WorldWideScience

Sample records for rock tunnel boring

  1. Recent development in the design of hard rock tunnel boring machines for the mining industry

    International Nuclear Information System (INIS)

    Snyder, L.L.; Williams, R.I.

    1991-01-01

    Underground development for nuclear waste storage will possibly require tunnels to be excavated in a variety of rock conditions and configurations. Recent innovations in Tunnel Boring Machine (TBM) design have allowed for an evolved style of TBM which has distinct advantages over the standard machines. Present day conventional hard rock TBM's were developed primarily for the long, relatively straight tunnels of the civil construction industry, thereby making them for the most part, unsuitable for the sharp curves, turnouts, declines, inclines and ramps required in many underground environments. The five foot to 36 foot (1.52 to 11 m) diameter machines are capable of boring tunnels with curve radiuses as small as 40 to 90 feet (12.2 to 27.5 m) depending on size. These short turning radiuses can be accomplished while gripping the tunnel walls horizontally in the traditional manner or vertically as required when intersecting existing tunnels, or making turnouts from the tunnel that the machine has just bored. The machine's length is approximately half of a traditional machine's length while still employing a full measure of thrust, horsepower and rock cutting ability. The machine's short length, combined with a patented machine structure allows it to steer while boring without causing harmful eccentric loads on the cutterhead and main bearing assembly. The machine configuration is versatile and can be easily modified to operate in a wide variety of conditions

  2. Tunnel boring an alternative method in construction of spent fuel repositories

    International Nuclear Information System (INIS)

    Christersson, Jukka

    1984-05-01

    In projecting of the final disposal of nuclear waste in geological formations a great importance should be paid to the selection of the tunneling method. The environment of the chosen repository area should not be exposed to any but as minor disturbances as possible by the excavation method applied. This study approaches full face tunneling methods as an alternative to conventional drill-and-blast methods in the construction of spent fuel repository tunnels. According to experiences up till now it is obvious, that tunnelboring today is fully capable technically competing with conventional tunneling methods, even in the hardest granitic rocks. The most important advantages, it provides for the construction of repositories, are: The methods does not produce any damage in the surrounding rock. Possibility to use placement techniques, which do not require preparing of additive repository holes for the fuel elements. Saving in the use of expensive filling material. The fact, that tunnel boring in hard rock is an expensive alternative, is still valid. Constuction of straight lined tunnels in unfractured rocks by tunnel boring would cost about 30-40% more than by conventional methods. The lay out arrangement of bored tunnels still have a great influence on tunnel boring machine's economy. Due to this it would be round 40-70% more expensive method in the construction of spent fuel repositories. However intensive development w is being carried out to eliminate these limitations and to make machines more flexible. Future trends in tunnel boring look good at the moment. The number of sold units has been increasing and new applications have widen out during last ten years. Harder and more abrasive rocks can now be bored than ever before and the trend seems to continue. It also looks like the cost difference in the hardest rocks is firmly getting smaller and smaller all the time. (author)

  3. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  4. Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters

    Science.gov (United States)

    Zhang, Zhao-Huang; Gong, Guo-Fang; Gao, Qing-Feng; Sun, Fei

    2017-07-01

    Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc-cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption.

  5. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  6. Prediction of tunnel boring machine performance using machine and rock mass data

    International Nuclear Information System (INIS)

    Dastgir, G.

