WorldWideScience

Sample records for rocket boosters srb

  1. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study; Volume 1 - Executive Summary

    National Research Council Canada - National Science Library

    Ware, Larry

    1989-01-01

    ...) solid rocket boosters (SRBs) with liquid rocket boosters (LRBs), Figure 1.0-1. The main objectives of a LRB substitution for the SRB were increased STS safety and reliability and increased payload performance...

  2. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    Science.gov (United States)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  3. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  4. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  5. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  6. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  7. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Science.gov (United States)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  8. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    Science.gov (United States)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  9. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  10. Design requirements for SRB production control system. Volume 1: Study background and overview

    Science.gov (United States)

    1981-01-01

    The solid rocket boosters assembly environment is described in terms of the contraints it places upon an automated production control system. The business system generated for the SRB assembly and the computer system which meets the business system requirements are described. The selection software process and modifications required to the recommended software are addressed as well as the hardware and configuration requirements necessary to support the system.

  11. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  12. Nutation instability of spinning solid rocket motor spacecraft

    Directory of Open Access Journals (Sweden)

    Dan YANG

    2017-08-01

    Full Text Available The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB. The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn. The analysis of the results proposes the design conception of how to control the nutation motion. The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.

  13. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  14. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    Science.gov (United States)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  15. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  16. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups

    Science.gov (United States)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  17. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  18. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    Science.gov (United States)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  19. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  20. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  1. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    Science.gov (United States)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  2. An investigation of the aerodynamic characteristics of a 0.00548 scale model (model no. 486) of the space shuttle 146-inch diameter solid rocket booster at angels of attack from 113 deg to 180 deg in the AEDC PWT 4-foot transonic wind tunnel (SA16F)

    Science.gov (United States)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.

  3. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  4. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    Science.gov (United States)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  5. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  6. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  7. SCATS: SRB Cost Accounting and Tracking System handbook

    Science.gov (United States)

    Zorv, R. B.; Stewart, R. D.; Coley, G.; Higginbotham, M.

    1978-01-01

    The Solid Rocket Booster Cost Accounting and Tracking System (SCATS) which is an automatic data processing system designed to keep a running account of the number, description, and estimated cost of Level 2, 3, and 4 changes is described. Although designed specifically for the Space Shuttle Solid Rocket Booster Program, the ADP system can be used for any other program that has a similar structure for recording, reporting, and summing numbers and costs of changes. The program stores the alpha-numeric designators for changes, government estimated costs, proposed costs, and negotiated value in a MIRADS (Marshall Information Retrieval and Display System) format which permits rapid access, manipulation, and reporting of current change status. Output reports listing all changes, totals of each level, and totals of all levels, can be derived for any calendar interval period.

  8. KSC-04PD-0392

    Science.gov (United States)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the SRB Assembly and Refurbishment Facility, STS-114 Commander Eileen Collins (center) is flanked by Bob Herman (left), SRB deputy associate program manager with United Space Alliance, and Jim Carleton (right), director, SRB Program Management, as they walk past solid rocket booster aft skirts. The crew is at KSC for familiarization with Shuttle and mission equipment. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.

  9. Estimation of Coriolis Force and Torque Acting on Ares-1

    Science.gov (United States)

    Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb

    2011-01-01

    A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).

  10. Automatic delamination defect detection in radiographic sequence of rocket boosters

    International Nuclear Information System (INIS)

    Rebuffel, V.; Pires, S.; Caplier, A.; Lamarque, P.

    2003-01-01

    Solid rocket motors are routinely examined in real-time X-ray radioscopic mode. The large and cylindrical boosters are rotating between a high energy source and a two dimensional detector. The purpose of this control is to detect possible defects all through the sample. In the tangential configuration, the part of the object that intersects the X-rays beam is the peripheral one, allowing to detect the delamination defect between the propellant and the external metal envelope. But the defect detectability is very poor due to the strong attenuation of the X-rays through the motors. During the rotation of the booster, the system acquires a sequence of radiographs where the defects are visible over several successive instants. We have previously developed a real-time tomo-synthesis system, processing the radiographs on line, and based on a tomo-synthesis reconstruction algorithm in order to improve the signal-to-noise ratio. This system is installed at the industrial site of Kourou, and is currently used by the operators in charge of the visual inspection of the boosters. In this paper, we present a method that processes the digital images obtained by the system in the purpose of automatically extracting the delamination defects. Due to the size and the poor contrast of the defects, a single image is not sufficient to perform this detection. A spatio-temporal aspect is required for the algorithm to be robust and efficient. In a first step, the proposed method computes the apparent local displacement between the current radiograph and a reference one. This reference image is acquired at the beginning of the rotation, with few noise, and is supposed to be defect free. The apparent displacement is due to the non-perfect rotation positioning. It may be uniform or not, depending on the deformation of the insulation liner of the metallic wall. The images are then registered and compared. On the resulting difference image we apply a smoothed threshold to obtain an

  11. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  12. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  13. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    Science.gov (United States)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  14. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the U.S. Lab Destiny as its moves from Atlantis''' payload bay into the PCR. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  15. Ram booster

    Science.gov (United States)

    Brand, Vance D. (Inventor); Morgan, Walter Ray (Inventor)

    2011-01-01

    The present invention is a space launch system and method to propel a payload bearing craft into earth orbit. The invention has two, or preferably, three stages. The upper stage has rocket engines capable of carrying a payload to orbit and provides the capability of releasably attaching to the lower, or preferably, middle stage. Similar to the lower stage, the middle stage is a reusable booster stage that employs all air breathing engines, is recoverable, and can be turned-around in a short time between missions.

  16. Inversion Method for Early Detection of ARES-1 Case Breach Failure

    Science.gov (United States)

    Mackey, Ryan M.; Kulikov, Igor K.; Bajwa, Anupa; Berg, Peter; Smelyanskiy, Vadim

    2010-01-01

    A document describes research into the problem of detecting a case breach formation at an early stage of a rocket flight. An inversion algorithm for case breach allocation is proposed and analyzed. It is shown how the case breach can be allocated at an early stage of its development by using the rocket sensor data and the output data from the control block of the rocket navigation system. The results are simulated with MATLAB/Simulink software. The efficiency of an inversion algorithm for a case breach location is discussed. The research was devoted to the analysis of the ARES-l flight during the first 120 seconds after the launch and early prediction of case breach failure. During this time, the rocket is propelled by its first-stage Solid Rocket Booster (SRB). If a breach appears in SRB case, the gases escaping through it will produce the (side) thrust directed perpendicular to the rocket axis. The side thrust creates torque influencing the rocket attitude. The ARES-l control system will compensate for the side thrust until it reaches some critical value, after which the flight will be uncontrollable. The objective of this work was to obtain the start time of case breach development and its location using the rocket inertial navigation sensors and GNC data. The algorithm was effective for the detection and location of a breach in an SRB field joint at an early stage of its development.

  17. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  18. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  19. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    Science.gov (United States)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  20. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  1. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    Science.gov (United States)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  2. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    Science.gov (United States)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  3. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  4. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  5. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  6. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  7. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  8. ACTH Regulation of Adrenal SR-B1

    Directory of Open Access Journals (Sweden)

    Wen-Jun eShen

    2016-05-01

    Full Text Available The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters delivered via scavenger receptor, class B type 1 (SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. ACTH stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatment can modulate SR-B1 function including its transcription, its post transcriptional stability, its phosphorylation and dimerization status, as well as its interaction with other protein partners; all of which result in changes in the ability of SR-B1 to mediate HDL-cholesterol ester uptake and the supply of cholesterol for conversion to steroids. Here we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.

  9. Biosorption of uranium from wastewater by ZVI-SRB immobilized in calcium alginate

    International Nuclear Information System (INIS)

    Wang Aihe; Zhang Wei; Hu Kaiguang

    2009-01-01

    A ZVI-SRB was immobilized in calcium alginate gel beads,and the immobilized ZVI-SRB was used for removing uranium from wasterwater. The kinetics of uranium biosorption by the immobilized ZVI-SRB and the immobilized SRB was investigated. The results show that the immobilized ZVI-SRB and SRB were effective in removing uranium from wasterwater, and their maximal absorption capacities were up to 312.50 and 256.41 mg/g respectively. The kinetics of uranium biosorption onto the immobilized ZVI-SRB and SRB followed pseudo-second order model. (authors)

  10. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    Science.gov (United States)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  11. Energy transfer in Pr3+ and Mn2+ co-doped SrB6O10 and SrB4O7

    International Nuclear Information System (INIS)

    Chen Yonghu; Yan Wuzhao; Shi Chaoshu

    2007-01-01

    The luminescent properties of Pr 3+ and Mn 2+ -doped SrB 6 O 10 and SrB 4 O 7 powder samples were investigated from the point of view of energy transfer between Pr 3+ and Mn 2+ . The emission from the 1 S 0 level of Pr 3+ was found in the SrB 6 O 10 :Pr 3+ sample as well as in the SrB 4 O 7 :Pr 3+ sample, indicating the 1 S 0 level is below the lowest 4f5d energy level in these hosts. The spectral overlaps between the emission spectra of Pr 3+ -doped samples and the excitation spectra of Mn 2+ -doped sample were found in both kinds of strontium borates. These spectral overlaps are in favor of the energy transfer from Pr 3+ to Mn 2+ . However, in the emission spectra of the SrB 6 O 10 :Pr 3+ , Mn 2+ , no indication of energy transfer was observed, though the emission spectra of SrB 4 O 7 :Pr 3+ , Mn 2+ did show evidence of energy transfer from Pr 3+ to Mn 2+ . The possible reasons were discussed

  12. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    Science.gov (United States)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  13. Integrating the SRB with the GIGGLE framework

    Energy Technology Data Exchange (ETDEWEB)

    Barrass, T A [Physics Department, University of Bristol, Bristol BS8 1TL (United Kingdom); Maroney, O J.E. . [Physics Department, University of Bristol, Bristol BS8 1TL (United Kingdom); Metson, S [Physics Department, University of Bristol, Bristol BS8 1TL (United Kingdom); Newbold, D [Physics Department, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2004-11-21

    Distributed data transfer is currently characterised by the use of widely disparate tools, meaning that significant human effort is required to maintain the distributed system. In order to realise the possibilities represented by Grid infrastructure, the reality of a heterogenous computing environment must be tackled by providing means by which these disparate elements can communicate. Two such data distribution tools are the SRB and the EU DataGrid's Data Management fabric, both widely used by many large scientific projects. Both provide similar functionality--the replication and cataloguing of datasets in a globally distributed environment. Significant quantities of data are currently stored in both. Moving data from the SRB to the EUDG, however, requires significant intervention and is therefore not scalable. This paper presents a mechanism by which the SRB can automatically interact with the GIGGLE framework as implemented by the EUDG, allowing access to SRB data using Grid tools.

  14. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  15. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  16. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  17. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  18. Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex S.; Frame, Kyle L.

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing

  19. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    Science.gov (United States)

    2000-01-01

    - The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  20. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  1. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Misato Tsugita

    2017-01-01

    Full Text Available The inhalation of silica dust is associated with fibrosis and lung cancer, which are triggered by macrophage inflammatory responses; however, how macrophages recognize silica remains largely unknown. Here, we identify by functional expression cloning the class B scavenger receptor SR-B1 as a silica receptor. Through an extracellular α-helix, both mouse and human SR-B1 specifically recognized amorphous and crystalline silica, but not titanium dioxide nanoparticles, latex nanoparticles, or monosodium urate crystals, although all particles exhibited negative surface potentials. Genetic deletion of SR-B1 and masking of SR-B1 by monoclonal antibodies showed that SR-B1-mediated recognition of silica is associated with caspase-1-mediated inflammatory responses in mouse macrophages and human peripheral blood monocytes. Furthermore, SR-B1 was involved in silica-induced pulmonary inflammation in mice. These results indicate that SR-B1 is a silica receptor associated with canonical inflammasome activation.

  2. CFD Assessment of Forward Booster Separation Motor Ignition Overpressure on ET XT 718 Ice/Frost Ramp

    Science.gov (United States)

    Tejnil, Edward; Rogers, Stuart E.

    2012-01-01

    Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.

  3. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  4. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique

    International Nuclear Information System (INIS)

    Dong Zehua; Shi Wei; Ruan Hongmei; Zhang Guoan

    2011-01-01

    Highlights: → Highly conductive SRB-biofilm can shield the potential differences of mild steel. → Potential maps fail to indicate the localised corrosion of steel under SRB-biofilm. → Galvanic current maps can detect the location of localised corrosion under biofilm. → SRB-biofilm is super-capacitive due to the conductive sulphide micropores. - Abstract: Heterogeneous corrosion of mild steel under sulphate reducing bacteria (SRB)-biofilm was characterised by wire beam electrode (WBE) technique and electrochemical impedance spectrum. The potential/current distributions of the WBE under SRB-biofilm showed that the potential maps could not indicate the localised corrosion of steels beneath biofilm due to the fact that all wire electrodes were short-circuited by the highly conductive sulphide precipitates embedded in SRB-biofilm. Instead, the galvanic current maps may give a good indication. The characteristic of super-capacitance (0.21 F/cm 2 ) of SRB-biofilm was attributed to the huge specific surface area of conductive pore walls inside biofilm.

  5. GEWEX Surface Radiation Budget (SRB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA/GEWEX Surface Radiation Budget (SRB) Release-3.0 data sets contains global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of...

  6. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  7. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  8. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  9. STS-121: Discovery L-2 Countdown Status Briefing

    Science.gov (United States)

    2006-01-01

    Bruce Buckingham from NASA Public Affairs introduces Pete Nicolenko, NASA Test Director, and Kathy Winters, Shuttle Weather Officer. During this STS-121 two days before launch countdown briefing, Pete Nicolenko says that there are no issues of concern and that they are on schedule for launch. He then presents and discusses an Orbiter Processing Facility (OPF) video. The OPF topics of discussion include: 1) Wheel and tire installation; 2) Gap filler installation; 3) Booster build-up; 4) Transport of External Tank (ET) 119; 5) ET to Shuttle Rocket Booster (SRB) Mate operation; 6) Roll-over of Discovery out of OPF to the Vehicle Assembly Building (VAB); and 7) Roll-out to the pad. Kathy Winters gives her weather forecast for the STS-121 launch. The video ends with a question and answer period from the media.

  10. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  11. BROOKHAVEN: Booster boost

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After three months of intensive dedicated machine studies, Brookhaven's new Booster accelerated 5 x 10 13 protons over four cycles, about 85% of the design intensity. This was made possible by careful matching of Linac beam into the Booster and by extensive resonance stop band corrections implemented during Booster acceleration. The best single cycle injection into the AGS Alternating Gradient Synchrotron was 1.14 x 10 13 protons from the Booster. 1.05 x 10 13 protons were kept in the AGS, a 92% combined efficiency of extraction, transfer, and injection. The maximum injected 1994 shutdown period, enabling the 1994 physics run to make use of the full Booster intensity and go for the stated AGS objective of 4x10 13 protons per pulse

  12. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  13. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  14. Radiation defects in SrB4O7:Eu2+ crystals

    International Nuclear Information System (INIS)

    Yavetskiy, R.P.; Dolzhenkova, E.F.; Tolmachev, A.V.; Parkhomenko, S.V.; Baumer, V.N.; Prosvirnin, A.L.

    2007-01-01

    Radiation-induced defects in SrB 4 O 7 :Eu 2+ (0.033 at.%) single crystal irradiated with γ and X-ray quanta has been studied. The induced optical absorption in the 400-700 nm region has been ascribed to F + centers. The Eu 2+ ions have been shown to act simultaneously as traps and as radiative recombination centers of charge carriers. Basing on the thermally stimulated luminescence (TSL), optical absorption and photoluminescence studies of SrB 4 O 7 :Eu 2+ crystals, a TSL mechanism has been proposed associated with the decay of F + centers being in non-equivalent crystallographic positions followed by radiative recombination of charge carriers on europium ions. Various positions of localization of the radiation-induced defects in the SrB 4 O 7 crystal structure have been discussed

  15. Chinese modify CZ-2/3 rocket boosters, focus on commercial launch market

    Science.gov (United States)

    Covault, C.

    1985-07-01

    A program underway in the People's Republic of China to modify the Titan-class CZ-2/3 satellite-launch and ICBM boosters is described on the basis of a recent visit to the manufacturing plant in Shanghai. The present two-stage CZ-2 and three-stage CZ-3 can place 5000 lbs in LEO or 3080 lbs in GEO, respectively, and are produced on a custom basis with a delivery time of about 2 yrs. Modifications introduced include 4 x 6-ft fins and a pogo-suppression system for the four-engine first stage and a steel support band for the combustion chamber of the 80-ton-thrust second-stage main engine.

  16. The PS booster

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The PS booster which accelerates protons from the linac at an energy of 50 MeV to an energy of 800 MeV before injecting them into the main magnet ring of the synchrotron. The booster consists of four superposed rings. In the photograph can be seen the input beam line from the linac and the output beam lines, where beams from the four booster levels have been combined into two beams before final recombination.

  17. ISLSCP II Surface Radiation Budget (SRB) Radiation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains global Surface Radiation Budget (SRB) and a few top-of-atmosphere (TOA) radiation budget parameters on a 1-degree x 1-degree spatial...

  18. Threshold SRB populations for MIC of stainless alloys

    International Nuclear Information System (INIS)

    Angell, P.; Urbanic, K.; Gendron, T.S.

