WorldWideScience

Sample records for rocket booster study

  1. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study; Volume 1 - Executive Summary

    National Research Council Canada - National Science Library

    Ware, Larry

    1989-01-01

    ...) solid rocket boosters (SRBs) with liquid rocket boosters (LRBs), Figure 1.0-1. The main objectives of a LRB substitution for the SRB were increased STS safety and reliability and increased payload performance...

  2. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  3. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  4. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  5. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  6. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  7. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups

    Science.gov (United States)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  8. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  9. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  10. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  11. Automatic delamination defect detection in radiographic sequence of rocket boosters

    International Nuclear Information System (INIS)

    Rebuffel, V.; Pires, S.; Caplier, A.; Lamarque, P.

    2003-01-01

    Solid rocket motors are routinely examined in real-time X-ray radioscopic mode. The large and cylindrical boosters are rotating between a high energy source and a two dimensional detector. The purpose of this control is to detect possible defects all through the sample. In the tangential configuration, the part of the object that intersects the X-rays beam is the peripheral one, allowing to detect the delamination defect between the propellant and the external metal envelope. But the defect detectability is very poor due to the strong attenuation of the X-rays through the motors. During the rotation of the booster, the system acquires a sequence of radiographs where the defects are visible over several successive instants. We have previously developed a real-time tomo-synthesis system, processing the radiographs on line, and based on a tomo-synthesis reconstruction algorithm in order to improve the signal-to-noise ratio. This system is installed at the industrial site of Kourou, and is currently used by the operators in charge of the visual inspection of the boosters. In this paper, we present a method that processes the digital images obtained by the system in the purpose of automatically extracting the delamination defects. Due to the size and the poor contrast of the defects, a single image is not sufficient to perform this detection. A spatio-temporal aspect is required for the algorithm to be robust and efficient. In a first step, the proposed method computes the apparent local displacement between the current radiograph and a reference one. This reference image is acquired at the beginning of the rotation, with few noise, and is supposed to be defect free. The apparent displacement is due to the non-perfect rotation positioning. It may be uniform or not, depending on the deformation of the insulation liner of the metallic wall. The images are then registered and compared. On the resulting difference image we apply a smoothed threshold to obtain an

  12. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  13. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  14. Booster Long 13 irradiation studies

    Energy Technology Data Exchange (ETDEWEB)

    Leveling, A.; Mokhov, N.; Moore, C.D.; /Fermilab

    1998-06-01

    Extraction from the Booster to the Main Ring occurred at Long Straight 13. The nature of the extraction process was such that 1% to 2% of the beam was lost in this region. There was an appreciable amount of beam extracted as shown in Table 1, which gives the yearly integrated intensities from 1973 to 1997. A simple model of the extraction losses was set up by Chandra Bhat utilizing the program CASIM. A sample output I shown in figure 1 which gives contours of stars/cm3 in the dirt, also schematically depicted are the three six feet deep sampling holes which were drilled to map out this cascade. One aspect of this study has been the study of the production of non-migrating nuclides and further study may in fact yield better values for the K parameter, the probability per star that an atom of the particular nuclide will be produced. Also the results of this study can give experimental numbers for the production of other nuclides when the amount of Na22 has been calculated. However, the most important part of this study has been the determination of the amount of tritium produced by extraction from the Booster and the experimentally determined migration rate. If we look at the top sample result in hole S2 of 777 pCi/ml of tritium and use the experimentally determined rate of migration and the depth to the aquifer of 13.1m, they calculate that the concentration will have decayed away to 1.1E-8 pCi/ml. If we look at the bottom sample, which is 11.3 m away from the aquifer, they calculate that the 116 pCi/ml will have decayed to 5.2E-8 pCi/ml. The conclusions is that the rate of migration determined over the 24 year irradiation history of the Booster extraction point is small enough that there is no problem with migration of tritium to the aquifer.

  15. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  16. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    Science.gov (United States)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  17. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    Science.gov (United States)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  18. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  19. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    Science.gov (United States)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  20. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  1. SNS RING STUDY AT THE AGS BOOSTER.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG, S.Y.; AHRENS, L.; BEEBE-WANG, J.; BLASKIEWICZ, M.; FEDOTOV, A.; GARDNER, C.; LEE, Y.Y.; LUCCIO, A.; MALITSKY, N.; ROSER, T.; WENG, W.T.; WEI, J.; ZENO, K.; REECE, K.; WANG, J.G.

    2000-06-30

    During the g-2 run at the BNL AGS in early 2000, a 200 MeV storage-ring-like magnetic cycle has been set-up and tuned at the Booster in preparing for the Spallation Neutron Source (SNS) accumulator ring study. In this article, we report the progress of the machine set-up, tuning, some preliminary studies, and the future plan.

  2. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  3. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    Science.gov (United States)

    2000-01-01

    - The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  4. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Science.gov (United States)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  5. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  6. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    Science.gov (United States)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  7. Chinese modify CZ-2/3 rocket boosters, focus on commercial launch market

    Science.gov (United States)

    Covault, C.

    1985-07-01

    A program underway in the People's Republic of China to modify the Titan-class CZ-2/3 satellite-launch and ICBM boosters is described on the basis of a recent visit to the manufacturing plant in Shanghai. The present two-stage CZ-2 and three-stage CZ-3 can place 5000 lbs in LEO or 3080 lbs in GEO, respectively, and are produced on a custom basis with a delivery time of about 2 yrs. Modifications introduced include 4 x 6-ft fins and a pogo-suppression system for the four-engine first stage and a steel support band for the combustion chamber of the 80-ton-thrust second-stage main engine.

  8. Tracking study of hadron collider boosters

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  9. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  10. Study of an energy upgrade of the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M E; Bartmann, W; Bartolome, S; Bertone, C; Blas, A; Borburgh, J; Bozzini, D; Butterworth, A; Carli, C; Dahlen, P; Dobers, T; Findlay, A; Folch, R; Gilbert, N; Hansen, J; Hermanns, T; Jensen, S; Le Roux, P; Lopez-Hernandez, L A; Mahner, E; Masi, A; Mikulec, B; Muttoni, Y; Newborough, A; Nisbet, D; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Puccio, B; Raginel, V; Ruehl, I; Tan, J; Todd, B; Weterings, W; Widorski, W

    2011-01-01

    CERN’s LHC injector chain will have to deliver beams with ultimate brilliance as the LHC is heading for increased luminosity in the coming years. In order to overcome bottlenecks in the injector chain, an increase of the beam transfer energy from the CERN Proton Synchrotron Booster (PSB) to the Proton Synchrotron (PS) has been investigated as a possible upgrade scenario. This paper gives an overview of the technical solutions and summarizes the conclusions of the feasibility study.

  11. Ram booster

    Science.gov (United States)

    Brand, Vance D. (Inventor); Morgan, Walter Ray (Inventor)

    2011-01-01

    The present invention is a space launch system and method to propel a payload bearing craft into earth orbit. The invention has two, or preferably, three stages. The upper stage has rocket engines capable of carrying a payload to orbit and provides the capability of releasably attaching to the lower, or preferably, middle stage. Similar to the lower stage, the middle stage is a reusable booster stage that employs all air breathing engines, is recoverable, and can be turned-around in a short time between missions.

  12. Design study of CEPC Alternating Magnetic Field Booster

    CERN Document Server

    Bian, T; Cai, Y; Cui, X; Gao, J; Koratzinos, M; Su, F; Wang, D; Wang, Y; Xiao, M; Zhang, C

    2017-01-01

    The CEPC is a next generation circular e+e- collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120 GeV, but that of the injected beam is only 6 GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose operating the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields.

  13. Proposal of a beam study in the AGS Booster

    International Nuclear Information System (INIS)

    Machida, S.; Chen, S.

    1991-10-01

    IN order to achieve the design luminosity, the Superconducting Super Collider (SSC) parameter choices emphasize the preservation of the transverse emittance requiring in the collider a normalized transverse emittance of 1 π.mm.mrad. A stringent accelerator chain emittance budget must be maintained to achieve the final value. Budgeted emittance specifications for the Low Energy Booster (LEB) include 0.4 π.mm.mrad at injection and ≤ 0.6 π.mm.mrad at extraction. The space-charge tune shift is expected to be more than 0.5 when the rms normalized emittance of 0.4 π.mm.mrad at injection and the total number of particles is 1.1 x 10 12 with 1 x 10 10 particles per bunch. Therefore, it is necessary to cope with a large tune shift and avoid emittance deterioration. We have been studying the beam emittance evolution in the LEB by a multi-particle simulation code with space-charge effects. As reported in the several papers we have obtained from the simulation some new insights into the effects which seem to explain qualitatively a cause of the emittance growth. Even quantitatively, we believe that the simulation can predict the emittance growth as a function of time quite accurately because the code includes most details of the physics processes, such as the adiabatic bunching process and acceleration in the fully 6-D phase space treatment, transverse as well as longitudinal space-charge calculations in a self-consistent manner, and intensity decrease due to particle loss. The purpose of this study is to determine quantitatively the emittance deterioration due to space-charge effects, not to find the maximum current an accelerator could accommodate. Since the charge distribution itself may not remain the same, an accurate measurement of the beam profile is an essential factor of the beam study

  14. Preliminary study of AC power feeders for AGS booster

    International Nuclear Information System (INIS)

    Meth, M.

    1992-01-01

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation

  15. Sounding rocket study of auroral electron precipitation

    International Nuclear Information System (INIS)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation was found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984

  16. Charge exchange studies with Gold ions at the Brookhaven Booster and AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Hseuh, H.C.; Roser, T.

    1994-01-01

    Efficient acceleration of Gold ions to ll GeV/nucleon places strong constraints on the vacuum and also on the choice of thickness and material of the necessary stripping foils. Results of a number of detailed experimental studies performed with the Gold beam at the Brookhaven Booster and AGS to determine the relevant electron stripping and pick-up probabilities are presented. Of particular interest is the lifetime of the relatively low energy, partially stripped Gold beam in the Booster and the stripping efficiency to Helium-like AU +77 for injection into the AGS

  17. A spacecraft charging study on the SCEX 3 rocket

    International Nuclear Information System (INIS)

    Mullen, E.G.; Gussenhoven, M.S.; Hardy, D.A.; Murphy, G.P.; Lloyd, J.W.F.; Slutter, W.; Malcolm, P.; Kellogg, P.J.; Monson, S.

    1991-01-01

    Instruments on the SCEX 3 rocket payload flown from the Poker Flats Rocket Range in February 1990 were used to study charging during electron beam emissions. This paper reports that the data show that electrostatic analyzers can be used to measure vehicle charging and direct beam return currents in dense plasma conditions. The data also show return current dependencies on pitch angle, beam current and beam energy

  18. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    Science.gov (United States)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  19. Misuse of booster cushions among children and adults in Shanghai-an observational and attitude study during buckling up.

    Science.gov (United States)

    Bohman, Katarina; Jorlöv, Sofia; Zhou, Shengqi; Zhao, Cloud; Sui, Bo; Ding, Chengkai

    2016-10-02

    Traffic crashes are one of the leading causes of fatalities among Chinese children. Booster cushion usage in China is low, and there are no studies showing how a population with limited experience handles booster cushions during buckling up. The purpose of this study was to evaluate the handling of and explore the attitudes toward booster cushions among children, parents, and grandparents in Shanghai. An observational study including a convenience sample of 254 children aged 4-12 years was conducted in 2 passenger cars at a shopping center in Shanghai. Parents, grandparents, or the children themselves buckled up the child on 2 types of booster cushions, a 2-stage integrated booster cushion (IBC) and an aftermarket booster cushion (BC). The test participants were observed during buckling up, first without and then with instructions. The test leaders conducted structured interviews. Ninety-eight percent of the uninstructed participants failed to buckle up without identified misuse on the aftermarket booster cushion and 31% of those uninstructed on the integrated booster cushion. The majority of misuse was severe, including placing the belt behind the arm and the lap belt routing above the guiding loops. Instruction reduced misuse to 58% (BC) and 12% (IBC), respectively, and, in particular, severe misuse. Some misuse was related to limited knowledge of how to buckle up on the booster cushion, and some misuse was intentional in order to reduce discomfort. The participants, both children and adults, reported that they preferred the IBC due to good comfort and convenience. Safety was reported as the main reason for adults using booster cushions in general, whereas children reported comfort as the most important motivation. Education is needed to ensure frequent and correct use of booster cushions in China and to raise safety awareness among children and adults. Furthermore, it is important that the booster cushions offer intuitively correct usage to a population with

  20. Misuse of booster cushions - an observation study of children's performance during buckling up.

    Science.gov (United States)

    Osvalder, Anna-Lisa; Bohman, Katarina

    2008-10-01

    Booster cushions are effective tools to protect children from injuries in car crashes, but there remains a large amount of misuse. The aim of this study was to assess potential misuse of booster cushions in an observational laboratory study, and to identify whether booster cushion design, age or clothing had any effect. 130 Swedish children from the ages of 4-12 years participated. Each child buckled up on an integrated and on an aftermarket booster cushion in the rear seat. The older children also buckled up with seat belt only. Interviews, observations and body measurements were performed. Time to buckle up and amount of belt slack were registered. Photographs were taken to document misuse. Results showed that 77% failed to perform correct belt routing on the aftermarket cushion, independent of age, although they were familiar with this system. The misuse rate for the integrated cushion was only 4%. No misuse was found for seat belt only. Few children tightened the belt. The belt slack increased when wearing winter jackets. This indicates the importance of adding pretensioners to the rear seat. Sled tests with HIII&TNO 6y dummies were also performed for the most frequent misuse situations found. The main conclusion is that an integrated booster cushion has many advantages compared to an aftermarket cushion regarding both safety and comfort. It is easy and quick to handle, has few possibilities for misuse, has an intuitive design, the buckling up sequence is equal to buckling up with an ordinary seat belt, and younger children can buckle up correctly.

  1. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    Science.gov (United States)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  2. BROOKHAVEN: Booster boost

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After three months of intensive dedicated machine studies, Brookhaven's new Booster accelerated 5 x 10 13 protons over four cycles, about 85% of the design intensity. This was made possible by careful matching of Linac beam into the Booster and by extensive resonance stop band corrections implemented during Booster acceleration. The best single cycle injection into the AGS Alternating Gradient Synchrotron was 1.14 x 10 13 protons from the Booster. 1.05 x 10 13 protons were kept in the AGS, a 92% combined efficiency of extraction, transfer, and injection. The maximum injected 1994 shutdown period, enabling the 1994 physics run to make use of the full Booster intensity and go for the stated AGS objective of 4x10 13 protons per pulse

  3. Feasibility study of a pressure fed engine for a water recoverable space shuttle booster Volume 2: Technical, phase A effort

    Science.gov (United States)

    1972-01-01

    Design and systems considerations are presented on an engine concept selection for further preliminary design and program evaluation. These data have been prepared from a feasibility study of a pressure-fed engine for the water recoverable space shuttle booster.

  4. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  5. Use of Several Thermal Analysis Techniques to Study the Cracking of a Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.

    1999-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM of each of the two Solid Rocket Boosters (SRBs) on the Space Shuttle. Each cured insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive, and some of the curved areas in the rubber may have significant residual stresses. A number of recently bonded NBR insulators have shown fine surface cracks, and stressed insulator areas may be aging at a faster rate than unstressed areas, thus hastening the surface cracking. Thermal analysis data on both vendor insulators by Dynamic Mechanical Analysis (DMA) through a temperature/frequency sweep from 24 to 74 C have shown a higher flexural storage modulus and Arrhenius activation energy for the stressed area than for the unstressed area. Other thermal analysis techniques are being used to study the insulator surface vs. bulk interior for better understanding this anomaly.

  6. Computational study of variable area ejector rocket flowfields

    Science.gov (United States)

    Etele, Jason

    Access to space has always been a scientific priority for countries which can afford the prohibitive costs associated with launch. However, the large scale exploitation of space by the business community will require the cost of placing payloads into orbit be dramatically reduced for space to become a truly profitable commodity. To this end, this work focuses on a next generation propulsive technology called the Rocket Based Combined Cycle (RBCC) engine in which rocket, ejector, ramjet, and scramjet cycles operate within the same engine environment. Using an in house numerical code solving the axisymmetric version of the Favre averaged Navier Stokes equations (including the Wilcox ko turbulence model with dilatational dissipation) a systematic study of various ejector designs within an RBCC engine is undertaken. It is shown that by using a central rocket placed along the axisymmetric axis in combination with an annular rocket placed along the outer wall of the ejector, one can obtain compression ratios of approximately 2.5 for the case where both the entrained air and rocket exhaust mass flows are equal. Further, it is shown that constricting the exit area, and the manner in which this constriction is performed, has a significant positive impact on the compression ratio. For a decrease in area of 25% a purely conical ejector can increase the compression ratio by an additional 23% compared to an equal length unconstricted ejector. The use of a more sharply angled conical section followed by a cylindrical section to maintain equivalent ejector lengths can further increase the compression ratio by 5--7% for a total increase of approximately 30%.

  7. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    Science.gov (United States)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  8. A new sounding rocket payload for solar plasma studies

    Science.gov (United States)

    Bruner, Marilyn E.; Brown, William A.; Appert, Kevin L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment.

  9. A new sounding rocket payload for solar plasma studies

    International Nuclear Information System (INIS)

    Bruner, M.E.; Brown, W.A.; Appert, K.L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment. 8 refs

  10. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  11. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  12. Hepatitis B virus vaccination booster does not provide additional protection in adolescents: a cross-sectional school-based study.

    Science.gov (United States)

    Chang, Yung-Chieh; Wang, Jen-Hung; Chen, Yu-Sheng; Lin, Jun-Song; Cheng, Ching-Feng; Chu, Chia-Hsiang

    2014-09-23

    Current consensus does not support the use of a universal booster of hepatitis B virus (HBV) vaccine because there is an anamnestic response in almost all children 15 years after universal infant HBV vaccination. We aimed to provide a booster strategy among adolescents as a result of their changes in lifestyle and sexual activity. This study comprised a series of cross-sectional serological surveys of HBV markers in four age groups between 2004 and 2012. The seropositivity rates of hepatitis B surface antigen (HBsAg) and its reciprocal antibody (anti-HBs) for each age group were collected. There were two parts to this study; age-specific HBV seroepidemiology and subgroup analysis, including effects of different vaccine types, booster response for immunogenicity at 15 years of age, and longitudinal follow-up to identify possible additional protection by HBV booster. Within the study period, data on serum anti-HBs and HBsAg in a total of 6950 students from four age groups were collected. The overall anti-HBs and HBsAg seropositivity rates were 44.3% and 1.2%, respectively. The anti-HBs seropositivity rate in the plasma-derived subgroup was significantly higher in both 15- and 18-year age groups. Overall response rate in the double-seronegative recipients at 15 years of age was 92.5% at 6 weeks following one recombinant HBV booster dose. Among the 24 recipients showing anti-HBs seroconversion at 6 weeks after booster, seven subjects (29.2%) had lost their anti-HBs seropositivity again within 3 years. Increased seropositivity rates and titers of anti-HBs did not provide additional protective effects among subjects comprehensively vaccinated against HBV in infancy. HBV booster strategy at 15 years of age was the main contributor to the unique age-related phenomenon of anti-HBs seropositivity rate and titer. No increase in HBsAg seropositivity rates within different age groups was observed. Vaccination with plasma-derived HBV vaccines in infancy provided higher

  13. The Booster

    CERN Multimedia

    1972-01-01

    Where the beams from the Booster's four rings begin to recombine, before transfer to the PS. On the left are dipoles for vertical steering, and on the right is the tank containing two septum magnets which form the first combining element.

  14. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  15. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  16. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  17. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  18. Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels

    Science.gov (United States)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    This experimental program was divided into two parts. The first part evaluated stress corrosion cracking in 2219-T87 aluminum and 5Al-2.5Sn (ELI) titanium alloy plate and weld metal. Both uniform height double cantilever beam and surface flawed specimens were tested in environments normally encountered during the fabrication and operation of pressure vessels in spacecraft and booster systems. The second part studied compatibility of material-environment combinations suitable for high energy upper stage propulsion systems. Surface flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks were tested. Titanium alloys 5Al-2.5Sn (ELI), 6Al-4V annealed, and 6Al-4V STA were tested in both liquid and gaseous methane. Aluminum alloy 2219 in the T87 and T6E46 condition was tested in fluorine, a fluorine-oxygen mixture, and methane. Results were evaluated using modified linear elastic fracture mechanics parameters.

