter contents, seedling shoot and root length, emergence speed index, emergence of seedlings in substrate, electrical conductivity and sanitary condition. A completely randomized design with four replications was used for all tests done and means were compared by Tukey test (P≤0.05. For all tests performed it was concluded that despite changes in the ranking of the best lots, there was agreement regarding the indication of the inferiority of the lot 3 in all tests and it was also observed that the incidence of fungi associated with seeds of rocket interfere with the physiological quality of the lots.

  3. Computational simulation of liquid fuel rocket injectors

    Science.gov (United States)

    Landrum, D. Brian

    1994-01-01

    A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.

  4. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  5. Liquid fuel injection elements for rocket engines

    Science.gov (United States)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  6. Characterization of nal powders for rocket propulsion

    Science.gov (United States)

    Merotto, L.; Galfetti, L.; Colombo, G.; DeLuca, L. T.

    2011-10-01

    Nanosized metal powders are known to significantly improve both solid and hybrid rocket performance, but have some drawbacks in terms of cost, safety, and possible influence on propellant mechanical properties. Performance enhancement through nanosized metal or metal hydride addition to solid fuels is currently under investigation also for hybrid propulsion. Therefore, a preburning characterization of the powders used in solid propellant or fuel manufacturing is useful to assess their effects on the ballistic properties and engine performance. An investigation concerning the comparative characterization of several aluminum powders having different particle size, age, and coating is presented. Surface area, morphology, chemical species concentration and characteristics, surface passivation layers, surface and subsurface chemical composition, ignition temperature and ignition delay are investigated. The aim of this characterization is to experimentally assess the effect of the nAl powder properties on ballistic characteristics of solid fuels and solidrocket composite-propellant performance, showing an increase in terms of Is caused by the decrease of two-phase losses in solid and a possible significant rf increase in hybrid rockets.

  7. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  8. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  9. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  10. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  11. Prebiotic chemistry in clouds

    Science.gov (United States)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  12. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available

    Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.

    Keywords: Cloud computing, QoS, quality of cloud computing

  13. Cloud computing security.

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  14. CLOUD COMPUTING AND SECURITY

    Directory of Open Access Journals (Sweden)

    Asharani Shinde

    2015-10-01

    Full Text Available This document gives an insight into Cloud Computing giving an overview of key features as well as the detail study of exact working of Cloud computing. Cloud Computing lets you access all your application and documents from anywhere in the world, freeing you from the confines of the desktop thus making it easier for group members in different locations to collaborate. Certainly cloud computing can bring about strategic, transformational and even revolutionary benefits fundamental to future enterprise computing but it also offers immediate and pragmatic opportunities to improve efficiencies today while cost effectively and systematically setting the stage for the strategic change. As this technology makes the computing, sharing, networking easy and interesting, we should think about the security and privacy of information too. Thus the key points we are going to be discussed are what is cloud, what are its key features, current applications, future status and the security issues and the possible solutions.

  15. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  16. Local Pain Dynamics during Constant Exhaustive Exercise.

    Science.gov (United States)

    Slapsinskaite, Agne; Razon, Selen; Balagué Serre, Natàlia; Hristovski, Robert; Tenenbaum, Gershon

    2015-01-01

    The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20) = 15). During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE) values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.

  17. Local Pain Dynamics during Constant Exhaustive Exercise.

    Directory of Open Access Journals (Sweden)

    Agne Slapsinskaite

    Full Text Available The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20 = 15. During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.

  18. On the exhaust of electromagnetic drive

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2016-06-01

    Full Text Available Recent reports about propulsion without reaction mass have been met on one hand with enthusiasm and on the other hand with some doubts. Namely, closed metal cavities, when fueled with microwaves, have delivered thrust that could eventually maintain satellites on orbits using solar power. However, the measured thrust appears to be without any apparent exhaust. Thus the Law of Action-Reaction seems to have been violated. We consider the possibility that the exhaust is in a form that has so far escaped both experimental detection and theoretical attention. In the thruster’s cavity microwaves interfere with each other and invariably some photons will also end up co-propagating with opposite phases. At the destructive interference electromagnetic fields cancel. However, the photons themselves do not vanish for nothing but continue in propagation. These photon pairs without net electromagnetic field do not reflect back from the metal walls but escape from the resonator. By this action momentum is lost from the cavity which, according to the conservation of momentum, gives rise to an equal and opposite reaction. We examine theoretical corollaries and practical concerns that follow from the paired-photon conclusion.