    1997-12-01

    The three CANDU reactor sites on the Great Lakes exhibit differences in susceptibility to microbially influenced corrosion (MIC) of heat exchanger tubes, despite similar colonization of sulfate-reducing bacteria (SRB). Therefore, it was suspected that bacterial activity, rather than numbers, is responsible for pit initiation. Accelerated corrosion tests are being used to examine the relationship between SRB colonization and pitting activity on stainless alloy heat exchanger tubes. Experimental conditions model those of the natural systems. At present, there appears to be little correlation between bacterial numbers and pit initiation. However, there does appear to be a correlation between bacterial activity (causing a decrease in corrosion potential, as a function of sulfide production), and pit initiation. Data are being collected to develop a model to predict MIC for the CHECWORKS service water module. (author)

  19. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    Science.gov (United States)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  20. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    Science.gov (United States)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  1. NSLS-II booster timing system

    International Nuclear Information System (INIS)

    Cheblakov, P.; Karnaev, S.; De Long, J.

    2012-01-01

    NSLS-II light source includes the main storage ring with beam lines and injection part consisting of 200 MeV linac, a full-energy 3 GeV booster synchrotron and two transport lines. The booster timing system is a part of NSLS-II timing system which uses hardware from MicroResearch Finland: Event Generator (EVG) and Event Receivers (EVRs). The booster timing is based on the events coming from NSLS-II EVG: 'Pre-Injection', 'Injection', 'Pre-Extraction', 'Extraction'. These events are referenced to the selected RF bucket of the storage ring and correspond to the first RF bucket of the booster. EVRs provide triggers both for the injection and the extraction pulse devices. EVRs also provide the timing of booster cycle operation and generation of events for cycle-to-cycle updates of pulsed and ramping parameters, and synchronization of the booster beam instrumentation devices. This paper describes the final design of the booster timing system. The timing system functional diagrams and block diagram are presented. (authors)

  2. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  3. Operational behaviour of CO{sub 2} booster systems; Betriebsverhalten von CO{sub 2}-Booster-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Javerschek, Oliver; Hieble, Tobias [BITZER Kuehlmaschinenbau GmbH, Sindelfingen (Germany)

    2011-07-01

    The operating characteristics of booster systems and the resulting operating conditions of CO{sub 2} booster systems in supermarket refrigeration are explained and discussed. Criteria and challenges of different operating and load conditions are gone into. Simulated and measured operating states of a small-scale booster system are compared and evaluated. [German] In der vorliegenden Veroeffentlichung werden unterschiedliche Betriebsverhalten und die daraus resultierenden Betriebsbedingungen von CO{sub 2}-Booster-Systemen in der Supermarktkaelte erlaeutert und diskutiert. Dabei werden wesentliche Kriterien und Herausforderungen bei den unterschiedlichen Betriebs- und Lastbedingungen besprochen. Ausserdem werden simulierte und gemessene Betriebszustaende einer kleinen Booster-Kaelteanlage vergleichend betrachtet und bewertet.

  4. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  5. Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor by charge compensation

    International Nuclear Information System (INIS)

    Wu, Zhan-Chao; Wang, Ping; Liu, Jie; Li, Chao; Zhou, Wen-Hui; Kuang, Shao-Ping

    2012-01-01

    Highlights: ► New green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. ► Li + , Na + , and K + can all increase luminescent intensity of SrB 2 O 4 :Tb 3+ . ► Na + is the optimal charge compensator among Li + , Na + and K + . ► SrB 2 O 4 :Tb 3+ is a promising green phosphor for fabricating WLED. -- Abstract: A new green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed all the samples with orthorhombic formation of SrB 2 O 4 . The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright green emission with the highest photoluminescence (PL) intensity at 544 nm excited by 378 nm light. The critical quenching concentration of Tb 3+ in SrB 2 O 4 :Tb 3+ is about 10 mol%. The effects of charge compensators (Li + , Na + , and K + ) on photoluminescence of SrB 2 O 4 :Tb 3+ were also studied. The results show that the emission intensity can be improved by all the three charge compensators and Na + is the optimal one for SrB 2 O 4 :Tb 3+ . All properties show that the phosphor is a promising green phosphor pumped by NUV InGaN chip for fabricating white light-emitting diodes (WLEDs).

  6. On the Smooth Dependence of SRB Measures for Partially Hyperbolic Systems

    Science.gov (United States)

    Zhang, Zhiyuan

    2018-02-01

    In this paper, we study the differentiability of SRB measures for partially hyperbolic systems. We show that for any {s ≥ 1}, for any integer {ℓ ≥ 2}, any sufficiently large r, any φ \\in Cr(T, R)} such that the map {f : T^2 \\to T^2, f(x,y) = (ℓ x, y + φ(x))} is {C^r}-stably ergodic, there exists an open neighbourhood of f in {C^r(T^2,T^2)} such that any map in this neighbourhood has a unique SRB measure with {C^{s-1}} density, which depends on the dynamics in a {C^s} fashion. We also construct a C^{∞} mostly contracting partially hyperbolic diffeomorphism {f: T^3 \\to T^3} such that all f' in a C 2 open neighbourhood of f possess a unique SRB measure {μ_{f'}} and the map {f' \\mapsto μ_{f'}} is strictly Hölder at f, in particular, non-differentiable. This gives a partial answer to Dolgopyat's Question 13.3 in Dolgopyat (Commun Math Phys 213:181-201, 2000).

  7. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    Science.gov (United States)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  8. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  9. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  10. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  11. BROOKHAVEN: Booster commissioned

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Ed

    1992-03-15

    The construction and first commissioning phase of the Booster synchrotron to inject into Brookhaven's veteran Alternating Gradient Synchrotron (AGS) were completed last year. Scheduled to come into operation this year, the new Booster will extend the research capabilities AGS, and with its ability to accelerate partially stripped heavy ions will play an essential role in the chain of accelerators serving the Relativistic Heavy Ion Collider (RHIC)

  12. Occurrence of sulphate reducing bacteria (SRB associated with biocorrosion on metallic surfaces in a hydroelectric power station in Ibirama (SC - Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Dantas Marangoni

    2013-10-01

    Full Text Available The aim of this study was evaluate, two methods for the detection and identification of sulphate reducing bacteria (SRB: ML medium and PCR with specific primers for SRB groups. SRB were detected through the selective medium only on carbon steel, which showed corrosion. Employing specific PCR primer, SBR were detected from all the metallic components assayed, even those that did not present visible corrosion spots, such stainless steel and copper alloys. Despite the presence or absence of corrosion at the later stages effectively by using the selective medium,, the initial stages of the corrosion could only be detected by the amplification of total DNA with SRB specific primers. The early detection of SRB could be employed for preventing the damages on metal surfaces before the installation of corrosion processes. Strategies for reducing the time spent on SRB isolation and identification could be auxiliary tools for controlling the corrosion of materials.

  13. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.

    Directory of Open Access Journals (Sweden)

    Dawoon Chung

    2014-11-01

    Full Text Available The Aspergillus fumigatus sterol regulatory element binding protein (SREBP SrbA belongs to the basic Helix-Loop-Helix (bHLH family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA. How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.

  14. PS Booster - Festive colloquium

    CERN Multimedia

    2012-01-01

    A festive colloquium will be held to celebrate the 40th anniversary of the PS Booster on Friday, 28 September at 2 p.m. in the CERN council chamber. The meeting will be open to everybody. Read more on the PS Booster in the CERN Bulletin and in the CERN Courier.

  15. A role for the high-density lipoprotein receptor SR-B1 in synovial inflammation via serum amyloid-A.

    LENUS (Irish Health Repository)

    Mullan, Ronan Hugh

    2012-02-01

    Acute phase apoprotein Serum Amyloid A (A-SAA), which is strongly expressed in rheumatoid arthritis synovial membrane (RA SM), induces angiogenesis, adhesion molecule expression, and matrix metalloproteinase production through the G-coupled receptor FPRL-1. Here we report alternative signaling through the high-density lipoprotein receptor scavenger receptor-class B type 1 (SR-B1). Quantitative expression\\/localization of SR-B1 in RA SM, RA fibroblast-like cells (FLCs), and microvascular endothelial cells (ECs) was assessed by Western blotting and immunohistology\\/fluorescence. A-SAA-mediated effects were examined using a specific antibody against SR-B1 or amphipathic alpha-Helical Peptides (the SR-B1 antagonists L-37pA and D-37pA), in RA FLCs and ECs. Adhesion molecule expression and cytokine production were quantified using flow cytometry and ELISA. SR-B1 was strongly expressed in the RA SM lining layer and endothelial\\/perivascular regions compared with osteoarthritis SM or normal control synovium. Differential SR-B1 expression in RA FLC lines (n = 5) and ECs correlated closely with A-SAA, but not tumor necrosis factor alpha-induced intercellular adhesion molecule-1 upregulation. A-SAA-induced interleukin-6 and -8 production was inhibited in the presence of anti-SR-B1 in human microvascular endothelial cells and RA FLCs. Moreover, D-37pA and L-37pA inhibited A-SAA-induced vascular cell adhesion molecule-1 and intercellular adhesion molecule expression from ECs in a dose-dependent manner. As SR-B1 is expressed in RA synovial tissue and mediates A-SAA-induced pro-inflammatory pathways, a better understanding of A-SAA-mediated inflammatory pathways may lead to novel treatment strategies for RA.

  16. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  17. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  18. SRB states and nonequilibrium statistical mechanics close to equilibrium

    OpenAIRE

    Gallavotti, Giovannni; Ruelle, David

    1996-01-01

    Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.

  19. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  20. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  1. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  2. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  3. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  4. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    Science.gov (United States)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  5. 47 CFR 74.733 - UHF translator signal boosters.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  6. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  7. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  8. Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder.

    Science.gov (United States)

    Pecorelli, Alessandra; Belmonte, Giuseppe; Meloni, Ilaria; Cervellati, Franco; Gardi, Concetta; Sticozzi, Claudia; De Felice, Claudio; Signorini, Cinzia; Cortelazzo, Alessio; Leoncini, Silvia; Ciccoli, Lucia; Renieri, Alessandra; Jay Forman, Henry; Hayek, Joussef; Valacchi, Giuseppe

    2015-09-01

    CDKL5 mutation is associated with an atypical Rett syndrome (RTT) variant. Recently, cholesterol homeostasis perturbation and oxidative-mediated loss of the high-density lipoprotein receptor SRB1 in typical RTT have been suggested. Here, we demonstrate an altered lipid serum profile also in CDKL5 patients with decreased levels of SRB1 and impaired activation of the defensive system Nrf2. In addition, CDKL5 fibroblasts showed an increase in 4-hydroxy-2-nonenal- and nitrotyrosine-SRB1 adducts that lead to its ubiquitination and probable degradation. This study highlights a possible common denominator between two different RTT variants (MECP2 and CDKL5) and a possible common future therapeutic target. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Occurrence of sulphate reducing bacteria (SRB) associated with biocorrosion on metallic surfaces in a hydroelectric power station in Ibirama (SC) - Brazil

    OpenAIRE

    Paulo Roberto Dantas Marangoni; Diogo Robl; Marcos Antonio Coelho Berton; Carlos Mario Garcia; Angela Bozza; Mariana Vieira Porsani; Patricia do Rocio Dalzoto; Vânia Aparecida Vicente; Ida Chapaval Pimentel

    2013-01-01

    The aim of this study was evaluate, two methods for the detection and identification of sulphate reducing bacteria (SRB): ML medium and PCR with specific primers for SRB groups. SRB were detected through the selective medium only on carbon steel, which showed corrosion. Employing specific PCR primer, SBR were detected from all the metallic components assayed, even those that did not present visible corrosion spots, such stainless steel and copper alloys. Despite the presence or absence of cor...

  10. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones

    Science.gov (United States)

    Kang, Sang-Mo; Shahzad, Raheem; Seo, Chang-Woo; Kim, Ah-Yeong; Lee, Sang-Uk; Oh, Kyeong Yeol; Lee, Dong Yeol; Lee, In-Jung; Yun, Byung-Wook

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography—mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity. PMID:28282395

  11. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones.

    Directory of Open Access Journals (Sweden)

    Yeon-Gyeong Park

    Full Text Available Plant growth promoting rhizobacteria (PGPR are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT and superoxide dismutase (SOD activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.

  12. The PS Booster hits 40

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Many accelerators’ "round" birthdays are being celebrated at CERN these days – the PS turned 50 in 2009, the SPS was 35 in 2011, and this year it's the turn of the PS Booster to mark its 40th anniversary. Originally designed to accelerate 1013 protons to 800 MeV, it has far exceeded its initial design performance over the years.   The PS Booster in the 1970s. Imagine the scene: a group of accelerator physicists staring expectantly at a monitor, when suddenly a shout of joy goes up as a signal flickers across the screen. Does that sound familiar? Well, turn the clock back 40 years (longer hair, wider trouser legs) and you have the situation at the PS Booster on 26 May 1972. On that day, beam was injected into the Booster for the first time. “It was a real buzz,” says Heribert Koziol, then Chairman of the Running-in Committee. “We were very happy – and also a little relieved – when the beam finally...

  13. Characterization of effective bio-control agent Bacillus sp. SRB 27 ...

    African Journals Online (AJOL)

    Rhizoctonia solani and Alternaria solani was obtained from forest soil sample by carrying out in vitro and in vivo screening techniques. This study reports the identification and characterization of a Bacillus sp. SRB 27 that may be used as a bio-control agent against the plant diseases in crop plants. It was identified as ...

  14. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  15. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  16. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions

    DEFF Research Database (Denmark)

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil

    2006-01-01

    Mediator exists in a free form containing the Med12, Med13, CDK8, and CycC subunits (the Srb8-11 module) and a smaller form, which lacks these four subunits and associates with RNA polymerase II (Pol II), forming a holoenzyme. We use chromatin immunoprecipitation (ChIP) and DNA microarrays...... to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts...... with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator...

  17. Fox-7 for Insensitive Boosters

    Science.gov (United States)

    2010-08-01

    cavitation , and therefore nucleation, to occur at each frequency. As well as producing ultrasound at different frequencies, the method of delivery of...processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology to improve booster formulations, and results from these...7 booster formulations. Also included are particle processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology

  18. The Booster

    CERN Multimedia

    1972-01-01

    Where the beams from the Booster's four rings begin to recombine, before transfer to the PS. On the left are dipoles for vertical steering, and on the right is the tank containing two septum magnets which form the first combining element.

  19. RF cogging in the FNAL Booster Accelerator

    International Nuclear Information System (INIS)

    William A. Pellico and Robert C. Webber

    2000-01-01

    The Fermilab Booster operates at a Radio Frequency (RF) harmonic number of 84 with beam in all buckets. One or two bunches of beam are systematically lost in the 8 GeV extraction process as beam is swept across a magnetic septum during the extraction kicker rise time. The prompt radiation and component activation resulting from this localized high energy beam loss become serious concerns as Booster beam throughput must be increased more than tenfold to meet the requirements of RUN II, NUMI, and MiniBooNE experiments. Synchronizing a gap in the beam to the firing of the extraction kickers, a relatively easy and standard practice in many machines, can eliminate the problem. This seemingly simple operation is greatly complicated in the Booster by the need to synchronize extraction to beam already circulating in the Main Injector. Coupled with the inflexibility of the Booster resonant magnetic cycle, cycle to cycle variations, and constraints inherent in the accelerator physics, that requirement forces active control of the gap's azimuthal position throughout the acceleration process as the revolution frequency sweeps rapidly. Until recently, the complexities of actually implementing and demonstrating this process in the Booster had not been worked out. This paper describes a successful demonstration of gap cogging in the Booster

  20. Summary of Booster Development and Qualification Report

    Energy Technology Data Exchange (ETDEWEB)

    Francois, Elizabeth G. [Los Alamos National Laboratory; Harry, Herbert H. [Los Alamos National Laboratory; Hartline, Ernest L. [Los Alamos National Laboratory; Hooks, Daniel E. [Los Alamos National Laboratory; Johnson, Carl E. [Los Alamos National Laboratory; Morris, John S. [Los Alamos National Laboratory; Novak, Alan M. [Los Alamos National Laboratory; Ramos, Kyle J. [Los Alamos National Laboratory; Sanders, Victor E. [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory; Lorenz, Thomas [LLNL; Wright, Mark [AWE; Botcher, Tod [PANTEX; Marx, Erin [NSWC-IHDIV; Gibson, Kevin [NSWC-IHDIV

    2012-06-21

    This report outlines booster development work done at Los Alamos National Laboratory from 2007 to present. The booster is a critical link in the initiation train of explosive assemblies, from complex devices like nuclear weapons to conventional munitions. The booster bridges the gap from a small, relatively sensitive detonator to an insensitive, but massive, main charge. The movement throughout the explosives development community is to use more and more insensitive explosive components. With that, more energy is needed out of the booster. It has to initiate reliably, promptly, powerfully and safely. This report is divided into four sections. The first provides a summary of a collaborative effort between LANL, LLNL, and AWE to identify candidate materials and uniformly develop a testing plan for new boosters. Important parameters and the tests required to measure them were defined. The nature of the collaboration and the specific goals of the participating partners has changed over time, but the booster development plan stands on its own merit as a complete description of the test protocol necessary to compare and qualify booster materials, and is discussed in its entirety in this report. The second section describes a project, which began in 2009 with the Department of Defense to develop replacement booster formulations for PBXN-7. Replacement of PBXN-7 was necessary because it contained Triaminotrinitrobenzene (TATB), which was becoming unavailable to the DoD and because it contained Cyclotrimethylenetrinitramine (RDX), which was sensitive and toxic. A LANL-developed explosive, Diaminoazoxyfurazan (DAAF), was an important candidate. This project required any replacement formulation be a drop-in replacement in existing munitions. This project was timely, in that it made use of the collaborative booster development project, and had the additional constraint of matching shock sensitivity. Additionally it needed to be a safety improvement, and a performance

  1. 30 CFR 57.8518 - Main and booster fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality is...