  19. Design and Experimental Study on Spinning Solid Rocket Motor

    Science.gov (United States)

    Xue, Heng; Jiang, Chunlan; Wang, Zaicheng

    The study on spinning solid rocket motor (SRM) which used as power plant of twice throwing structure of aerial submunition was introduced. This kind of SRM which with the structure of tangential multi-nozzle consists of a combustion chamber, propellant charge, 4 tangential nozzles, ignition device, etc. Grain design, structure design and prediction of interior ballistic performance were described, and problem which need mainly considered in design were analyzed comprehensively. Finally, in order to research working performance of the SRM, measure pressure-time curve and its speed, static test and dynamic test were conducted respectively. And then calculated values and experimental data were compared and analyzed. The results indicate that the designed motor operates normally, and the stable performance of interior ballistic meet demands. And experimental results have the guidance meaning for the pre-research design of SRM.

  20. Dynamic aperture ampersand extraction studies for the SSC High-Energy Booster

    International Nuclear Information System (INIS)

    Chao, A.W.; Dutt, S.K.; Johnson, D.E.; Sen, T.; Yan, Y.

    1990-09-01

    The final booster in the injector chain for the Superconducting Super Collider is a machine approximately twice the size of the Tevatron. Its design includes approximately 450, 15+ m superconducting dipoles. The original designs specified dipoles with a 7 cm coil-winding diameter and an inner horizontal beam-pipe aperture of 55 mm. This dipole design was chosen in order to provide an adequately large good-field aperture for both the beam injection process and for the slow-extraction of high-energy test beams. With the recent decision to increase the Collider dipole coil-winding diameter to 5 cm, the question of the needed HEB aperture was raised. An argument for dipole commonality between the HEB and Collider was developed, and a preliminary examination of a 5 cm HEB dipole was undertaken. This paper reports the results of a detailed study of the injection dynamic aperture for magnet errors corresponding to both a 5 cm and 7 cm dipole. Also studied and reported are preliminary results of the resonant-extraction process for the two magnet designs in question. These studies are in the form of multiparticle computer simulations. The results of the studies indicate that the 7 cm dipole design is consistent with the desired performance requirements for the HEB, while the 5 cm dipole design is marginal. We have not studied intermediate aperture values. 8 refs., 11 figs

  1. An ecological model to factors associated with booster seat use: A population based study.

    Science.gov (United States)

    Shimony Kanat, Sarit; Gofin, Rosa

    2017-11-01

    Belt-positioning booster seat use (BPB) is an effective technology to prevent severe child injury in cases of car crash. However, in many countries, age-appropriate car restraint use for children aged 4-7 years old remains the lowest among all age groups. The aim of this study was to identify the main determinants of BPB use through a comprehensive approach. An ecological model was used to analyze individual, parent-child relationships, and neighborhood characteristics. Parents of children enrolled in the first and second grades completed a self-reported questionnaire (n=745). The data were subjected to multilevel modeling. The first level examined individual and parent-child relationship variables; in addition the second level tested between neighborhood variance. According to parental self- reports, 56.6% of their children had used a BPB on each car trip during the previous month. The results indicated that the determinants positively related to BPB use were individual and parental; namely, the number of children in the family, the parents' car seat belt use, parental knowledge of children's car safety principles, and a highly authoritative parenting style. Children's temperaments and parental supervision were not associated with BPB use. At the neighborhood level, a small difference was found between neighborhoods for BPB users compared to non-users. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  3. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    Science.gov (United States)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  4. FEASIBILITY STUDY OF AIR BEARING ROCKET SLED SLIPPERS

    Science.gov (United States)

    a simple self-acting type of bearing can support a typical monorail rocket sled, without contact between the slipper and the rail, at speeds between...slipper bearing is capable of preventing slipper-rail contact over the entire speed range of typical monorail and dual rail sleds. However, the weight and

  5. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    Science.gov (United States)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  6. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  7. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    Science.gov (United States)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  8. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  9. CFD Assessment of Forward Booster Separation Motor Ignition Overpressure on ET XT 718 Ice/Frost Ramp

    Science.gov (United States)

    Tejnil, Edward; Rogers, Stuart E.

    2012-01-01

    Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.

  10. The PS booster

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The PS booster which accelerates protons from the linac at an energy of 50 MeV to an energy of 800 MeV before injecting them into the main magnet ring of the synchrotron. The booster consists of four superposed rings. In the photograph can be seen the input beam line from the linac and the output beam lines, where beams from the four booster levels have been combined into two beams before final recombination.

  11. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  12. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    Science.gov (United States)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  13. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  14. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    Science.gov (United States)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  15. PS Booster - Festive colloquium

    CERN Multimedia

    2012-01-01

    A festive colloquium will be held to celebrate the 40th anniversary of the PS Booster on Friday, 28 September at 2 p.m. in the CERN council chamber. The meeting will be open to everybody. Read more on the PS Booster in the CERN Bulletin and in the CERN Courier.

  16. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  17. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  18. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  19. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  20. Whooping cough in school age children presenting with persistent cough in UK primary care after introduction of the preschool pertussis booster vaccination: prospective cohort study.

    Science.gov (United States)

    Wang, Kay; Fry, Norman K; Campbell, Helen; Amirthalingam, Gayatri; Harrison, Timothy G; Mant, David; Harnden, Anthony

    2014-06-24

    To estimate the prevalence and clinical severity of whooping cough (pertussis) in school age children presenting with persistent cough in primary care since the introduction and implementation of the preschool pertussis booster vaccination. Prospective cohort study (November 2010 to December 2012). General practices in Thames Valley, UK. 279 children aged 5 to 15 years who presented in primary care with a persistent cough of two to eight weeks' duration. Exclusion criteria were cough likely to be caused by a serious underlying medical condition, known immunodeficiency or immunocompromise, participation in another clinical research study, and preschool pertussis booster vaccination received less than one year previously. Evidence of recent pertussis infection based on an oral fluid anti-pertussis toxin IgG titre of at least 70 arbitrary units. Cough frequency was measured in six children with laboratory confirmed pertussis. 56 (20%, 95% confidence interval 16% to 25%) children had evidence of recent pertussis infection, including 39 (18%, 13% to 24%) of 215 children who had been fully vaccinated. The risk of pertussis was more than three times higher (21/53; 40%, 26% to 54%) in children who had received the preschool pertussis booster vaccination seven years or more previously than in those who had received it less than seven years previously (20/171; 12%, 7% to 17%). The risk of pertussis was similar between children who received five and three component preschool pertussis booster vaccines (risk ratio for five component vaccine 1.14, 0.64 to 2.03). Four of six children in whom cough frequency was measured coughed more than 400 times in 24 hours. Pertussis can still be found in a fifth of school age children who present in primary care with persistent cough and can cause clinically significant cough in fully vaccinated children. These findings will help to inform consideration of the need for an adolescent pertussis booster vaccination in the United Kingdom. UK

  1. Sounding-rocket experiments for detailed studies of magnetospheric substorm phenomena

    International Nuclear Information System (INIS)

    Stuedemann, W.; Wilhelm, K.

    1975-01-01

    Many of the substorm effects occur at or near the auroral oval in the upper atmosphere and can thus be studied by sounding-rocket experiments. As emphasis should be laid on understanding the physical processes, close co-ordination with other study programmes is of great importance. This co-ordination can best be accomplished within the framework of the ''International Magnetospheric Study 1976-1978''

  2. Studies on Flame Spread with Sudden Expansions of Ports of Solid Propellant Rockets under Elevated Pressure.

    OpenAIRE

    B.N. Raghunandan; N.S. Madhavan; C. Sanjeev; V.R.S. Kumar

    1996-01-01

    A detailed experimental study on flame spread over non-uniform ports of solid propellant rockets has been carried out. An idealised. 2-dimensional laboratory motor was used for the experimental study with the aid of cinephotography. Freshly prepared rectangular HTPB propellant with backward facing step was used as the specimenfor this study. It has been shown conclusively that under certain conditions of step location. step height and port height which govern the velocity of gases at the step...

  3. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  4. Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex S.; Frame, Kyle L.

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing

  5. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  6. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  7. BROOKHAVEN: Booster commissioned

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Ed

    1992-03-15

    The construction and first commissioning phase of the Booster synchrotron to inject into Brookhaven's veteran Alternating Gradient Synchrotron (AGS) were completed last year. Scheduled to come into operation this year, the new Booster will extend the research capabilities AGS, and with its ability to accelerate partially stripped heavy ions will play an essential role in the chain of accelerators serving the Relativistic Heavy Ion Collider (RHIC)

  8. First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region

    Directory of Open Access Journals (Sweden)

    H. Chandra

    2008-09-01

    Full Text Available A campaign to study turbulence in the mesosphere, over low latitudes in India, using rocket-borne measurements and Indian MST radar, was conducted during July 2004. A rocket-borne Langmuir probe detected a spectrum of electron density irregularities, with scale sizes in the range of about 1 m to 1 km, in 67.5–78.0 km and 84–89 km altitude regions over a low latitude station Sriharikota (13.6° N, 80.2° E. A rocket-borne chaff experiment measured zonal and meridional winds about 30 min after the Langmuir probe flight. The MST radar located at Gadanki (13.5° N, 79.2° E, which is about 100 km west of Sriharikota, also detected the presence of a strong scattering layer in 73.5–77.5 km region from which radar echoes corresponding to 3 m irregularities were received. Based on the region of occurrence of irregularities, which was highly collisional, presence of significant shears in zonal and meridional components of wind measured by the chaff experiment, 10 min periodicity in zonal and meridional winds obtained by the MST radar and the nature of wave number spectra of the irregularities, it is suggested that the observed irregularities were produced through the neutral turbulence mechanism. The percentage amplitude of fluctuations across the entire scale size range showed that the strength of turbulence was stronger in the lower altitude regions and decreased with increasing altitude. It was also found that the amplitude of fluctuations was large in regions of steeper electron density gradients. MST radar observations showed that at smaller scales of turbulence such as 3 m, (a the thickness of the turbulent layer was between 2 and 3 km and (b and fine structures, with layer thicknesses of about a km or less were also embedded in these layers. Rocket also detected 3-m fluctuations, which were very strong (a few percent in lower altitudes (67.5 to 71.0 km and small but clearly well above the noise floor at higher altitudes. Rocket and radar

  9. First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, H.; Sinha, H.S.S.; Das, U.; Misra, R.N.; Das, S.R. [Physical Research Lab., Ahmedabad (India); Datta, J.; Chakravarty, S.C. [ISRO Headquarters, Bangalore (India); Patra, A.K.; Vekateswara Rao, N.; Narayana Rao, D. [National Atmospheric Research Lab., Tirupati (India)

    2008-07-01

    A campaign to study turbulence in the mesosphere, over low latitudes in India, using rocket-borne measurements and Indian MST radar, was conducted during July 2004. A rocket-borne Langmuir probe detected a spectrum of electron density irregularities, with scale sizes in the range of about 1 m to 1 km, in 67.5-78.0 km and 84-89 km altitude regions over a low latitude station Sriharikota (13.6 N, 80.2 E). A rocket-borne chaff experiment measured zonal and meridional winds about 30 min after the Langmuir probe flight. The MST radar located at Gadanki (13.5 N, 79.2 E), which is about 100 km west of Sriharikota, also detected the presence of a strong scattering layer in 73.5-77.5 km region from which radar echoes corresponding to 3 m irregularities were received. Based on the region of occurrence of irregularities, which was highly collisional, presence of significant shears in zonal and meridional components of wind measured by the chaff experiment, 10 min periodicity in zonal and meridional winds obtained by the MST radar and the nature of wave number spectra of the irregularities, it is suggested that the observed irregularities were produced through the neutral turbulence mechanism. The percentage amplitude of fluctuations across the entire scale size range showed that the strength of turbulence was stronger in the lower altitude regions and decreased with increasing altitude. It was also found that the amplitude of fluctuations was large in regions of steeper electron density gradients. MST radar observations showed that at smaller scales of turbulence such as 3 m, (a) the thickness of the turbulent layer was between 2 and 3 km and (b) and fine structures, with layer thicknesses of about a km or less were also embedded in these layers. Rocket also detected 3-m fluctuations, which were very strong (a few percent) in lower altitudes (67.5 to 71.0 km) and small but clearly well above the noise floor at higher altitudes. Rocket and radar results also point to the

  10. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  11. Preliminary Design Study of a Pre-booster Damping Ring for the FCC e+e− Injector

    CERN Document Server

    Etisken, O; Papaphilippou, Y

    2017-01-01

    The aim of the FCC e+e− lepton collider is to collide particles in the energy range 40–175 GeV. The FCC e+e− injector complex needs to produce and transport high-intensity e+e− beams at a fast repetition rate of about 0.1 Hz to top up the collider at its collision energy. A basic parameter set exists for all collider energies, assuming a 10 GeV linac operating with a large number of bunches accumulating in the existing SPS, which serves as pre-accelerator and damping ring before the bunches are transferred to the high-energy booster. The purpose of this study is to provide the conceptual design of an alternative damping and accelerator ring, replacing the SPS in the current scheme. This ring will have an injection energy of around 6 GeV and an extraction energy of around 20 GeV. Apart from establishing the basic ring parameters, the final study will include the optics design and layout, and single particle linear and non-linear dynamics optimization, including magnetic and alignment error tolerances. ...

  12. Neutronics Study on LEU Nuclear Thermal Rocket Fuel Options

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of); Howe, Steven [CSNR, Idaho (United States)

    2014-10-15

    This has resulted in a non-trivial simplification of the tasks needed to develop such an engine and the quick initial development of the concept. There are, however, a series of key core-design choices that are currently under scrutiny in the field that have to be resolved in order for the LEU-NTR to be fully developed. The most important of these is the choice of fuel: carbide composite or tungsten cermet. This study presents a first comparison of the two fuel types specifically in the neutronic application to the LEU-NTR, keeping in mind the unique neutronic environment and the system requirements of the system. The scope of the study itself is limited to a neutronics study of the two fuels and only a cursory overview of the material properties of the fuels themselves... The results of this study have led to two major conclusions. First of all is that the carbide composite fuel is, from a neutronics standpoint, a much better fuel. It has a low absorption cross-section, is inherently a strong moderator, is able to achieve a higher reactivity using smaller amounts of fissile material, and can potentially enable a smaller reactor. Second is that despite its neutronic difficulties (high absorption, inferior moderating abilities, and lower k-infinity values) the tungsten cermet fuel is still able to perform satisfactorily in an LEU-NTR, largely due to its ability to have an extremely high fuel loading.

  13. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  14. An investigation of the aerodynamic characteristics of a 0.00548 scale model (model no. 486) of the space shuttle 146-inch diameter solid rocket booster at angels of attack from 113 deg to 180 deg in the AEDC PWT 4-foot transonic wind tunnel (SA16F)

    Science.gov (United States)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.

  15. Hydrogen sulfide booster compressors for HWP Manuguru - oil reclamation study - BHEL experience (Paper No. 5.2)

    International Nuclear Information System (INIS)

    Godbole, A.; Santanam, N.; Murthy, T.S.R.

    1992-01-01

    BHEL undertook the development of hydrogen sulphide booster compressor with a view to indigenise this most critical equipment in a heavy water plant. Throughout the design, manufacture and shop testing of these booster compressors BHEL had close interaction with Heavy Water Board. This paper describes the problems faced during commissioning of compressors at KCR -Manuguru such as deficiencies in the sizing of LP seal oil drain, development of a process for reclamation of oil and development of alternate sealing arrangement, etc. (author). 1 tab., 4 figs

  16. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  17. Nutation instability of spinning solid rocket motor spacecraft

    Directory of Open Access Journals (Sweden)

    Dan YANG

    2017-08-01

    Full Text Available The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB. The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn. The analysis of the results proposes the design conception of how to control the nutation motion. The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.

  18. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    An overview is presented of the results of the analyses conducted in support of the selected engine system for the pressure-fed booster stage. During initial phases of the project, a gimbaled, regeneratively cooled, fixed thrust engine having a coaxial pintle injector was selected as optimum for this configuration.

  19. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  20. Parametric Study of Design Options aecting Solid Rocket Motor Start-up and Onset of Pressure Oscillations

    OpenAIRE

    Di Giacinto, M.; Cavallini, E.; Favini, B.; Steelant, Johan

    2014-01-01

    The start-up represents a very critical phase during the whole operational life of solid rocket motors. This paper provides a detailed study of the eects on the ignition transient of the main design parameters of solid propellant motors. The analysis is made with the use of a Q1D unsteady model of solid rocket ignition transient, extensively validated in the frame of the VEGA program, for ignition transient predictions and reconstructions, during the last ten years. Two baseline soli...

  1. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  2. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  3. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    International Nuclear Information System (INIS)

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  4. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  5. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  6. Transverse phase space studies with the new CDS booster cavity at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Vashchenko, Grygorii

    2013-10-15

    Light is one of the main tools for the investigation of natural phenomena. Light produced with the help of synchrotron machines serves to investigate many phenomena in natural sciences for many years. However the synchrotron light has a limited degree of spatial coherence, restriction on the minimum achievable pulse duration at the level of about 30 ps and not sufficient brilliance to perform a lot of experiments. With the invention of free electron lasers (FELs) new opportunities are opened as the light produced by the free electron lasers is spatially coherent, the pulse duration of the produced light can be in the order of 10 fs and below and the brilliance is much higher compared to synchrotron light. To produce high quality laser light with a short wavelength free electron lasers like the European XFEL and FLASH require electron beams with a high charge and low transverse emittance. The photo injector test facility at DESY, Zeuthen site, was built with the aim to develop and characterize electron sources for future usage at FLASH and the European XFEL. The emittance of the produced electron beam plays a key role as it influences the final brilliance and the minimum achievable wavelength of the produced laser light. This work is devoted to investigations of the emittance of electron beams with different charges. The emittance of the electron beam depends on many machine parameters such as UV laser pulse shape and its size, solenoid focusing current and accelerating cavities settings. Methodical studies of the emittance dependencies on these parameters were done in simulations using a particle tracking code as well as experimentally.

  7. Transverse phase space studies with the new CDS booster cavity at PITZ

    International Nuclear Information System (INIS)

    Vashchenko, Grygorii

    2013-10-01

    Light is one of the main tools for the investigation of natural phenomena. Light produced with the help of synchrotron machines serves to investigate many phenomena in natural sciences for many years. However the synchrotron light has a limited degree of spatial coherence, restriction on the minimum achievable pulse duration at the level of about 30 ps and not sufficient brilliance to perform a lot of experiments. With the invention of free electron lasers (FELs) new opportunities are opened as the light produced by the free electron lasers is spatially coherent, the pulse duration of the produced light can be in the order of 10 fs and below and the brilliance is much higher compared to synchrotron light. To produce high quality laser light with a short wavelength free electron lasers like the European XFEL and FLASH require electron beams with a high charge and low transverse emittance. The photo injector test facility at DESY, Zeuthen site, was built with the aim to develop and characterize electron sources for future usage at FLASH and the European XFEL. The emittance of the produced electron beam plays a key role as it influences the final brilliance and the minimum achievable wavelength of the produced laser light. This work is devoted to investigations of the emittance of electron beams with different charges. The emittance of the electron beam depends on many machine parameters such as UV laser pulse shape and its size, solenoid focusing current and accelerating cavities settings. Methodical studies of the emittance dependencies on these parameters were done in simulations using a particle tracking code as well as experimentally.

  8. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  9. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  10. Rocket studies of plasma turbulence in the equatorial and auroral electrojets

    International Nuclear Information System (INIS)

    Pfaff, R.F. Jr.