    2012-01-01

    Performance of the tunnel boring machine and its prediction by different methods has been a hot issue since the first TBM came into being. For the sake of safe and sound transport, improvement of hydro-power, mining, civil and many other tunneling projects that cannot be driven efficiently and economically by conventional drill and blast, TBMs are quite frequently used. TBM parameters and rock mass properties, which heavily influence machine performance, should be estimated or known before choice of TBM-type and start of excavation. By applying linear regression analysis (SPSS19), fuzzy logic tools and a special Math-Lab code on actual field data collected from seven TBM driven tunnels (Hieflau expansion, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve and Varzo tunnel), an attempt was made to provide prediction of rock mass class (RMC), rock fracture class (RFC), penetration rate (PR) and advance rate (AR). For detailed analysis of TBM performance, machine parameters (thrust, machine rpm, torque, power etc.), machine types and specification and rock mass properties (UCS, discontinuity in rock mass, RMC, RFC, RMR, etc.) were analyzed by 3-D surface plotting using statistical software R. Correlations between machine parameters and rock mass properties which effectively influence prediction models, are presented as well. In Hieflau expansion tunnel AR linearly decreases with increase of thrust due to high dependence of machine advance rate upon rock strength. For Hieflau expansion tunnel three types of data (TBM, rock mass and seismic data e.g. amplitude, pseudo velocity etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces. No appreciable correlation between seismic data (Amplitude and Pseudo velocity) and rock mass properties and machine parameters could be found. Tool wear as a function of TBM operational parameters was analyzed which revealed that tool wear is minimum if applied thrust is moderate and that tool wear is high when thrust is

  7. Establishment of tunnel-boring machine disk cutter rock-breaking model from energy perspective

    Directory of Open Access Journals (Sweden)

    Liwei Song

    2015-12-01

    Full Text Available As the most important cutting tools during tunnel-boring machine tunneling construction process, V-type disk cutter’s rock-breaking mechanism has been researched by many scholars all over the world. Adopting finite element method, this article focused on the interaction between V-type disk cutters and the intact rock to carry out microscopic parameter analysis methods: first, the stress model of rock breaking was established through V-type disk cutter motion trajectory analysis; second, based on the incremental theorem of the elastic–plastic theory, the strain model of the relative changes of rock displacement during breaking process was created. According to the principle of admissible work by energy method of the elastic–plastic theory to analyze energy transfer rules in the process of breaking rock, rock-breaking force of the V-type disk cutter could be regarded as the external force in the rock system. Finally, by taking the rock system as the reference object, the total potential energy equivalent model of rock system was derived to obtain the forces of the three directions acting on V-type disk cutter during the rock-breaking process. This derived model, which has been proved to be effective and scientific through comparisons with some original force models and by comparative analysis with experimental data, also initiates a new research strategy taking the view of the micro elastic–plastic theory to study the rock-breaking mechanism.

  8. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps – A case study

    Directory of Open Access Journals (Sweden)

    Prasnna Jain

    2014-02-01

    Full Text Available A 12.24 km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine (TBM to improve the water supply system of Greater Mumbai, India. In this paper, attempt has been made to establish the relationship between various litho-units of Deccan traps, stability of tunnel and TBM performances during the construction of 5.83 km long tunnel between Maroshi and Vakola. The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around 70 m. The tunneling work was carried out without disturbance to the ground. The rock types encountered during excavation are fine compacted basalt, porphyritic basalt, amygdaloidal basalt, pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales. Relations between rock mass properties, physico-mechanical properties, TBM specifications and the corresponding TBM performance were established. A number of support systems installed in the tunnel during excavation were also discussed. The aim of this paper is to establish, with appropriate accuracy, the nature of subsurface rock mass condition and to study how it will react to or behave during underground excavation by TBM. The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.

  9. Simulation of rock fragmentation induced by a tunnel boring machine disk cutter

    Directory of Open Access Journals (Sweden)

    Huiyun Li

    2016-05-01

    Full Text Available A constitutive model based on the Johnson–Cook material model and the extended Drucker–Prager strength criterion was implemented in LS-DYNA to simulate the rock failure process induced by a single disk cutter of a tunnel boring machine. The normal, rolling, and side forces were determined by numerical tests. The simulation results showed that the normal and rolling forces increased with increasing penetration while the side force changed little. The normal force also increased under the conditions of confining pressures. The damage region of rock and cutting forces were also obtained by simulation of two disk cutters acting in tandem with different cutting spacings. The optimum ratio of cutter spacing to penetration depth determined from numerical modeling agrees well with that obtained by linear cutting machine tests. The average normal and rolling forces acting on the first cutter are slightly greater than those acting on the second when the cutting disk spacing is relatively small. The numerical modeling was verified to accurately capture the fragmentation of rock induced by disk cutter.