  2. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  3. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  4. Thermodynamic investigation of a booster-assisted ejector refrigeration system

    International Nuclear Information System (INIS)

    Zhao, Hongxia; Zhang, Ke; Wang, Lei; Han, Jitian

    2016-01-01

    Highlights: • COP based on thermal input increases with booster outlet pressure. • Both entrainment ratio and area ratio increase with booster outlet pressure. • COP based on work is larger than compressor-based refrigeration system. • An optimum booster outlet pressure obtains maximum COP based on work. • Exergy destruction occurs mainly in ejector, condenser, evaporator and generator. - Abstract: In order to improve performance of ejector refrigeration system, a booster is added before an ejector to enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass, momentum and energy conservation, a 1D model of ejector for optimal performance prediction was presented and validated with experimental data. A detailed study of working characteristics of the booster assisted ejector refrigeration system was carried out and compared against conventional ejector refrigeration system and compressor based refrigeration system, on the basis of first and second laws of thermodynamics. Effects of booster outlet pressure on COP_t_h based on thermal energy and COP_w based on work input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates were also computed and analyzed for components of the booster-assisted ejector refrigeration system. Ways to reduce exergy destruction were discussed.

  5. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  6. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  7. Cigarette smoke affects keratinocytes SRB1 expression and localization via H2O2 production and HNE protein adducts formation.

    Directory of Open Access Journals (Sweden)

    Claudia Sticozzi

    Full Text Available Scavenger Receptor B1 (SR-B1, also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC, the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS, which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model after CS exposure is driven by hydrogen peroxide (H(2O(2 that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX. This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H(2O(2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.

  8. Design of the Zero Gradient Synchrotron Booster-II lattice

    International Nuclear Information System (INIS)

    Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.

    1975-01-01

    A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)

  9. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  10. Compatibility of booster seats and vehicles in the U.S. market.

    Science.gov (United States)

    Bing, Julie A; Agnew, Amanda M; Bolte, John H

    2018-05-19

    The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.

  11. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  12. KSC-03PD-2322

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The STS-114 crew is welcomed to Hangar AF, Cape Canaveral Air Force Station, by Joseph Chaput, with United Space Alliance. The crew, from left, are Mission Specialist Soichi Noguchi, Commander Eileen Collins, Mission Specialist Stephen Robinson and (partially hidden) Pilot James Kelly. Noguchi is with the Japanese space agency NASDA. On the mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review. Hangar AF is the site where SRB Retrieval Ships return the spent solid rocket boosters after a Shuttle launch. The SRBs are lifted from the water and placed on rail cars to begin the disassembly and refurbishment process.

  13. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  14. Simulations Of Transverse Stacking In The NSLS-II Booster

    International Nuclear Information System (INIS)

    Fliller, R. III; Shaftan, T.

    2011-01-01

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.

  15. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  16. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  17. An example of successful international cooperation in rocket motor technology

    Science.gov (United States)

    Ellis, Russell A.; Berdoyes, Michel

    2002-07-01

    The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative

  18. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1991-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. A the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the coarse of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development

  19. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1992-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. At the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the course of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available both for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development. (author)

  20. LS1 Report: first beams in the Booster

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    On Monday, 2 June, the Operations Group injected the first beams into the PS Booster (PSB). The PSB, the second machine in the LHC injector chain to be recommissioned (Linac2 was the first), also provides beams for non-LHC experiments, some of which will need beams for physics as early as this summer.   The PS Booster. The Operations Group has been back in control of the PS Booster for a month now, having taken over where the engineers and experts of the EN Department, who were responsible for the maintenance work, left off. The group first ran tests with no beam (known as “cold check-out”) to check and requalify all the machine instrumentation, from the control room to the ring itself. Now in beam mode, the Booster is being prepared both to begin supplying the PS at the end of June and, above all, for physics to restart in the ISOLDE experimental area. The PS Booster console in the CERN Control Centre. “We have around 15 types of beams to ‘prepa...

  1. LS1 Report: PS Booster prepares for beam

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    With Linac2 already up and running, the countdown to beam in the LHC has begun! The next in line is the PS Booster, which will close up shop to engineers early next week. The injector will be handed over to the Operations Group who are tasked with getting it ready for active duty.   Taken as we approach the end of LS1 activities, this image shows where protons will soon be injected from Linac2 into the four PS Booster rings. Over the coming two months, the Operations Group will be putting the Booster's new elements through their paces. "Because of the wide range of upgrades and repairs carried out in the Booster, we have a very full schedule of tests planned for the machine," says Bettina Mikulec, PS Booster Engineer in Charge. "We will begin with cold checks; these are a wide range of tests carried out without beam, including system tests with power on/off and with varying settings, as well as verification of the controls system and timings." Amon...

  2. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  3. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  4. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    Science.gov (United States)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  5. The AGS Booster control system

    International Nuclear Information System (INIS)

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper

  6. Beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate low intensity (2 x 10 10 ) polarized protons, high intensity (1.5x10 13 ) protons and heavy ions through Au +33 . Coping with this wide range of beams, the 3 x 10 -11 Torr vacuum and the radiation environment presented challenges for the beam monitors. Some of the more interesting instrumentation design and performance during the recent Booster proton commissioning will be described

  7. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  8. Subcriticality determination in ADS: Valina-Booster experiments

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.

    2007-01-01

    A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented

  9. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  10. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Science.gov (United States)

    Pancoast, Justin; Garrett, William; Moe, Gulia

    2015-01-01

    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  11. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Borland, M.; Harkay, K.; Lindberg, R.; Yao, C.-Y.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that the efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.

  12. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  13. The AGS Booster main ring power supply system

    International Nuclear Information System (INIS)

    Soukas, A.; Hughes, K.; Sandberg, J.; Toldo, F.; Zhang, S.Y.

    1989-01-01

    The AGS Booster is being designed as a very versatile particle accelerator. Its primary function is to be a high quality injector to the currently operating Alternating Gradient Synchrotron (AGS). The Booster/AGS combination will produce proton intensities greater than 5 x 10 13 protons per pulse (ppp), and accelerate heavy ions, with mass up to 200, to a maximum energy of 15 GeV per atomic mass unit (GeV/amu). The power supply for the Booster Main Ring (BMRPS) has to accommodate a wide range of cycles and a wide range of operating parameters. The cycles range from storage for several seconds to rapid cycling at 7.5 Hz. The peak output power is 18 MW. This paper will describe the AGS Booster machine powering requirements, the choice of power supply, the a.c. circuit tie-in and its associated problems and some of the details of the design of the BMRPS. 9 refs., 2 figs

  14. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  15. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  16. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  17. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  18. New beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2x10 10 polarized protons to 1.5x10 13 protons and heavy ions through Au +33 . The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs

  19. GEWEX SRB Shortwave Release 4

    Science.gov (United States)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  20. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  1. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  2. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  3. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    International Nuclear Information System (INIS)

    Anferov, V.A.

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society

  4. Diamond Light Source Booster fast orbit feedback system

    International Nuclear Information System (INIS)

    Gayadeen, S.; Duncan, S.R.; Christou, C.; Heron, M.T.; Rowland, J.

    2012-01-01

    The Fast Orbit Feedback system that has been installed on the Diamond Light Source Storage ring has been replicated on the Booster synchrotron in order to provide a test bed for the development of the Storage Ring controller design. To realise this the Booster is operated in DC mode. The electron beam is regulated in two planes using the Fast Orbit Feedback system, which takes the beam position from 22 beam position monitors for each plane, and calculates offsets to 44 corrector power supplies at a sample rate of 10 kHz. This paper describes the design and realization of the controller for the Booster Fast Orbit Feedback, presents results from the implementation and considers future development

  5. New beam instrumentation in the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

  6. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1

    Directory of Open Access Journals (Sweden)

    Dan He

    2018-05-01

    Full Text Available Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL oxidized by heme enzyme myeloperoxidase (MPO is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1 using human aorta endothelial cells (HAEC and SR-B1 (-/- mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/- mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases.

  7. Performance evaluation of DAAF as a booster material using the onionskin test

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

    2010-12-02

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemispherical IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  8. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  9. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  10. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  11. POST-MORTEM FINDINGS ON THE PERFORMANCE OF ENGINEERED SRB FIELD-BIOREACTORS FOR ACID MINE DRAINAGE CONTROL

    Science.gov (United States)

    Sulphate-reducing bacteria (SRB) have the ability to immobilize dissolved metals by precipitating them as sulphides, provided that a favourable biochemical environment is created. Such an environment includes the presence of sulphate, anaerobic conditions and the availability of...

  12. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  13. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  14. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  15. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  16. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  17. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  18. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  19. Proposed data acquisition system for the Fermilab Booster

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Peggs, S.; Wu, G.; Saltmarsh, C.

    1991-01-01

    At present, studies involving the FNAL Booster (or in fact most accelerators) depend on knowing exactly what detector one has to look at and at what time. Because of this, most studies are done 'on-line' and involve looking for repetitive effects using a limited number of detectors. In this paper the authors propose to design a Booster Data Acquisition System (BDAQ) for the FNAL Booster. In essence this system consists of a large number of digitizers with circular memory buffers. After a machine cycle of interest, these buffers are frozen and then read out into a mass storage device. This paper discusses the hardware and software capabilities needed to make such a data acquisition system a powerful tool for doing accelerator physics studies and improving machine performance

  20. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  1. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  2. AHF Booster Tracking with SIMPSONS.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. E. (David E.); Neri, F. (Filippo)

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 {approx} 1 0a' {approx}t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  3. AHF Booster Tracking with SIMPSONS

    International Nuclear Information System (INIS)

    Johnson, D.E.; Neri, F.

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 ∼ 1 0a' ∼t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  4. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  5. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  6. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  7. Logic and control module for the Fermilab booster beam damper

    International Nuclear Information System (INIS)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations

  8. Identifying strategies to improve the effectiveness of booster seat laws

    Science.gov (United States)

    2008-05-01

    The objective of this project was to identify strategies to improve the effectiveness of booster seat laws. The project explored the possible factors that relate to the use and nonuse of booster seats, and examined the attitudes of law enforcement of...

  9. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  10. A rookie's guide to Booster operations. Booster technical note no. 231

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Alternating Gradient Synchrotron Dept.

    1998-09-29

    The purpose of the Booster is to act as an injector for the AGS. It accelerates both protons and other ions. Proton acceleration is distinguished from the acceleration of other ions for several reasons. First, the experimental physics associated with protons, called High Energy Physics is different than that associated with other Ions, called Heavy Ion Physics. From the machine perspective, the process of injection of so called Heavy Ions (ions which are not protons), is distinctly different, from that of protons. A different preinjector, or injector for the Booster, is used for each case. For Protons, a 200 MeV Linear accelerator (The Linac) serves as a preinjector; for Heavy Ions, the Tandem Van De Graaf (The Tandem) is the preinjector. An attribute of the circulating beam which determines to a large degree what problems and what type of machine setup is involved is the beam intensity. The author's focus in this guide is on trying to convey the knowledge and experience involved in the operation of the Booster. Many of the problems encountered can be traced back to equipment failures, often power supplies. Although diagnostics are used, there can also be issues with the controls system itself. Problems with the controls system and prevent fixing or even finding a problem with a machine. The issue of improving a machines' performance can often involve trial and error and observations. The hard part is finding the relationships between things in the day to day operation of the machine. Abstractions about physics, information about controls and instrumentation, and purely empirical observations of how the machine behaves are all part of it.

  11. Water absorption and desorption in shuttle ablator and insulation materials

    Science.gov (United States)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  12. Momentum Cogging at the Fermilab Booster

    International Nuclear Information System (INIS)

    Seiya, K.; Drennan, C.C.; Pellico, W.; Triplett, A.K.; Waller, A.M.

    2012-01-01

    The Fermilab Booster has an upgrade plan called the Proton Improvement Plan (PIP). The flux throughput goal is 2E17 protons/hour which, is almost double the present flux, 1.1E17 protons/hour. The beam loss in the machine is going to be an issue. The Booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector (MI). The current cogging process synchronizes the extraction kicker gap to the MI by changing radial position of the beam during the cycle. The gap creation occurs at about 700 MeV, which is about 6 ms into the cycle. The cycle-to-cycle variations of the Booster are larger at lower energy. However, changing the radial position at low energy for cogging is limited because of aperture. Momentum cogging is able to move the gap creation to an earlier time by using dipole correctors and radial position feedback, and is able to control the revolution frequency and radial position at the same time. The new cogging is expected to reduce beam loss and not be limited by aperture. The progress of the momentum cogging system development is going to be discussed in this paper.

  13. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Pierre, E-mail: pierrelp.hm@gmail.com [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Battaglia-Brunet, Fabienne; Parmentier, Marc; Joulian, Catherine; Gassaud, Cindy [French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2 (France); Fernandez-Rojo, Lidia [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Guigner, Jean-Michel; Ikogou, Maya; Stetten, Lucie [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Olivi, Luca [Sincrotrone Trieste ELETTRA, I-34012 Trieste (Italy); Casiot, Corinne [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Morin, Guillaume [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2017-01-05

    Highlights: • SRB activity is evidenced at acidic pH in acid mine drainage water. • Total arsenic and zinc removal from solution is observed. • As, Zn and Fe are observed to precipitate as biogenic sulfides. • Amorphous orpiment (As{sup III}{sub 2}S{sub 3}) and realgar (As{sup II}S) are observed as main As-bearing sulfides. • A mechanism is proposed for the reduction of As{sub 2}S{sub 3} to AsS by biogenic H{sub 2}S under acidic conditions. - Abstract: Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94 days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23 mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-As{sup III}{sub 2}S{sub 3}) (33–73%), and realgar (As{sup II}S) (0–34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound As{sup III} (14–23%). We propose that the formation of the As{sup II}S nanowires results from As{sup III}{sub 2}S{sub 3} reduction by biogenic H{sub 2}S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.

  14. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  15. FNAL Booster intensity, extraction, and synchronization control for collider operation

    International Nuclear Information System (INIS)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention

  16. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  17. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  18. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  19. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  20. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  1. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  2. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  3. 78 FR 29062 - Signal Booster Rules

    Science.gov (United States)

    2013-05-17

    ... number of FCC rules concerning signal boosters for consumer and industrial use. This document corrects a... chapter; the Maritime Services (ship earth station devices only) pursuant to part 80 of this chapter; and...

  4. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  5. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 10 10 to 1.5 x 10 13 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  6. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    Science.gov (United States)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  7. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  8. Tdap Booster Requirements for Secondary Schools

    Science.gov (United States)

    ... Experts State Information Tdap booster requirements for secondary schools State Td or Tdap Mandate for Sec School ... Checklists Standing Orders Storage & Handling Talking with Parents Temperature Logs Top Handouts Translations Vaccine Index >> view all ...

  9. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  10. Tracking study of hadron collider boosters

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  11. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  12. Injection and transfer lines of the PS Booster

    CERN Multimedia

    Photographic Service

    1972-01-01

    In the foreground is the vacuum chamber for the 50 MeV proton beam coming from the Linac. The tank held by white frames houses the "Vertical Distributor", which deflects the Linac beam to the levels of the Booster's 4 superposed rings. After acceleration in the Booster, originally to 800 MeV, today to 1.4 GeV, the beams from the 4 rings are combined in the vertical plane and transfered to the 26 GeV PS. The "Recombination Line", intersecting the injection line, crosses the picture from left to right.

  13. Design study of CEPC Alternating Magnetic Field Booster

    CERN Document Server

    Bian, T; Cai, Y; Cui, X; Gao, J; Koratzinos, M; Su, F; Wang, D; Wang, Y; Xiao, M; Zhang, C

    2017-01-01

    The CEPC is a next generation circular e+e- collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120 GeV, but that of the injected beam is only 6 GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose operating the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields.

  14. Pegasus Rocket Model

    Science.gov (United States)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  15. Liquid Nitrogen Removal of Critical Aerospace Materials

    Science.gov (United States)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  16. Emittance measurement and modeling for the Fermilab Booster

    Directory of Open Access Journals (Sweden)

    Xiaobiao Huang

    2006-01-01

    Full Text Available Turn-by-turn beam profile data measured at the Fermilab Booster are studied. Lattice models with experimental accelerator ramping parameters are used to obtain the lattice functions for data analysis. We studied the horizontal and vertical emittance growth behavior in different stages of a booster ramping cycle and its relation to the beam intensity. The transverse and longitudinal components in the horizontal beam width are separated by a fitting model which makes use of the different scaling rules of the beam momentum. We analyze the post-transition horizontal beam size oscillation based on a model where the longitudinal phase-space mismatch has resulted from rf voltage mismatch during the transition-energy crossing. We carried out systematic multiparticle simulation to show that the source of the vertical emittance growth is a combination of the random errors in skew-quadrupole and dipole fields, and the systematic Montague resonance. The effect of random quadrupole field is small for the Fermilab Booster because the betatron envelope tunes are reasonably far away from the half-integer stop band.

  17. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  18. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  19. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  20. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  1. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  2. Thermoeconomic model of a commercial transcritical booster refrigeration system

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2011-01-01

    For cooling applications in supermarkets, booster refrigeration systems operating in both transcritical and subcritical conditions are increasingly used. A thermodynamic model of a transcritical booster refrigeration plant is tailored to match the new generation of commercial refrigeration plants...... of exergy for cooling. Second law analysis is needed to illustrate the characteristics of the plant at different load rates, according to the alternating load profile and corresponding to outdoor conditions. With the detailed model, different uses of the analysis are possible, including thermoeconomic...