    1986-01-01

    Rocket observations of plasma turbulence in the equatorial and auroral electrojets have been studied in detail. Intense electric field and plasma density fluctuations characterize the collisional two-stream and gradient drift instabilities, showing a marked spectral differentiation with respect to height consistent with changes in the local sources of free energy. The interpretation of the frequencies and amplitudes of irregularities detected by in-situ probes travelling at comparable speeds to the waves is discussed in detail. Observations from three rockets in the daytime equatorial electrojet during strong, mild, and weak currents show that the linear theory accounts for the general height and wavelength domains of the irregularities. In the strong case, laminar two-stream waves were observed where the current was strongest and the density gradient was stable. The data suggest phase velocities that were comparable to the electron drift velocity (∼500 m/s) and peak wavelengths (2-3 m) that agree with kinetic theory. Vertically propagating waves observed here may have been generated by mode coupling. Where the gradient was unstable, large amplitude, kilometer scale waves dominated, although the linear gradient drift growth rate peaks at a few hundred meters. The amplitudes (10-15 mV/m) of these horizontal waves were strong enough to drive vertical two-stream waves

  11. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    International Nuclear Information System (INIS)

    Fitterer, Miriam

    2013-01-01

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  12. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  13. Thermodynamic investigation of a booster-assisted ejector refrigeration system

    International Nuclear Information System (INIS)

    Zhao, Hongxia; Zhang, Ke; Wang, Lei; Han, Jitian

    2016-01-01

    Highlights: • COP based on thermal input increases with booster outlet pressure. • Both entrainment ratio and area ratio increase with booster outlet pressure. • COP based on work is larger than compressor-based refrigeration system. • An optimum booster outlet pressure obtains maximum COP based on work. • Exergy destruction occurs mainly in ejector, condenser, evaporator and generator. - Abstract: In order to improve performance of ejector refrigeration system, a booster is added before an ejector to enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass, momentum and energy conservation, a 1D model of ejector for optimal performance prediction was presented and validated with experimental data. A detailed study of working characteristics of the booster assisted ejector refrigeration system was carried out and compared against conventional ejector refrigeration system and compressor based refrigeration system, on the basis of first and second laws of thermodynamics. Effects of booster outlet pressure on COP_t_h based on thermal energy and COP_w based on work input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates were also computed and analyzed for components of the booster-assisted ejector refrigeration system. Ways to reduce exergy destruction were discussed.

  14. Study of medium-scale traveling ionospheric disturbances (MSTID) with sounding rockets and ground observations

    Science.gov (United States)

    Yamamoto, Mamoru; Abe, Takumi; Kumamoto, Atsushi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Susumu; Tsugawa, Takuya; Ishisaka, Keigo; Iwagami, Naomoto; Nishioka, Michi; Kato, Tomohiro; Takahashi, Takao; Tanaka, Makoto; Mr

    Medium-scale traveling ionospheric disturbance (MSTID) is an interesting phenomenon in the F-region. The MSTID is frequent in summer nighttime over Japan, showing wave structures with wavelengths of 100-200 km, periodicity of about 1 hour, and propagation toward the southwest. The phenomena are observed by the total electron content (TEC) from GEONET, Japanese dense network of GPS receivers, and 630 nm airglow imagers as horizontal pattern. It was also measured as Spread-F events of ionograms or as field-aligned echoes of the MU radar. MSTID was, in the past, explained by Perkins instability (Perkins, 1973) while its low growth rate was a problem. Recently 3D simulation study by Yokoyama et al (2009) hypothesized a generation mechanism of the MSTID, which stands on electromagnetic E/F-region coupling of the ionosphere. The hypothesis is that the MSTID first grows with polarization electric fields from sporadic-E, then show spatial structures resembling to the Perkins instability. We recently conducted a observation campaign to check this hypothesis. We launched JASA ISAS sounding rockets S-310-42 and S-520-27 at 23:00 JST and 23:57JST on July 20, 2013 while an MSTID event was monitored in real-time by the GPS-TEC from GEONET. We found 1-5mV/m northeastward/eastward electric fields during the flight. Variation of electric fileds were associated with horizontal distribution of plasma density. Wind velocity was measured by the TME and Lithium releases from S-310-42 and S-520-27 rockets, respectively, showing southward wind near the sporadic-E layer heights. These results are consistent to the expected generation mechanism shown above. In the presentation we will discuss electric-field results and its relationship with plasma density variability together with preliminary results from the neutral-wind observations.

  15. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  16. Preliminary design study for a carbide LEU-nuclear thermal rocket

    International Nuclear Information System (INIS)

    Venneri, P.F.; Kim, Y.

    2014-01-01

    Nuclear space propulsion is a requirement for the successful exploration of the solar system. It offers the possibility of having both a high specific impulse and a relatively high thrust, allowing rapid transit times with a minimum usage of fuel. This paper proposes a nuclear thermal rocket design based on heritage NERVA rockets that makes use of Low Enriched Uranium (LEU) fuel. The Carbide LEU Nuclear Thermal Rocket (C-LEU-NTR) is designed to fulfill the rocket requirements as set forth in the NASA 2009 Mars Mission Design Reference Architecture 5.0, that is provide 25,000 lbf of thrust, operate at full power condition for at least two hours, and have a specific impulse close to 900 s. The neutronics analysis was done using MCNP5 with the ENDF/B-VII.1 neutron library. The thermal hydraulic calculations and size optimization were completed with a finite difference code being developed at the Center for Space Nuclear Research. (authors)

  17. THRUST AUGMENTED NOZZLE (TAN) the New Paradigm for Booster Rockets

    Science.gov (United States)

    2006-07-12

    station. The engine has to throttle to 34 percent (3X or 1020 psia) to keep from exceeding the acceleration limits. Figure 6. Baseline SSTO ...vehicle powered by seven up-sized SSME class engines. Figure 7. Baseline SSTO vehicle trajectory. With a payload fraction of 1 percent, it does not...want to invest in such a risky endeavor. American Institute of Aeronautics and Astronautics 6 B. TAN-Powered SSTO Vehicle For the Dual Fuel TAN

  18. Fox-7 for Insensitive Boosters

    Science.gov (United States)

    2010-08-01

    cavitation , and therefore nucleation, to occur at each frequency. As well as producing ultrasound at different frequencies, the method of delivery of...processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology to improve booster formulations, and results from these...7 booster formulations. Also included are particle processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology

  19. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  20. "Booster" interventions to sustain increases in physical activity in middle-aged adults in deprived urban neighbourhoods: internal pilot and feasibility study

    Directory of Open Access Journals (Sweden)

    Walters Stephen J

    2011-02-01

    Full Text Available Abstract Background Systematic reviews have identified a range of brief interventions which increase physical activity in previously sedentary people. A randomised controlled trial is needed to assess whether providing motivational interviewing, three months after giving initial advice, sustains physical activity levels in those who recently became physically active. This paper reports the results of an internal pilot study designed to test the feasibility of the study in terms of recruitment, per protocol delivery of the intervention and retention at three months. Methods Participants were: aged 40-64 years; resident in deprived areas of Sheffield, UK; and, had recently become physically active as a result of using a brief intervention following an invitation from a mass mailout. Interventions: Motivational Interviewing 'boosters' aimed at sustaining change in physical activity status delivered face-to-face or over the telephone compared with no further intervention. Outcomes of the feasibility study: recruitment of 60 participants from mailout of 3,300; retention of 45 participants with 3-month follow-up accelerometry measurements; 70% of those randomised to boosters receiving intervention per protocol. Sample size and power were recalculated using the accelerometry data collected. Results Forty-seven participants were randomised (78% of the feasibility target; 37 participants were retained at three months, 29 with at least four days of accelerometry data (64% of the feasibility target; 79% of those allocated boosters received them per protocol (surpassing the feasibility target. The proposed sample size of 600 was confirmed as appropriate and power is expected to be sufficient to detect a difference between groups. Conclusions The main study will continue with the original recruitment target of 600 participants but to ensure feasibility, it is necessary to increase recruitment and improve the numbers of those followed-up who have evaluable

  1. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  2. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  3. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  4. A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket

    Science.gov (United States)

    Sullivan, Daniel J.; Micci, Michael M.

    1990-01-01

    The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.

  5. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  6. Actual directions in study of ecological consequences of a highly toxic 1,1-dimethylhydrazine-based rocket fuel spills

    Directory of Open Access Journals (Sweden)

    Bulat Kenessov

    2012-05-01

    Full Text Available The paper represents a review of the actual directions in study of ecological consequences of highly toxic 1,1-dimethylhydrazine-based rocket fuel spills. Recent results on study of processes of transformation of 1,1-dimethylhydrazine, identification of its main metabolites and development of analytical methods for their determination are generalized. Modern analytical methods of determination of 1,1-dimethylhydrazine and its transformation products in environmental samples are characterized. It is shown that in recent years, through the use of most modern methods of physical chemical analysis and sample preparation, works in this direction made significant progress and contributed to the development of studies in adjacent areas. A character of distribution of transformation products in soils of fall places of first stages of rocket-carriers is described and the available methods for their remediation are characterized.

  7. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    Science.gov (United States)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  8. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  9. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    Science.gov (United States)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  10. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  11. Booster LINAC project: introduction

    International Nuclear Information System (INIS)

    Storm, D.W.

    1984-01-01

    During the past year the DOE awarded a contract to build the superconducting booster proposed in 1982. Although the majority of the funds ($8M) of the project are construction funds included in the DOE contract, part of the project is to be done with state funds ($1.03M) and part with the operating funds (3 FTE personnel as well as costs of prototyping the resonators). Therefore it is appropriate to outline the progress in this report. The overall design was changed somewhat from that described in last year's Annual Report. Instead of 12 split ring resonators optimized for beta = 0.10 and 12 for beta = 0.16, the author has chosen to use 16 quarter wave resonators optimized for beta = 0.09 and 16 for beta = 0.18. The quarter wave resonators, which have two accelerating gaps instead of the three of the split rings, have a wider transit time factor, which is favorable for accelerating a broader range of particle masses. The quarter wave resonators are to be built of lead plated copper, following the design of Ben-Zvi and Brennan

  12. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    Science.gov (United States)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  13. Rocket and ground-based study of an auroral breakup event

    International Nuclear Information System (INIS)

    Marklund, G.

    1982-02-01

    On 27 January, 1979 the substorm-GEOS rocket S23H was launched from ESRANGE, Kiruna, shortly after the onset of an intense magnetospheric substorm over northern Scandinavia. Rocket electric field and particle observations have been used to calculate ionospheric currents and heating rates. These results are generally consistent with the ground magnetic and optical observations. An important finding emerging from a comparison of this event with a pre-breakup event earlier on this day is that the ionospheric substorm-related electric field could be split up into two parts, namely: 1) an ambient LT dependent field, probably of magnetospheric origin 2) superimposed on this a small-scale electric field associated with the bright auroral structures, being southward for both events. This is shown to have important consequences on the location of the ionospheric currents and the Joule energy discussion relative to the auroral forms. (Author)

  14. A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.

    1997-11-01

    The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.

  15. Study of the Deposition of Ammonium Perchlorate Following the Static Firing of MK-58 Rocket Motors

    Science.gov (United States)

    2008-10-01

    hyperthyroidism , gas generators, electrolytes for lithium cells, and as chemical reagents. The occurrence of perchlorate in the environment is...and prevent their movement by the rocket motor plume (Fig. 5). The water in the traps was collected using 1-l amber glass containers and the exact...them. On day one, after the firing of the second motor, heavy rain and lightning prevented the collection of samples from the witness plates. Only

  16. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  17. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.

    Science.gov (United States)

    Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A

    1991-09-01

    During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10(-4) · g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 μm and 3.6 μm in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.

  18. Feasibility study of palm-based fuels for hybrid rocket motor applications

    Science.gov (United States)

    Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi

    2018-02-01

    This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.

  19. A study of performance and cost improvement potential of the 120 inch (3.05 m) diameter solid rocket motor. Volume 1: Summary report

    Science.gov (United States)

    Backlund, S. J.; Rossen, J. N.

    1971-01-01

    A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.

  20. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    Science.gov (United States)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  1. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  2. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  3. Compatibility of booster seats and vehicles in the U.S. market.

    Science.gov (United States)

    Bing, Julie A; Agnew, Amanda M; Bolte, John H

    2018-05-19

    The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.

  4. The AGS Booster control system

    International Nuclear Information System (INIS)

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper

  5. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    Science.gov (United States)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  6. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  7. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  8. A Randomized Controlled Study of a Fully Liquid DTaP-IPV-HB-PRP-T Hexavalent Vaccine for Primary and Booster Vaccinations of Healthy Infants and Toddlers in Latin America.

    Science.gov (United States)

    López, Pío; Arguedas Mohs, Adriano; Abdelnour Vásquez, Arturo; Consuelo-Miranda, Maria; Feroldi, Emmanuel; Noriega, Fernando; Jordanov, Emilia; B Chir, Siham; Zambrano, Betzana

    2017-11-01

    Hexavalent diphtheria-tetanus-acellular pertussis-inactivated poliovirus-hepatitis B-Haemophilus influenzae type b (DTaP-IPV-HB-PRP-T)-containing vaccines are increasingly the standard of care. This study evaluated the primary series (NCT01177722) and booster (NCT01444781) of a fully liquid DTaP-IPV-HB-PRP-T vaccine in Latin America. Infants (N = 1375) received hepatitis B vaccine at birth and were randomized to one of 3 batches of the investigational DTaP-IPV-HB-PRP-T or licensed control vaccine (DTaP-HB-IPV//PRP-T) at 2-4 to 6 months of age, coadministered with 7-valent pneumococcal conjugate vaccine (PCV7) (2-4-6 months) and rotavirus vaccine (2-4 months). A booster of either DTaP-IPV-HB-PRP-T or control was given at 12-24 months, coadministered with PCV7. Immunogenicity was assessed by validated assays and safety from parental reports. Primary series seroprotection and vaccine response rates were equivalent for DTaP-IPV-HB-PRP-T batches. For pooled batches, noninferiority to the control vaccine was demonstrated for each antigen. There were no descriptive differences in antibody persistence or booster response between DTaP-IPV-HB-PRP-T and the control. The booster responses to either vaccine following DTaP-IPV-HB-PRP-T primary series or to DTaP-IPV-HB-PRP-T following a control vaccine primary series were similar. The anti-aP component (filamentous hemagglutinin [FHA] and pertussis toxin [PT]) vaccine response and anti-Haemophilus influenzae type b (PRP) series seroprotection (≥0.15 µg/mL) rates were ≥73.0% after 2 primary series doses. Antipyretics had no effect on the immune response, and an extra (oral) polio vaccination had no effect on the antipolio booster response. Responses to PCV7 and rotavirus vaccine were similar for each coadministration. There were no safety concerns observed with any vaccine. These results confirm the suitability of the fully liquid DTaP-IPV-HB-PRP-T vaccine for primary and booster vaccination of infants.

  9. The PS Booster hits 40

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Many accelerators’ "round" birthdays are being celebrated at CERN these days – the PS turned 50 in 2009, the SPS was 35 in 2011, and this year it's the turn of the PS Booster to mark its 40th anniversary. Originally designed to accelerate 1013 protons to 800 MeV, it has far exceeded its initial design performance over the years.   The PS Booster in the 1970s. Imagine the scene: a group of accelerator physicists staring expectantly at a monitor, when suddenly a shout of joy goes up as a signal flickers across the screen. Does that sound familiar? Well, turn the clock back 40 years (longer hair, wider trouser legs) and you have the situation at the PS Booster on 26 May 1972. On that day, beam was injected into the Booster for the first time. “It was a real buzz,” says Heribert Koziol, then Chairman of the Running-in Committee. “We were very happy – and also a little relieved – when the beam finally...

  10. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  11. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    Science.gov (United States)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  12. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  13. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  14. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  15. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  16. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    Science.gov (United States)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  17. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  18. Observational study of vaccine efficacy 24 years after the start of hepatitis B vaccination in two Gambian villages: no need for a booster dose.

    Directory of Open Access Journals (Sweden)

    Maimuna Mendy

    Full Text Available To determine the duration of protection from hepatitis B vaccine given in infancy and early childhood and asses risk factors for HBV infection and chronic infection.In 1984 infant HBV vaccination was started in two Gambian villages. Cross sectional serological surveys have been undertaken every 4 years to determine vaccine efficacy. In the current survey 84.6% of 1508 eligible participants aged 1-28 years were tested. A spouse study was conducted in females (aged 14 years and above and their male partners.Vaccine efficacy against chronic infection with hepatitis B virus was 95.1% (95% confidence interval 91.5% to 97.1%, which did not vary significantly between age groups or village. Efficacy against infection was 85.4% (82.7% to 87.7%, falling significantly with age. Concentrations of hepatitis B antibody fell exponentially with age varying according to peak response: 20 years after vaccination only 17.8% (95% CI 10.1-25.6 of persons with a low peak response (10-99 mIU/ml had detectable HBs antibody compared to 27% (21.9% to 32.2% of those with a high peak response (>999 mIU/ml. Time since vaccination and a low peak response were the strongest risk factors for HBV infections; males were more susceptible, marriage was not a significant risk for females. Hepatitis B DNA was not detected after infection, which tested soley core antibody positive. An undetectable peak antibody response of <10 mIU/ml and a mother who was hepatitis B e antigen positive were powerful risk factors for chronic infection.Adolescents and young adults vaccinated in infancy are at increased risk of hepatitis B infection, but not chronic infection. Married women were not at increased risk. There is no compelling evidence for the use of a booster dose of HBV vaccine in The Gambia.

  19. Pegasus Rocket Model

    Science.gov (United States)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  20. AHF Booster Tracking with SIMPSONS.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. E. (David E.); Neri, F. (Filippo)

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 {approx} 1 0a' {approx}t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  1. AHF Booster Tracking with SIMPSONS

    International Nuclear Information System (INIS)

    Johnson, D.E.; Neri, F.

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 ∼ 1 0a' ∼t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  2. Integral Ramjet Booster Demonstration Program

    Science.gov (United States)

    1975-02-01

    vibration loads before motor firing at -65, +70, and +1650F, (2) The chambers are fabricated from roll and welded ( TIG ) L-605 sheet that is cold...Typical Integral Booster Internal Configuration Keyhole Grain Pressure and Thrust Versus Time (+700F, Sea Level) Keyhole Grain Pressure and...Thrust Versus Time (+1650F, Sea Level) Keyhole Grain Pressure and Thrust Versus Time (-65^, Sea Level) Radial-Slot Grain Design Radial-Slot Grain

  3. Proposed data acquisition system for the Fermilab Booster

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Peggs, S.; Wu, G.; Saltmarsh, C.

    1991-01-01

    At present, studies involving the FNAL Booster (or in fact most accelerators) depend on knowing exactly what detector one has to look at and at what time. Because of this, most studies are done 'on-line' and involve looking for repetitive effects using a limited number of detectors. In this paper the authors propose to design a Booster Data Acquisition System (BDAQ) for the FNAL Booster. In essence this system consists of a large number of digitizers with circular memory buffers. After a machine cycle of interest, these buffers are frozen and then read out into a mass storage device. This paper discusses the hardware and software capabilities needed to make such a data acquisition system a powerful tool for doing accelerator physics studies and improving machine performance

  4. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  5. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  6. Subcriticality determination in ADS: Valina-Booster experiments

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.

    2007-01-01

    A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented

  7. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  8. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  9. Study on the behavior of reaction disk in the vacuum brake booster; Shinkushiki bairyoku sochi ni okeru reaction disk no kyodo kaiseki jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, M; Sawada, T; Kato, Y [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan); Ogawa, E; Nakamura, S [Jidosha Kiki Co. Ltd., Tokyo (Japan)

    1997-10-01

    Vacuum brake booster has been widely applied in automobiles, and it needs much time for experiments in order to design a new type model and so on. In this report concentrating on the behavior of a reaction disc, it was simulated by ARAQUS FEM program where coefficients of rubber disc are Mooney-Rivlin constants. It was shown that the numerical results represent good agreement with experiments, and in addition that values of jumping force which shows the starting point of the brake increases with the increment of the hardness of the disc, clearance and so on. 2 refs., 10 figs.

  10. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  11. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  12. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  13. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  14. Pulsed neutron source very intense, Booster

    International Nuclear Information System (INIS)

    Abbate, J.M.

    1978-09-01

    A compact Accelerator-Booster (fast, pulsed and modulate reactivity research reactor) is a new and appropriate conception to use as a very intense thermal neutrons source. Its definition and feasibility have been already described in several studies showing its relative advantages in comparison with others kinds of facilities. This work, wich is part of one of those studies, contains a general analysis on the meis facility parameters and core and shielding theoretical calculations. The following results were obtained: Selection and test of a calculation system suitable to use in compact fast reactors; Development a method to perform estimations in some safety and shielding problems and obtainment of adequate theoretical predictions on the general performance. Moreover, final results for importent parameters of the feasibility study and predesign (critical mass and volume, lifetime, etc.) and others related to the use of plutonium oxide as fuel are given and then evaluations of different basic functions are showed. (author) [es

  15. FNAL Booster intensity, extraction, and synchronization control for collider operation

    International Nuclear Information System (INIS)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention

  16. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  17. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  18. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  19. NSLS-II booster timing system

    International Nuclear Information System (INIS)

    Cheblakov, P.; Karnaev, S.; De Long, J.