  10. Tunnel Boring Machine for nuclear waste repository research project

    International Nuclear Information System (INIS)

    Janzon, H.A.

    1994-01-01

    A description is presented of a Tunnel Boring Machine and its intended use on a research project underway in Sweden for demonstrating and testing methods for rock investigation at a suitable depth for a deep repository for nuclear waste

  11. Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency

    Directory of Open Access Journals (Sweden)

    M.C. Villeneuve

    2017-08-01

    Full Text Available The transition from grinding to chipping can be observed in tunnel boring machine (TBM penetration test data by plotting the penetration rate (distance/revolution against the net cutter thrust (force per cutter over the full range of penetration rates in the test. Correlating penetration test data to the geological and geomechanical characteristics of rock masses through which a penetration test is conducted provides the ability to reveal the efficiency of the chipping process in response to changing geological conditions. Penetration test data can also be used to identify stress-induced tunnel face instability. This research shows that the strength of the rock is an important parameter for controlling how much net cutter thrust is required to transition from grinding to chipping. It also shows that the geological characteristics of a rock will determine how efficient chipping occurs once it has begun. In particular, geological characteristics that lead to efficient fracture propagation, such as fabric and mica contents, will lead to efficient chipping. These findings will enable a better correlation between TBM performance and geological conditions for use in TBM design, as a basis for contractual payments where penetration rate dominates the excavation cycle and in further academic investigations into the TBM excavation process.

  12. Analysis on the Relationship Between Layout and Consumption of Face Cutters on Hard Rock Tunnel Boring Machines (TBMs)

    Science.gov (United States)

    Geng, Qi; Bruland, Amund; Macias, Francisco Javier

    2018-01-01

    The consumption of TBM disc cutters is influenced by the ground conditions (e.g. intact rock properties, rock mass properties, etc.), the TBM boring parameters (e.g. thrust, RPM, penetration, etc.) and the cutterhead design parameters (e.g. cutterhead shape, cutter layout). Previous researchers have done much work on the influence of the ground conditions and TBM boring parameters on cutter consumption; however, limited research has been found on the relationship between the cutterhead design and cutter consumption. The purpose of the present paper is to study the influence of layout on consumption for the TBM face cutters. Data collected from six tunnels (i.e. the Røssåga Headrace Tunnel in Norway, the Qinling Railway Tunnel in China, tubes 3 and 4 of the Guadarrama Railway Tunnel in Spain, the parallel tubes of the Vigo-Das Maceiras Tunnel in Spain) were used for analysis. The cutter consumption shape curve defined as the fitted function of the normalized cutter consumption versus the cutter position radius is found to be uniquely determined by the cutter layout and was used for analysis. The straightness and smoothness indexes are introduced to evaluate the quality of the shape curves. The analytical results suggest that the spacing of face cutters in the inner and outer parts of cutterhead should to be slightly larger and smaller, respectively, than the average spacing, and the difference of the position angles between the neighbouring cutters should be constant among the cutter positions. The 2-spiral layout pattern is found to be better than other layout patterns in view of cutter consumption and cutterhead force balance.

  13. Energy Efficiency of Tunnel Boring Machines.

    OpenAIRE

    Grishenko, Vitaly

    2014-01-01

    Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...