  19. Techniques for the measurements of the line of sight velocity of high altitude Barium clouds

    Science.gov (United States)

    Mende, S. B.

    1981-01-01

    It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts.

  20. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    Science.gov (United States)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  1. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  2. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft Aerosp

  3. Sounding rocket experiment of bare electrodynamic tether system

    OpenAIRE

    Fujii, Hironori; Watanabe, Takeo; Kojima, Hirohisa; OYAMA, Koh-ichiro; Kusagaya, Tairo; Yamagiwa, Yoshiki; Ohtsu, Hirotaka; Cho, Mengu; Sasaki, Susumu; Tanaka, Koji; Williams, John; Rubin, Binyamin; Les Jhonson, Charles; Khazanov, George; Sanmartín Losada, Juan Ramón

    2009-01-01

    An overview of asounding rocket S-520-25th, project on space tether technology experiment is presented.The project is prepared by an international research group consisting of Japanese,European,American,andAustralianresearchers.The sounding rocket will be assembled by the ISAS/JAXA and will be launched in the summer of 2009.

  4. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    Science.gov (United States)

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  5. Some cases of vertical ascent of a rocket

    Directory of Open Access Journals (Sweden)

    M. Narsing Rao

    1960-07-01

    Full Text Available The differential equations of motion of vertically ascending rocket are integrated in closed form in terms of Bessel functions. During burning the drag co-efficient and acceleration due to gravity are assumed to be constant. Four different cases of motion are treated under different assumptions regarding the law of mass-variations of the rocket.

  6. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  7. Study of Vehicle Exhaust Variation with Test Modes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration an...

  8. Method for the removal of dust from exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Ritzmann, H.; Wohlfarth, J.P.

    1976-11-02

    A stream of raw material is passed through a preheater to a furnace and a stream of exhaust gases from the furnace is passed through the preheater to preheat the raw material. Dust is electrostatically precipitated from the exhaust gases leaving the preheater, and the temperature of such exhaust gases is controllably raised to improve the efficiency of the dust removal by bypassing a controlled proportion of at least one of the streams around at least a portion of the preheater.

  9. Construction and Design of Rocket Engines,

    Science.gov (United States)

    1981-02-12

    l.ntring together with the turbine intc the so-called tirbopump aggrqgat,’ (TNA). For tho wnrk c- turbina , .riz d for l- ’ . .vi, "-t is necessary to have... turbina by qasqous vcrking m-liJum/proop! L[ant-, e) branch system cf the exhaust (crushed) gas. TNA is intqnded for increasing the pressure of the...Starting systems of turbine are examined ir §14.1. In the power-supply system of turbina by gaseous working medium/propellant are 3ncluded ZhGG, the

  10. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  11. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    CERN Document Server

    Christe, Steven; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most importantly, sounding rockets remain the only way to explore the tenuous regions of the Earth's atmosphere (the upper stratosphere, mesosphere, and lower ionosphere/thermosphere) above balloon altitudes ($\\sim$40 km) and below satellite orbits ($\\sim$160 km). They can lift remote sensing telescope payloads with masses up to 400 kg to altitudes of 350 km providing observing times of up to 6 minutes above the blocking influence of Earth's atmosphere. Though a number of sounding rocket research programs exist around the world, th...

  12. Emotional exhaustion and job performance: the mediating role of motivation.

    Science.gov (United States)

    Halbesleben, Jonathon R B; Bowler, Wm Matthew

    2007-01-01

    The literature concerning the relationship between emotional exhaustion and performance led researchers to raise questions about the extent to which the variables are related. In 2 time-lagged samples, the authors found that motivation mediates the emotional exhaustion-job performance relationship. Moreover, the authors found that participants appear to target their investment of resources in response to emotional exhaustion to develop social support through social exchange; specifically, emotional exhaustion was associated with communion striving resources that were manifest in the form of organizational citizenship behaviors targeted at individuals. Implications of this relationship for theories of burnout and for management practice are discussed.

  13. Molecular Cloud Evolution

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2010-01-01

    I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by large-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N \\sim 1.5 \\times 10^21 \\psc \\approx 10 \\Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($\\sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall time...

  14. Interstellar molecular clouds

    Science.gov (United States)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  15. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  16. Telemaxus: A telescience oriented sounding rocket experiment

    Science.gov (United States)

    Monti, R.; Fortezza, R.; Desiderio, G.; Capuano, G.; Titomanlio, D.