    2012-01-01

    NSLS-II light source includes the main storage ring with beam lines and injection part consisting of 200 MeV linac, a full-energy 3 GeV booster synchrotron and two transport lines. The booster timing system is a part of NSLS-II timing system which uses hardware from MicroResearch Finland: Event Generator (EVG) and Event Receivers (EVRs). The booster timing is based on the events coming from NSLS-II EVG: 'Pre-Injection', 'Injection', 'Pre-Extraction', 'Extraction'. These events are referenced to the selected RF bucket of the storage ring and correspond to the first RF bucket of the booster. EVRs provide triggers both for the injection and the extraction pulse devices. EVRs also provide the timing of booster cycle operation and generation of events for cycle-to-cycle updates of pulsed and ramping parameters, and synchronization of the booster beam instrumentation devices. This paper describes the final design of the booster timing system. The timing system functional diagrams and block diagram are presented. (authors)

  20. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  1. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  2. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Power flow control using quadrature boosters

    Science.gov (United States)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  4. 47 CFR 74.733 - UHF translator signal boosters.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  5. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  6. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  7. Tdap Booster Requirements for Secondary Schools

    Science.gov (United States)

    ... Experts State Information Tdap booster requirements for secondary schools State Td or Tdap Mandate for Sec School ... Checklists Standing Orders Storage & Handling Talking with Parents Temperature Logs Top Handouts Translations Vaccine Index >> view all ...

  8. 78 FR 29062 - Signal Booster Rules

    Science.gov (United States)

    2013-05-17

    ... number of FCC rules concerning signal boosters for consumer and industrial use. This document corrects a... chapter; the Maritime Services (ship earth station devices only) pursuant to part 80 of this chapter; and...

  9. Beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate low intensity (2 x 10 10 ) polarized protons, high intensity (1.5x10 13 ) protons and heavy ions through Au +33 . Coping with this wide range of beams, the 3 x 10 -11 Torr vacuum and the radiation environment presented challenges for the beam monitors. Some of the more interesting instrumentation design and performance during the recent Booster proton commissioning will be described

  10. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  11. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  12. New beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2x10 10 polarized protons to 1.5x10 13 protons and heavy ions through Au +33 . The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs

  13. New beam instrumentation in the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

  14. RF cogging in the FNAL Booster Accelerator

    International Nuclear Information System (INIS)

    William A. Pellico and Robert C. Webber

    2000-01-01

    The Fermilab Booster operates at a Radio Frequency (RF) harmonic number of 84 with beam in all buckets. One or two bunches of beam are systematically lost in the 8 GeV extraction process as beam is swept across a magnetic septum during the extraction kicker rise time. The prompt radiation and component activation resulting from this localized high energy beam loss become serious concerns as Booster beam throughput must be increased more than tenfold to meet the requirements of RUN II, NUMI, and MiniBooNE experiments. Synchronizing a gap in the beam to the firing of the extraction kickers, a relatively easy and standard practice in many machines, can eliminate the problem. This seemingly simple operation is greatly complicated in the Booster by the need to synchronize extraction to beam already circulating in the Main Injector. Coupled with the inflexibility of the Booster resonant magnetic cycle, cycle to cycle variations, and constraints inherent in the accelerator physics, that requirement forces active control of the gap's azimuthal position throughout the acceleration process as the revolution frequency sweeps rapidly. Until recently, the complexities of actually implementing and demonstrating this process in the Booster had not been worked out. This paper describes a successful demonstration of gap cogging in the Booster

  15. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Naser, Nimal; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited

  16. Septum magnets for booster ring

    International Nuclear Information System (INIS)

    Mishra, R.K.; Mhaskar, S.P.; Ramamurthi, S.S.

    1991-01-01

    Synchrotron radiation source facility in CAT will employ one septum magnet for the injection of 20 MeV electron beam from the microtron and another septum magnet for the extraction of 700 MeV electron beam from the booster synchrotron. The septum is a boundary that combines or separates the beam by providing the different deflecting fields on either side of this boundary. In this magnet, septum sheet must be as thin as possible to reduce the beam losses and fringing field must be very low. Two septum magnets have been designed, one has 2 mm thick septum sheet for the injection of beam and another one has 3 mm thick septum sheet for the extraction of beam. The field strength of injection and extraction septum magnets, is 0.15 T and 0.88 T respectively. The fringing field near the septum sheet is only 10 G and 30 G for the injection and extraction magnet respectively. The field simulation has been done by computer code PANDIRA. The field homogeneity within gap is ± 0.1%. The design details are discussed in this paper. (author). 4 refs., 1 tab., 1 fig

  17. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  18. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  19. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    Science.gov (United States)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  20. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  1. Space Power Experiments Aboard Rockets SPEAR-3

    National Research Council Canada - National Science Library

    Raitt, W. J

    1997-01-01

    The SPEAR-3 program was a sounding rocket payload designed to study the interaction of a charged body with the Earth's upper atmosphere with particular reference to the discharging ability of selected...

  2. Reusable Boosters in a European-Russian Perspective

    Science.gov (United States)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  3. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  4. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  5. Data acquisition and control of the Zero Gradient Synchrotron 500 MeV booster synchrotron

    International Nuclear Information System (INIS)

    Timm, R.E.; Forrestal, J.; Hogrefe, R.; Voss, D.

    1977-01-01

    A data acquisition and control philosophy for the Zero Gradient Synchrotron (ZGS) 500 MeV booster has involved a top down design incorporating all of the systems comprising the booster. Consideration of operational complexity was necessary because the booster is to be used simultaneously for ZGS injection, and solid state physics studies. Existing software and hardware capabilities of the ZGS computer were considered. The resulting data acquisition and control system is based on a mix of sequential logic and a minicomputer. Hardware considerations were based on a ten year life expectancy of the booster. Due to time, budget, and manpower constraints, the incorporation of the total design has been divided into three phases of implementation. The first phase is covered and the remaining phases are outlined

  6. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  7. Response to booster doses of hepatitis B vaccine among young adults who had received neonatal vaccination.

    Directory of Open Access Journals (Sweden)

    Paul K S Chan

    Full Text Available Newborns who have received hepatitis B immunization in 1980s are now young adults joining healthcare disciplines. The need for booster, pre- and post-booster checks becomes a practical question.The aim of this study is to refine the HBV vaccination policy for newly admitted students in the future.A prospective study on medical and nursing school entrants to evaluate hepatitis B serostatus and the response to booster doses among young adults.Among 212 students, 17-23-year-old, born after adoption of neonatal immunization, 2 (0.9% were HBsAg positive, 40 (18.9% were anti-HBs positive. At 1 month after a single-dose booster for anti-HBs-negative students, 14.5% had anti-HBs 100 mIU/mL, respectively. The anti-HBs levels were significantly higher for females than males (mean [SD]: 431 [418] vs. 246 [339] mIU/mL, P = 0.047. At 2-4 month after the third booster dose, 97.1% had anti-HBs >100 mIU/mL and 2.9% had 10-100 mIU/mL.Pre-booster check is still worthwhile to identify carriers among newly recruited healthcare workers born after adoption of neonatal immunization. A 3-dose booster, rather than a single dose, is required for the majority to achieve an anti-HBs level >100 mIU/mL, as memory immunity has declined in a substantial proportion of individuals. Cost-effectiveness of post-booster check for anti-HBs is low and should be further evaluated based on contextual specific utilization of results.

  8. Booster Applications Facility report, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P. (ed.)

    1991-06-01

    This report summarizes studies and planning performed by Brookhaven National Laboratory (BNL) personnel at the request of NASA for the design, construction and operation of experimental areas and facilities for utilization of ion beams from the BNL Booster synchrotron particle accelerator. These facilities would be primarily utilized to simulate space radiation for radiobiological research, shielding studies and detector calibrations. The feasibility of such a project has been established, preliminary designs and cost estimates have been developed and a formal proposal can be submitted pending DOE concurrence. The main body of this report consists of the material presented by BNL during the meeting with a NASA appointed Panel on December 10 and 11, 1990. The individual speakers have provided brief summaries of their talks and explanations of their figures. In addition there are two appendices. One, contains detailed discussion of the shared mode of operation and the corresponding beam compatibility tables. The second appendix contains cost estimate details. An executive summary on budgets and schedules has been added, containing possible phased construction and outfitting scenarios and the corresponding expense and commitment profiles as well as new operational cost estimates. Material contained in the executive summary reflects the correction of some errors and new studies performed in response to the NASA Panel suggestions.

  9. Emittance measurement and modeling for the Fermilab Booster

    Directory of Open Access Journals (Sweden)

    Xiaobiao Huang

    2006-01-01

    Full Text Available Turn-by-turn beam profile data measured at the Fermilab Booster are studied. Lattice models with experimental accelerator ramping parameters are used to obtain the lattice functions for data analysis. We studied the horizontal and vertical emittance growth behavior in different stages of a booster ramping cycle and its relation to the beam intensity. The transverse and longitudinal components in the horizontal beam width are separated by a fitting model which makes use of the different scaling rules of the beam momentum. We analyze the post-transition horizontal beam size oscillation based on a model where the longitudinal phase-space mismatch has resulted from rf voltage mismatch during the transition-energy crossing. We carried out systematic multiparticle simulation to show that the source of the vertical emittance growth is a combination of the random errors in skew-quadrupole and dipole fields, and the systematic Montague resonance. The effect of random quadrupole field is small for the Fermilab Booster because the betatron envelope tunes are reasonably far away from the half-integer stop band.

  10. Blood Pressure Directed Booster Trainings Improve Intensive Care Unit Provider Retention of Excellent Cardiopulmonary Resuscitation Skills.

    Science.gov (United States)

    Wolfe, Heather; Maltese, Matthew R; Niles, Dana E; Fischman, Elizabeth; Legkobitova, Veronika; Leffelman, Jessica; Berg, Robert A; Nadkarni, Vinay M; Sutton, Robert M

    2015-11-01

    Brief, intermittent cardiopulmonary resuscitation (CPR) training sessions, "Booster Trainings," improve CPR skill acquisition and short-term retention. The objective of this study was to incorporate arterial blood pressure (ABP) tracings into Booster Trainings to improve CPR skill retention. We hypothesized that ABP-directed CPR "Booster Trainings" would improve intensive care unit (ICU) provider 3-month retention of excellent CPR skills without need for interval retraining. A CPR manikin creating a realistic relationship between chest compression depth and ABP was used for training/testing. Thirty-six ICU providers were randomized to brief, bedside ABP-directed CPR manikin skill retrainings: (1) Booster Plus (ABP visible during training and testing) versus (2) Booster Alone (ABP visible only during training, not testing) versus (3) control (testing, no intervention). Subjects completed skill tests pretraining (baseline), immediately after training (acquisition), and then retention was assessed at 12 hours, 3 and 6 months. The primary outcome was retention of excellent CPR skills at 3 months. Excellent CPR was defined as systolic blood pressure of 100 mm Hg or higher and compression rate 100 to 120 per minute. Overall, 14 of 24 (58%) participants acquired excellent CPR skills after their initial training (Booster Plus 75% vs 50% Booster Alone, P = 0.21). Adjusted for age, ABP-trained providers were 5.2× more likely to perform excellent CPR after the initial training (95% confidence interval [95% CI], 1.3-21.2; P = 0.02), and to retain these skills at 12 hours (adjusted odds ratio, 4.4; 95% CI, 1.3-14.9; P = 0.018) and 3 months (adjusted odds ratio, 4.1; 95% CI, 1.2-13.9; P = 0.023) when compared to baseline performance. The ABP-directed CPR booster trainings improved ICU provider 3-month retention of excellent CPR skills without the need for interval retraining.

  11. Summary of Booster Development and Qualification Report

    Energy Technology Data Exchange (ETDEWEB)

    Francois, Elizabeth G. [Los Alamos National Laboratory; Harry, Herbert H. [Los Alamos National Laboratory; Hartline, Ernest L. [Los Alamos National Laboratory; Hooks, Daniel E. [Los Alamos National Laboratory; Johnson, Carl E. [Los Alamos National Laboratory; Morris, John S. [Los Alamos National Laboratory; Novak, Alan M. [Los Alamos National Laboratory; Ramos, Kyle J. [Los Alamos National Laboratory; Sanders, Victor E. [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory; Lorenz, Thomas [LLNL; Wright, Mark [AWE; Botcher, Tod [PANTEX; Marx, Erin [NSWC-IHDIV; Gibson, Kevin [NSWC-IHDIV

    2012-06-21

    This report outlines booster development work done at Los Alamos National Laboratory from 2007 to present. The booster is a critical link in the initiation train of explosive assemblies, from complex devices like nuclear weapons to conventional munitions. The booster bridges the gap from a small, relatively sensitive detonator to an insensitive, but massive, main charge. The movement throughout the explosives development community is to use more and more insensitive explosive components. With that, more energy is needed out of the booster. It has to initiate reliably, promptly, powerfully and safely. This report is divided into four sections. The first provides a summary of a collaborative effort between LANL, LLNL, and AWE to identify candidate materials and uniformly develop a testing plan for new boosters. Important parameters and the tests required to measure them were defined. The nature of the collaboration and the specific goals of the participating partners has changed over time, but the booster development plan stands on its own merit as a complete description of the test protocol necessary to compare and qualify booster materials, and is discussed in its entirety in this report. The second section describes a project, which began in 2009 with the Department of Defense to develop replacement booster formulations for PBXN-7. Replacement of PBXN-7 was necessary because it contained Triaminotrinitrobenzene (TATB), which was becoming unavailable to the DoD and because it contained Cyclotrimethylenetrinitramine (RDX), which was sensitive and toxic. A LANL-developed explosive, Diaminoazoxyfurazan (DAAF), was an important candidate. This project required any replacement formulation be a drop-in replacement in existing munitions. This project was timely, in that it made use of the collaborative booster development project, and had the additional constraint of matching shock sensitivity. Additionally it needed to be a safety improvement, and a performance

  12. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  13. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  14. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  15. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 10 10 to 1.5 x 10 13 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  16. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  17. Design of the Zero Gradient Synchrotron Booster-II lattice

    International Nuclear Information System (INIS)

    Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.

    1975-01-01

    A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)

  18. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  19. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  20. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  2. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  3. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  4. 30 CFR 57.8518 - Main and booster fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality is...

  5. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  6. The Suborbital Particle Aggregation and Collision Experiment (SPACE): studying the collision behavior of submillimeter-sized dust aggregates on the suborbital rocket flight REXUS 12.

    Science.gov (United States)

    Brisset, Julie; Heißelmann, Daniel; Kothe, Stefan; Weidling, René; Blum, Jürgen

    2013-09-01

    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built, and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model.

  7. A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and its Transformation Products

    Directory of Open Access Journals (Sweden)

    Lars Carlsen

    2008-01-01

    Full Text Available QSAR/QSTR modelling constitutes an attractive approach to preliminary assessment of the impact on environmental health by a primary pollutant and the suite of transformation products that may be persistent in and toxic to the environment. The present paper studies the impact on environmental health by residuals of the rocket fuel 1,1-dimethyl hydrazine (heptyl and its transformation products. The transformation products, comprising a variety of nitrogen containing compounds are suggested all to possess a significant migration potential. In all cases the compounds were found being rapidly biodegradable. However, unexpected low microbial activity may cause significant changes. None of the studied compounds appear to be bioaccumulating. Apart from substances with an intact hydrazine structure or hydrazone structure the transformation products in general display rather low environmental toxicities. Thus, it is concluded that apparently further attention should be given to tri- and tetramethyl hydrazine and 1-formyl 2,2-dimethyl hydrazine as well as to the hydrazones of formaldehyde and acetaldehyde as these five compounds may contribute to the overall environmental toxicity of residual rocket fuel and its transformation products.

  8. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  9. Frequency of booster injections of allergoids.

    Science.gov (United States)

    Norman, P S; Creticos, P S; Marsh, D G

    1990-01-01

    In 1982, 43 ragweed-sensitive patients receiving maintenance injections of full doses of ragweed allergoid were selected for a study of the immunologic and clinical efficacy of booster injections only four times a year. These patients had participated for 2 to 7 years as part of a trial of mixes of up to four allergoids to common pollens in the mid-Atlantic area tailored to each patient's skin test sensitivity. They were divided into a group (21 patients) to receive injections every 3 months and a group (22 patients) to receive injections about every 6 weeks (eight injections per year). Patients were rerandomized after 1 year so that half of each original group switched to the alternate treatment, and this program was continued until after the ragweed season of 1985. Thirty-four patients were still under study the last year. Doses, per injection, were 100 allergoid units (1 allergoid unit equals 100 PNU) of each allergen in the mixture. Symptom scores during the 8 weeks of each of the four ragweed seasons were not significantly higher in the 3-month treated group. IgG antibody levels to Amb a I (antigen E) were followed until early 1984 and were not significantly different in the two groups, even though the 6-week treated patients received a two times higher cumulative dose per year. Rates of local and systemic reactions (percent of injections eliciting reactions) were not different in the groups, which means that the 3-month treated group had about half as many reactions by virtue of taking half as many injections.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  11. Maintaining the potential of a psycho-educational program: efficacy of a booster session after an intervention offered family caregivers at disclosure of a relative's dementia diagnosis.

    Science.gov (United States)

    Ducharme, Francine; Lachance, Lise; Lévesque, Louise; Zarit, Steven Howard; Kergoat, Marie-Jeanne

    2015-01-01

    Booster sessions as a means of maintaining the benefits of psycho-educational programs have received little attention in caregiving research. Caregivers were offered a booster session following participation in a program entitled Learning to Become a Family Caregiver (LBFC) intended to facilitate transition to the caregiver role after diagnostic disclosure of dementia in a relative. The 90-minute booster session served to review program content and afforded the opportunity to discuss and practice learned skills. This study sought to test the efficacy of the booster session in maintaining or recovering program effects at six months post-program. Participants in the program were randomly assigned to a group that received the booster session (n = 31) or a group that did not (n = 29). A third control group was also formed, which continued to receive only the usual care provided in memory clinics. Eligible participants - French-speaking primary caregivers of a relative diagnosed with Alzheimer's in the past nine months - were recruited in memory clinics in Quebec (Canada). Participants were blindly assessed before randomization and six months after the booster session on outcomes associated with a healthy role transition. Prediction analyses revealed one significant positive effect of the booster session: emergence of preparedness to provide care. Moreover, with or without the booster session, the program continued to have a positive effect on psychological distress and contributed to the emergence of self-efficacy in dealing with caregiving situations. The booster session had no significant effect on knowledge of services, planning for future care needs, use of reframing as a coping strategy, perceived informal support, and family conflicts. The limited effect observed is discussed in terms of the booster session's content and intensity. Recommendations are made for designing future research on the effect of booster sessions, including the importance of including a

  12. Operational behaviour of CO{sub 2} booster systems; Betriebsverhalten von CO{sub 2}-Booster-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Javerschek, Oliver; Hieble, Tobias [BITZER Kuehlmaschinenbau GmbH, Sindelfingen (Germany)

    2011-07-01

    The operating characteristics of booster systems and the resulting operating conditions of CO{sub 2} booster systems in supermarket refrigeration are explained and discussed. Criteria and challenges of different operating and load conditions are gone into. Simulated and measured operating states of a small-scale booster system are compared and evaluated. [German] In der vorliegenden Veroeffentlichung werden unterschiedliche Betriebsverhalten und die daraus resultierenden Betriebsbedingungen von CO{sub 2}-Booster-Systemen in der Supermarktkaelte erlaeutert und diskutiert. Dabei werden wesentliche Kriterien und Herausforderungen bei den unterschiedlichen Betriebs- und Lastbedingungen besprochen. Ausserdem werden simulierte und gemessene Betriebszustaende einer kleinen Booster-Kaelteanlage vergleichend betrachtet und bewertet.

  13. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  14. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    International Nuclear Information System (INIS)

    Huang, Xiaobiao

    2005-01-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  15. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  16. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  17. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  18. Results from the AGS Booster transverse damper

    International Nuclear Information System (INIS)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 x 10 13 protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s -1 have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented

  19. Measuring target for the PS Booster

    CERN Multimedia

    1971-01-01

    The measuring target for the PS Booster (originally 800 MeV, now 1.4 GeV). It measures the size of the beam by destroying all particles with amplitudes greater than the size of the fork, the position and width of which are adjustable. The plunging time is only 20 ms and the acceleration at the tip of the fork reaches 90 g. The servo-controlled linear motor is shown detached from the mechanism. See also 7602008.