  14. New concept of tunnel boring machine: high performance using water jet and diamond wire as rock cutting technology

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco dos Santos

    Full Text Available Abstract Tunnel boring machines are important tools in underground infrastructure projects. Although being well established equipment, these machinesare based on designsof more than 60 years ago and are characterized by big dimensions, enormous weight and high power consumption. Commercial aspects should be noted too. The model adopted by the TBM industry requires constant replacement of cutter discs and specific labor skills, usually offered by the same manufacturingcompany. In some cases the cost of replacement parts and technical assistance can be higher than the acquisition cost of an entire machine. These aspects are no longer compatible with the concept of sustainability that is an important aspect of currentsociety. While the technical characteristics require a large quantity of steel and several inputs, the adoptedmodel is not competitive. One alternative is looking for new technologies that break the old paradigms and allow the development of high performance concepts with lower social and environmental impact. This studydealswith this opportunity by proposing a high performance tunnel boring machine that makes use of high power water jet and diamond wire to compose a double shield cutter head. It works in two stages. In the fristone, an annular cut is executed by hydrodemolition,and in the second one, the diamond wire station slices the rock core. Only with the action of diamond wire is the rock core separated from the rock mass and the removal process is finished. A smart water jet nozzle movement system is described and non circular tunnels can be executed. The new technologies involved requirea different type of backup system, lighter and smaller. The non-existence of mechanical contact between the equipment and the rock mass at theexcavation front allows low power consumption. The advanced rate and primary excavation cost analyses can also be encountered herein. It shows that it is possible to reach an advanced rate of 174 m/day in

  15. Free-face-Assisted Rock Breaking Method Based on the Multi-stage Tunnel Boring Machine (TBM) Cutterhead

    Science.gov (United States)

    Geng, Qi; Wei, Zhengying; Meng, Hao; Macias, Francisco Javier; Bruland, Amund

    2016-11-01

    In order to improve the rock breaking efficiency of hard rock tunnel boring, many innovative rock breaking methods have been proposed (e.g., the water jet cutting, the high-power laser cutting, the impact-rotary drilling, and the undercutting method). However, most of the methods are not applicable to TBMs due to some structural reasons. Aiming on this problem, a free-face-assisted rock breaking method based on the multi-stage TBM cutterhead has been proposed. Series of proof-of-concept tests includes (1) the static compression test with vertical free face and (2) the rotary cutting tests in different free surface conditions were designed and carried out. The results show that the rock breaking force and efficiency can be significantly reduced and improved, respectively, with the assistance of the free face, due to the failure of the rock close to the free face is tensile-dominated failure. The influencing distance of the free face in the radial direction is at least 330 mm which covers about 5 disk cutters. Finally, the general structure of a small two-stage cutterhead (4 m in diameter) was tentatively designed in order to provide a possible approach to apply the free-face effect to TBMs.

  16. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    Science.gov (United States)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  17. Determining the Particle Size of Debris from a Tunnel Boring Machine Through Photographic Analysis and Comparison Between Excavation Performance and Rock Mass Properties

    Science.gov (United States)

    Rispoli, A.; Ferrero, A. M.; Cardu, M.; Farinetti, A.

    2017-10-01

    This paper presents the results of a study carried out on a 6.3-m-diameter exploratory tunnel excavated in hard rock by an open tunnel boring machine (TBM). The study provides a methodology, based on photographic analysis, for the evaluation of the particle size distribution of debris produced by the TBM. A number of tests were carried out on the debris collected during the TBM advancement. In order to produce a parameter indicative of the particle size of the debris, the coarseness index (CI) was defined and compared with some parameters representative of the TBM performance [i.e. the excavation specific energy (SE) and field penetration index (FPI)] and rock mass features, such as RMR, GSI, uniaxial compression strength and joint spacing. The results obtained showed a clear trend between the CI and some TBM performance parameters, such as SE and FPI. On the contrary, due to the rock mass fracturing, a clear relationship between the CI and rock mass characteristics was not found.

  18. Bored tunnel storage of nuclear waste

    International Nuclear Information System (INIS)

    Penberthy, L.