    Following the success of the Texus 23 Campaign (November 1989), during which the Teletexus experiment was conducted a more ambitious Telescience experiment was accomodated on the 1991 MAXUS 1 Payload. The fluidynamic experiment on the oscillatory Marangoni flow was performed on board the rocket (launched at Kiruna, Sweden) using a modified TEM-06/4 module. The experiment was fully controlled by the PI (Professor Monti) directly from the Telescience Control Room located at MARS Center (Naples, Italy). The experiment was also aimed to demonstrate the capabilities of Telescience Service that ESA offers to the European Microgravity User Community. Respect to other experiments already tested and assessed during previous Texus missions (14b, 23), the Telescience operation mode included new state-of-art technologies and subsystems to demonstrate capabilities, flexibility and usefulness of this operation concept mainly in the perspective of Columbus utilization. Unfortunately due to a failure of the rocket system, the microgravity condition was not reached during the flight and the fluidynamic results were missed. However, in spite of the tumbling attitude of the rocket, the telescience link was successfully tested and the video/data/audio communication was correctly established between MARS and Esrange. This paper illustrates the technological aspects and gives an overview of the systems/equipments integrated and realized for the experiment control. In the first part the H/W configurations for the experiment monitoring and control, identified by the research team are illustrated. The relevant items of the H/W configuration include: the Telescience Work Stations architecture, the link channels used for the selection, transmission and reception of video/data/commands and the subsystems manufactured to improve the system versatility. The second part deals with the communication link used for transmission between Sweden and Italy of experimental data, facility status, voice

  17. Cloud Scheduler: a resource manager for distributed compute clouds

    CERN Document Server

    Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Fransham, K; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The availability of Infrastructure-as-a-Service (IaaS) computing clouds gives researchers access to a large set of new resources for running complex scientific applications. However, exploiting cloud resources for large numbers of jobs requires significant effort and expertise. In order to make it simple and transparent for researchers to deploy their applications, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. Cloud Scheduler boots and manages the user-customized virtual machines in response to a user's job submission. We describe the motivation and design of the Cloud Scheduler and present results on its use on both science and commercial clouds.

  18. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  19. Cloud Computing: A study of cloud architecture and its patterns

    Directory of Open Access Journals (Sweden)

    Mandeep Handa,

    2015-05-01

    Full Text Available Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has evolved as a disruptive technology and picked up speed with the presence of many vendors in cloud computing space. The evolution of cloud computing from numerous technological approaches and business models such as SaaS, cluster computing, high performance computing, etc., signifies that the cloud IDM can be considered as a superset of all the corresponding issues from these paradigms and many more. In this paper we will discuss Life cycle management, Cloud architecture, Pattern in Cloud IDM, Volatility of Cloud relations.

  20. A cybernetics Social Cloud

    OpenAIRE

    Chang, V

    2015-01-01

    © 2015 Elsevier Inc. This paper proposes a Social Cloud, which presents the system design, development and analysis. The technology is based on the BOINC open source software, our hybrid Cloud, Facebook Graph API and our development in a new Facebook API, SocialMedia. The creation of SocialMedia API with its four functions can ensure a smooth delivery of Big Data processing in the Social Cloud, with four selected examples provided. The proposed solution is focused on processing the contacts w...

  1. Cloud Computing Services Accounting

    Directory of Open Access Journals (Sweden)

    Igor Ruiz-Agundez

    2012-06-01

    Full Text Available Cloud computing provides a new promising parading to offer services. It brings the opportunity to develop new business models in the Internet. Classic accounting solutions fail to full fill the new requirements of these services due to their structural design. To understand these new constrains, we study the different actors and processes that interact in the Internet Economics. Specifically, we focus on cloud computing introducing a methodology that allows the deployment of cloud services. Further, we present an Infrastructure as a Service (IaaS use case that applies the proposed system.

  2. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  3. A direct fusion drive for rocket propulsion

    Science.gov (United States)

    Razin, Yosef S.; Pajer, Gary; Breton, Mary; Ham, Eric; Mueller, Joseph; Paluszek, Michael; Glasser, Alan H.; Cohen, Samuel A.

    2014-12-01

    The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium-helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma's Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun-Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.