  20. Momentum Cogging at the Fermilab Booster

    International Nuclear Information System (INIS)

    Seiya, K.; Drennan, C.C.; Pellico, W.; Triplett, A.K.; Waller, A.M.

    2012-01-01

    The Fermilab Booster has an upgrade plan called the Proton Improvement Plan (PIP). The flux throughput goal is 2E17 protons/hour which, is almost double the present flux, 1.1E17 protons/hour. The beam loss in the machine is going to be an issue. The Booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector (MI). The current cogging process synchronizes the extraction kicker gap to the MI by changing radial position of the beam during the cycle. The gap creation occurs at about 700 MeV, which is about 6 ms into the cycle. The cycle-to-cycle variations of the Booster are larger at lower energy. However, changing the radial position at low energy for cogging is limited because of aperture. Momentum cogging is able to move the gap creation to an earlier time by using dipole correctors and radial position feedback, and is able to control the revolution frequency and radial position at the same time. The new cogging is expected to reduce beam loss and not be limited by aperture. The progress of the momentum cogging system development is going to be discussed in this paper.

  1. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  2. Relativistic heavy ions from the BNL [Brookhaven National Laboratory] booster medical research and technological applications

    International Nuclear Information System (INIS)

    Thieberger, P.

    1990-05-01

    The BNL Booster, now nearing completion, was designed to inject protons and heavy ions into the Alternating Gradient Synchrotron (AGS) for further acceleration. In the future, ion beams from the AGS will in turn be further accelerated in the Relativistic Heavy Ion Collider (RHIC). Given the wide range of ion masses, energies and beam intensities the Booster will generate, other important applications should be considered. Dedicated use of the Booster for such applications may be possible during limited periods. However shared use would be preferable from the points of view of availability, affordability and efficiency. While heavy ions of a given isotope are injected into the AGS, the same or other ion species from the Booster could be simultaneously delivered to a new irradiation area for treatment of patients, testing of electronic devices or other applications and research. To generate two different beam species, ion sources on both Tandem accelerators would be used; one for AGS injection and the other one for a time-sharing application. Since the beam transport from the Tandems to the Booster can not be rapidly adjusted, it will be necessary to select beams of identical magnetic rigidity. The present study was performed to determine to what extent this compatibility requirement imposes limitations on the available ion species, energies and/or intensities

  3. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  4. Space shuttle solid rocket booster cost-per-flight analysis technique

    Science.gov (United States)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  5. Teacher's Action Plan for "Shuttle External Tank and Solid Rocket Booster Math"

    Science.gov (United States)

    Prince, Mike

    2007-01-01

    My name is Mike Prince and I was one of eleven Brevard County teachers selected by United Space Alliance, LLC (USA), to work at the Kennedy Space Center (KSQ along side USA & NASA engineers during the Summer of 2007. Attached is a summary of my experience.

  6. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  7. History of the development of rocket technology and astronautics in Poland

    Science.gov (United States)

    Geisler, W.

    1977-01-01

    The development of rocket technology in Poland is outlined. The history cites 13th century use of war rockets in combating Tartars as well as 20th century studies of the future and reality of space flights.

  8. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  9. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  10. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  11. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  12. Studies of the system-environment interaction by electron-beam emission from a sounding rocket payload in the ionosphere

    International Nuclear Information System (INIS)

    Myers, N.B.

    1989-01-01

    The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle a low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. The 1-keV electron beam was generated at beam currents of 1 mA to 48 mA, measured at the exit aperture of the electron gun. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1,000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential (400 V to 1,000 V). The daughter current collection agreed well with the Parker-Murphy model, while the mother current collection always exceeded the Parker-Murphy limit and even exceeded the Langmuir-Blodgett predicted current below 240 km

  13. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  14. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  15. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  16. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  17. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  18. Preparations for Upgrading the RF Systems of the PS Booster

    CERN Document Server

    Albright, Simon; Shaposhnikova, Elena

    2016-01-01

    The accelerators of the LHC injector chain need to be upgraded to provide the HL-LHC beams. The PS Booster, the first synchrotron in the LHC injection chain, uses three different RF systems (first, second and up to tenth harmonic) in each of its four rings. As part of the LHC Injector Upgrade the current ferrite RF systems will be replaced with broadband Finemet cavities, increasing the flexibility of the RF system. A Finemet test cavity has been installed in Ring 4 to investigate its effect on machine performance, especially beam stability, during extensive experimental studies. Due to large space charge impedance Landau damping is lost through most of the cycle in single harmonic operation, but is recovered when using the second harmonic and controlled longitudinal emittance blow-up. This paper compares beam parameters during acceleration with and without the Finemet test cavity. Comparisons were made using beam measurements and simulations with the BLonD code based on a full PS Booster impedance model. Thi...

  19. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  20. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  1. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  2. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  3. The injection and extraction of SSRF booster

    International Nuclear Information System (INIS)

    Li Yuan; Li Haohu; Liu Guimin; Li Deming

    2008-01-01

    The layout of injection and extraction system were introduced in this paper. The horizontal and vertical injection acceptance are about 23 πmm·mrad and 37 πmm·mrad, respectively, while emittance of the injected beam is 9 πmm·mrad (3σ). This ensures the high injection efficiency. Three slow kickers can form a good bump. The inside position of the entrance of septum is set to 15 mm, where the bumped beam and the extraction beam are 10 mm and 22 mm, respectively, far from the booster central orbit. (authors)

  4. YALINA Booster subcritical assembly modeling and analyses

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: Accurate simulation models of the YALINA Booster assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus have been developed by Argonne National Laboratory (ANL) of the USA. YALINA-Booster has coupled zones operating with fast and thermal neutron spectra, which requires a special attention in the modelling process. Three different uranium enrichments of 90%, 36% or 21% were used in the fast zone and 10% uranium enrichment was used in the thermal zone. Two of the most advanced Monte Carlo computer programs have been utilized for the ANL analyses: MCNP of the Los Alamos National Laboratory and MONK of the British Nuclear Fuel Limited and SERCO Assurance. The developed geometrical models for both computer programs modelled all the details of the YALINA Booster facility as described in the technical specifications defined in the International Atomic Energy Agency (IAEA) report without any geometrical approximation or material homogenization. Materials impurities and the measured material densities have been used in the models. The obtained results for the neutron multiplication factors calculated in criticality mode (keff) and in source mode (ksrc) with an external neutron source from the two Monte Carlo programs are very similar. Different external neutron sources have been investigated including californium, deuterium-deuterium (D-D), and deuterium-tritium (D-T) neutron sources. The spatial neutron flux profiles and the neutron spectra in the experimental channels were calculated. In addition, the kinetic parameters were defined including the effective delayed neutron fraction, the prompt neutron lifetime, and the neutron generation time. A new calculation methodology has been developed at ANL to simulate the pulsed neutron source experiments. In this methodology, the MCNP code is used to simulate the detector response from a single pulse of the external neutron source and a C code is used to superimpose the pulse until the

  5. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  6. Position pickup of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The beam position around the 4 rings of the PS Booster (originally 800 MeV, now 1.4 GeV), is measured with electrostatic pickups (PU). They consist of a ceramic cylinder forming part of the vacuum chamber, and, in order to save space, they are located inside the multipole lenses. The inside of the ceramic is coated with a metallic layer, into which the form of the electrodes was cut by computer-controlled micro-sandblasting. Each PU has a pair of horizontal and a pair of vertical electrodes, as well as a separate intensity-sensing circular electrode.

  7. The low energy booster project status

    International Nuclear Information System (INIS)

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia

  8. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  9. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  10. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  11. Refining Ovarian Cancer Test accuracy Scores (ROCkeTS): protocol for a prospective longitudinal test accuracy study to validate new risk scores in women with symptoms of suspected ovarian cancer

    Science.gov (United States)

    Sundar, Sudha; Rick, Caroline; Dowling, Francis; Au, Pui; Rai, Nirmala; Champaneria, Rita; Stobart, Hilary; Neal, Richard; Davenport, Clare; Mallett, Susan; Sutton, Andrew; Kehoe, Sean; Timmerman, Dirk; Bourne, Tom; Van Calster, Ben; Gentry-Maharaj, Aleksandra; Deeks, Jon

    2016-01-01

    Introduction Ovarian cancer (OC) is associated with non-specific symptoms such as bloating, making accurate diagnosis challenging: only 1 in 3 women with OC presents through primary care referral. National Institute for Health and Care Excellence guidelines recommends sequential testing with CA125 and routine ultrasound in primary care. However, these diagnostic tests have limited sensitivity or specificity. Improving accurate triage in women with vague symptoms is likely to improve mortality by streamlining referral and care pathways. The Refining Ovarian Cancer Test Accuracy Scores (ROCkeTS; HTA 13/13/01) project will derive and validate new tests/risk prediction models that estimate the probability of having OC in women with symptoms. This protocol refers to the prospective study only (phase III). Methods and analysis ROCkeTS comprises four parallel phases. The full ROCkeTS protocol can be found at http://www.birmingham.ac.uk/ROCKETS. Phase III is a prospective test accuracy study. The study will recruit 2450 patients from 15 UK sites. Recruited patients complete symptom and anxiety questionnaires, donate a serum sample and undergo ultrasound scored as per International Ovarian Tumour Analysis (IOTA) criteria. Recruitment is at rapid access clinics, emergency departments and elective clinics. Models to be evaluated include those based on ultrasound derived by the IOTA group and novel models derived from analysis of existing data sets. Estimates of sensitivity, specificity, c-statistic (area under receiver operating curve), positive predictive value and negative predictive value of diagnostic tests are evaluated and a calibration plot for models will be presented. ROCkeTS has received ethical approval from the NHS West Midlands REC (14/WM/1241) and is registered on the controlled trials website (ISRCTN17160843) and the National Institute of Health Research Cancer and Reproductive Health portfolios. PMID:27507231

  12. Refining Ovarian Cancer Test accuracy Scores (ROCkeTS): protocol for a prospective longitudinal test accuracy study to validate new risk scores in women with symptoms of suspected ovarian cancer.

    Science.gov (United States)

    Sundar, Sudha; Rick, Caroline; Dowling, Francis; Au, Pui; Snell, Kym; Rai, Nirmala; Champaneria, Rita; Stobart, Hilary; Neal, Richard; Davenport, Clare; Mallett, Susan; Sutton, Andrew; Kehoe, Sean; Timmerman, Dirk; Bourne, Tom; Van Calster, Ben; Gentry-Maharaj, Aleksandra; Menon, Usha; Deeks, Jon

    2016-08-09

    Ovarian cancer (OC) is associated with non-specific symptoms such as bloating, making accurate diagnosis challenging: only 1 in 3 women with OC presents through primary care referral. National Institute for Health and Care Excellence guidelines recommends sequential testing with CA125 and routine ultrasound in primary care. However, these diagnostic tests have limited sensitivity or specificity. Improving accurate triage in women with vague symptoms is likely to improve mortality by streamlining referral and care pathways. The Refining Ovarian Cancer Test Accuracy Scores (ROCkeTS; HTA 13/13/01) project will derive and validate new tests/risk prediction models that estimate the probability of having OC in women with symptoms. This protocol refers to the prospective study only (phase III). ROCkeTS comprises four parallel phases. The full ROCkeTS protocol can be found at http://www.birmingham.ac.uk/ROCKETS. Phase III is a prospective test accuracy study. The study will recruit 2450 patients from 15 UK sites. Recruited patients complete symptom and anxiety questionnaires, donate a serum sample and undergo ultrasound scored as per International Ovarian Tumour Analysis (IOTA) criteria. Recruitment is at rapid access clinics, emergency departments and elective clinics. Models to be evaluated include those based on ultrasound derived by the IOTA group and novel models derived from analysis of existing data sets. Estimates of sensitivity, specificity, c-statistic (area under receiver operating curve), positive predictive value and negative predictive value of diagnostic tests are evaluated and a calibration plot for models will be presented. ROCkeTS has received ethical approval from the NHS West Midlands REC (14/WM/1241) and is registered on the controlled trials website (ISRCTN17160843) and the National Institute of Health Research Cancer and Reproductive Health portfolios. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted

  13. Compensation of dogleg effect in Fermilab Booster

    CERN Document Server

    Xiao Biao Huang

    2003-01-01

    The edge focusing of dogleg magnets in Fermilab Booster has been causing severe distortion to the horizontal linear optics. The doglegs are vertical rectangular bends, therefore the vertical edge focusing is canceled by body focusing and the overall effect is focusing in the horizontal plane. The maximum horizontal beta function is changed from 7m to 46.9m and maximum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This is believed to be one of the major reasons of beam loss. In this technote we demonstrate that this effect can be effectively corrected with Booster's quadrupole correctors in short straight sections (QS). There are 24 QS correctors which can alter horizontal linear optics with negligible perturbation to the vertical plane. The currents of correctors are determined by harmonic compensation, i.e., cancellation of dogleg's harmonics that are responsible for the distortion with that of QS correctors. By considering a few leading harmonics, the ideal lattice can be partly restored....

  14. Identifying strategies to improve the effectiveness of booster seat laws

    Science.gov (United States)

    2008-05-01

    The objective of this project was to identify strategies to improve the effectiveness of booster seat laws. The project explored the possible factors that relate to the use and nonuse of booster seats, and examined the attitudes of law enforcement of...

  15. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  16. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  17. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  18. Response of booster dose of cuban recombinant hepatitis-B vaccine in nonresponder and hyporesponder children

    International Nuclear Information System (INIS)

    Dahifar, H.; Mousavi, F.; Ghorbani, A.

    2007-01-01

    Acute hepatitis B infection can debilitate a patient for weeks and occasionally has a fatal outcome, while chronic infection is a major threat to the individual. To assess response of nonresponder and hyporesponder children to booster dose of Cuban recombinant hepatitis B vaccine. An interventional, descriptive study has been conducted on children who had been immunized with Cuban recombinant Hepatitis B vaccine and their antibody titers were <10mIU/ml (nonresponder) and 10-100mIU/ml (hyporesponder) administered booster dose of the same vaccine in their Deltoid muscles. The response of 141 children with the mean age of 1.9 years to booster dose of vaccine were 94.3% and 100% vaccines with the first and second booster dose of vaccination respectively. The anti-HBs titer in nonresponders and hyporesponders were 468+-346 and 783+-346mIU/ml respectively with significant differences between two groups (P=0.001). This study demonstrate moderately increase antibody production in the majority of vaccines with single supplementary vaccine. (author)

  19. Theodore von Karman - Rocket Scientist

    Indian Academy of Sciences (India)

    seminal contributions to several areas of fluid and solid mechanics, as the first head of ... nent position in Aeronautics research, as a pioneer of rocket science in America ... toral work, however, was on the theory of buckling of large structures.

  20. EUVS Sounding Rocket Payload

    Science.gov (United States)

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  1. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)

    2007-10-15

    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  2. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  3. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  4. Exercise, Manual Therapy, and Booster Sessions in Knee Osteoarthritis: Cost-Effectiveness Analysis From a Multicenter Randomized Controlled Trial.

    Science.gov (United States)

    Bove, Allyn M; Smith, Kenneth J; Bise, Christopher G; Fritz, Julie M; Childs, John; Brennan, Gerard P; Abbott, J Haxby; Fitzgerald, G Kelley

    2018-01-01

    Limited information exists regarding the cost-effectiveness of rehabilitation strategies for individuals with knee osteoarthritis (OA). The study objective was to compare the cost-effectiveness of 4 different combinations of exercise, manual therapy, and booster sessions for individuals with knee OA. This economic evaluation involved a cost-effectiveness analysis performed alongside a multicenter randomized controlled trial. The study took place in Pittsburgh, Pennsylvania; Salt Lake City, Utah; and San Antonio, Texas. The study participants were 300 individuals taking part in a randomized controlled trial investigating various physical therapy strategies for knee OA. Participants were randomized into 4 treatment groups: exercise only (EX), exercise plus booster sessions (EX+B), exercise plus manual therapy (EX+MT), and exercise plus manual therapy and booster sessions (EX+MT+B). For the 2-year base case scenario, a Markov model was constructed using the United States societal perspective and a 3% discount rate for costs and quality-adjusted life years (QALYs). Incremental cost-effectiveness ratios were calculated to compare differences in cost per QALY gained among the 4 treatment strategies. In the 2-year analysis, booster strategies (EX+MT+B and EX+B) dominated no-booster strategies, with both lower health care costs and greater effectiveness. EX+MT+B had the lowest total health care costs. EX+B cost ${\\$}$1061 more and gained 0.082 more QALYs than EX+MT+B, for an incremental cost-effectiveness ratio of ${\\$}$12,900/QALY gained. The small number of total knee arthroplasty surgeries received by individuals in this study made the assessment of whether any particular strategy was more successful at delaying or preventing surgery in individuals with knee OA difficult. Spacing exercise-based physical therapy sessions over 12 months using periodic booster sessions was less costly and more effective over 2 years than strategies not containing booster sessions for

  5. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  6. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  7. Autonomous booster device of a safety valve

    International Nuclear Information System (INIS)

    Namand, H.

    1983-01-01

    The invention concerns an autonomous booster device of a protection safety valve of a pressure vessel. The valve comprises a hollow structure, a seat connected with a mobile flap forming one piece with a stem and a calibration spring bearing on the stem and on the valve structure to maintain the flap bearing on the seat. The stem of the flap is prolongated in a box forming one piece with the valve structure and receives an added push of a spring. The box acts as a pressure device of which the piston can exercise on the stem a push opposite to and larger than the spring one. The feeding device of the pressure box is finally described in detail [fr

  8. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 10 13 protons and carbon to gold ions at 50-3 x 10 9 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  9. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  10. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  11. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  12. Rf beam control for the AGS Booster

    International Nuclear Information System (INIS)

    Brennan, J.M.

    1994-01-01

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made

  13. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  14. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  15. Rf beam loading in the Brookhaven AGS with booster injection

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Raka, E.; Weng, W.T.

    1992-01-01

    Multi-batch bunched beam loading during injection from the Booster to the AGS will be discussed. The full intensity beam injection to the upgraded AGS rf system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feedback is necessary in order to guarantee a predictable hewn behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading may be limited by an emittance blow up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection

  16. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  17. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  18. Cabling design of booster and storage ring construction progress of TPS

    International Nuclear Information System (INIS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.

    2017-01-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm"2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm"2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm"2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  19. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  20. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    Science.gov (United States)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  1. Logic and control module for the Fermilab booster beam damper

    International Nuclear Information System (INIS)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations

  2. A FET based kicker for a charge booster for the TRIUMF ISAC project

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    2001-07-01

    A charge booster unit is required as part of an upgrade to the ISAC facility at TRIUMF. ISAC is an isotope separator coupled to an accelerator. ISAC is presently capable of accelerating only isotopes with atomic mass up to 30. The charge booster will allow ISAC to accelerate all the masses in the periodic table. A fast kicker system has been built to study the characteristics of an existing charge booster, designed by ISN in Grenoble, to assess the suitability of using this charge booster at TRIUMF. This fast kicker will subsequently be used in the TRIUMF ISAC facility for time of flight separation of the chosen charge and to recycle the higher and lower charges back to the charge booster. This will increase the efficiency from 10% to 60%. The kicker system includes a pair of deflector plates. One plate is charged up to -3.5 kV by a PET based modulator, while the other plate is held at ground potential. The modulator consists of two stacks of FETs operating in push pull with variable output voltage, pulse width, and repetition rate from virtually DC to 52 kHz. The measured high voltage output pulse rise and fall times are 63 ns and the minimum pulse width is 350 ns. The maximum pulse width is dependent upon the repetition rate. The large dynamic range for the repetition rate and pulse width required a novel circuit design and control technique, which also resulted in an energy efficient kicker system. This paper describes the design of the kicker system and shows the results of measurements. (author)

  3. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  4. An example of successful international cooperation in rocket motor technology

    Science.gov (United States)

    Ellis, Russell A.; Berdoyes, Michel

    2002-07-01

    The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative

  5. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  6. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  7. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    Science.gov (United States)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  8. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age.

    Directory of Open Access Journals (Sweden)

    Rose-Minke Schure

    Full Text Available UNLABELLED: Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA- were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64117538.