    1983-01-01

    Contrary to the current emphasis on deep geologic disposal of high-level nuclear waste, simple bored tunnels offer many advantages. Much lower cost is important in this period of severe budget crisis. Recoverability is feasible from a tunnel in a mountain, but dubious from a flooded mine 3000 ft deep. It is quite possible that the world will need the breeder energy cycle urgently 200 years from now. In the writer's opinion, it would be a sin for our generation to make so much fertile and fissile uranium fuel unavailable for future generations. Storage conditions in a near-surface repository are much better than deep because the temperature can be kept down, pressure will be atmospheric instead of potentially 1200 psi, and flooding will not occur. The so-called ''hydrothermal'' conditions are thus completely avoided. Accordingly, endless studies of hydrogeology, water pathway times, waste-host rock interactions and the like are unnecessary, and the time for action is much shorter

  19. ESTIMATION OF THE SPECIFIC ENERGY OF TUNNEL BORING MACHINE USING POST-FAILURE BEHAVIOUR OF ROCK MASS.CASE STUDY: KARAJ-TEHRAN WATER CONVEYANCE TUNNEL IN IRAN

    Directory of Open Access Journals (Sweden)

    MAJID MIRAHMADI

    2017-09-01

    Full Text Available Performance prediction of tunnel boring machines (TBM is the most important factor for successful tunnel excavation projects. The specific energy (SE of TBM, defined as the amount of energy required to excavate a unit volume of rock, is one of the critical parameters used for performance prediction of these machines. Estimation of SE is very useful to design the drilling project because it is a function of many parameters such as rock mass behaviour, machine properties and project parameters. Several methods are used to estimate this parameter, such as experimental, empirical and numerical. The aim of this study is to estimate the SE considering the postfailure behaviour of rock mass. For this reason, based on the actual data from Karaj-Tehran water conveyance tunnel, a new empirical method is proposed to estimate the SE using the drop-to-deformation modulus ratio (λ. Based on the statistical analysis, the relation between the SE and λ is estimated. It is clear that the amplitude of λ, is high and to increase the correlation between mentioned parameters, the classification of data is performed. All data is classified in three classes as very weak (GSI75. Also a statistical analysis is performed to estimate the SE using the mentioned parameter (λ in any class. The result shows that there is a direct relation between both parameters and the best correlation is achieved. So, the best equations are proposed to estimate SE using λ, considering the post failure behaviour of rock mass.

  20. Boring of full scale deposition holes using a novel dry blind boring method

    International Nuclear Information System (INIS)

    Autio, J.; Kirkkomaeki, T.

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.)

  1. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland)

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.).

  2. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  3. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  4. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    International Nuclear Information System (INIS)

    Andersson, Christer; Johansson, Aasa

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours

  5. Design theory of full face rock tunnel boring machine transition cutter edge angle and its application

    Science.gov (United States)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2013-05-01

    At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutter head gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.

  6. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  7. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  8. Ten Years of bored tunnels in the Netherlands : Part I: Geotechnical issues

    NARCIS (Netherlands)

    Bakker, K.J.; Bezuijen, A.

    2008-01-01

    Ten years have passed since in 1997 for the first time construction of bored tunnels in the Netherlands soft soil was undertaken. Before that date essentially only immersed tunnels and cut-and-cover tunnels were constructed in the Netherlands. The first two bored tunnels were Pilot Projects, the 2nd

  9. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps – A case study

    OpenAIRE

    Prasnna Jain; A.K. Naithani; T.N. Singh

    2014-01-01

    A 12.24 km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine (TBM) to improve the water supply system of Greater Mumbai, India. In this paper, attempt has been made to establish the relationship between various litho-units of Deccan traps, stability of tunnel and TBM performances during the construction of 5.83 km long tunnel between Maroshi and Vakola. The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburd...