  4. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    Science.gov (United States)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  5. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  6. Lunar mission design using Nuclear Thermal Rockets

    Science.gov (United States)

    Stancati, Michael L.; Collins, John T.; Borowski, Stanley K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  7. Electronic timer for sounding rocket payload use

    Science.gov (United States)

    Williams, C. P.

    1986-01-01

    An electronic timer has been developed for sounding rocket use. The timer uses CMOS technology for low power consumption and has a battery back-up to keep the timing circuit active in case of a dropout on the payload power bus. Time-event decoding is done by programming EPROM's which enable a +28 volt dc sourcing output. There are 32 discrete outputs which can provide +28 volt dc into a minimum load impedance of 150 ohms. Inputs are designed to operate on standard CMOS voltage levels, but they can withstand +28 volts dc without damage. The timer can be started by either 'G' or lift-off switch closure or umbilical release at lift-off.

  8. Innovative Metallized Formulations for Solid Rocket Propulsion

    Institute of Scientific and Technical Information of China (English)

    Luigi T DeLUCA; Luciano GALFETTI; Filippo MAGGI; Giovanni COLOMBO; Alice REINA; Stefano DOSSI; Daniele CONSONNI; Melissa BRAMBILLA

    2012-01-01

    Several metallized solid rocket propellants,AP/Metal/HTPB in the ratio 68/18/1 4,were experimentally analyzed at the Space Propulsion Laboratory of Politecnico di Milano.Effects of the metals (micrometric and nanometric Al,B,Mg,and a variety of dual metals) on the performance of the propellant were studied and contrasted to a conventional micrometric aluminum (30 μm average grain size) taken as reference.It is shown that the propellant microstructure plays a fundamental role in controlling the critical aggregation/agglomeration phenomena occurring below and near the burning surface.Two specific effects of microstructure in terms of steady burning rate and average agglomerate size are illustrated.

  9. Integrated model of a composite propellant rocket

    Science.gov (United States)

    Miccio, Francesco

    2016-12-01

    The combustion of composite solid propellants was investigated and an available numerical model was improved for taking into account the change of pressure, when the process occurs in a confined environment, as inside a rocket. The pressure increase upon ignition is correctly described by the improved model for both sandwich and dispersed particles propellants. In the latter case, self-induced fluctuations in the pressure and in all other computed variables occur, as consequence of the periodic rise and depletion of oxidizer particles from the binder matrix. The comparison with the results of the constant pressure model shows a different fluctuating profile of gas velocity, with a possible second order effect induced by the pressure fluctuations.

  10. Assumed PDF modeling in rocket combustor simulations

    Science.gov (United States)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  11. Liquid atomization by coaxial rocket injectors

    Science.gov (United States)

    Sankar, S. V.; Brena De La Rosa, A.; Isakovic, A.; Bachalo, W. D.

    1991-01-01

    The atomization characteristics of a scaled-down version of a coaxial rocket injector was investigated using a phase Doppler particle analyzer (PDPA). The injector was operated in the conventional mode with liquid being injected through its inner orifice and gas being injected through its outer annulus. The shearing action occurring at the liquid-gas interface causes the liquid jet to atomize. In this study, two different liquid-air systems, namely a water-air system and a liquid nitrogen-gaseous nitrogen system, were chosen for detailed investigation. This paper discusses the performance characteristics of the coaxial injector under different flow and geometric conditions. Specifically, the effects of injection gas pressure and the injector cavity size on variables such as the mean particle diameter, Sauter mean diameter, number density, volume flux, and velocity have been presented.

  12. Heat transfer in rocket combustion chambers

    Science.gov (United States)

    Anderson, P.; Cheng, G.; Farmer, R.

    1993-01-01

    Complexities of liquid rocket engine heat transfer which involve the injector faceplate and film cooled walls are being investigated by computational analysis. A conjugate heat transfer analysis was used to describe localized heating phenomena associated with particular injector configurations and film coolant flows. These components were analyzed, and the analyses verified when appropriate test data were available. The component analyses are being synthesized into an overall flowfield/heat transfer model. A Navier-Stokes flow solver, the FDNS code, was used to make the analyses. Particular attention was given to the representation of the thermodynamic properties of the fluid streams. Unit flow models of specific coaxial injector elements have been developed and are being used to describe the flame structure near the injector faceplate.