  3. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    Science.gov (United States)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  4. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  5. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  6. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  7. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  8. Analysis of pressure blips in aft-finocyl solid rocket motor

    Science.gov (United States)

    Di Giacinto, M.; Favini, B.; Cavallini, E.

    2016-07-01

    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.

  9. The operational status of the Booster injector for the AGS accelerator complex at BNL

    International Nuclear Information System (INIS)

    Ahrens, L.; Bleser, E.; Brennan, J.M.; Gardner, C.; Gill, E.; Glenn, J.W.; Reece, K.; Roser, T.; van Asselt, W.; Weng, W.T.

    1992-01-01

    The Booster synchrotron at Brookhaven National Laboratory has been incorporated into the accelerator chain at the Alternating Gradient Synchrotron (AGS) complex. After a successful first commissioning effort in the spring of 1991, the Booster has been part of this year's silicon, gold and proton physics runs. After a brief review of the Booster design goals, and of the early commissioning, this paper will summarize this year's activities

  10. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  11. Fiber optics in the BNL Booster radiation environment

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1991-01-01

    The Booster instrumentation uses analog and digital fiber optic links, designed to withstand at least 50 krads without performance degradation. The links use inexpensive and commercially available components that operate at a center wavelength of 820 nm. The analog link operates to 30 MHz over a 200 m fiber and can provide insertion gain. The digital link provides 60 ns timing pulses without the dispersive effects of coaxial cables. The optical fiber is a step-index hard clad silica type with a 200 micron core. This paper presents the component selection criteria, link design, installation, testing and performance for the optical links in the Booster instrumentation systems

  12. Misuse of booster cushions among children and adults in Shanghai-an observational and attitude study during buckling up.

    Science.gov (United States)

    Bohman, Katarina; Jorlöv, Sofia; Zhou, Shengqi; Zhao, Cloud; Sui, Bo; Ding, Chengkai

    2016-10-02

    Traffic crashes are one of the leading causes of fatalities among Chinese children. Booster cushion usage in China is low, and there are no studies showing how a population with limited experience handles booster cushions during buckling up. The purpose of this study was to evaluate the handling of and explore the attitudes toward booster cushions among children, parents, and grandparents in Shanghai. An observational study including a convenience sample of 254 children aged 4-12 years was conducted in 2 passenger cars at a shopping center in Shanghai. Parents, grandparents, or the children themselves buckled up the child on 2 types of booster cushions, a 2-stage integrated booster cushion (IBC) and an aftermarket booster cushion (BC). The test participants were observed during buckling up, first without and then with instructions. The test leaders conducted structured interviews. Ninety-eight percent of the uninstructed participants failed to buckle up without identified misuse on the aftermarket booster cushion and 31% of those uninstructed on the integrated booster cushion. The majority of misuse was severe, including placing the belt behind the arm and the lap belt routing above the guiding loops. Instruction reduced misuse to 58% (BC) and 12% (IBC), respectively, and, in particular, severe misuse. Some misuse was related to limited knowledge of how to buckle up on the booster cushion, and some misuse was intentional in order to reduce discomfort. The participants, both children and adults, reported that they preferred the IBC due to good comfort and convenience. Safety was reported as the main reason for adults using booster cushions in general, whereas children reported comfort as the most important motivation. Education is needed to ensure frequent and correct use of booster cushions in China and to raise safety awareness among children and adults. Furthermore, it is important that the booster cushions offer intuitively correct usage to a population with

  13. YALINA Booster subcritical assembly modeling and analyses

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: Accurate simulation models of the YALINA Booster assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus have been developed by Argonne National Laboratory (ANL) of the USA. YALINA-Booster has coupled zones operating with fast and thermal neutron spectra, which requires a special attention in the modelling process. Three different uranium enrichments of 90%, 36% or 21% were used in the fast zone and 10% uranium enrichment was used in the thermal zone. Two of the most advanced Monte Carlo computer programs have been utilized for the ANL analyses: MCNP of the Los Alamos National Laboratory and MONK of the British Nuclear Fuel Limited and SERCO Assurance. The developed geometrical models for both computer programs modelled all the details of the YALINA Booster facility as described in the technical specifications defined in the International Atomic Energy Agency (IAEA) report without any geometrical approximation or material homogenization. Materials impurities and the measured material densities have been used in the models. The obtained results for the neutron multiplication factors calculated in criticality mode (keff) and in source mode (ksrc) with an external neutron source from the two Monte Carlo programs are very similar. Different external neutron sources have been investigated including californium, deuterium-deuterium (D-D), and deuterium-tritium (D-T) neutron sources. The spatial neutron flux profiles and the neutron spectra in the experimental channels were calculated. In addition, the kinetic parameters were defined including the effective delayed neutron fraction, the prompt neutron lifetime, and the neutron generation time. A new calculation methodology has been developed at ANL to simulate the pulsed neutron source experiments. In this methodology, the MCNP code is used to simulate the detector response from a single pulse of the external neutron source and a C code is used to superimpose the pulse until the

  14. Analysis of the glow curve of SrB 4O 7:Dy compounds employing the GOT model

    Science.gov (United States)

    Ortega, F.; Molina, P.; Santiago, M.; Spano, F.; Lester, M.; Caselli, E.

    2006-02-01

    The glow curve of SrB 4O 7:Dy phosphors has been analysed with the general one trap model (GOT). To solve the differential equation describing the GOT model a novel algorithm has been employed, which reduces significantly the deconvolution time with respect to the time required by usual integration algorithms, such as the Runge-Kutta method.

  15. Analysis of the glow curve of SrB4O7:Dy compounds employing the GOT model

    International Nuclear Information System (INIS)

    Ortega, F.; Molina, P.; Santiago, M.; Spano, F.; Lester, M.; Caselli, E.

    2006-01-01

    The glow curve of SrB 4 O 7 :Dy phosphors has been analysed with the general one trap model (GOT). To solve the differential equation describing the GOT model a novel algorithm has been employed, which reduces significantly the deconvolution time with respect to the time required by usual integration algorithms, such as the Runge-Kutta method

  16. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  17. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  18. In the Hot Seat: STS-115 Lightning Strike Stand Down Debate - NASA Case Study

    Science.gov (United States)

    Kummer, Lizette; Stevens, Jennifer

    2016-01-01

    There is no way the PIC's could have seen any current' was the gist of Mike Griffin's assessment. Griffin was the NASA Administrator at the time. The buck stopped at his desk. Holding a napkin out to Pat Lampton, Griffin showed Lampton the calculations he'd made over dinner that predicted that the Pyrotechnic Initiator Controllers (PIC's) at the base of the Space Shuttle Solid Rocket Boosters (SRBs) were fine. A lightning strike the day before, the worst ever experienced with a Space Shuttle on the launch pad, caused a halt to the launch count down as technicians, engineers, and managers scrambled identify any damage to the launch system. SRB technicians and engineers assessed the data against their Lightning Strike Re-Test Requirements, determining that all but one of the requirements could be checked if they resumed the countdown. For the one remaining requirement, testing the integrity of the PIC's would require 96 hours to set up, test, and reassemble. The engineers were convinced that there was no way to do calculations to show the PIC's were okay. The only option was to stand down. It was SRB Deputy Project Manager (PM) Pat Lampton's responsibility to decide what the SRB project position needed to be to certify that their hardware was safe to fly. He had to communicate that decision to the Mission Management Team (MMT) as a Go or No Go position to resume the count down. If the answer was Go they could still meet a delayed, but acceptable launch schedule. If the answer was No Go, rescheduling the launch would be a grueling shuffling of hardware, personnel, and mission timelines to accommodate Russian missions to the Space Station, supplies for the launch, and personnel manning launch operations. On top of that, Hurricane Ernesto was spinning off the coast of Florida, threatening the need for the Shuttle to roll back to the hangar if they waited too long.

  19. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  20. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Science.gov (United States)

    2010-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster station demonstrates that...

  1. Structure and hindered vibration of Bi2+ in the red-orange phosphor SrB4O7:Bi

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Barandiarán, Zoila; Seijo, Luis

    2014-01-01

    The emission band profile of bismuth-doped SrB4O7 is measured with high resolution, and distinct vibronic features are observed at 4.2 K. The energy intervals show an irregular distribution. It is interpreted in the light of ab initio calculations as due to two off-center totally symmetric normal

  2. Data acquisition and control of the Zero Gradient Synchrotron 500 MeV booster synchrotron

    International Nuclear Information System (INIS)

    Timm, R.E.; Forrestal, J.; Hogrefe, R.; Voss, D.

    1977-01-01

    A data acquisition and control philosophy for the Zero Gradient Synchrotron (ZGS) 500 MeV booster has involved a top down design incorporating all of the systems comprising the booster. Consideration of operational complexity was necessary because the booster is to be used simultaneously for ZGS injection, and solid state physics studies. Existing software and hardware capabilities of the ZGS computer were considered. The resulting data acquisition and control system is based on a mix of sequential logic and a minicomputer. Hardware considerations were based on a ten year life expectancy of the booster. Due to time, budget, and manpower constraints, the incorporation of the total design has been divided into three phases of implementation. The first phase is covered and the remaining phases are outlined

  3. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  4. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  5. AGS BOOSTER BEAM POSITION, TUNE, AND LONGITUDINAL PROFILE DATA ACQUISITION SYSTEM

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; SEVERINO, F; SMITH, K.; WILINSKI, M

    2003-01-01

    In this paper we will describe a data acquisition system designed and developed for the AGS Booster. The system was motivated by the need to get high quality beam diagnostics from the AGS Booster. This was accomplished by locating the electronics and digital data acquisition close to the Booster ring, to minimize loss of bandwidth in the original signals. In addition we had to develop the system rapidly and at a low cost. The system consists of a Lecroy digital oscilloscope which is interfaced through a National Instruments LabView(trademark) server application, developed for this project. This allows multiple client applications to time share the scope without interfering with each other. We will present a description of the system design along with example clients that we have implemented

  6. Reusable Boosters in a European-Russian Perspective

    Science.gov (United States)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  7. Automated tuning of the advanced photon source booster synchrotron

    International Nuclear Information System (INIS)

    Biedron, S.G.; Milton, S.V.

    1997-01-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance

  8. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  9. Booster Long 13 irradiation studies

    Energy Technology Data Exchange (ETDEWEB)

    Leveling, A.; Mokhov, N.; Moore, C.D.; /Fermilab

    1998-06-01

    Extraction from the Booster to the Main Ring occurred at Long Straight 13. The nature of the extraction process was such that 1% to 2% of the beam was lost in this region. There was an appreciable amount of beam extracted as shown in Table 1, which gives the yearly integrated intensities from 1973 to 1997. A simple model of the extraction losses was set up by Chandra Bhat utilizing the program CASIM. A sample output I shown in figure 1 which gives contours of stars/cm3 in the dirt, also schematically depicted are the three six feet deep sampling holes which were drilled to map out this cascade. One aspect of this study has been the study of the production of non-migrating nuclides and further study may in fact yield better values for the K parameter, the probability per star that an atom of the particular nuclide will be produced. Also the results of this study can give experimental numbers for the production of other nuclides when the amount of Na22 has been calculated. However, the most important part of this study has been the determination of the amount of tritium produced by extraction from the Booster and the experimentally determined migration rate. If we look at the top sample result in hole S2 of 777 pCi/ml of tritium and use the experimentally determined rate of migration and the depth to the aquifer of 13.1m, they calculate that the concentration will have decayed away to 1.1E-8 pCi/ml. If we look at the bottom sample, which is 11.3 m away from the aquifer, they calculate that the 116 pCi/ml will have decayed to 5.2E-8 pCi/ml. The conclusions is that the rate of migration determined over the 24 year irradiation history of the Booster extraction point is small enough that there is no problem with migration of tritium to the aquifer.

  10. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  11. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  12. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  13. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  14. 16 CFR 1507.10 - Rockets with sticks.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...

  15. OPTIMASI DAYA MESIN DAN KONSUMSI BAHAN BAKAR MESIN TOYOTA SERI 5K MELALUI PENGGUNAAN PENGAPIAN BOOSTER

    Directory of Open Access Journals (Sweden)

    Mardani Ali Sera

    2015-10-01

    Full Text Available Proses pembakaran adalah proses secara fisik yang terjadi di dalam silinder. Proses pembakaran dimulai pada saat busi memercikkan bunga api hingga terjadi proses pembakaran. Dalam penelitian ini digunakan metode eksperimen yaitu membandingkan daya dan konsumsi bahan bakar antara pengapian standar dengan pengapian menggunakan booster. Berdasarkan data hasil uji coba perbandingan antara sistem pengapian standar dengan pengapian yang menggunakan booster dengan objek penelitian mesin Toyota seri 5K diketahui adanya kenaikan 2.61% daya menjadi 27.723 kW dari 27.17 kW antara sistem pengapian standar dengan pengapian yang menggunakan booster pada putaran mesin 2400 rpm. Sedangkan prosentase kenaikan rerata daya sebesar 2.79 %. Penggunaan booster juga membuat penggunaan konsumsi bahan bakar spesifik (sfc antara sistem pengapian standar dengan pengapian yang menggunakan booster. Prosentase penurunan rerata konsumsi bahan bakar spesifik (sfc sebesar 6.99%. Pada sistem pengapian yang menggunakan booster, sfc minimum sebesar 0.219 kg/kWh pada putaran mesin 2200 rpm. Pada pengapian standar sfc minimum sebesar 0.231 kg/kWh pada putaran mesin 2400 rpm.

  16. Response to booster doses of hepatitis B vaccine among young adults who had received neonatal vaccination.

    Directory of Open Access Journals (Sweden)

    Paul K S Chan

    Full Text Available Newborns who have received hepatitis B immunization in 1980s are now young adults joining healthcare disciplines. The need for booster, pre- and post-booster checks becomes a practical question.The aim of this study is to refine the HBV vaccination policy for newly admitted students in the future.A prospective study on medical and nursing school entrants to evaluate hepatitis B serostatus and the response to booster doses among young adults.Among 212 students, 17-23-year-old, born after adoption of neonatal immunization, 2 (0.9% were HBsAg positive, 40 (18.9% were anti-HBs positive. At 1 month after a single-dose booster for anti-HBs-negative students, 14.5% had anti-HBs 100 mIU/mL, respectively. The anti-HBs levels were significantly higher for females than males (mean [SD]: 431 [418] vs. 246 [339] mIU/mL, P = 0.047. At 2-4 month after the third booster dose, 97.1% had anti-HBs >100 mIU/mL and 2.9% had 10-100 mIU/mL.Pre-booster check is still worthwhile to identify carriers among newly recruited healthcare workers born after adoption of neonatal immunization. A 3-dose booster, rather than a single dose, is required for the majority to achieve an anti-HBs level >100 mIU/mL, as memory immunity has declined in a substantial proportion of individuals. Cost-effectiveness of post-booster check for anti-HBs is low and should be further evaluated based on contextual specific utilization of results.

  17. Integral Ramjet Booster Demonstration Program

    Science.gov (United States)

    1975-02-01

    vibration loads before motor firing at -65, +70, and +1650F, (2) The chambers are fabricated from roll and welded ( TIG ) L-605 sheet that is cold...Typical Integral Booster Internal Configuration Keyhole Grain Pressure and Thrust Versus Time (+700F, Sea Level) Keyhole Grain Pressure and...Thrust Versus Time (+1650F, Sea Level) Keyhole Grain Pressure and Thrust Versus Time (-65^, Sea Level) Radial-Slot Grain Design Radial-Slot Grain

  18. Friction Plug Weld Repair for the Space Shuttle External Tank

    Science.gov (United States)

    Hartley, Paula J.; McCool, A. (Technical Monitor)

    2000-01-01

    Lockheed Martin Space Systems, Michoud Operations in New Orleans, LA is the manufacturer of the External Fuel Tanks (ET) for the Space Transportation System (STS). The ET contains and delivers the propellants used by the Orbiters three main engines. Additionally, it also serves as the structural backbone for the Orbiter and the two Solid Rocket Boosters (SRB), which combined, constitute the STS. In 1994, NASA established that in order to launch the International Space Station, the performance of the STS must be improved. One option was to reduce the weight of the ET, which would enable sufficient increase in performance. With the development of the Weldalite(R) series of Al-Cu-Li alloys in the late 1980's, Lockheed Martin was postured to replace the current A12219 fuel tanks with the high strength, light weight A12195 alloy. With the use of A12195 and some component redesign, the weight of the Super Lightweight (SLWT) ET was reduced by approximately 7,000 pounds, which added as much capability to the Space Shuttle. Since June 1998, seven STS missions have been successful with the use of the SLWT ET's.

  19. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  20. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  1. [Safety and immunogenicity of a 7-valent pneumococcal conjugate vaccine (Prevenar) booster dose in healthy Chinese toddlers].

    Science.gov (United States)

    Li, Rong-cheng; Li, Feng-xiang; Li, Yan-ping

    2009-06-01

    To evaluate the safety and immunogenicity of the booster dose of 7 valent pneumococcal conjugate vaccine (PCV7) to the healthy Chinese toddlers who had received 3 primary doses. Four hundred and eighty-eight Chinese toddlers received a booster dose of PCV7 at age of 12-15 months following a primary series of the vaccine given at ages 3, 4, 5 months separately with Diphtheria Tetanus Acellular Pertussis Combined Vaccine (DTaP) in Group 1 or concurrently with DTaP in Group 2. Following the booster dose immunization, each subject was followed up for 30 days to observe the safety of the vaccine. Blood samples were taken from a subset of subjects prior and post 30 days the booster dose immunization to evaluate immunogenicity. A high proportion of subjects in Group 1 (89%) and Group 2 (91%) remained afebrile after the booster dose. Local reactions to the PCV7 booster dose were generally mild. For each serotype, the rise in GMC (post-/pre-vaccination) showed a statistically significant difference (P<0.0001) between both groups. PCV7 administered as a booster dose is generally safe, well tolerate, and immunogenic in healthy Chinese toddlers.