  9. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  10. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Zemcov, M.; Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I. [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); Suzuki, K., E-mail: zemcov@caltech.edu [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  11. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  12. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  13. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1991-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. A the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the coarse of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development

  14. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1992-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. At the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the course of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available both for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development. (author)

  15. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  16. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  17. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Borland, M.; Harkay, K.; Lindberg, R.; Yao, C.-Y.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that the efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.

  18. Design and status of the AGS booster accelerator

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described

  19. Design and status of the AGS booster accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described. (LEW)

  20. Simulations Of Transverse Stacking In The NSLS-II Booster

    International Nuclear Information System (INIS)

    Fliller, R. III; Shaftan, T.

    2011-01-01

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.

  1. Thermoeconomic model of a commercial transcritical booster refrigeration system

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2011-01-01

    For cooling applications in supermarkets, booster refrigeration systems operating in both transcritical and subcritical conditions are increasingly used. A thermodynamic model of a transcritical booster refrigeration plant is tailored to match the new generation of commercial refrigeration plants...... of exergy for cooling. Second law analysis is needed to illustrate the characteristics of the plant at different load rates, according to the alternating load profile and corresponding to outdoor conditions. With the detailed model, different uses of the analysis are possible, including thermoeconomic...

  2. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  3. A rookie's guide to Booster operations. Booster technical note no. 231

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Alternating Gradient Synchrotron Dept.

    1998-09-29

    The purpose of the Booster is to act as an injector for the AGS. It accelerates both protons and other ions. Proton acceleration is distinguished from the acceleration of other ions for several reasons. First, the experimental physics associated with protons, called High Energy Physics is different than that associated with other Ions, called Heavy Ion Physics. From the machine perspective, the process of injection of so called Heavy Ions (ions which are not protons), is distinctly different, from that of protons. A different preinjector, or injector for the Booster, is used for each case. For Protons, a 200 MeV Linear accelerator (The Linac) serves as a preinjector; for Heavy Ions, the Tandem Van De Graaf (The Tandem) is the preinjector. An attribute of the circulating beam which determines to a large degree what problems and what type of machine setup is involved is the beam intensity. The author's focus in this guide is on trying to convey the knowledge and experience involved in the operation of the Booster. Many of the problems encountered can be traced back to equipment failures, often power supplies. Although diagnostics are used, there can also be issues with the controls system itself. Problems with the controls system and prevent fixing or even finding a problem with a machine. The issue of improving a machines' performance can often involve trial and error and observations. The hard part is finding the relationships between things in the day to day operation of the machine. Abstractions about physics, information about controls and instrumentation, and purely empirical observations of how the machine behaves are all part of it.

  4. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  5. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  6. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  7. FCC-ee Pre-Booster Accelerators

    CERN Document Server

    Ogur, S; Zimmermann, F

    2017-01-01

    CERN’s ambitious new project, Future Circular Collider-ee, will have four operations as Z, W, H, and tt factories covering energies from 45.6 to 175 GeV. The main challenge of Z-operation is to achieve currents as high as 1450 mA; this will depend heavily on the injector. For this reason, we conclude that we need a high bunch charge of 3.3 × 1010, for both e− and e+, and fill 91 500 of each of those bunches into the collider. To achieve the goal, we have designed an S-band (2.856 GHz) normal conducting electron linac up to 6 GeV, which we will use to create and accelerate both electrons and positrons. Positrons will be created inside the linac at 4.46 GeV, will be accelerated up to 1.54 GeV at the linac, and will then be transferred to the designed damping ring. In this paper, we present the designed linac, damping ring, and the operational requirements of the 100 km booster.

  8. NSRL Extraction Bump Control in the Booster

    International Nuclear Information System (INIS)

    Brennan, L.

    2008-01-01

    Due to inadequacies in the user interface of the booster orbit control system, a number of new tools were developed. The first priority was an accurate calculation of the winding currents given specific displacements at each extraction septa. Next, the physical limits of the power supplies (±600 amps) needed to be taken into account. In light of this limit, a system is developed that indicates to the user what the allowed values of one bump parameter are once the other two have been specified. Finally, techniques are developed to account for the orbit behavior once power supplies are requested to exceed their ±600 amp limit. This includes a recalculation of bump parameters and a calculation of the amplitude of the residuals. Following this, possible areas for further development are outlined. These techniques were computationally developed in Mathematica and tested in the Methodical Accelerator Design (MAD) program before they were implemented into the control system. At the end, a description of the implementation of these techniques in a new interface is described. This includes a depiction of the appearance and functionality of the graphical user interface, a description of the input and output flow, and an outline of how each important calculation is performed

  9. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  10. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  11. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  12. Efficacy and Duration of Immunity after Yellow Fever Vaccination: Systematic Review on the Need for a Booster Every 10 Years

    Science.gov (United States)

    Gotuzzo, Eduardo; Yactayo, Sergio; Córdova, Erika

    2013-01-01

    Current regulations stipulate a yellow fever (YF) booster every 10 years. We conducted a systematic review of the protective efficacy and duration of immunity of YF vaccine in residents of disease-endemic areas and in travelers to assess the need for a booster in these two settings and in selected populations (human immunodeficiency virus–infected persons, infants, children, pregnant women, and severely malnourished persons). Thirty-six studies and 22 reports were included. We identified 12 studies of immunogenicity, 8 of duration of immunity, 8 of vaccine response in infants and children, 7 of human-immunodeficiency virus–infected persons, 2 of pregnant women, and 1 of severely malnourished children. Based on currently available data, a single dose of YF vaccine is highly immunogenic and confers sustained life-long protective immunity against YF. Therefore, a booster dose of YF vaccine is not needed. Special considerations for selected populations are detailed. PMID:24006295

  13. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  14. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  15. Launch Excitement with Water Rockets

    Science.gov (United States)

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  16. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P.

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses...... prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post......-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after...

  17. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  18. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    Science.gov (United States)

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. © The American Society of Tropical Medicine and Hygiene.

  19. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    present study employs the COMSOL Multphysics framework to solve the coupled eigenvalue problem using the finite element approach. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluated the gas flow inside of a solid rocket motor using St. Robert's law modeling solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are used by the coefficient form of the mathematics module to determine the eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. Pertinent results from these analyses are the complex valued eigenvalue and eigenvectors. Comparisons are made to the French results to evaluate the modeling approach. A comparison of the French results with that of the present analysis is displayed in figures 1 and 2, respectively. The graphic shows the first tangential eigenvector's real (a) and imaginary (b) values.

  20. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  1. Baseline immunity to diphtheria and immunologic response after booster vaccination with reduced diphtheria and tetanus toxoid vaccine in Thai health care workers.

    Science.gov (United States)

    Wiboonchutikul, Surasak; Manosuthi, Weerawat; Sangsajja, Chariya; Thientong, Varaporn; Likanonsakul, Sirirat; Srisopha, Somkid; Termvises, Patamavadee; Rujitip, Jitlada; Loiusirirotchanakul, Suda; Puthavathana, Pilaipan

    2014-07-01

    A prospective study to evaluate immune status against diphtheria and immunologic response after tetanus-diphtheria (Td) booster vaccination was conducted in 250 Thai health care workers (HCWs). A protective antibody was found in 89.2% of the HCWs (95% confidence interval [CI], 83.3%-91.5%) before receipt of the Td booster vaccination, compared with 97.2% (95% CI, 95.1%-99.3%) after receipt of the first dose of booster (P diphtheria increased from 0.39 IU/mL (95% CI, 0.35-0.44 IU/mL) before the Td booster vaccination to 1.20 IU/mL (95% CI, 1.12-1.29 IU/mL) after the vaccination (P diphtheria, which still circulates in Thailand. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    Science.gov (United States)

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  3. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  4. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Science.gov (United States)

    Pancoast, Justin; Garrett, William; Moe, Gulia

    2015-01-01

    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  5. Emergency department transport rates of children from the scene of motor vehicle collisions: do booster seats make a difference?

    Science.gov (United States)

    House, Darlene R; Huffman, Gretchen; Walthall, Jennifer D H

    2012-11-01

    Motor vehicle collisions (MVCs) are the leading cause of death and disability among children older than 1 year. Many states currently mandate all children between the ages of 4 and 8 years be restrained in booster seats. The implementation of a booster-seat law is generally thought to decrease the occurrence of injury to children. We hypothesized that appropriate restraint with booster seats would also cause a decrease in emergency department (ED) visits compared with children who were unrestrained. This is an important measure as ED visits are a surrogate marker for injury. The main purpose of this study was to look at the rate of ED visits between children in booster seats compared with those in other or no restraint systems involved in MVCs. Injury severity was compared across restraint types as a secondary outcome of booster-seat use after the implementation of a state law. A prospective observational study was performed including all children 4 to 8 years old involved in MVCs to which emergency medical services was dispatched. Ambulance services used a novel on-scene computer charting system for all MVC-related encounters to collect age, sex, child-restraint system, Glasgow Coma Scale score, injuries, and final disposition. One hundred fifty-nine children were studied with 58 children (35.6%) in booster seats, 73 children in seatbelts alone (45.2%), and 28 children (19.1%) in no restraint system. 76 children (47.7%), 74 by emergency medical services and 2 by private vehicle, were transported to the ED with no significant difference between restraint use (P = 0.534). Utilization of a restraint system did not significantly impact MVC injury severity. However, of those children who either died (n = 2) or had an on-scene decreased Glasgow Coma Scale score (n = 6), 75% (6/8) were not restrained in a booster seat. The use of booster-seat restraints does not appear to be associated with whether a child will be transported to the ED for trauma evaluation.

  6. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates.

    Science.gov (United States)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P; Nielsen, Flemming; Grandjean, Philippe; Budtz-Jørgensen, Esben; Heilmann, Carsten

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after adjustment for sex and age. Although the study involved a small number of subjects, these findings of a PFAS-associated reduction of the early humoral immune response to booster vaccination in healthy adults supported previous findings of PFAS immunosuppression in larger cohorts. Furthermore, the results suggested that cellular mechanisms right after antigen exposure should be investigated more closely to identify possible mechanisms of immunosuppression from PFAS.

  7. A novel kind of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Lo, R.E. [Berlin University of Technology (Germany). Rocket Technology at the Aerospace Institute (ILR)

    1998-09-01

    Cryogenic Solid Propellants (CSPs) combine the simplicity of conventional solid propulsion with the high performance of liquid propulsion. By introducing materials that require cooling for remaining solid, CSPs offer an almost unlimited choice of propellant constituents that mights be selected with respect to specific impulse, density or environmental protection. The prize to be paid for these advantages is the necessity of constant cooling and the requirement of special design features that provide combustion control by moving from deflagration to hybrid like boundary layer combustion. This is achieved by building the solid propellant grains out of macroscopic elements rather than using the quasi homogeneous mixture of conventional composites. The elements may be coated, providing protection and support. Different elements may be designed for individual tasks and serve as modules for ignition, sustained combustion, gas generation, combustion efficiency enhancement, etc. Modular dissected grains offer many new ways of interaction inside the combustion chamber and new degrees of freedom for the designer of such `multiple internal hybrid grains`. At a preliminary level, a study finished in Germany 1997 demonstrated large payload gains when the US space Shuttle and the ARIANE 5 boosters were replaced by CSP-boosters. A very preliminary cost analysis resulted in development costs in the usual magnitude (but not in higher ones). Costs of operation were identified as crucial, but not established. Some experimental work in Germany is scheduled to begin in 1998, almost all details in this article (and many more that were not mentioned - most prominent cost analyses of CSP development and operations) wait for deeper analysis and verification. Actually, a whole new world new of world of chemical propulsion awaits exploration. The topic can be looked up and discussed at the web site of the Advanced Propulsion Workshop of the International Academy of Astronautics. The author

  8. Does a booster intervention augment the preventive effects of an abbreviated version of the coping power program for aggressive children?

    Science.gov (United States)

    Lochman, John E; Baden, Rachel E; Boxmeyer, Caroline L; Powell, Nicole P; Qu, Lixin; Salekin, Karen L; Windle, Michel

    2014-01-01

    Booster interventions have been presumed to be important methods for maintaining the effects of evidence-based programs for children with behavioral problems, but there has been remarkably little empirical attention to this assumption. The present study examines the effect of a child-oriented booster preventive intervention with children who had previously received an abbreviated version (24 child sessions, 10 parent sessions) of the Coping Power targeted prevention program. Two hundred and forty-one children (152 boys, 89 girls) were screened as having moderate to high levels of aggressive behavior in 4th grade, then half were randomly assigned to receive the abbreviated Coping Power program in 5th grade, and half of the preventive intervention children were then randomly assigned to a Booster condition in 6th grade. The Booster sessions consisted of brief monthly individual contacts, and were primarily with the children. Five assessments across 4 years were collected from teachers, providing a three-year follow-up for all children who participated in the project. Results indicated that the abbreviated Coping Power program (one-third shorter than the full intervention) had long-term effects in reducing children's externalizing problem behaviors, proactive and reactive aggression, impulsivity traits and callous-unemotional traits. The Booster intervention did not augment these prevention effects. These findings indicate that a briefer and more readily disseminated form of an evidence-based targeted preventive intervention was effective. The findings have potential implications for policy and guidelines about possible intervention length and booster interventions.

  9. LS1 Report: first beams in the Booster

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    On Monday, 2 June, the Operations Group injected the first beams into the PS Booster (PSB). The PSB, the second machine in the LHC injector chain to be recommissioned (Linac2 was the first), also provides beams for non-LHC experiments, some of which will need beams for physics as early as this summer.   The PS Booster. The Operations Group has been back in control of the PS Booster for a month now, having taken over where the engineers and experts of the EN Department, who were responsible for the maintenance work, left off. The group first ran tests with no beam (known as “cold check-out”) to check and requalify all the machine instrumentation, from the control room to the ring itself. Now in beam mode, the Booster is being prepared both to begin supplying the PS at the end of June and, above all, for physics to restart in the ISOLDE experimental area. The PS Booster console in the CERN Control Centre. “We have around 15 types of beams to ‘prepa...

  10. LS1 Report: PS Booster prepares for beam

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    With Linac2 already up and running, the countdown to beam in the LHC has begun! The next in line is the PS Booster, which will close up shop to engineers early next week. The injector will be handed over to the Operations Group who are tasked with getting it ready for active duty.   Taken as we approach the end of LS1 activities, this image shows where protons will soon be injected from Linac2 into the four PS Booster rings. Over the coming two months, the Operations Group will be putting the Booster's new elements through their paces. "Because of the wide range of upgrades and repairs carried out in the Booster, we have a very full schedule of tests planned for the machine," says Bettina Mikulec, PS Booster Engineer in Charge. "We will begin with cold checks; these are a wide range of tests carried out without beam, including system tests with power on/off and with varying settings, as well as verification of the controls system and timings." Amon...

  11. Protective factors and predictors of vulnerability to chronic stress: a comparative study of 4 communities after 7 years of continuous rocket fire.

    Science.gov (United States)

    Gelkopf, Marc; Berger, Rony; Bleich, Avraham; Silver, Roxane Cohen

    2012-03-01

    Many communities across the world are chronically exposed to extreme violence. Responses of residents from a city and rural community in Southern Israel, both exposed to 7 years of daily mortar fire, were compared to residents from demographically, socio-economically and geographically comparable non-exposed control samples to examine protective factors and predictors of vulnerability to chronic war-related attacks. Samples from a highly exposed city (Sderot) and a highly exposed rural community region (Otef Aza), along with a demographically comparable comparison non-exposed city (Ofakim) and non-exposed rural community region (Hevel Lachish), were obtained in 2007 using Random Digit Dialing. In total, 740 individuals (81.8% participation rate) were interviewed about trauma exposure, mental health, functioning and health care utilization. In the highly exposed city of Sderot, 97.8% of residents had been in close proximity to falling rockets; in the highly exposed rural community region of Otef Aza, 95.5% were similarly exposed. Despite exposure to chronic rocket attacks, residents of Otef Aza evidenced little symptomatology: only one person (1.5%) reported symptoms consistent with probable posttraumatic stress disorder (PTSD) and functioning levels did not differ from those of non-exposed communities. In contrast, posttraumatic stress (PTS), distress, functional impairment and health care utilization were substantially higher in the highly exposed city of Sderot than the other three communities. Lack of resources was associated with increased vulnerability among city residents; predictors of PTS across all samples included being female, older, directly exposed to rockets, history of trauma, suffering economic loss, and lacking social support. Increased community solidarity, sense of belonging and confidence in authorities may have served a protective function for residents of rural communities, despite the chronic attacks to which they were exposed. Copyright

  12. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  13. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2018-01-01

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, Pallergoids containing the adjuvant MPL ® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  14. Community awareness and predictors of uptake of pertussis booster vaccine in South Australian adults.

    Science.gov (United States)

    Clarke, Michelle; Thomas, Natalie; Giles, Lynne; Marshall, Helen

    2015-12-16

    Pertussis is a highly virulent vaccine preventable disease that remains a global challenge. This study aimed to assess community knowledge of pertussis infection as well as awareness and uptake of adult pertussis booster vaccine. A cross-sectional survey was conducted of randomly selected households in South Australia by Computer Assisted Telephone Interviews in 2011. Survey data were weighted to the age, gender and geographical area profile of the population. From 3124 randomly sampled contactable households, 1967 interviews were conducted (participation rate 63%) with individuals aged 18-93 years, including 608 parents of children aged pertussis (whooping cough) and 18% reported that a household member had previously contracted whooping cough infection. Most respondents considered whooping cough to be highly contagious (73%) and severe for infants (89%). Over half (51%) of those surveyed were aware that family members commonly transmit pertussis to infants. Despite high knowledge, pertussis vaccine uptake was low, with only 10% of respondents reporting pertussis vaccination in the previous five years. Whilst 61% of respondents were aware of the availability of an adult pertussis booster vaccine, only 8% (n=154) reported their Family Physician had discussed it with them. If provided free, 77% agreed that they would be more likely to accept a booster pertussis vaccination. Independent predictors of recent pertussis vaccination included higher education, larger household size, perception of greater disease severity for infants and discussion with a Family Physician about pertussis vaccination. Whilst knowledge regarding transmission and severity of Bordetella pertussis was high, uptake of pertussis vaccination for adults is remarkably low amongst the South Australian community. Improved awareness regarding the availability of a booster pertussis vaccine through Family Physicians and/or provision of funded pertussis vaccination for adults has the potential to improve

  15. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  16. Diamond Light Source Booster fast orbit feedback system

    International Nuclear Information System (INIS)

    Gayadeen, S.; Duncan, S.R.; Christou, C.; Heron, M.T.; Rowland, J.

    2012-01-01

    The Fast Orbit Feedback system that has been installed on the Diamond Light Source Storage ring has been replicated on the Booster synchrotron in order to provide a test bed for the development of the Storage Ring controller design. To realise this the Booster is operated in DC mode. The electron beam is regulated in two planes using the Fast Orbit Feedback system, which takes the beam position from 22 beam position monitors for each plane, and calculates offsets to 44 corrector power supplies at a sample rate of 10 kHz. This paper describes the design and realization of the controller for the Booster Fast Orbit Feedback, presents results from the implementation and considers future development

  17. Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment

    CERN Document Server

    Chernogor, Leonid F

    2013-01-01

    Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers.The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burn

  18. Effectiveness of Humidification with Heat and Moisture Exchanger-booster in Tracheostomized Patients.

    Science.gov (United States)

    Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio

    2017-08-01

    The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. There was an increase in the inspired air humidity after 1 h with the humidifier. The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result.

  19. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  20. Clinical and economic assessment of different general population strategies of pertussis vaccine booster regarding number of doses and age of application for reducing whooping cough disease burden: a systematic review.

    Science.gov (United States)

    Rodríguez-Cobo, Iria; Chen, Yen-Fu; Olowokure, Babatunde; Litchfield, Ian

    2008-12-09

    Pertussis continues to be an important cause of morbidity and mortality in children too young to be fully protected despite high vaccination coverage. This has been attributed to waning immunity in older people, leading to the development of strategies to increase levels of immunity. A systematic review was conducted to assess the clinical and cost effectiveness of four population-based strategies for pertussis booster vaccination: single booster at 12-24 months old, single pre-school booster, single adolescent booster and multiple boosters in adulthood every 10 years. Electronic databases and Internet resources were searched to June 2006. Nine observational studies, four mathematical models and eight economic evaluations were included, evaluating four different strategies. Strong evidence to recommend any of these strategies was not found.