  10. Fracturing of hard rocks by microwave treatment and potential applications in mechanised tunnelling

    OpenAIRE

    YANLONG ZHENG

    2018-01-01

    Extremely hard and abrasive rocks have posed great challenges to mechanical excavators such as tunnel boring machines and roadheaders by increasing the cutter wear and decreasing the penetration rates. Microwave treatment prior to mechanical rock breakage has been recognised as a promising technology. This PhD project measures/derives the dielectric properties of commonly encountered rocks and minerals and investigates the effect of microwave treatment on the physical and mechanical propertie...

  11. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    Science.gov (United States)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  12. Acoustic Monitoring for Tunnel Boring in Soft Soils

    NARCIS (Netherlands)

    Swinnen, G.

    2003-01-01

    The TBM, not a blind mole! This thesis deals with some aspects of seismic imaging of the soft soil in front of a Tunnel Boring Machine to help tunnel constructors ``see'' the subsurface they are approaching, instead of steering the TBM forward like a ``blind mole''. The Dutch shallow subsurface has

  13. Tunnel boring machine applications

    International Nuclear Information System (INIS)

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-01-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM

  14. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Oy, Helsinki (Finland)

    1996-10-01

    Three holes the size of deposition holes (depth 7.5 m and diameter 1.5 m) were bored in the Research Tunnel at Olkiluoto, Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string. The purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. The boring method was found to be technically feasible and efficient. Evaluation of the quality of the hole included studies of the geometry of the hole, measurements of the surface roughness using a laser profilometer and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, He-gas diffusion and the {sup 14}C-polymethylmethacrylate methods. 43 refs.

  15. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    Science.gov (United States)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  16. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    Science.gov (United States)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  17. A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2017-12-01

    Full Text Available The success of a tunnel-boring machine (TBM in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP, rate of machine utilization (U, and daily advance rate (AR. Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutterheads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to look for in a proper design, and the implications of the head design on machine operation and life cycle. Keywords: TBM cutterhead design, Cutterhead layout, Disk cutters, Cutting pattern, TBM efficiency

  18. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  19. Tunnel Boring Machine Cutter Maintenance for Constructing Underground Cable Lines from Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jae Wang; Yee, Eric

    2014-01-01

    The tunnel boring machine (TBM) can construct an underground tunnel efficiently and without construction noise vibration related problems. Many civil projects, such as NPP construction, set importance on the economics of construction. Thus, advance rate, which is the speed at which the TBM is able to progress along its intended route, is one of the key factors affecting construction period and construction expenses. As the saying goes, time is money. Right Double Quotation Mark In addition, it is important to manage construction permits and civil complaints, even when construction expenses and construction periods are excluded. So, accurate prediction for advance rate is important when designing tunnel project. Several designers and project owners have tried to improve construction efficiency and tunneling advance rate.. There have been several studies on managing the rate of wear, designing an optimum tunnel face, and finding the optimum cutter spacing. Cutter replacements due to cutter wear and tear are very important because the wear and tear of cutters attached to the cutter head profoundly affect the advance rate. To manage cutter wear and tear is to control parameters related to cutter shape and cutter wear rate. There have been studies on the relationship between rock properties or TBM characteristics, and cutter wear or replacement. However, many of these studies relied on computer simulations or other small scale experiments. Therefore, this paper attempts to present a correlation between cutter replacement or cutter wear, against various parameters using practical data such as rock quality and TBM shield specifications, from an actual construction site. This study was conducted to suggest directions in the improvement of TBM cutters by analyzing relationships between rock conditions and cutter maintenance as well as TBM advance rates. Actual field data was collected and compared to actual design values in evaluating the effectiveness of traditional