  2. Analysis of resonance-driving imperfections in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given

  3. Design of the AGS Booster Beam Position Monitor electronics

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

    1991-01-01

    The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry

  4. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  5. Observation and correction of resonance stopbands in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed

  6. Vertical septum magnets for distributing the beam to the 4 PS Booster rings

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    To facilitate H- injection from Linac4 to the PS Booster via the transfer line the BI.SMV10 (Booster Injection Septum Magnet Vertical) provides the vertical deflection of the 160 MeV H- beam to rings 1, 2 and 4 of the Booster. Currently this system is capable of deflecting 50 MeV protons and comprises an assembly of ferrite type magnets in an “omega” section vacuum tank (see fig. 1). The current system shall be replaced with a UHV compatible vacuum chamber incorporating 3 sets of double septum magnets, pulsed from 3 individual power supplies via transformers with 12:1 ratio.

  7. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  8. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  9. Cabling design of booster and storage ring construction progress of TPS

    International Nuclear Information System (INIS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.

    2017-01-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm"2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm"2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm"2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  10. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  11. Compensation of dogleg effect in Fermilab Booster

    CERN Document Server

    Xiao Biao Huang

    2003-01-01

    The edge focusing of dogleg magnets in Fermilab Booster has been causing severe distortion to the horizontal linear optics. The doglegs are vertical rectangular bends, therefore the vertical edge focusing is canceled by body focusing and the overall effect is focusing in the horizontal plane. The maximum horizontal beta function is changed from 7m to 46.9m and maximum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This is believed to be one of the major reasons of beam loss. In this technote we demonstrate that this effect can be effectively corrected with Booster's quadrupole correctors in short straight sections (QS). There are 24 QS correctors which can alter horizontal linear optics with negligible perturbation to the vertical plane. The currents of correctors are determined by harmonic compensation, i.e., cancellation of dogleg's harmonics that are responsible for the distortion with that of QS correctors. By considering a few leading harmonics, the ideal lattice can be partly restored....

  12. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  13. 14 CFR 1214.701 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space... Tank, two Solid Rocket Boosters, Spacelab, Upper Stage Boosters (Solid Spinning Upper Stage and Interim... commander's authority continues until a competent authority takes over the responsibility for the Orbiter...

  14. 76 FR 4228 - U.S.-India Bilateral Understanding: Revisions to U.S. Export and Reexport Controls Under the...

    Science.gov (United States)

    2011-01-25

    ... of this rule, namely: --Liquid Propulsion Systems Center; --Solid Propellant Space Booster Plant... person knows that the item will be used in India in the design, development, production, or use of rocket... entities: Liquid Propulsion Systems Center; Solid Propellant Space Booster Plant (SPROB); Sriharikota Space...

  15. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  16. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  17. Blood Pressure Directed Booster Trainings Improve Intensive Care Unit Provider Retention of Excellent Cardiopulmonary Resuscitation Skills.

    Science.gov (United States)

    Wolfe, Heather; Maltese, Matthew R; Niles, Dana E; Fischman, Elizabeth; Legkobitova, Veronika; Leffelman, Jessica; Berg, Robert A; Nadkarni, Vinay M; Sutton, Robert M

    2015-11-01

    Brief, intermittent cardiopulmonary resuscitation (CPR) training sessions, "Booster Trainings," improve CPR skill acquisition and short-term retention. The objective of this study was to incorporate arterial blood pressure (ABP) tracings into Booster Trainings to improve CPR skill retention. We hypothesized that ABP-directed CPR "Booster Trainings" would improve intensive care unit (ICU) provider 3-month retention of excellent CPR skills without need for interval retraining. A CPR manikin creating a realistic relationship between chest compression depth and ABP was used for training/testing. Thirty-six ICU providers were randomized to brief, bedside ABP-directed CPR manikin skill retrainings: (1) Booster Plus (ABP visible during training and testing) versus (2) Booster Alone (ABP visible only during training, not testing) versus (3) control (testing, no intervention). Subjects completed skill tests pretraining (baseline), immediately after training (acquisition), and then retention was assessed at 12 hours, 3 and 6 months. The primary outcome was retention of excellent CPR skills at 3 months. Excellent CPR was defined as systolic blood pressure of 100 mm Hg or higher and compression rate 100 to 120 per minute. Overall, 14 of 24 (58%) participants acquired excellent CPR skills after their initial training (Booster Plus 75% vs 50% Booster Alone, P = 0.21). Adjusted for age, ABP-trained providers were 5.2× more likely to perform excellent CPR after the initial training (95% confidence interval [95% CI], 1.3-21.2; P = 0.02), and to retain these skills at 12 hours (adjusted odds ratio, 4.4; 95% CI, 1.3-14.9; P = 0.018) and 3 months (adjusted odds ratio, 4.1; 95% CI, 1.2-13.9; P = 0.023) when compared to baseline performance. The ABP-directed CPR booster trainings improved ICU provider 3-month retention of excellent CPR skills without the need for interval retraining.

  18. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  19. Design and status of the AGS booster accelerator

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described

  20. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  1. Characterization of the Ignition Over-Pressure/Sound Suppression Water in the Space Launch System Mobile Launcher Using Volume of Fluid Modeling

    Science.gov (United States)

    West, Jeff

    2015-01-01

    The Space Launch System (SLS) Vehicle consists of a Core Stage with four RS-25 engines and two Solid Rocket Boosters (SRBs). This vehicle is launched from the Launchpad using a Mobile Launcher (ML) which supports the SLS vehicle until its liftoff from the ML under its own power. The combination of the four RS-25 engines and two SRBs generate a significant Ignition Over-Pressure (IOP) and Acoustic Sound environment. One of the mitigations of these environments is the Ignition Over-Pressure/Sound Suppression (IOP/SS) subsystem installed on the ML. This system consists of six water nozzles located parallel to and 24 inches downstream of each SRB nozzle exit plane as well as 16 water nozzles located parallel to and 53 inches downstream of the RS-25 nozzle exit plane. During launch of the SLS vehicle, water is ejected through each water nozzle to reduce the intensity of the transient pressure environment imposed upon the SLS vehicle. While required for the mitigation of the transient pressure environment on the SLS vehicle, the IOP/SS subsystem interacts (possibly adversely) with other systems located on the Launch Pad. One of the other systems that the IOP/SS water is anticipated to interact with is the Hydrogen Burn-Off Igniter System (HBOI). The HBOI system's purpose is to ignite the unburned hydrogen/air mixture that develops in and around the nozzle of the RS-25 engines during engine start. Due to the close proximity of the water system to the HBOI system, the presence of the IOP/SS may degrade the effectiveness of the HBOI system. Another system that the IOP/SS water may interact with adversely is the RS-25 engine nozzles and the SRB nozzles. The adverse interaction anticipated is the wetting, to a significant degree, of the RS-25 nozzles resulting in substantial weight of ice forming and water present to a significant degree upstream of the SRB nozzle exit plane inside the nozzle itself, posing significant additional blockage of the effluent that exits the nozzle

  2. Design and status of the AGS booster accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described. (LEW)

  3. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  4. Photometric observations of local rocket-atmosphere interactions

    Science.gov (United States)

    Greer, R. G. H.; Murtagh, D. P.; Witt, G.; Stegman, J.

    1983-06-01

    Photometric measurements from rocket flights which recorded a strong foreign luminance in the altitude region between 90 and 130 km are reported. From one Nike-Orion rocket the luminance appeared on both up-leg and down-leg; from a series of Petrel rockets the luminance was apparent only on the down-leg. The data suggest that the luminance may be distributed mainly in the wake region along the rocket trajectory. The luminance is believed to be due to a local interaction between the rocket and the atmosphere although the precise nature of the interaction is unknown. It was measured at wavelengths ranging from 275 nm to 1.61 microns and may be caused by a combination of reactions.

  5. Hybrid propulsion technology program. Volume 2: Technology definition package

    Science.gov (United States)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  6. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  7. Energy-efficient operation of a booster RF system for Taiwan light source operated in top-up mode

    International Nuclear Information System (INIS)

    Yeh, Meng-Shu; Wang, Chaoen; Chang, Lung-Hai; Chung, Fu-Tsai; Yu, Tsung-Chi; Lin, Ming-Chyuan; Chen, Ling-Jhen; Yang, Tz-Te; Chang, Mei-Hsia; Lin, Yu-Han; Tsai, Ming-Hsun; Lo, Chih-Hung; Liu, Zong-Kai

    2015-01-01

    Contemporary light sources operate in a top-up mode to maintain their photon intensity quasi-constant so as to improve significantly the thermal stability of the photon beam and to maximize ultimately the average photon flux at a designed maximum operational beam current. Operating in a top-up mode requires frequent beam injection from the synchrotron booster to the storage ring of the light source, but the injection intervals occupy only a tiny portion of the operational time of the integrated machine. To maintain a high operational reliability, the booster RF system practically operates necessarily under injection conditions around the clock and consumes full electric power whether during top-up injection or not. How to decrease the power consumption of the booster RF system during its stand-by time but not to sacrifice the reliability and availability of the RF system is obviously of fundamental interest for routine operation of the light source in a top-up mode. Here, an energy-efficient operation of a booster RF system adaptive to top-up operation of a light source is proposed that has been developed, realized and integrated into the booster RF system of the Taiwan Light Source (TLS), and routinely operated since the end of year 2008. The klystron cathode current and RF gap voltage of the booster's accelerating RF cavity are both periodically modulated to adapt the injection rhythm during top-up operation, which results in decreased consumption of electric power of the booster RF system by more than 78%. The impact on the reliability and availability of the booster RF system has been carefully monitored during the past five operational years, delivering more than 5000 h scheduled user beam time per year. The booster RF system retains its excellent reliability and availability as previously. Neither a decrease of the service time nor an induced reliability issue from the klystron or any high-power high-voltage component of the transmitter has been

  8. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  9. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  10. Preliminary study of AC power feeders for AGS booster

    International Nuclear Information System (INIS)

    Meth, M.

    1992-01-01

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation

  11. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  12. The 1.4 GeV PS Booster in its tunnel.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The PS Improvement Programme, launched as early as 1964, had a "Booster" as the key element in the quest for higher beam intensity and density. These were limited in the PS at injection of the 50 MeV proton beam from the linac by the incoherent (Laslett-) Q-shift. Boosting the linac beam to 800 MeV would raise the PS intensity limit by an order of magnitude, from 1E12 protons per pulse to 1E13. The main motivation was the supply of intense beams to the ISR. Soon, the Booster proved to be crucial for the neutral current experiment. A unique feature of the Booster are its 4 superposed rings. Its lattice is also unusual: between its 32 bending magnets, every second straight section contains a quadrupole triplet (F,D,F), while the alternate ones are drift spaces (mostly filled with essential components like septa, kickers, RF-cavities, etc.). In each picture we see one of the 16 periods. Following the direction of the beam from right to left: a bending magnet (green); an empty straight section; a bending magnet; ...

  13. Magnet power supply system for the ALS storage ring and booster

    International Nuclear Information System (INIS)

    Jackson, L.T.; Luchini, K.; Lutz, I.

    1993-05-01

    The Magnet Power Supply System is described by specification, design, hardware, and operating experience. A unique system for the one Hz, 1.5 GeV Booster, where the wideband QF and QD power supplies track the dipole current to within 0.1% at injection will be detailed. AC distribution system considerations related to inverting the stored energy of the booster magnet back into power grid will be discussed. The rational for linear correctors and individual quad supplies (225 total units) will be placed within the context of the storage-ring requirements

  14. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  15. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  16. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  17. Misuse of booster cushions - an observation study of children's performance during buckling up.

    Science.gov (United States)

    Osvalder, Anna-Lisa; Bohman, Katarina

    2008-10-01

    Booster cushions are effective tools to protect children from injuries in car crashes, but there remains a large amount of misuse. The aim of this study was to assess potential misuse of booster cushions in an observational laboratory study, and to identify whether booster cushion design, age or clothing had any effect. 130 Swedish children from the ages of 4-12 years participated. Each child buckled up on an integrated and on an aftermarket booster cushion in the rear seat. The older children also buckled up with seat belt only. Interviews, observations and body measurements were performed. Time to buckle up and amount of belt slack were registered. Photographs were taken to document misuse. Results showed that 77% failed to perform correct belt routing on the aftermarket cushion, independent of age, although they were familiar with this system. The misuse rate for the integrated cushion was only 4%. No misuse was found for seat belt only. Few children tightened the belt. The belt slack increased when wearing winter jackets. This indicates the importance of adding pretensioners to the rear seat. Sled tests with HIII&TNO 6y dummies were also performed for the most frequent misuse situations found. The main conclusion is that an integrated booster cushion has many advantages compared to an aftermarket cushion regarding both safety and comfort. It is easy and quick to handle, has few possibilities for misuse, has an intuitive design, the buckling up sequence is equal to buckling up with an ordinary seat belt, and younger children can buckle up correctly.

  18. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    Science.gov (United States)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  19. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  20. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  1. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  2. Concentrated Ground Plane Booster Antenna Technology for Multiband Operation in Handset Devices

    Directory of Open Access Journals (Sweden)

    C. Picher

    2014-12-01

    Full Text Available The current demand in the handset antenna field requires multiband antennas due to the existence of multiple communication standards and the emergence of new ones. At the same time, antennas with reduced dimensions are strongly required in order to be easily integrated. In this sense, the paper proposes a compact radiating system that uses two non-resonant elements to properly excite the ground plane to solve the abovementioned shortcomings by minimizing the required Printed Circuit Board (PCB area while ensuring a multiband performance. These non-resonant elements are called here ground plane boosters since they excite an efficient mode of the ground plane. The proposed radiating system comprises two ground plane boosters of small dimensions of 5 mm x 5 mm x 5 mm. One is in charge of the low frequency region (0.824-0.960 GHz and the other is in charge of the high frequency region (1.710-2.170 GHz. With the aim of achieving a compact configuration, the two boosters are placed close to each other in a corner of the ground plane of a handset device (concentrated architecture. Several experiments related to the coupling between boosters have been carried out in two different platforms (barphone and smartphone, and the best position and the required matching network are presented. The novel proposal achieves multiband performance at GSM850/900/1800/1900 and UMTS.

  3. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  4. History of the ZGS 500 MeV booster.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  5. Aerospace Plane Technology: Research and Development Efforts in Japan and Australia

    Science.gov (United States)

    1991-10-01

    However, only with the develop- Aerospace Planes ment of better test facility instruments and more trained personnel, together with the renovation and...necessary. Such a rocket booster (the H-IID) would be one of the largest launchers in the world after the Soviet Energia booster and U.S. Titan IV launch

  6. Gene-gene combination effect and interactions among ABCA1, APOA1, SR-B1, and CETP polymorphisms for serum high-density lipoprotein-cholesterol in the Japanese population.

    Directory of Open Access Journals (Sweden)

    Akihiko Nakamura

    Full Text Available BACKGROUND/OBJECTIVE: Gene-gene interactions in the reverse cholesterol transport system for high-density lipoprotein-cholesterol (HDL-C are poorly understood. The present study observed gene-gene combination effect and interactions between single nucleotide polymorphisms (SNPs in ABCA1, APOA1, SR-B1, and CETP in serum HDL-C from a cross-sectional study in the Japanese population. METHODS: The study population comprised 1,535 men and 1,515 women aged 35-69 years who were enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC Study. We selected 13 SNPs in the ABCA1, APOA1, CETP, and SR-B1 genes in the reverse cholesterol transport system. The effects of genetic and environmental factors were assessed using general linear and logistic regression models after adjusting for age, sex, and region. PRINCIPAL FINDINGS: Alcohol consumption and daily activity were positively associated with HDL-C levels, whereas smoking had a negative relationship. The T allele of CETP, rs3764261, was correlated with higher HDL-C levels and had the highest coefficient (2.93 mg/dL/allele among the 13 SNPs, which was statistically significant after applying the Bonferroni correction (p<0.001. Gene-gene combination analysis revealed that CETP rs3764261 was associated with high HDL-C levels with any combination of SNPs from ABCA1, APOA1, and SR-B1, although no gene-gene interaction was apparent. An increasing trend for serum HDL-C was also observed with an increasing number of alleles (p<0.001. CONCLUSIONS: The present study identified a multiplier effect from a polymorphism in CETP with ABCA1, APOA1, and SR-B1, as well as a dose-dependence according to the number of alleles present.

  7. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  8. A FET based kicker for a charge booster for the TRIUMF ISAC project

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    2001-07-01

    A charge booster unit is required as part of an upgrade to the ISAC facility at TRIUMF. ISAC is an isotope separator coupled to an accelerator. ISAC is presently capable of accelerating only isotopes with atomic mass up to 30. The charge booster will allow ISAC to accelerate all the masses in the periodic table. A fast kicker system has been built to study the characteristics of an existing charge booster, designed by ISN in Grenoble, to assess the suitability of using this charge booster at TRIUMF. This fast kicker will subsequently be used in the TRIUMF ISAC facility for time of flight separation of the chosen charge and to recycle the higher and lower charges back to the charge booster. This will increase the efficiency from 10% to 60%. The kicker system includes a pair of deflector plates. One plate is charged up to -3.5 kV by a PET based modulator, while the other plate is held at ground potential. The modulator consists of two stacks of FETs operating in push pull with variable output voltage, pulse width, and repetition rate from virtually DC to 52 kHz. The measured high voltage output pulse rise and fall times are 63 ns and the minimum pulse width is 350 ns. The maximum pulse width is dependent upon the repetition rate. The large dynamic range for the repetition rate and pulse width required a novel circuit design and control technique, which also resulted in an energy efficient kicker system. This paper describes the design of the kicker system and shows the results of measurements. (author)

  9. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  10. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  11. 75 FR 63766 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2010-10-18

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... TV, TV Translator or TV Booster Station, FCC Form 346; 47 CFR 74.793(d); LPTV Out-of-Core Digital... collection requirements: 47 CFR 74.793(d) proposes that certain digital low power and TV translator stations...