  1. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  2. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  3. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  4. Vacuum chamber eddy current correction coil for the AGS Booster

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.

    1988-01-01

    The AGS Booster injector will perform a variety of functions. Heavy ion acceleration requires a bakeable, ultra-high vacuum system (VC). Acceleration for intense proton beams requires rapid cycling (B /preceq/ 10T/sec). If straight forward heavy walled VC are used, the field perturbations due to eddy currents are large. The state of the art lattice has highly distributed lumped sextupoles capable of substantially correcting the induced field nonlinearity. Nevertheless, for the very highest space charge-intensity limits, it is desirable to have the capability to remove eddy current fields at the source. Correction coils attached to the outside of the VC cancel its current aberrations over the required good field aperture. These can be passively powered by transformer action, using two turn windings around the magnet yoke. Programmed power supplies can also be used. This inexpensive additional correction option uses a three turn per quadrant coil which follows the local contour of the VC. Transverse movements of several mms of the VC will have no beam optical effect since the large field aberrations and their corrections have the same displaced coordinates. Experimental and computer studies will be presented, as well as mechanical and electrical design of a simple method of construction. 6 figs

  5. [Postdoctoral lecturer thesis in medicine: academic competence or career booster?].

    Science.gov (United States)

    Sorg, H; Betzler, C; Grieswald, C; Schwab, C G G; Tilkorn, D J; Hauser, J

    2016-06-01

    The postdoctoral lecturer thesis in medicine represents an essential success factor for the career of a physician; however, there is controversial discussion on whether this reflects academic competence or is more a career booster. In this context we conducted a survey among postdoctoral medical lecturers with the aim to evaluate the significance of this qualification. The online survey was performed using a questionnaire requesting biographical parameters and subjective ratings of topics concerning the postdoctoral lecturer thesis. Overall 628 questionnaires were included in the study. The significance of the postdoctoral qualification was rated high in 68.6 % and was seen to be necessary for professional advancement in 71.0 %. The chances of obtaining a full professorship after achieving a postdoctoral qualification were rated moderate to low (68.1 %); nevertheless, 92.3 % would do it again and 86.5 % would recommend it to colleagues. Accordingly, 78.8 % were against its abolishment. Wishes for reforms included standardized federal regulations, reduced dependency on professors and more transparency. The postdoctoral lecturer qualification in medicine is highly valued and the majority of responders did not want it to be abolished. Although the chances for a full professorship were only rated low, successful graduation seems to be beneficial for the career; however, there is a need for substantial structural and international changes.

  6. Vacuum chamber eddy current correction coil for the AGS booster

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.

    1988-01-01

    This paper reports on the AGS Booster injector that performs a variety of functions. Heavy ion acceleration requires a bakeable, ultra-high vacuum system (VC). Acceleration for intense proton beams requires rapid cycling (B ≤10T/sec). If straight forward heavy walled VC are used, the field perturbations due to eddy currents are large. The state of the art lattice has highly distributed lumped sextupoles capable of substantially correcting the induced field nonlinearity. Nevertheless, for the very highest space charge-intensity limits, it is desirable to have the capability to remove eddy current fields at the source. Correction coils attached to the outside of the VC cancel its current aberrations over the required good field aperture. These can be passively powered by transformer action, using two turn windings around the magnet yoke. Programmed power supplies can also be used. This inexpensive additional correction option uses a three turn per quadrant coil which follows the local contour of the VC. Transverse movements of several mms of the VC will have no beam optical effect since the large field aberrations and their corrections have the same displace coordinates. Experimental and computer studies will be presented, as well as mechanical and electrical design of a simple method of construction

  7. Automated tuning of the advanced photon source booster synchrotron

    International Nuclear Information System (INIS)

    Biedron, S.G.; Milton, S.V.

    1997-01-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance

  8. Observation and correction of resonance stopbands in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed

  9. Injection and transfer lines of the PS Booster

    CERN Multimedia

    Photographic Service

    1972-01-01

    In the foreground is the vacuum chamber for the 50 MeV proton beam coming from the Linac. The tank held by white frames houses the "Vertical Distributor", which deflects the Linac beam to the levels of the Booster's 4 superposed rings. After acceleration in the Booster, originally to 800 MeV, today to 1.4 GeV, the beams from the 4 rings are combined in the vertical plane and transfered to the 26 GeV PS. The "Recombination Line", intersecting the injection line, crosses the picture from left to right.

  10. Analysis of resonance-driving imperfections in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given

  11. Fiber optics in the BNL Booster radiation environment

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1991-01-01

    The Booster instrumentation uses analog and digital fiber optic links, designed to withstand at least 50 krads without performance degradation. The links use inexpensive and commercially available components that operate at a center wavelength of 820 nm. The analog link operates to 30 MHz over a 200 m fiber and can provide insertion gain. The digital link provides 60 ns timing pulses without the dispersive effects of coaxial cables. The optical fiber is a step-index hard clad silica type with a 200 micron core. This paper presents the component selection criteria, link design, installation, testing and performance for the optical links in the Booster instrumentation systems

  12. Design of the AGS Booster Beam Position Monitor electronics

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

    1991-01-01

    The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry

  13. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  14. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  15. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    Science.gov (United States)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  16. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    Science.gov (United States)

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  17. Booster Sessions Enhance the Long-Term Effectiveness of Spaced Retrieval in Older Adults with Probable Alzheimer's Disease

    Science.gov (United States)

    Cherry, Katie E.; Hawley, Karri S.; Jackson, Erin M.; Boudreaux, Emily O.

    2009-01-01

    Six older adults with probable Alzheimer's disease (AD) were trained to recall a name-face association using the spaced retrieval technique. In this study, we retested these persons in a 6-month follow-up program. For half of the participants, three booster sessions were administered at 6, 12, and 18 weeks after original training to promote…

  18. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  19. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  20. Automation Study for Longhorn Army Ammunition Plant Hand Held Signal Flight Assembly, Rocket Barrel Assembly, 40 MM Signal, Final Packaging/Pack-Out, and Star Finishing

    Science.gov (United States)

    1990-03-01

    wood protectors in the HHS Rocket Barrel Assembly Operations. d) Use of hot melt sealant rather than lacquer on the end of the assembled Hand Held...4OL.UA8LYADHRlE CG411!cLVPAM-1 ~LW7m~I~o~c~c LCA ~TM18UX"Y.31nSRGU-11 STiIM ASSELYJMACE FINh1TZ1A1*4CWAJKRZAM’ WAOiNt rs~my" LOCATM1ED 0~7 LOCA1ED’ IWCM-1W...Moorfeed Fairview, PA Indianapolis, IN Voice Synthesis Module Square D Micro Chip Technology Palatine, IL Chandler, AZ 85224 Vacuum Unit Venturi’s

  1. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  2. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  3. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  4. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  5. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  6. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-09-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs

  7. Dipole power supply for National Synchrotron Light Source Booster upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far

  8. Simulation of proton RF capture in the AGS Booster

    International Nuclear Information System (INIS)

    Khiari, F.Z.; Luccio, A.U.; Weng, W.T.

    1988-01-01

    RF capture of the proton beam in the AGS Booster has been simulated with the longitudinal phase-space tracking code ESME. Results show that a capture in excess of 95% can be achieved with multiturn injection of a chopped beam

  9. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  10. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  11. Booster HBV vaccination; is it really necessary? | Alavian | Egyptian ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Booster HBV vaccination; is it ...

  12. The AGS Booster main ring power supply system

    International Nuclear Information System (INIS)

    Soukas, A.; Hughes, K.; Sandberg, J.; Toldo, F.; Zhang, S.Y.

    1989-01-01

    The AGS Booster is being designed as a very versatile particle accelerator. Its primary function is to be a high quality injector to the currently operating Alternating Gradient Synchrotron (AGS). The Booster/AGS combination will produce proton intensities greater than 5 x 10 13 protons per pulse (ppp), and accelerate heavy ions, with mass up to 200, to a maximum energy of 15 GeV per atomic mass unit (GeV/amu). The power supply for the Booster Main Ring (BMRPS) has to accommodate a wide range of cycles and a wide range of operating parameters. The cycles range from storage for several seconds to rapid cycling at 7.5 Hz. The peak output power is 18 MW. This paper will describe the AGS Booster machine powering requirements, the choice of power supply, the a.c. circuit tie-in and its associated problems and some of the details of the design of the BMRPS. 9 refs., 2 figs

  13. Beam aperture and emittance growth in the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors have developed analytical tools for calculating the variation of particle action, smear and emittance growth due to nonlinear elements in accelerators (with second order perturbation theory in two dimensions). The authors' results for the AGS-Booster is presented

  14. Chromatic perturbation and resonance analysis for the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors investigated the nonlinear effects with the emphasis on nonlinear resonances. They present some of their findings, (e.g. the structure resonances; stop-bandwidths, etc.) for the AGS-Booster Lattice using program HARMON. Comparison with the results obtained from the algorithm ''NONLIN'' is presented

  15. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-01-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new Rf voltage program for capture which ameliorates transverse space-charge effects is described and simulated

  16. 47 CFR 101.151 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... authorized to operate multiple address systems in the 928-929/952-960 MHz and 932-932.5/941-941.5 MHz bands..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... automatic gain control circuitry which will limit the total effective radiated power (ERP) of the unit to a...

  17. 47 CFR 90.219 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... to operate radio systems in the frequency bands above 150 MHz may employ signal boosters at fixed... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... effective radiated power (ERP) of the unit to a maximum of 5 watts under all conditions. Class B broadband...

  18. History of the ZGS 500 MeV booster.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  19. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  20. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  1. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically produced Atlas V engine that could also potentially satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete critical design review this fall and begin testing in 2017. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements. This paper will discuss the ABEDRR engine task and structures task achievements to date and the remaining effort through the end of the contract.

  2. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-01-01

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1

  3. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  4. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  5. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  6. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  7. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  8. SSTO rockets. A practical possibility

    Science.gov (United States)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  9. A phase III, open-label, randomised multicentre study to evaluate the immunogenicity and safety of a booster dose of two different reduced antigen diphtheria-tetanus-acellular pertussis-polio vaccines, when co-administered with measles-mumps-rubella vaccine in 3 and 4-year-old healthy children in the UK.

    Science.gov (United States)

    Marlow, Robin; Kuriyakose, Sherine; Mesaros, Narcisa; Han, Htay Htay; Tomlinson, Richard; Faust, Saul N; Snape, Matthew D; Pollard, Andrew J; Finn, Adam

    2018-04-19

    To evaluate the immunogenicity and safety of a reduced antigen diphtheria-tetanus-acellular pertussis-inactivated poliovirus (dTap-IPV B ) vaccine (Boostrix-IPV, GSK) as a pre-school booster in 3-4 year old children as compared to dTap-IPV R (Repevax, Sanofi Pasteur), when co-administered with mumps-measles-rubella vaccine (MMRV). This phase III, open label, randomised study was conducted in the UK between April 2011 and April 2012. Children due their pre-school dTap-IPV booster vaccination were randomised 2:1 to receive one of two different dTap-IPV vaccines (dTap-IPV B or dTap-IPV R ) with blood sample for immunogenicity assessment just prior and one month after vaccination. Immune responses to diphtheria, tetanus and polio antigens were compared between the study vaccines (inferential comparison). In the absence of an accepted pertussis correlate of protection, the immunogenicity of dTap-IPV B vaccine against pertussis was compared with historical pertussis efficacy data (inferential comparison). Safety and reactogenicity of both study vaccines were evaluated. 387 children were randomised and 385 vaccinated: 255 in the dTap-IPV B group and 130 in the dTap-IPV R group. Prior to vaccination, ≥76.8% of children had anti-diphtheria and ≥65.5% had anti-tetanus titres above the protection threshold; for pertussis, the pre-vaccination seropositivity rate ranged between 18.1 and 70.6%. Both vaccines were immunogenic with 99.2-100% of children achieving titres above the pre-specified seroprotection/seropositivity thresholds. One serious adverse event not considered as causally related to the study vaccination by the study investigator was reported in the dTap-IPV B group. Non-inferiority of dTap-IPV B to dTap-IPV R was demonstrated. Both vaccines had a clinically acceptable safety and reactogenicity profile when co-administered with MMRV to children 3-4 years old. NCT01245049 (ClinicalTrials.gov). Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All

  10. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    Science.gov (United States)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  11. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  12. Adventures in Rocket Science. EG-2007-12-179-MSFC

    Science.gov (United States)

    Huegele, Vince; Hill, Kristy; Terry, Brenda

    2008-01-01

    This guide was prepared as a tool useful for informal education venues (4-H, Boys and Girls Clubs, Boy Scouts, Girl Scouts, etc.), science clubs and related programs, and can be adopted for formal education settings. An exciting and productive study in rocket science can be implemented using the selected activities for the above-mentioned…

  13. Two phase flow combustion modelling of a ducted rocket

    NARCIS (Netherlands)

    Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Champlain, A. de; Ringuette, S.

    2001-01-01

    Under a co-operative program, the Defence Research Establishment Valcartier and Université Laval in Canada and the TNO Prins Maurits Laboratory in the Netherlands have studied the use of a ducted rocket for missile propulsion. Hot-flow direct-connect combustion experiments using both simulated and

  14. Analytical Description of Ascending Motion of Rockets in the Atmosphere

    Science.gov (United States)

    Rodrigues, H.; de Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and…

  15. Analysis of supercritical methane in rocket engine cooling channels

    NARCIS (Netherlands)

    Denies, L.; Zandbergen, B.T.C.; Natale, P.; Ricci, D.; Invigorito, M.

    2016-01-01

    Methane is a promising propellant for liquid rocket engines. As a regenerative coolant, it would be close to its critical point, complicating cooling analysis. This study encompasses the development and validation of a new, open-source computational fluid dynamics (CFD) method for analysis of

  16. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  17. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  18. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  19. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  20. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  1. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    Science.gov (United States)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  2. IRD dropout study

    Science.gov (United States)

    Yalowitz, Jeffrey S.; Schroer, Michael A.; Dickson, John E., Jr.

    1992-01-01

    This final report describes work performed by SRS Technologies for the NASA Marshall Space Flight Center under Contract NAS8-39077, entitled 'Integrated Receiver-Decoder Dropout Study'. The purpose of the study was to determine causes of signal fading effects on ultra-high-frequency (UHF) range safety transmissions to the Space Shuttle during flyout. Of particular interest were deep fades observed at the External Tank (ET) Integrated Receiver-Decoder (IRD) during the flyout interval between solid rocket booster separation and ET separation. Analytical and simulation methods were employed in this study to assess observations captured in flight telemetry data records. Conclusions based on the study are presented in this report, and recommendations are given for future experimental validation of the results.

  3. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  4. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  5. Power Supply of the Booster Magnets for the ILSF Synchrotron

    Directory of Open Access Journals (Sweden)

    O Ahmadi

    2017-08-01

    Full Text Available The Iranian Light Source Facility (ILSF booster main specifications including 250 ms ramp up, 2Hz repetition rate, and quasi-sinusoidal wave shape, up to this point have been the basis for calculations. Each family of magnets including Dipole, Quadrupole and Sextupoles will feed by individual power supply. In order to maintain constant transverse tunes and chromaticity while the beam is accelerated, quadrupole and sextupole magnet currents must closely track the current in the dipole magnets. In booster rings, feeding the high inductance load, tracking of Quadrupole and sextupole magnets, reducing output current fluctuation and having a precise high bandwidth current regulation system are particular challenges. In order to meet the requirements, it is necessary to have a fully digital controller to achieve a fast regulation system. The prototype power supply and its test results are described in this paper  

  6. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  7. Optimal scheduling for electric heat booster under day-ahead electricity and heat pricing

    DEFF Research Database (Denmark)

    Cai, Hanmin; You, Shi; Bindner, Henrik W.

    2017-01-01

    Multi-energy system (MES) operation calls for active management of flexible resources across energy sectors to improve efficiency and meet challenging environmental targets. Electric heat booster, a solution for Domestic Hot Water (DHW) preparation under Low-Temperature-District-Heating (LTDH......) context, is identified as one of aforementioned flexible resources for electricity and heat sectors. This paper extends the concept of optimal load scheduling under day-ahead pricing from electricity sector only to both electricity and heat sectors. A case study constructing day-ahead energy prices...

  8. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    Science.gov (United States)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  9. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2016-01-01

    This paper presents a theoretical comparison among different commercial refrigeration systems in terms of annual energy consumption and environmental impact. Eight configurations were studied: a R744/R134a cascade refrigeration system (baseline), a conventional and an improved R744 booster system...... as on the running modes of a conventional European supermarket. A transition zone, which occurred between sub critical and transcritical operations, was adopted.The results showed that all the enhanced configurations may achieve a comparable energy saving to the one of the baseline in both the selected locations...

  10. COMMISSIONING RESULTS OF SLOW EXTRACTION OF HEAVY IONS from THE AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; BELLAVIA, S.; BINELLO, S.; BRELSFORD, B.; DUMONT, D.; ENG, W.; GARDNER, C.; GASSNER, D.; GLENN, J.W.; HAMMONS, L.; HOCK, J.; HOFF, L.; HUTCHINSON, E.; JAMILKOWSKI, J.; KLING, N.; KOTLYAR, Y.; KRISHOCK, A.; LOCKEY, R.; MAPES, M.; MARNERIS, I.; MARR, G.; MCNERNEY, A.; MEYER, A.; MORRIS, J.; NAYLOR, C.; NEMESURE, S.; PHILLIPS, D.; RUSEK, A.; RYAN, J.; SHREY, T.; SNYDSTRUP, L.; TSOUPAS, N.; VANKUIK, B.; ZAHARIOU-COHEN, K.; ZENO, K.

    2003-01-01

    Brookhaven's AGS Booster has been modified to deliver slow extracted beam to a new beam line, the NASA Space Radiation Laboratory (NSRL). This facility was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The design of the resonant extraction system has been described in [1]. A more detailed description, which includes predictions of the slow extracted beam time structure has been described in [2]. In this report we will present results of the system commissioning and performance

  11. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1992-08-01

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  12. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1990-11-01

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  13. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  14. Construction and early commissioning results of the AGS Booster

    International Nuclear Information System (INIS)

    Weng, W.T.; Ahrens, L.; Damm, R.; McNerney, A.J.

    1991-01-01

    The AGS Booster synchrotron has been designed to accelerate protons from 200 MeV to 1.5 GeV and heavy ions from several MeV per nucleon to several hundred MeV per nucleon for all the nuclei up to gold. The design requirements and measurements results of major accelerator components and systems are presented. The early commissioning results of the injection is also presented. 12 refs., 9 figs., 2 tabs

  15. A Linac afterburner to supercharge the Fermilab booster

    International Nuclear Information System (INIS)

    Ankenbrandt M, Charles email = popovic@fnal.gov

    2002-01-01

    A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M

  16. A tool for model based diagnostics of the AGS Booster

    International Nuclear Information System (INIS)

    Luccio, A.

    1993-01-01

    A model-based algorithmic tool was developed to search for lattice errors by a systematic analysis of orbit data in the AGS Booster synchrotron. The algorithm employs transfer matrices calculated with MAD between points in the ring. Iterative model fitting of the data allows one to find and eventually correct magnet displacements and angles or field errors. The tool, implemented on a HP-Apollo workstation system, has proved very general and of immediate physical interpretation

  17. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    . In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing

  18. Lunar mission design using nuclear thermal rockets

    International Nuclear Information System (INIS)

    Stancati, M.L.; Collins, J.T.; Borowski, S.K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits

  19. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  20. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  1. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  2. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    International Nuclear Information System (INIS)

    Kenessov, Bulat; Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana; Carlsen, Lars; Tulegenov, Akyl; Nauryzbayev, Mikhail

    2012-01-01

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg −1 , of 1-ethyl-1H-1,2,4-triazole — 5.45, 3.66 and 0.66 mg kg −1 , of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg −1 in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg −1 , respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: ► We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. ► Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. ► Metabolites are detected in the epicenter having diameter of about 10 m. ► Metabolites can migrate down to the depth of 120 cm. ► Volatile metabolites

  3. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Kenessov, Bulat, E-mail: bkenesov@gmail.com [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Carlsen, Lars [Awareness Center, Linkopingvej 35, Trekroner, DK-4000 Roskilde (Denmark); Department of Chemical Engineering, Kazakh-British Technical University, 59 Tole Bi st., Almaty, 050000 (Kazakhstan); Tulegenov, Akyl; Nauryzbayev, Mikhail [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan)

    2012-06-15

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg{sup -1}, of 1-ethyl-1H-1,2,4-triazole - 5.45, 3.66 and 0.66 mg kg{sup -1}, of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg{sup -1} in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg{sup -1}, respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: Black-Right-Pointing-Pointer We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. Black-Right-Pointing-Pointer Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. Black-Right-Pointing-Pointer Metabolites are detected in the epicenter having diameter of about 10 m

  4. Analytical and experimental analysis of YALINA-Booster and YALINA-Thermal assemblies

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Mazanik, S.; Khilmanovich, A.; Martsinkevich, B.; Routkovskaya, Ch.; Edchik, I.; Fokov, Y.; Sadovich, S.; Fedorenko, A.; Gohar, Y.; Talamo, A.