  13. Rockets: Physical science teacher's guide with activities

    Science.gov (United States)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  14. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    Science.gov (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  15. Rocket observations of the diffuse ultraviolet background

    Science.gov (United States)

    Jakobsen, P.; Bowyer, S.; Kimble, R.; Jelinsky, P.; Grewing, M.; Kraemer, G.; Wulf-Mathies, C.

    1984-01-01

    The objective of the experiment reported here was to obtain additional information on the absolute intensity level and spatial variation of the diffuse ultraviolet background and thereby gain insight into the origin of this radiation. The experiment used three ultraviolet sensitive photometers placed in the focal plane of a 95-cm, f/2.8 normal incidence telescope flown on board an Aries sounding rocket. The measured intensities clearly refute the hypothesis of an isotropic background, the intensities of the high galactic latitude being definitely lower than the intensities seen at intermediate latitudes. Moreover, the count rates in all three channels along the slow scan exhibit local enhancements as well as an overall trend. In general, the spatial variations exhibited by the data correlate with the line of sight of neutral hydrogen column density as determined from 21-cm radio observations. This fact demonstrates that there is a galactic component to the diffuse ultraviolet radiation field.

  16. Health monitoring of rocket engines using image processing

    Science.gov (United States)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman

    1991-07-01

    Analysis of spectral and video data for anomalous events occurring in the exhaust plume of the Space Shuttle Main Engine (SSME) has shown that the improved time resolution of video tape increases the detection rate of anomalies in the visual region. Preliminary developments and applications of image processing techniques are used to extract information from video data of the SSME exhaust plume. Images have been enhanced to show the exhaust plume shock structure and for the isolation of an anomalous event.

  17. Exhaust powered drive shaft torque enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A.B.

    1986-09-30

    This patent describes a power producing combination including an internal combustion engine and a mounting frame therefor, and power transmission means including rotating drive shaft means connected to the engine. The improvement described here is a drive shaft torque enhancing device, the device comprising: a multiplicity of blades secured to the drive shaft, equally spaced therearound, each generally lying in a plane containing the axis of the drive shaft; torque enhancer feed duct means for selectively directing a stream of exhaust gases from the engine to impact against the blades to impart torque to the drive shaft; and wherein the power producing combination is used in a vehicle, the vehicle having braking means including a brake pedal; and the power producing combination further comprising torque enhancer disengagement means responsive to motion of the brake pedal.

  18. Methemoglobinemia secondary to automobile exhaust fumes

    Energy Technology Data Exchange (ETDEWEB)

    Laney, R.F.; Hoffman, R.S. (Department of Emergency Medicine, Morristown Memorial Hospital, NJ (United States))

    1992-09-01

    Methemoglobinemia is an uncommon cause of cyanosis. A 28-year-old male presented to the emergency department cyanotic and short of breath after exposure to noxious automobile fumes. He did not improve with the administration of 100% oxygen therapy. The initial arterial blood gas with cooximetry was: pH of 7.38, PaCO2 of 43 mm Hg, PaO2 of 118 mm Hg, measured oxygen saturation of 70%, and a methemoglobin level of 24.8%. Methylene blue was given (2 mg/kg intravenously) and the patient's symptoms resolved. On the following day he was discharged home without complication. A comprehensive review of the literature revealed no reported cases of methemoglobinemia secondary to accidental exposure to exhaust fumes.17 references.

  19. Global positive polarity items and obligatory exhaustivity

    Directory of Open Access Journals (Sweden)

    Benjamin Spector

    2014-11-01

    Full Text Available I argue for a distinction between two types of positive polarity items (PPIs which has not been recognized so far. While for some PPIs, anti-licensing is a strictly local phenomenon, for other PPIs anti-licensing should be stated as a global condition. I aim to contribute to a principled explanation for the distribution of a significant subset of global PPIs, by relating it to specific semantic properties of the relevant items. More specifically, I argue that PPIs such as soit ... soit ..., quelques and almost trigger obligatory exhaustivity effects and scalar inferences, and that independently motivated constraints regarding the generation of such inferences can account for their distribution. The paper also briefly addresses the case of other global PPIs, e.g., at least, for which a similar account is not straightforwardly available. http://dx.doi.org/10.3765/sp.7.11 BibTeX info

  20. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty......, burnout level was positively associated with neural activation in the rostral prefrontal cortex, the posterior parietal cortex and the striatum, primarily in the 2-back condition. Following stress rehabilitation, the striatal activity decreased as a function of improved levels of burnout. No significant...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...