  12. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  13. SNS RING STUDY AT THE AGS BOOSTER.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG, S.Y.; AHRENS, L.; BEEBE-WANG, J.; BLASKIEWICZ, M.; FEDOTOV, A.; GARDNER, C.; LEE, Y.Y.; LUCCIO, A.; MALITSKY, N.; ROSER, T.; WENG, W.T.; WEI, J.; ZENO, K.; REECE, K.; WANG, J.G.

    2000-06-30

    During the g-2 run at the BNL AGS in early 2000, a 200 MeV storage-ring-like magnetic cycle has been set-up and tuned at the Booster in preparing for the Spallation Neutron Source (SNS) accumulator ring study. In this article, we report the progress of the machine set-up, tuning, some preliminary studies, and the future plan.

  14. Relativistic heavy ions from the BNL [Brookhaven National Laboratory] booster medical research and technological applications

    International Nuclear Information System (INIS)

    Thieberger, P.

    1990-05-01

    The BNL Booster, now nearing completion, was designed to inject protons and heavy ions into the Alternating Gradient Synchrotron (AGS) for further acceleration. In the future, ion beams from the AGS will in turn be further accelerated in the Relativistic Heavy Ion Collider (RHIC). Given the wide range of ion masses, energies and beam intensities the Booster will generate, other important applications should be considered. Dedicated use of the Booster for such applications may be possible during limited periods. However shared use would be preferable from the points of view of availability, affordability and efficiency. While heavy ions of a given isotope are injected into the AGS, the same or other ion species from the Booster could be simultaneously delivered to a new irradiation area for treatment of patients, testing of electronic devices or other applications and research. To generate two different beam species, ion sources on both Tandem accelerators would be used; one for AGS injection and the other one for a time-sharing application. Since the beam transport from the Tandems to the Booster can not be rapidly adjusted, it will be necessary to select beams of identical magnetic rigidity. The present study was performed to determine to what extent this compatibility requirement imposes limitations on the available ion species, energies and/or intensities

  15. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  16. 76 FR 44821 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-07-27

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend Rules... translator facilities in the 700 MHz band. These provisions provide procedures for a primary wireless...

  17. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  18. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  19. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  20. Charge exchange studies with Gold ions at the Brookhaven Booster and AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Hseuh, H.C.; Roser, T.

    1994-01-01

    Efficient acceleration of Gold ions to ll GeV/nucleon places strong constraints on the vacuum and also on the choice of thickness and material of the necessary stripping foils. Results of a number of detailed experimental studies performed with the Gold beam at the Brookhaven Booster and AGS to determine the relevant electron stripping and pick-up probabilities are presented. Of particular interest is the lifetime of the relatively low energy, partially stripped Gold beam in the Booster and the stripping efficiency to Helium-like AU +77 for injection into the AGS

  1. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  2. Measuring target for the PS Booster

    CERN Multimedia

    1971-01-01

    The measuring target for the PS Booster (originally 800 MeV, now 1.4 GeV). It measures the size of the beam by destroying all particles with amplitudes greater than the size of the fork, the position and width of which are adjustable. The plunging time is only 20 ms and the acceleration at the tip of the fork reaches 90 g. The servo-controlled linear motor is shown detached from the mechanism. See also 7602008.

  3. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  4. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  5. Pressure measurements in the AGS Booster ultra-high vacuum system

    International Nuclear Information System (INIS)

    Gabusi, J.; Geller, J.; Hseuh, H.C.; Mapes, M.; Stattel, P.

    1992-01-01

    An average pressure of mid 10 -11 Torr has been achieved and maintained in the AGS Booster ring vacuum system during its first year of operation. This ultra-high vacuum system is monitored through remote controlled Bayard-Alpert Gauges (BAGs). The characteristics of the pressure measurements with BAGs over the long cable lengths (up to 200 m) and under various accelerator operating conditions will be described. Two types of noise in the pressure readouts have been identified; the electromagnetic interference (EMI) associated with the acceleration cycles of the Booster and the environment noise associated with the temperature of the collector cables. The magnitude of the noise pickup depends on the routing of the collector cables and reaches the equivalent pressure of low 10 -9 Torr

  6. Response of booster dose of cuban recombinant hepatitis-B vaccine in nonresponder and hyporesponder children

    International Nuclear Information System (INIS)

    Dahifar, H.; Mousavi, F.; Ghorbani, A.

    2007-01-01

    Acute hepatitis B infection can debilitate a patient for weeks and occasionally has a fatal outcome, while chronic infection is a major threat to the individual. To assess response of nonresponder and hyporesponder children to booster dose of Cuban recombinant hepatitis B vaccine. An interventional, descriptive study has been conducted on children who had been immunized with Cuban recombinant Hepatitis B vaccine and their antibody titers were <10mIU/ml (nonresponder) and 10-100mIU/ml (hyporesponder) administered booster dose of the same vaccine in their Deltoid muscles. The response of 141 children with the mean age of 1.9 years to booster dose of vaccine were 94.3% and 100% vaccines with the first and second booster dose of vaccination respectively. The anti-HBs titer in nonresponders and hyporesponders were 468+-346 and 783+-346mIU/ml respectively with significant differences between two groups (P=0.001). This study demonstrate moderately increase antibody production in the majority of vaccines with single supplementary vaccine. (author)

  7. Beam aperture and emittance growth in the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors have developed analytical tools for calculating the variation of particle action, smear and emittance growth due to nonlinear elements in accelerators (with second order perturbation theory in two dimensions). The authors' results for the AGS-Booster is presented

  8. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-01-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new Rf voltage program for capture which ameliorates transverse space-charge effects is described and simulated

  9. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  10. Simulation of proton RF capture in the AGS Booster

    International Nuclear Information System (INIS)

    Khiari, F.Z.; Luccio, A.U.; Weng, W.T.

    1988-01-01

    RF capture of the proton beam in the AGS Booster has been simulated with the longitudinal phase-space tracking code ESME. Results show that a capture in excess of 95% can be achieved with multiturn injection of a chopped beam

  11. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  12. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  13. Synchronization of the Zero Gradient Synchrotron (ZGS) and the fast-cycling booster II injector

    International Nuclear Information System (INIS)

    Rauchas, A.V.

    1977-01-01

    The planned method of booster injection into the ZGS requires the stacking of two booster beam bunches into the radial betatron phase space of the ZGS and necessitates precise synchronization of the two accelerators during the injection period. The requirement of maintaining independent radio-frequency (rf) steering control does not allow the frequencies of both accelerators to be locked. A synchronizer was developed which detects a coincidence zero crossing of the two rf's, anticipates the next coincidence, and at that time, generates trigger pulses for the booster extraction and ZGS injection systems. It also maintains control of the sequence in which the total phase space area of the ZGS is loaded. Synchronizer accuracy is obtained by using high speed digital logic circuits. Design considerations and system operation are discussed

  14. Pengaruh Tandem Booster TNT Terhadap Kecepatan Detonasi Campuran Bahan Peledak Tepung Kalium Klorat, Sulfur Dan Aluminium Sebagai Bahan Peldak High Explosive

    OpenAIRE

    Tarigan, Tarsim

    2010-01-01

    There are a research on velocity of detonation explosives from Improvised Bomb with potassium chlorate, sulfur and aluminum with a composition of 65:20:15% (weight / weight), 70 mesh, galvanized pipes and containers with some blasting mechanism, starts with an explosion that ignite by a improvise detonator, factory detonator without a booster, factory detonator with a tandem booster TNT, and TNT booster modifications by adding a layer of Pb plate and make a cavity between the main booster ch...

  15. The Norwegian sounding rocket programme 1978-81

    International Nuclear Information System (INIS)

    Landmark, B.

    1978-01-01

    The Norwegian sounding rocket programme is reasonably well defined up to and including the winter of 1981/82. All the projects have been planned and will be carried out in international cooperation. Norwegian scientists so far plan to participate in a number of 24 rocket payloads over the period. Out of these 18 will be launched from the Andoya rocket range, 3 from Esrange and 3 from the siple station in the antarctic. (author)

  16. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  17. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  18. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  19. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  20. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  1. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  2. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  3. One-year post-primary antibody persistence and booster immune ...

    African Journals Online (AJOL)

    One-year post-primary antibody persistence and booster immune response to a DTaP-IPV//PRP~T vaccine (Pentaxim) given at 18 - 19 months of age in South African children primed at 6, 10 and 14 weeks of age with the same vaccine.

  4. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  5. 47 CFR 90.219 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... to operate radio systems in the frequency bands above 150 MHz may employ signal boosters at fixed... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... effective radiated power (ERP) of the unit to a maximum of 5 watts under all conditions. Class B broadband...

  6. Charge exchange injection for Nuclotron and Nuclotron booster

    International Nuclear Information System (INIS)

    Dinev, D.; Mikhajlov, V.

    2000-01-01

    The acceleration of polarized beams is between the major items in the JINR LHE's heavy ion superconducting synchrotron Nuclotron research programme. One effective way to increase the intensities of polarized deuteron beams is the application of the charge exchange injection into the Nuclotron. The paper represents the results of a new analytical description of the heavy ion stripping injection based on the Boltzmann kinetic equation. Expressions for the ion density evolution in the transverse phase plane for the emittance growth due to the elastic scattering and to energy losses in the stripping foil and for the number of successfully stored particles have been derived. These results have been applied to the stripping injection of polarized deuterons into the Nuclotron as well as to the stripping injection of heavy ions into the now under consideration Nuclotron rapid cycling booster. It has been shown that an estimated 40-fold intensity gain could be achieved for the stripping injection of polarized D - into the Nuclotron and that an effective stripping injection of light and medium ions into the booster could be realized

  7. Flow-Structural Interaction in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Murdock, John

    2004-01-01

    .... The static test failure of the Titan solid rocket motor upgrade (SRMU) that occurred on 1 April, 1991, demonstrated the importance of flow-structural modeling in the design of large, solid rocket motors...

  8. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  9. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-09-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs

  10. Chromatic perturbation and resonance analysis for the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors investigated the nonlinear effects with the emphasis on nonlinear resonances. They present some of their findings, (e.g. the structure resonances; stop-bandwidths, etc.) for the AGS-Booster Lattice using program HARMON. Comparison with the results obtained from the algorithm ''NONLIN'' is presented

  11. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  12. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  13. Analysis of magnetic field measurement results for the AGS Booster magnets

    International Nuclear Information System (INIS)

    Bleser, E.; Thern, R.

    1991-01-01

    Magnetic field measurements have been made on nearly 200 conventional magnets that have been installed in the AGS Booster and its associated transfer lines. The measurements were intended to monitor the quality of the magnets being produced and to check the performance of each magnet before installation. The magnetic measurements effort led to certain improvements in the manufacturing process, which ten subsequently produced very good, very uniform magnets. The integrated dipole fields of the 36 booster dipoles are uniform to 1.5 parts in ten thousand. The magnetic measurements indicate that the quadrupoles were manufactured to an accuracy of 3 ten thousandths of an inch, which is better than we can physically measure. 3 refs., 2 figs., 4 tabs

  14. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  15. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  16. 47 CFR 101.151 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... authorized to operate multiple address systems in the 928-929/952-960 MHz and 932-932.5/941-941.5 MHz bands..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... automatic gain control circuitry which will limit the total effective radiated power (ERP) of the unit to a...

  17. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  18. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  19. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  20. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  1. Hepatitis B virus vaccination booster does not provide additional protection in adolescents: a cross-sectional school-based study.

    Science.gov (United States)

    Chang, Yung-Chieh; Wang, Jen-Hung; Chen, Yu-Sheng; Lin, Jun-Song; Cheng, Ching-Feng; Chu, Chia-Hsiang

    2014-09-23

    Current consensus does not support the use of a universal booster of hepatitis B virus (HBV) vaccine because there is an anamnestic response in almost all children 15 years after universal infant HBV vaccination. We aimed to provide a booster strategy among adolescents as a result of their changes in lifestyle and sexual activity. This study comprised a series of cross-sectional serological surveys of HBV markers in four age groups between 2004 and 2012. The seropositivity rates of hepatitis B surface antigen (HBsAg) and its reciprocal antibody (anti-HBs) for each age group were collected. There were two parts to this study; age-specific HBV seroepidemiology and subgroup analysis, including effects of different vaccine types, booster response for immunogenicity at 15 years of age, and longitudinal follow-up to identify possible additional protection by HBV booster. Within the study period, data on serum anti-HBs and HBsAg in a total of 6950 students from four age groups were collected. The overall anti-HBs and HBsAg seropositivity rates were 44.3% and 1.2%, respectively. The anti-HBs seropositivity rate in the plasma-derived subgroup was significantly higher in both 15- and 18-year age groups. Overall response rate in the double-seronegative recipients at 15 years of age was 92.5% at 6 weeks following one recombinant HBV booster dose. Among the 24 recipients showing anti-HBs seroconversion at 6 weeks after booster, seven subjects (29.2%) had lost their anti-HBs seropositivity again within 3 years. Increased seropositivity rates and titers of anti-HBs did not provide additional protective effects among subjects comprehensively vaccinated against HBV in infancy. HBV booster strategy at 15 years of age was the main contributor to the unique age-related phenomenon of anti-HBs seropositivity rate and titer. No increase in HBsAg seropositivity rates within different age groups was observed. Vaccination with plasma-derived HBV vaccines in infancy provided higher

  2. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  3. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  4. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  5. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  6. Use of Several Thermal Analysis Techniques to Study the Cracking of a Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.

    1999-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM of each of the two Solid Rocket Boosters (SRBs) on the Space Shuttle. Each cured insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive, and some of the curved areas in the rubber may have significant residual stresses. A number of recently bonded NBR insulators have shown fine surface cracks, and stressed insulator areas may be aging at a faster rate than unstressed areas, thus hastening the surface cracking. Thermal analysis data on both vendor insulators by Dynamic Mechanical Analysis (DMA) through a temperature/frequency sweep from 24 to 74 C have shown a higher flexural storage modulus and Arrhenius activation energy for the stressed area than for the unstressed area. Other thermal analysis techniques are being used to study the insulator surface vs. bulk interior for better understanding this anomaly.

  7. Effectiveness of Humidification with Heat and Moisture Exchanger-booster in Tracheostomized Patients.

    Science.gov (United States)

    Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio

    2017-08-01

    The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. There was an increase in the inspired air humidity after 1 h with the humidifier. The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result.

  8. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  9. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  10. The low energy booster project status

    International Nuclear Information System (INIS)

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia

  11. Modeling of the YALINA booster facility by the Monte Carlo code MONK

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Kondev, F.; Kiyavitskaya, H.; Serafimovich, I.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2007-01-01

    The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics arameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  12. Simulation of a programmed frequency shift near extraction from the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; Kerns, Q.

    1987-03-01

    The longitudinal phase space program ESME has been used to simulate the effects of a linear shift in RF frequency away from that appropriate for the accelerator guide field. This shift takes place in the new Booster low level RF and is used to position the particle bunches in Main Ring buckets in a reproducible fashion. Shifts in frequency are found to generate synchrotron oscillations; however, the simulations show that these can be reduced to acceptable levels by introduction of jumps in RF phase preceding the programmed frequency changes. Lowering the RF voltage near extraction from the Booster, a desirable operational feature, has also been investigated

  13. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  14. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  15. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  16. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  17. Emergency department transport rates of children from the scene of motor vehicle collisions: do booster seats make a difference?

    Science.gov (United States)

    House, Darlene R; Huffman, Gretchen; Walthall, Jennifer D H

    2012-11-01

    Motor vehicle collisions (MVCs) are the leading cause of death and disability among children older than 1 year. Many states currently mandate all children between the ages of 4 and 8 years be restrained in booster seats. The implementation of a booster-seat law is generally thought to decrease the occurrence of injury to children. We hypothesized that appropriate restraint with booster seats would also cause a decrease in emergency department (ED) visits compared with children who were unrestrained. This is an important measure as ED visits are a surrogate marker for injury. The main purpose of this study was to look at the rate of ED visits between children in booster seats compared with those in other or no restraint systems involved in MVCs. Injury severity was compared across restraint types as a secondary outcome of booster-seat use after the implementation of a state law. A prospective observational study was performed including all children 4 to 8 years old involved in MVCs to which emergency medical services was dispatched. Ambulance services used a novel on-scene computer charting system for all MVC-related encounters to collect age, sex, child-restraint system, Glasgow Coma Scale score, injuries, and final disposition. One hundred fifty-nine children were studied with 58 children (35.6%) in booster seats, 73 children in seatbelts alone (45.2%), and 28 children (19.1%) in no restraint system. 76 children (47.7%), 74 by emergency medical services and 2 by private vehicle, were transported to the ED with no significant difference between restraint use (P = 0.534). Utilization of a restraint system did not significantly impact MVC injury severity. However, of those children who either died (n = 2) or had an on-scene decreased Glasgow Coma Scale score (n = 6), 75% (6/8) were not restrained in a booster seat. The use of booster-seat restraints does not appear to be associated with whether a child will be transported to the ED for trauma evaluation.