    2010-01-01

    Full text: Accelerator Driven Systems (ADS) may play an important role in future nuclear fuel cycles to reduce the longterm radiotoxicity and volume of spent nuclear fuel. It is proposed that ADS will produce energy and incinerate radioactive waste. This technology was called Accelerator Driven Transmutation Technology (ADTT). The most important problems of this technology are monitoring of a reactivity level in on-line regime, a choice of neutron spectrum appropriate for incineration of Minor Actinides (MA) and transmutation of Long Lived Fission Products (LLFP) and etc. Before the designing and construction of an installation it is necessary to carry out R and D to validate codes, nuclear data libraries and other instrumentations. The YALINA facility is designed to study the ADS physics and to investigate the transmutation reaction rates of MA and LLFP. The main objective of the YALINA benchmark is to compare the results from different calculation methods with each other and experimental data. The benchmark is based on the current YALINA facility configuration, which provides the opportunity to verify the prediction capability of the different methods. The experimental data have been obtained in the frame of the ISTC Projects B1341 'Analytical and experimental evaluation of the possibility to create a universal volume source of neutrons in the sub-critical booster assembly with low enrichment uranium fuel driven by a neutron generator' and B1732P 'Analytical and experimental evaluating the possibility of creation of universal volume source of neutrons in the sub-critical booster assembly with low enriched uranium fuel driven by the neutron generator'. In this paper a comparison of the experimental and calculated data obtained for YALINA-Booster subcritical assembly with a fuel of different enrichment and for YALINA-Thermal with a different number of control rods (216, 245 and 280) will be done.

  5. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article

  6. New Approaches in Reuseable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  7. New Approaches in Reusable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  8. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  9. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    Science.gov (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  10. Examining How Adding a Booster to a Behavioral Nutrition Intervention Prompts Parents to Pack More Vegetables and Whole Gains in Their Preschool Children's Sack Lunches.

    Science.gov (United States)

    Sweitzer, Sara J; Ranjit, Nalini; Calloway, Eric E; Hoelscher, Deanna M; Almansor, Fawaz; Briley, Margaret E; Roberts-Gray, Cynthia R

    2016-01-01

    Data from a five-week intervention to increase parents' packing of vegetables and whole grains in their preschool children's sack lunches showed that, although changes occurred, habit strength was weak. To determine the effects of adding a one-week booster three months post-intervention, children's (N = 59 intervention and 48 control) lunches were observed at baseline (week 0), post-intervention (week 6), pre-booster (week 20), and post-booster (week 26). Servings of vegetables and whole grains were evaluated in repeated measures models and results inspected relative to patterns projected from different explanatory models of behavior change processes. Observed changes aligned with projections from the simple associative model of behavior change. Attention in future studies should focus on behavioral intervention elements that leverage stimulus-response associations to increase gratification parents receive from providing their children with healthy lunches.

  11. The operational status of the Booster injector for the AGS accelerator complex at BNL

    International Nuclear Information System (INIS)

    Ahrens, L.; Bleser, E.; Brennan, J.M.; Gardner, C.; Gill, E.; Glenn, J.W.; Reece, K.; Roser, T.; van Asselt, W.; Weng, W.T.

    1992-01-01

    The Booster synchrotron at Brookhaven National Laboratory has been incorporated into the accelerator chain at the Alternating Gradient Synchrotron (AGS) complex. After a successful first commissioning effort in the spring of 1991, the Booster has been part of this year's silicon, gold and proton physics runs. After a brief review of the Booster design goals, and of the early commissioning, this paper will summarize this year's activities

  12. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  13. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  14. 16 CFR 1507.10 - Rockets with sticks.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...

  15. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  16. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  17. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  18. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  19. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  20. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  1. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  2. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  3. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  4. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  5. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  6. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  7. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    Science.gov (United States)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  8. Night Airglow Observations from Orbiting Spacecraft Compared with Measurements from Rockets.

    Science.gov (United States)

    Koomen, M J; Gulledge, I S; Packer, D M; Tousey, R

    1963-06-07

    A luminous band around the night-time horizon, observed from orbiting capsules by J. H. Glenn and M. S. Carpenter, and identified as the horizon enhancement of the night airglow, is detected regularly in rocket-borne studies of night airglow. Values of luminance and dip angle of this band derived from Carpenter's observations agree remarkably well with values obtained from rocket data. The rocket results, however, do not support Carpenter's observation that the emission which he saw was largely the atomic oxygen line at 5577 A, but assign the principal luminosity to the green continuum.

  9. Design and A.C. loss considerations for the 60 mm dipole magnet in the High Energy Booster

    International Nuclear Information System (INIS)

    Snitchler, G.; Jayakumar, R.; Kovachev, V.; Orrell, D.

    1991-01-01

    The baseline design for the SSC High Energy Booster (HEB) has dipole bending magnets with a 50 mm aperture. A recent dynamic aperture study for the High Energy Booster (HEB) suggests that an increased aperture dipole magnet (DM) is desirable. Two cost neutral options for a 60 mm aperture HEBDM design are investigated. Field transfer function, field harmonics, and relative cost impact for these designs are presented. An analysis of the cryogenic heat load due to A.C. losses generated in the HEB ramp cycle are also reported. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 μm vs. 6 μm filament conductor is presented. Superconducting proximity effect is also considered for 2.5 μm filament conductors

  10. Design and A.C. loss considerations for the 60 mm dipole magnet in the high energy booster

    International Nuclear Information System (INIS)

    Snitchler, G.; Jayakumar, R.; Kovachev, V.; Orrell, D.

    1991-04-01

    The baseline design for the SSC High Energy Booster (HEB) has dipole bending magnets with a 50 mm aperture. A recent dynamic aperture study for the High Energy Booster (HEB) suggests that an increased aperture dipole magnet (DM) is desirable. Two cost neutral options for a 60 mm aperture HEBDM design are investigated. Field transfer function, field harmonics, and relative cost impact for these designs are presented. An analysis of the cryogenic heat and load due to A.C. losses generated in the HEB ramp cycle are also reported. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 μm vs. 6 μm filament conductor will be presented. Superconducting proximity effect is also considered for 2.5 μm filament conductors. 13 refs., 3 figs., 7 tabs

  11. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  12. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  13. Soil remediation in the areas affected by space-rocket industry activities in the Central Kazakhstan

    International Nuclear Information System (INIS)

    Efremov, S.A.

    2008-01-01

    The study has been carried out to demonstrate that the modified carbon-mineral sorbents based on the schungite material can be effectively used for decontamination of soil polluted by liquid rocket fuel components and its decomposition products.

  14. High energy density additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these...

  15. Immunogenicity and safety after booster vaccination of diphtheria, tetanus, and acellular pertussis in young adults: an open randomized controlled trial in Japan.

    Science.gov (United States)

    Hara, Megumi; Okada, Kenji; Yamaguchi, Yuko; Uno, Shingo; Otsuka, Yasuko; Shimanoe, Chisato; Nanri, Hinako; Horita, Mikako; Ozaki, Iwata; Nishida, Yuichiro; Tanaka, Keitaro

    2013-12-01

    The recent increase of pertussis in young adults in Japan is hypothesized to be due in part to waning protection from the acellular pertussis vaccine. While a booster immunization may prevent an epidemic of pertussis among these young adults, little is known about the safety and immunogenicity of such a booster with the diphtheria, tetanus, and acellular pertussis vaccine (DTaP), which is currently available in Japan. One hundred and eleven medical students with a mean age of 19.4 years were randomly divided into 2 groups of 55 and 56 subjects and received, respectively, 0.2 or 0.5 ml of DTaP. Immunogenicity was assessed by performing the immunoassay using serum, and the geometric mean concentration (GMC), GMC ratio (GMCR), seropositive rate, and booster response rate were calculated. Adverse reactions and adverse events were monitored for 7 days after vaccination. After booster vaccination in the two groups, significant increases were found in the antibodies against pertussis toxin, filamentous hemagglutinin, diphtheria toxoid, and tetanus toxoid, and the booster response rates for all subjects reached 100%. The GMCs and GMCRs against all antigens were significantly higher in the 0.5-ml group than in the 0.2-ml group. No serious adverse events were observed. Frequencies of local reactions were similar in the 2 groups, although the frequency of severe local swelling was significantly higher in the 0.5-ml group. These data support the acceptability of booster immunization using both 0.2 and 0.5 ml of DTaP for young adults for controlling pertussis. (This study was registered at UMIN-CTR under registration number UMIN000010672.).

  16. Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster.

    Science.gov (United States)

    Perrett, K P; John, T M; Jin, C; Kibwana, E; Yu, L-M; Curtis, N; Pollard, A J

    2014-04-01

    Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.

  17. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 99 Acad. Krasin Str., Minsk 220109 (Belarus)

    2011-05-15

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.

  18. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2011-01-01

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the 3 He(n,p) reaction rates obtained with the californium neutron source.

  19. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  20. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    Science.gov (United States)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  1. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  2. Matching strategies for a plasma booster

    International Nuclear Information System (INIS)

    Tomassini, P; Rossi, A R

    2016-01-01

    This paper presents a theoretical study of a matching strategy for the laser-plasma wakefield accelerator where the injected electron beam is produced by an external source. The matching is achieved after an initial focusing using conventional beam optics, combining a linear tapering of plasma density and the increasing non linearity of the plasma wake due to the focusing of the laser driver. Both effects contribute in increasing the focusing strength from an initial relatively low value, to the considerably higher value present in the flat top plasma profile, where acceleration takes place. The same procedure is exploited to match the beam from plasma to vacuum once acceleration has occurred. Beam loading plays a crucial role both at the very beginning and end of the whole process. In the last stage, two more effects take place: a partial emittance compensation, reducing emittance value by a sizable amount, and a reduction of the energy spread, due to the relevant beam loading operating when the laser is defocused. (paper)

  3. Direct Comparison of Immunogenicity Induced by 10- or 13-Valent Pneumococcal Conjugate Vaccine around the 11-Month Booster in Dutch Infants.

    Directory of Open Access Journals (Sweden)

    Alienke J Wijmenga-Monsuur

    Full Text Available Since 2009/10, a 10- and a 13-valent pneumococcal conjugate vaccine (PCV are available, but only the 10-valent vaccine is now being used for the children in the Netherlands. As the vaccines differ in number of serotypes, antigen concentration, and carrier proteins this study was designed to directly compare quantity and quality of the antibody responses induced by PCV10 and PCV13 before and after the 11-month booster.Dutch infants (n = 132 were immunized with either PCV10 or PCV13 and DTaP-IPV-Hib-HepB at the age of 2, 3, 4 and 11 months. Blood samples were collected pre-booster and post-booster at one week and one month post-booster for quantitative and qualitative immunogenicity against 13 pneumococcal serotypes, as well as quantitative immunogenicity against diphtheria, tetanus, pertussis and Haemophilus influenzae type b. We compared immunogenicity induced by PCV13 and PCV10 for their ten shared serotypes.One month post-booster, pneumococcal serotype-specific IgG geometric mean concentrations (GMCs for the PCV13 group were higher compared with the PCV10 group for six serotypes, although avidity was lower. Serotype 19F showed the most distinct difference in IgG and, in contrast to other serotypes, its avidity was higher in the PCV13 group. One week post-booster, opsonophagocytosis for serotype 19F did not differ significantly between the PCV10- and the PCV13 group.Both PCV10 and PCV13 were immunogenic and induced a booster response. Compared to the PCV10 group, the PCV13 group showed higher levels for serotype 19F GMCs and avidity, pre- as well as post-booster, although opsonophagocytosis did not differ significantly between groups. In our study, avidity is not correlated to opsonophagocytotic activity (OPA and correlations between IgG and OPA differ per serotype. Therefore, besides assays to determine IgG GMCs, assays to detect opsonophagocytotic activity, i.e., the actual killing of the pneumococcus, are important for PCV evaluation. How

  4. Electronics for damping transverse instabilities for the Fermilab booster synchrotron

    International Nuclear Information System (INIS)

    Higgins, E.F. Jr.

    1977-01-01

    Transverse instabilities are controlled by an active beam damper which corrects the orbit of individual proton bunches in the Fermilab booster synchrotron. The corrective signals, which are in reality processed versions of the beam pick-up data, are applied to the beam via power amplifier/deflector electrodes approximately one turn after sensing the bunch position. The electronic systems of the damper are configured as a closed-loop feedback arrangement. A brief outline is given of the overall damper system configuration, and the beam position detector, coaxial cable delay system, and data receiver are described

  5. Progress on the IPNS Enriched Uranium Booster Target

    International Nuclear Information System (INIS)

    Knox, A.E.; Carpenter, J.M.; Bailey, J.L.

    1986-09-01

    We describe the Enriched Uranium Booster Target designed for use in Argonne's Intense Pulsed Neutron Source. This report contains a general description of the system, and descriptions of the thermal-hydraulic and loss-of-coolant accident analyses, of the neutronic, criticality and power density calculations, of the assessment of radiation and thermal cycling growth, and of the disk fabrication methods. We also describe the calculations of radionuclide buildup and the related hazards analysis and our calculations of the temperature and stress profiles in the disks, and briefly allude to considerations of security and safeguards

  6. Main cycle controls for the AGS Booster synchrotron

    International Nuclear Information System (INIS)

    Culwick, B.B.; Yen, S.

    1991-01-01

    The AGS Booster is a separated function synchrotron with the main excitation coils of the dipoles and quadrupoles connected electrically in series. This circuit is driven by a complex modular power supply with current and voltage reference functions to obtain the desired magnetic fields as a function of time. The dipole cycle is defined by algebraic functions specifying the desired field profile as a function of time. These functions are processed through successive phases to convert to the signals needed to provide the power supply with one current and six voltage references. The user interface and algorithms to derive the control variables are described. 4 refs., 3 figs

  7. Summary of the 70 GeV Booster Group

    International Nuclear Information System (INIS)

    Makdisi, Y.; Khiari, F.

    1985-06-01

    The energy range of the 70 GeV SSC booster makes it difficult to employ a single technique for preserving the beam polarization. Results of DEPOL calculations show that the expected resonance strengths are below the .5 x 10 -1 level, which poses no problem for resonance jumping. It was found that a single adiabatically energized Siberian snake will not significantly depolarize the beam. Thus one good solution to the mixing problem is that the snake magnets be energized during the acceleration cycle reaching maximum operating value at 20 GeV, where they take over the resonance jumping role. The possibility of adiabatically energizing two snakes was found to be feasible

  8. Making the Case for Reusable Booster Systems: The Operations Perspective

    Science.gov (United States)

    Zapata, Edgar

    2012-01-01

    Presentation to the Aeronautics Space Engineering Board National Research Council Reusable Booster System: Review and Assessment Committee. Addresses: the criteria and assumptions used in the formulation of current RBS plans; the methodologies used in the current cost estimates for RBS; the modeling methodology used to frame the business case for an RBS capability including: the data used in the analysis, the models' robustness if new data become available, and the impact of unclassified government data that was previously unavailable and which will be supplied by the USAF; the technical maturity of key elements critical to RBS implementation and the ability of current technology development plans to meet technical readiness milestones.

  9. Status of the Upgrade of the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M; Bartmann, W; Bartolome, S; Benedetto, E; Bertone, C; Blas, A; Bonnal, P; Borburgh, J; Bozzini, D; Butterworth, A; Carli, C; Carlier, E; Cole, J; Dahlen, P; Delonca, M; Dobers, T; Findlay, A; Froeschl, R; Hansen, J; Hay, D; Jensen, S; Lacroix, J; Le Roux, P; Lopez Hernandez, L; Maglioni, C; Masi, A; Mason, G; Mathot, S; Mikulec, B; Muttoni, Y; Newborough, A; Nisbet, D; Olek, S; Paoluzzi, M; Perillo-Marcone, A; Pittet, S; Puccio, B; Raginel, V; Riffaud, B; Ruehl, I; Sarrió Martínez, A; Tan, J; Todd, B; Venturi, V; Weterings, W

    2013-01-01

    The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H- ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.

  10. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  11. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  12. Shielding for a tandem accelerator coupled to linac booster

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Bisht, J.S.; Venkataraman, G.

    1996-01-01

    Shielding calculation for the Beam-Hall-II of pelletron facility, augmented with linac booster in its phase-II at Nuclear Science Centre, New Delhi, has been done. An estimate is obtained by reduction factor method considering source radiation of monoenergetic neutrons, which is then compared with the detail computation using computer code ALICE considering total energy and angular distribution of neutrons. Another code ASFIT is used to take into account the build up of gamma dose from (n, gamma) reactions within the concrete shield incorporating new radiation weighting factors as recommended by ICRP-60. (author). 8 refs., 2 figs

  13. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  14. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    International Nuclear Information System (INIS)

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-01-01

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition

  15. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  16. Analytical description of ascending motion of rockets in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, H; Pinho, M O de; Portes, D Jr [Centro Federal de Educacao Tecnologica do Rio de Janeiro, 20271-110, Rio de Janeiro, RJ (Brazil); Santiago, A [Instituto de Fisica, Universidade Estadual do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil)], E-mail: harg@cbpf.br, E-mail: ajsant@uerj.br

    2009-01-15

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and discussed. This paper is intended for undergraduate physics teachers and for graduate students.

  17. Charge exchange injection for Nuclotron and Nuclotron booster

    International Nuclear Information System (INIS)

    Dinev, D.; Mikhajlov, V.

    2000-01-01

    The acceleration of polarized beams is between the major items in the JINR LHE's heavy ion superconducting synchrotron Nuclotron research programme. One effective way to increase the intensities of polarized deuteron beams is the application of the charge exchange injection into the Nuclotron. The paper represents the results of a new analytical description of the heavy ion stripping injection based on the Boltzmann kinetic equation. Expressions for the ion density evolution in the transverse phase plane for the emittance growth due to the elastic scattering and to energy losses in the stripping foil and for the number of successfully stored particles have been derived. These results have been applied to the stripping injection of polarized deuterons into the Nuclotron as well as to the stripping injection of heavy ions into the now under consideration Nuclotron rapid cycling booster. It has been shown that an estimated 40-fold intensity gain could be achieved for the stripping injection of polarized D - into the Nuclotron and that an effective stripping injection of light and medium ions into the booster could be realized

  18. Design and testing of the AGS Booster BPM detector

    International Nuclear Information System (INIS)

    Thomas, R.; Ciardullo, D.J.; Van Zwienen, W.

    1991-01-01

    The AGS Booster beam position monitor system must accurately measure the position of beams and bunches over a wide range of intensity. The frequency of operation must also cover a wide range (600 kHz to 4.2 MHz) since the Booster accelerates both protons and heavy ions. Split-cylinder electrodes were chosen to monitor the position of the beam because of their good low frequency response and high linearity. The need to accelerate low-energy partially-stripped heavy ions requires the pick-up electrodes (PUEs) to operate in a 3 x 10 -11 torr vacuum. The PUEs are to measure the beam position to an absolute accuracy of ±0.5 mm and must therefore be mechanically stable despite the requirements that they be vacuum fired at 950 degree C and baked periodically to 300 degree C. This presentation describes both the mechanical design of the PUEs and the automated test procedure used to ensure the stability, accuracy, and linearity of each unit. 3 refs., 5 figs

  19. On fundamentally new sources of energy for rockets in the early works of the pioneers of astronautics

    Science.gov (United States)

    Melkumov, T. M.

    1977-01-01

    The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.

  20. 76 FR 44821 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-07-27

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend Rules... translator facilities in the 700 MHz band. These provisions provide procedures for a primary wireless...