  18. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    Science.gov (United States)

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  19. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age.

    Directory of Open Access Journals (Sweden)

    Rose-Minke Schure

    Full Text Available UNLABELLED: Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA- were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64117538.

  20. Results from the AGS Booster transverse damper

    International Nuclear Information System (INIS)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 x 10 13 protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s -1 have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented

  1. Booster HBV vaccination; is it really necessary? | Alavian | Egyptian ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Booster HBV vaccination; is it ...

  2. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  3. Power Supply of the Booster Magnets for the ILSF Synchrotron

    Directory of Open Access Journals (Sweden)

    O Ahmadi

    2017-08-01

    Full Text Available The Iranian Light Source Facility (ILSF booster main specifications including 250 ms ramp up, 2Hz repetition rate, and quasi-sinusoidal wave shape, up to this point have been the basis for calculations. Each family of magnets including Dipole, Quadrupole and Sextupoles will feed by individual power supply. In order to maintain constant transverse tunes and chromaticity while the beam is accelerated, quadrupole and sextupole magnet currents must closely track the current in the dipole magnets. In booster rings, feeding the high inductance load, tracking of Quadrupole and sextupole magnets, reducing output current fluctuation and having a precise high bandwidth current regulation system are particular challenges. In order to meet the requirements, it is necessary to have a fully digital controller to achieve a fast regulation system. The prototype power supply and its test results are described in this paper  

  4. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  5. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  6. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  7. Remote control video cameras on a suborbital rocket

    International Nuclear Information System (INIS)

    Wessling, Francis C.

    1997-01-01

    Three video cameras were controlled in real time from the ground to a sub-orbital rocket during a fifteen minute flight from White Sands Missile Range in New Mexico. Telemetry communications with the rocket allowed the control of the cameras. The pan, tilt, zoom, focus, and iris of two of the camera lenses, the power and record functions of the three cameras, and also the analog video signal that would be sent to the ground was controlled by separate microprocessors. A microprocessor was used to record data from three miniature accelerometers, temperature sensors and a differential pressure sensor. In addition to the selected video signal sent to the ground and recorded there, the video signals from the three cameras also were recorded on board the rocket. These recorders were mounted inside the pressurized segment of the rocket payload. The lenses, lens control mechanisms, and the three small television cameras were located in a portion of the rocket payload that was exposed to the vacuum of space. The accelerometers were also exposed to the vacuum of space

  8. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  9. Beam position monitoring in the AGS Linac to Booster transfer line

    International Nuclear Information System (INIS)

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper provides a system overview and report results from the commissioning experience

  10. Electron cooling system in the booster synchrotron of the HIAF project

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang, J.C.; Xia, J.W.; Yang, X.D.; Yuan, Y.J.; Li, J.; Ma, X.M.; Yan, T.L.; Yin, D.Y.; Chai, W.P.; Sheng, L.N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shen, G.D.; Zhao, H.; Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-21

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  11. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  12. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Science.gov (United States)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  13. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  14. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  15. Exercise, Manual Therapy, and Booster Sessions in Knee Osteoarthritis: Cost-Effectiveness Analysis From a Multicenter Randomized Controlled Trial.

    Science.gov (United States)

    Bove, Allyn M; Smith, Kenneth J; Bise, Christopher G; Fritz, Julie M; Childs, John; Brennan, Gerard P; Abbott, J Haxby; Fitzgerald, G Kelley

    2018-01-01

    Limited information exists regarding the cost-effectiveness of rehabilitation strategies for individuals with knee osteoarthritis (OA). The study objective was to compare the cost-effectiveness of 4 different combinations of exercise, manual therapy, and booster sessions for individuals with knee OA. This economic evaluation involved a cost-effectiveness analysis performed alongside a multicenter randomized controlled trial. The study took place in Pittsburgh, Pennsylvania; Salt Lake City, Utah; and San Antonio, Texas. The study participants were 300 individuals taking part in a randomized controlled trial investigating various physical therapy strategies for knee OA. Participants were randomized into 4 treatment groups: exercise only (EX), exercise plus booster sessions (EX+B), exercise plus manual therapy (EX+MT), and exercise plus manual therapy and booster sessions (EX+MT+B). For the 2-year base case scenario, a Markov model was constructed using the United States societal perspective and a 3% discount rate for costs and quality-adjusted life years (QALYs). Incremental cost-effectiveness ratios were calculated to compare differences in cost per QALY gained among the 4 treatment strategies. In the 2-year analysis, booster strategies (EX+MT+B and EX+B) dominated no-booster strategies, with both lower health care costs and greater effectiveness. EX+MT+B had the lowest total health care costs. EX+B cost ${\\$}$1061 more and gained 0.082 more QALYs than EX+MT+B, for an incremental cost-effectiveness ratio of ${\\$}$12,900/QALY gained. The small number of total knee arthroplasty surgeries received by individuals in this study made the assessment of whether any particular strategy was more successful at delaying or preventing surgery in individuals with knee OA difficult. Spacing exercise-based physical therapy sessions over 12 months using periodic booster sessions was less costly and more effective over 2 years than strategies not containing booster sessions for

  16. Maintaining the potential of a psycho-educational program: efficacy of a booster session after an intervention offered family caregivers at disclosure of a relative's dementia diagnosis.

    Science.gov (United States)

    Ducharme, Francine; Lachance, Lise; Lévesque, Louise; Zarit, Steven Howard; Kergoat, Marie-Jeanne

    2015-01-01

    Booster sessions as a means of maintaining the benefits of psycho-educational programs have received little attention in caregiving research. Caregivers were offered a booster session following participation in a program entitled Learning to Become a Family Caregiver (LBFC) intended to facilitate transition to the caregiver role after diagnostic disclosure of dementia in a relative. The 90-minute booster session served to review program content and afforded the opportunity to discuss and practice learned skills. This study sought to test the efficacy of the booster session in maintaining or recovering program effects at six months post-program. Participants in the program were randomly assigned to a group that received the booster session (n = 31) or a group that did not (n = 29). A third control group was also formed, which continued to receive only the usual care provided in memory clinics. Eligible participants - French-speaking primary caregivers of a relative diagnosed with Alzheimer's in the past nine months - were recruited in memory clinics in Quebec (Canada). Participants were blindly assessed before randomization and six months after the booster session on outcomes associated with a healthy role transition. Prediction analyses revealed one significant positive effect of the booster session: emergence of preparedness to provide care. Moreover, with or without the booster session, the program continued to have a positive effect on psychological distress and contributed to the emergence of self-efficacy in dealing with caregiving situations. The booster session had no significant effect on knowledge of services, planning for future care needs, use of reframing as a coping strategy, perceived informal support, and family conflicts. The limited effect observed is discussed in terms of the booster session's content and intensity. Recommendations are made for designing future research on the effect of booster sessions, including the importance of including a

  17. Design and testing of the AGS Booster BPM detector

    International Nuclear Information System (INIS)

    Thomas, R.; Ciardullo, D.J.; Van Zwienen, W.

    1991-01-01

    The AGS Booster beam position monitor system must accurately measure the position of beams and bunches over a wide range of intensity. The frequency of operation must also cover a wide range (600 kHz to 4.2 MHz) since the Booster accelerates both protons and heavy ions. Split-cylinder electrodes were chosen to monitor the position of the beam because of their good low frequency response and high linearity. The need to accelerate low-energy partially-stripped heavy ions requires the pick-up electrodes (PUEs) to operate in a 3 x 10 -11 torr vacuum. The PUEs are to measure the beam position to an absolute accuracy of ±0.5 mm and must therefore be mechanically stable despite the requirements that they be vacuum fired at 950 degree C and baked periodically to 300 degree C. This presentation describes both the mechanical design of the PUEs and the automated test procedure used to ensure the stability, accuracy, and linearity of each unit. 3 refs., 5 figs

  18. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  19. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  20. Position pickup of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The beam position around the 4 rings of the PS Booster (originally 800 MeV, now 1.4 GeV), is measured with electrostatic pickups (PU). They consist of a ceramic cylinder forming part of the vacuum chamber, and, in order to save space, they are located inside the multipole lenses. The inside of the ceramic is coated with a metallic layer, into which the form of the electrodes was cut by computer-controlled micro-sandblasting. Each PU has a pair of horizontal and a pair of vertical electrodes, as well as a separate intensity-sensing circular electrode.

  1. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo

    Science.gov (United States)

    Thanh LE, Thao N.; Gill, Anthony J.; Bulanadi, Jerikho C.; Patel, Mili; Waddington, Lynne J.; Rye, Kerry-Anne; Moghaddam, Minoo J.; Smith, Ross C.

    2016-01-01

    Background Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Methods Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. Results ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Conclusion Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities. PMID:27002321

  2. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  3. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2018-01-01

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, Pallergoids containing the adjuvant MPL ® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  4. Active immunisation of horses against tetanus including the booster dose and its application.

    Science.gov (United States)

    Liefman, C E

    1981-02-01

    Successful active immunisation of horses against tetanus is dependent on a number of factors of which the toxoid preparation used, its method of application and the ability of the individual horse to respond are fundamental. Two immunisation schedules using an aluminium-based toxoid preparation were examined and the protection determined by monitoring the level of antitoxin afforded by each schedule. The results obtained demonstrated that 2 doses of this toxoid are necessary to ensure 12 months protection in all horses. These results are discussed in relation to the factors involved in active immunisation against tetanus. Reference is also made to the occurrence of a transient phase of reduced levels of antitoxin following booster doses of toxoid in immunised horses during which it is considered these horses could become more susceptible to tetanus. The effect of a booster dose on immunised horses was examined and while there can be a reduction in the level of antitoxin in some immunised horses following this dose its effect is minimal, short-lived and for all practical purposes can be disregarded. The application of the booster dose in practice is also discussed.

  5. Preparations for Upgrading the RF Systems of the PS Booster

    CERN Document Server

    Albright, Simon; Shaposhnikova, Elena

    2016-01-01

    The accelerators of the LHC injector chain need to be upgraded to provide the HL-LHC beams. The PS Booster, the first synchrotron in the LHC injection chain, uses three different RF systems (first, second and up to tenth harmonic) in each of its four rings. As part of the LHC Injector Upgrade the current ferrite RF systems will be replaced with broadband Finemet cavities, increasing the flexibility of the RF system. A Finemet test cavity has been installed in Ring 4 to investigate its effect on machine performance, especially beam stability, during extensive experimental studies. Due to large space charge impedance Landau damping is lost through most of the cycle in single harmonic operation, but is recovered when using the second harmonic and controlled longitudinal emittance blow-up. This paper compares beam parameters during acceleration with and without the Finemet test cavity. Comparisons were made using beam measurements and simulations with the BLonD code based on a full PS Booster impedance model. Thi...

  6. Perpendicular biased ferrite tuned RF cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.; Haddock, C.

    1989-03-01

    The rf cavity for the booster ring requires a frequency swing of 46 MHz to 62 MHz at a repetition rate of 50 Hz. The possibility of using the LANL booster cavity design with a yttrium garnet ferrite tuner biased perpendicular to the rf field, in the longitudinal direction, is being investigated. In order to minimize the stray magnetic biasing field on the beam axis, an alternative scheme similar to the design being proposed for the LANL main ring cavity in which the ferrite is perpendicular biased in the radial direction, is being considered. The behaviour of the rf cavity and the magnetizing circuit for both designs are discussed

  7. Design requirements for SRB production control system. Volume 2: System requirements and conceptual description

    Science.gov (United States)

    1981-01-01

    In the development of the business system for the SRB automated production control system, special attention had to be paid to the unique environment posed by the space shuttle. The issues posed by this environment, and the means by which they were addressed, are reviewed. The change in management philosphy which will be required as NASA switches from one-of-a-kind launches to multiple launches is discussed. The implications of the assembly process on the business system are described. These issues include multiple missions, multiple locations and facilities, maintenance and refurbishment, multiple sources, and multiple contractors. The implications of these aspects on the automated production control system are reviewed including an assessment of the six major subsystems, as well as four other subsystem. Some general system requirements which flow through the entire business system are described.

  8. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  9. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  10. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  11. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  12. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  13. Does a booster intervention augment the preventive effects of an abbreviated version of the coping power program for aggressive children?

    Science.gov (United States)

    Lochman, John E; Baden, Rachel E; Boxmeyer, Caroline L; Powell, Nicole P; Qu, Lixin; Salekin, Karen L; Windle, Michel

    2014-01-01

    Booster interventions have been presumed to be important methods for maintaining the effects of evidence-based programs for children with behavioral problems, but there has been remarkably little empirical attention to this assumption. The present study examines the effect of a child-oriented booster preventive intervention with children who had previously received an abbreviated version (24 child sessions, 10 parent sessions) of the Coping Power targeted prevention program. Two hundred and forty-one children (152 boys, 89 girls) were screened as having moderate to high levels of aggressive behavior in 4th grade, then half were randomly assigned to receive the abbreviated Coping Power program in 5th grade, and half of the preventive intervention children were then randomly assigned to a Booster condition in 6th grade. The Booster sessions consisted of brief monthly individual contacts, and were primarily with the children. Five assessments across 4 years were collected from teachers, providing a three-year follow-up for all children who participated in the project. Results indicated that the abbreviated Coping Power program (one-third shorter than the full intervention) had long-term effects in reducing children's externalizing problem behaviors, proactive and reactive aggression, impulsivity traits and callous-unemotional traits. The Booster intervention did not augment these prevention effects. These findings indicate that a briefer and more readily disseminated form of an evidence-based targeted preventive intervention was effective. The findings have potential implications for policy and guidelines about possible intervention length and booster interventions.

  14. A Linac afterburner to supercharge the Fermilab booster

    International Nuclear Information System (INIS)

    Ankenbrandt M, Charles email = popovic@fnal.gov

    2002-01-01

    A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M

  15. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  16. Implementation of electron beam position measurement algorithm and embedded web server using MCS-51 microcontroller for Booster Synchrotron

    International Nuclear Information System (INIS)

    Shrivastava, B.B.; Chouhan, Manish; Puntambekar, T.A.; Tiwari, A.N.

    2015-01-01

    The Booster Synchrotron at RRCAT caters as Injector Machine for Indus-1 and Indus-2 with the repetition rate of 1Hz. In Booster Synchrotron, energy of electron bunches are increased from 20 MeV to 450 MeV (in ∼ 280 ms) and 550 MeV (in ∼ 340 ms ) for Indus-1 and Indus-2 respectively. An algorithm for microcontroller based beam position measurement system has been developed for the Booster Synchrotron to measure the fast changes in the beam position of electron bunches during energy ramping. In this paper, software implementation in microcontroller and its optimization to achieve beam position update rate of 1 kHz is discussed. (author)

  17. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  18. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  19. The injection and extraction of SSRF booster

    International Nuclear Information System (INIS)

    Li Yuan; Li Haohu; Liu Guimin; Li Deming

    2008-01-01

    The layout of injection and extraction system were introduced in this paper. The horizontal and vertical injection acceptance are about 23 πmm·mrad and 37 πmm·mrad, respectively, while emittance of the injected beam is 9 πmm·mrad (3σ). This ensures the high injection efficiency. Three slow kickers can form a good bump. The inside position of the entrance of septum is set to 15 mm, where the bumped beam and the extraction beam are 10 mm and 22 mm, respectively, far from the booster central orbit. (authors)

  20. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  1. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  2. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  3. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  4. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  5. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  6. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  7. Von Braun Rocket Team at Fort Bliss, Texas

    Science.gov (United States)

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  8. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1990-11-01

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  9. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  10. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    International Nuclear Information System (INIS)

    Huang, Xiaobiao

    2005-01-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  11. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  12. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  13. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  14. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  15. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  16. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  17. Effect of oral booster vaccination of rainbow trout against Yersinia ruckeri depends on type of primary immunization

    DEFF Research Database (Denmark)

    Jaafar, Rzgar M.; Al-Jubury, Azmi; Dalsgaard, Inger

    2017-01-01

    provided as dip (most effective), bath (less effective) or orally (least effective). Oral immunization may be used as booster after dip but applied as a single oral application it induced merely a slight and statistically non-significant response. It is noteworthy that primary oral immunization followed...... already primed by one of these vaccination methods. Oral vaccination of trout (administering vaccine in feed) is an even more convenient way of presenting antigen to the fish but the effect of an oral booster has not previously been described in detail. The present work describes to what extent protection...... by an oral booster vaccination showed a trend for an even weaker response. It should be investigated if continued exposure to a low antigen concentration - as performed by two oral immunizations - may induce tolerance to the pathogen and thereby leave the fish more vulnerable....

  18. Power flow control using quadrature boosters

    Science.gov (United States)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  19. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  20. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  1. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  2. Using Growth Curves To Determine the Timing of the Booster Sessions.

    Science.gov (United States)

    Hennessy, Michael; Bolan, Gail A.; Hoxworth, Tamara; Iatesta, Michael; Rhodes, Fen; Zenilman, Jonathan M.

    1999-01-01

    Demonstrates an application of a method for using growth curves to determine the timing of booster sessions to reinforce the cognitive messages or behavior changes of interventions. Uses data from a multisite randomized experiment that compared three counseling and testing methods for preventing sexual disease transmission. Presents…

  3. The harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter.

    OpenAIRE

    ПАНЧЕНКО, В В

    2015-01-01

    The author investigates a rectifier unit constructed on the basis of cascade connection of the main non-controlled m-pulse rectifier and PWM voltage booster converter. The research presents the analysis of the harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter on completely controlled keys. The dependence of the relative harmonic amplitude on the commutation corner is defined. The estimation of a rectifier unit electromagnetic compatibility wit...

  4. New low-level rf system for the Fermilab Booster synchrotron

    International Nuclear Information System (INIS)

    Kerns, C.; Crisp, J.; Kerns, Q.; Miller, H.

    1987-03-01

    This paper describes the Booster low-level rf system that was constructed to meet these recently added requirements: (1) synthesizer controlled capture frequency at injection, (2) very low-phase noise over the machine cycle, (3) smooth phase-lock of beam to an external reference frequency and (4) ability to accelerate either a full turn or partial turn of beam

  5. Dipole power supply for National Synchrotron Light Source Booster upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far

  6. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  7. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  8. Processing and evaluation of the AGS Booster ultra-high vaccum system

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Mapes, M.; Schnitzenbaumer, P.; Shen, B.; Sikora, R.; Stattel, P.

    1991-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. To minimize the beam loss due to charge exchange of the partially stripped, low Β very heavy ions with the residual gas molecules, pressure of low 10 -11 Torr is required for the 200 m booster ring. To achieve this ultra high vacuum, chemical cleaning, vacuum furnace degassing and insitu bake were employed for all chambers and beam components. Using these procedures, vacuums of low 10 -11 Torr have been routinely achieved during the testing of individual half cells and beam components, and during the commissioning of the vacuum sectors. In this paper, the design and layout of chambers, flanges and bakeout hardware is briefly described. The vacuum processing of different components and the results of bakeout and evaluation are summarized. The experience gained during the construction and commissioning of this ultra-high vacuum system is also given. 3 refs., 3 figs., 1 tab

  9. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  10. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1992-08-01

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  11. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  12. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    Science.gov (United States)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  13. Thermodynamic and chemical parameters of the exhaust effluents from the HARPOON booster motor

    Science.gov (United States)

    Stephens, J. B.; Goldford, A. I.

    1978-01-01

    The exhaust products from the Harpoon booster motors were analyzed using both thermodynamic analysis and finite-rate chemistry. The resulting constituents are presented together with a discussion of the techniques employed.

  14. Hydrogen sulfide booster compressors for HWP Manuguru - oil reclamation study - BHEL experience (Paper No. 5.2)

    International Nuclear Information System (INIS)

    Godbole, A.; Santanam, N.; Murthy, T.S.R.

    1992-01-01

    BHEL undertook the development of hydrogen sulphide booster compressor with a view to indigenise this most critical equipment in a heavy water plant. Throughout the design, manufacture and shop testing of these booster compressors BHEL had close interaction with Heavy Water Board. This paper describes the problems faced during commissioning of compressors at KCR -Manuguru such as deficiencies in the sizing of LP seal oil drain, development of a process for reclamation of oil and development of alternate sealing arrangement, etc. (author). 1 tab., 4 figs

  15. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  16. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    Science.gov (United States)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  17. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  18. Direct Comparison of Immunogenicity Induced by 10- or 13-Valent Pneumococcal Conjugate Vaccine around the 11-Month Booster in Dutch Infants.

    Directory of Open Access Journals (Sweden)

    Alienke J Wijmenga-Monsuur

    Full Text Available Since 2009/10, a 10- and a 13-valent pneumococcal conjugate vaccine (PCV are available, but only the 10-valent vaccine is now being used for the children in the Netherlands. As the vaccines differ in number of serotypes, antigen concentration, and carrier proteins this study was designed to directly compare quantity and quality of the antibody responses induced by PCV10 and PCV13 before and after the 11-month booster.Dutch infants (n = 132 were immunized with either PCV10 or PCV13 and DTaP-IPV-Hib-HepB at the age of 2, 3, 4 and 11 months. Blood samples were collected pre-booster and post-booster at one week and one month post-booster for quantitative and qualitative immunogenicity against 13 pneumococcal serotypes, as well as quantitative immunogenicity against diphtheria, tetanus, pertussis and Haemophilus influenzae type b. We compared immunogenicity induced by PCV13 and PCV10 for their ten shared serotypes.One month post-booster, pneumococcal serotype-specific IgG geometric mean concentrations (GMCs for the PCV13 group were higher compared with the PCV10 group for six serotypes, although avidity was lower. Serotype 19F showed the most distinct difference in IgG and, in contrast to other serotypes, its avidity was higher in the PCV13 group. One week post-booster, opsonophagocytosis for serotype 19F did not differ significantly between the PCV10- and the PCV13 group.Both PCV10 and PCV13 were immunogenic and induced a booster response. Compared to the PCV10 group, the PCV13 group showed higher levels for serotype 19F GMCs and avidity, pre- as well as post-booster, although opsonophagocytosis did not differ significantly between groups. In our study, avidity is not correlated to opsonophagocytotic activity (OPA and correlations between IgG and OPA differ per serotype. Therefore, besides assays to determine IgG GMCs, assays to detect opsonophagocytotic activity, i.e., the actual killing of the pneumococcus, are important for PCV evaluation. How

  19. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  20. The Norwegian sounding rocket programme 1980-83

    International Nuclear Information System (INIS)

    Egeland, A.; Gundersen, A.

    1980-01-01

    As illustrated by the rocket program presented and discussed in this paper, exploration of the polar ionosphere still plays a central part in the Norwegian research program in science. A cornerstone in the Norwegian space program is the Andoeya Rocket Range. It will be shown that advanced radio installations in northern Scandinavia together with the new optical site at Svalbard will stimulate towards further in situ measurements and theoretical work of the polar ionosphere. (Auth.)

  1. Surface Passivation of Lithium-Ion Electrodes: A Path to High-Performance Energy Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage is one of the most crucial aspects of space technology. Whether the energy is stored as fuel in the solid rocket boosters or as electrochemical energy...

  2. Booster: Development of a Toolbox for Triage of a Large Group of Individuals Exposed to Radioactive Material

    International Nuclear Information System (INIS)

    Schoepff, V.; Carrel, F.; Gmar, M.; Lemaire, H.; Carvajal, F.; Perez-Llopis, I.; Gaboriau, D.-C.; Morrison, C.-G.; Almasi, I.; Szabo, S.; Kovacs, A; Szeles, E.; Amgarou, K.; Menaa, N.; Morat, L.; Testard, I.; Ugolin, N.; Viau, M.; Becker, F.; Raskob, W.; Trybushnyi, D.; Vincze, A.

    2013-06-01

    The effective management of an event involving the exposure of a large number of people to radioactive material requires a mechanism for fast triage of exposed people. BOOSTER is a project founded by the European Union under the Seventh Framework Programme, addressing this requirement. It is a capability project designed to provide an integrated system which could easily be deployed and used. For this purpose, the BOOSTER consortium, relying on the expertise of seven members, researches and develops new approaches to allow an effective and fast management of most kind of nuclear threats. BOOSTER System was designed to help first responders mitigating the crisis by providing the necessary information to quickly assess the radiological situation, to support triage staff in performing an efficient and fast categorization of the potentially affected victims, and to give medical staff crucial information for further treatment at medium or long term post-accident. (authors)

  3. Community awareness and predictors of uptake of pertussis booster vaccine in South Australian adults.

    Science.gov (United States)

    Clarke, Michelle; Thomas, Natalie; Giles, Lynne; Marshall, Helen

    2015-12-16

    Pertussis is a highly virulent vaccine preventable disease that remains a global challenge. This study aimed to assess community knowledge of pertussis infection as well as awareness and uptake of adult pertussis booster vaccine. A cross-sectional survey was conducted of randomly selected households in South Australia by Computer Assisted Telephone Interviews in 2011. Survey data were weighted to the age, gender and geographical area profile of the population. From 3124 randomly sampled contactable households, 1967 interviews were conducted (participation rate 63%) with individuals aged 18-93 years, including 608 parents of children aged pertussis (whooping cough) and 18% reported that a household member had previously contracted whooping cough infection. Most respondents considered whooping cough to be highly contagious (73%) and severe for infants (89%). Over half (51%) of those surveyed were aware that family members commonly transmit pertussis to infants. Despite high knowledge, pertussis vaccine uptake was low, with only 10% of respondents reporting pertussis vaccination in the previous five years. Whilst 61% of respondents were aware of the availability of an adult pertussis booster vaccine, only 8% (n=154) reported their Family Physician had discussed it with them. If provided free, 77% agreed that they would be more likely to accept a booster pertussis vaccination. Independent predictors of recent pertussis vaccination included higher education, larger household size, perception of greater disease severity for infants and discussion with a Family Physician about pertussis vaccination. Whilst knowledge regarding transmission and severity of Bordetella pertussis was high, uptake of pertussis vaccination for adults is remarkably low amongst the South Australian community. Improved awareness regarding the availability of a booster pertussis vaccine through Family Physicians and/or provision of funded pertussis vaccination for adults has the potential to improve

  4. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    Science.gov (United States)

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.

  5. Niobium quarter-wave cavity for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1997-01-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time

  6. Niobium quarter-wave cavity for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1997-09-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time.

  7. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  8. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    Science.gov (United States)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  9. Baseline immunity to diphtheria and immunologic response after booster vaccination with reduced diphtheria and tetanus toxoid vaccine in Thai health care workers.

    Science.gov (United States)

    Wiboonchutikul, Surasak; Manosuthi, Weerawat; Sangsajja, Chariya; Thientong, Varaporn; Likanonsakul, Sirirat; Srisopha, Somkid; Termvises, Patamavadee; Rujitip, Jitlada; Loiusirirotchanakul, Suda; Puthavathana, Pilaipan

    2014-07-01

    A prospective study to evaluate immune status against diphtheria and immunologic response after tetanus-diphtheria (Td) booster vaccination was conducted in 250 Thai health care workers (HCWs). A protective antibody was found in 89.2% of the HCWs (95% confidence interval [CI], 83.3%-91.5%) before receipt of the Td booster vaccination, compared with 97.2% (95% CI, 95.1%-99.3%) after receipt of the first dose of booster (P diphtheria increased from 0.39 IU/mL (95% CI, 0.35-0.44 IU/mL) before the Td booster vaccination to 1.20 IU/mL (95% CI, 1.12-1.29 IU/mL) after the vaccination (P diphtheria, which still circulates in Thailand. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  10. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  11. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  12. Construction and early commissioning results of the AGS Booster

    International Nuclear Information System (INIS)

    Weng, W.T.; Ahrens, L.; Damm, R.; McNerney, A.J.

    1991-01-01

    The AGS Booster synchrotron has been designed to accelerate protons from 200 MeV to 1.5 GeV and heavy ions from several MeV per nucleon to several hundred MeV per nucleon for all the nuclei up to gold. The design requirements and measurements results of major accelerator components and systems are presented. The early commissioning results of the injection is also presented. 12 refs., 9 figs., 2 tabs

  13. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  14. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  15. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    Science.gov (United States)

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. © The American Society of Tropical Medicine and Hygiene.

  16. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  17. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  18. Vibration Disturbance Damping System Design to Protect Payload of the Rocket

    Directory of Open Access Journals (Sweden)

    Sutisno Sutisno

    2012-12-01

    Full Text Available Rocket motor generates vibrations acting on whole rocket body including its contents. Part of the body which is sensitive to disturbance is the rocket payload. The payload consists of various electronic instruments including: transmitter, various sensors, accelerometer, gyro, the embedded controller system, and others. This paper presents research on rocket vibration influence to the payload and the method to avoid disturbance. Avoiding influence of vibration disturbance can be done using silicone gel material whose typical damping factors are relatively high. The rocket vibration was simulated using electromagnetic motor, and the vibrations were measured using an accelerometer sensor. The measurement results were displayed in the form of curve, indicating the vibration level on some parts of the tested material. Some measurement results can be applied to determine the good material to attenuate vibration disturbance on the instruments of the payload.

  19. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  20. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  1. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  2. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates.

    Science.gov (United States)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P; Nielsen, Flemming; Grandjean, Philippe; Budtz-Jørgensen, Esben; Heilmann, Carsten

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after adjustment for sex and age. Although the study involved a small number of subjects, these findings of a PFAS-associated reduction of the early humoral immune response to booster vaccination in healthy adults supported previous findings of PFAS immunosuppression in larger cohorts. Furthermore, the results suggested that cellular mechanisms right after antigen exposure should be investigated more closely to identify possible mechanisms of immunosuppression from PFAS.

  3. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  4. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Alfred Nobel rocket camera. An early aerial photography attempt

    Science.gov (United States)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  6. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  7. The Space Industry

    Science.gov (United States)

    2007-01-01

    advantage. But the solar winds of change are blowing. America’s dominance in this important domain can no longer be taken for granted. Space represents an...venture between Boeing, Energia , Aker Kvaerner, and SDO Yuzhnoye/PO Yuzhmash. The Ukranian Zenit booster, a former ICBM and the Soyuz rocket are also...U.S. customers, and the use of the Russian Energia RD-180 engine in Lockheed Martin’s Atlas V booster. The Nature of the Market The space industry

  8. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  9. Infrasound from the 2009 and 2017 DPRK rocket launches

    Science.gov (United States)

    Evers, L. G.; Assink, J. D.; Smets, P. SM

    2018-06-01

    Supersonic rockets generate low-frequency acoustic waves, that is, infrasound, during the launch and re-entry. Infrasound is routinely observed at infrasound arrays from the International Monitoring System, in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Association and source identification are key elements of the verification system. The moving nature of a rocket is a defining criterion in order to distinguish it from an isolated explosion. Here, it is shown how infrasound recordings can be associated, which leads to identification of the rocket. Propagation modelling is included to further constrain the source identification. Four rocket launches by the Democratic People's Republic of Korea in 2009 and 2017 are analysed in which multiple arrays detected the infrasound. Source identification in this region is important for verification purposes. It is concluded that with a passive monitoring technique such as infrasound, characteristics can be remotely obtained on sources of interest, that is, infrasonic intelligence, over 4500+ km.

  10. Progress on the IPNS Enriched Uranium Booster Target

    International Nuclear Information System (INIS)

    Knox, A.E.; Carpenter, J.M.; Bailey, J.L.

    1986-09-01

    We describe the Enriched Uranium Booster Target designed for use in Argonne's Intense Pulsed Neutron Source. This report contains a general description of the system, and descriptions of the thermal-hydraulic and loss-of-coolant accident analyses, of the neutronic, criticality and power density calculations, of the assessment of radiation and thermal cycling growth, and of the disk fabrication methods. We also describe the calculations of radionuclide buildup and the related hazards analysis and our calculations of the temperature and stress profiles in the disks, and briefly allude to considerations of security and safeguards

  11. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  12. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    Science.gov (United States)

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  14. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  15. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  16. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  17. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  18. Analytical and experimental analysis of YALINA-Booster and YALINA-Thermal assemblies

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Mazanik, S.; Khilmanovich, A.; Martsinkevich, B.; Routkovskaya, Ch.; Edchik, I.; Fokov, Y.; Sadovich, S.; Fedorenko, A.; Gohar, Y.; Talamo, A.

    2010-01-01

    Full text: Accelerator Driven Systems (ADS) may play an important role in future nuclear fuel cycles to reduce the longterm radiotoxicity and volume of spent nuclear fuel. It is proposed that ADS will produce energy and incinerate radioactive waste. This technology was called Accelerator Driven Transmutation Technology (ADTT). The most important problems of this technology are monitoring of a reactivity level in on-line regime, a choice of neutron spectrum appropriate for incineration of Minor Actinides (MA) and transmutation of Long Lived Fission Products (LLFP) and etc. Before the designing and construction of an installation it is necessary to carry out R and D to validate codes, nuclear data libraries and other instrumentations. The YALINA facility is designed to study the ADS physics and to investigate the transmutation reaction rates of MA and LLFP. The main objective of the YALINA benchmark is to compare the results from different calculation methods with each other and experimental data. The benchmark is based on the current YALINA facility configuration, which provides the opportunity to verify the prediction capability of the different methods. The experimental data have been obtained in the frame of the ISTC Projects B1341 'Analytical and experimental evaluation of the possibility to create a universal volume source of neutrons in the sub-critical booster assembly with low enrichment uranium fuel driven by a neutron generator' and B1732P 'Analytical and experimental evaluating the possibility of creation of universal volume source of neutrons in the sub-critical booster assembly with low enriched uranium fuel driven by the neutron generator'. In this paper a comparison of the experimental and calculated data obtained for YALINA-Booster subcritical assembly with a fuel of different enrichment and for YALINA-Thermal with a different number of control rods (216, 245 and 280) will be done.

  19. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  20. Run 16 Tandem gold performance in the injectors and possible improvement with AGS type 6:3:1 bunch merge in the Booster

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, Keith [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-21

    During Run 16 the Tandem was used as the Gold pre-injector for a brief time so that RHIC could continue running while EBIS was down for repairs. Given the time constraints, the setup was largely derived from the EBIS Au setup. The EBIS Au setup used a 4:2:1 bunch merge in the Booster and a 12:6:2 bunch merge in the AGS.1 This note will describe the Tandem Au setup and compare it to that used for EBIS Au. The bunch merge in the Booster for Tandem Au did not work well, and it seems likely that the performance would’ve been significantly better if it did. An AGS type 6:3:1 merge in the Booster is described which might improve matters.2 Somewhat speculative estimates for the AGS bunch intensity and emittance, if that merge were successful in reducing the Booster extraction emittance to EBIS Au levels, are also given for several potential setups. Using 6 Booster loads from the Tandem, the AGS bunch intensity at extraction reached about 2.5e9 ions with a longitudinal emittance (ε) of about 0.59 eV·s/n.3 Using 12 Booster loads from EBIS, the peak bunch intensity and ε was about 3.1e9 ions and 0.75 eV·s/n, respectively. A 6.4 sec supercycle was used for both at the time, but the Tandem Au supercycle (barring any potential issues with Tandem) could probably have been reduced to about 4.6 sec.