  20. Tunnel Boring Machine Cutter Maintenance for Constructing Underground Cable Lines from Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Wang; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The tunnel boring machine (TBM) can construct an underground tunnel efficiently and without construction noise vibration related problems. Many civil projects, such as NPP construction, set importance on the economics of construction. Thus, advance rate, which is the speed at which the TBM is able to progress along its intended route, is one of the key factors affecting construction period and construction expenses. As the saying goes, time is money. Right Double Quotation Mark In addition, it is important to manage construction permits and civil complaints, even when construction expenses and construction periods are excluded. So, accurate prediction for advance rate is important when designing tunnel project. Several designers and project owners have tried to improve construction efficiency and tunneling advance rate.. There have been several studies on managing the rate of wear, designing an optimum tunnel face, and finding the optimum cutter spacing. Cutter replacements due to cutter wear and tear are very important because the wear and tear of cutters attached to the cutter head profoundly affect the advance rate. To manage cutter wear and tear is to control parameters related to cutter shape and cutter wear rate. There have been studies on the relationship between rock properties or TBM characteristics, and cutter wear or replacement. However, many of these studies relied on computer simulations or other small scale experiments. Therefore, this paper attempts to present a correlation between cutter replacement or cutter wear, against various parameters using practical data such as rock quality and TBM shield specifications, from an actual construction site. This study was conducted to suggest directions in the improvement of TBM cutters by analyzing relationships between rock conditions and cutter maintenance as well as TBM advance rates. Actual field data was collected and compared to actual design values in evaluating the effectiveness of traditional

  1. ANALYSIS OF LABOUR ACCIDENTS DUE TO ROCK FALL EVENTS IN CUTTING FACE OF TUNNEL AND STUDY OF THE COUNTERMEASURES FOR SAFETY

    Science.gov (United States)

    Kikkawa, Naotaka; Itoh, Kazuya; Hori, Tomohito; Tamate, Satoshi; Toyosawa, Yasuo

    In this paper, we analysed the labour accidents which had casualties due to rock fall events in the headings of tunnel and cleared the condition of the occurrence. It was clearly revealed that the accidents mostly happened when the workers mounted the explosive and the steel arch in the headings of the mountain tunnel. In addition, the dimension of the rocks fallen were averagely 0.6m diameter, it was not so much large. Therefore, the countermeasures based on both soft and hard faces would be useful and effective, such as the displacement measurement of a cutting face of tunnel, securing the sufficient lights to observe the cutting face, boring for drainage and shotcreting in a heading of tunnel.

  2. On the Interaction between a Tunnel Boring Machine and the Surrounding Soil

    NARCIS (Netherlands)

    Festa, D.

    2015-01-01

    The thesis investigates the mechanical equilibrium of a Tunnel Boring Machine (TBM) driving in soft soil. The interaction between the TBM-shield and the soil is also investigated. The analysis is based on monitoring data gathered during the construction of the Hubertus tunnel in The Hague,

  3. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

    Science.gov (United States)

    Innaurato, N.; Oggeri, C.; Oreste, P.; Vinai, R.

    2011-06-01

    To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater.

  4. Safety precautions of Dover Channel Tunnel boring machine; Kaitei tonneru kussakuki to anzen

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Y.; Fujioka, K. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-02-15

    In May 6th 1994, the Dover Channel Tunnel referred to the largest project in this century has been opened for traffic. France and England, which have been separated by the strait with a width of about 38 km, have been connected through the submarine railway tunnel and became to be a land continuation. Since Napoleon the first, who conquested European Continent, has made a tunnel construction plan towards England, in really 27th planning, the Eurotunnel, which has been a dream in Europe for 200 years, was realized. A position of this tunnel is at a depth of 100 m under marine surface, and a geology of the strait part is a chalk layer with a calcium carbonate as a main component. For a tunnel excavation, 6 units in England side, and 5 units in France side, and therefore total 11 units of tunnel boring machines were used. Out of them, in 2 tunnels for train from France side, 2 units of tunnel boring machine (TBM) made in Japan were used. In this paper a structure and excavation method of TBM was explained, and a safety countermeasure of TBM adopted in this project was outlined. 1 ref., 10 figs.

  5. Looking ahead of a tunnel boring machine with 2-D SH full waveform inversion

    NARCIS (Netherlands)

    Pisupati, P.B.; Mulder, W.A.; Drijkoningen, G.G.; Reijnen, R.

    2015-01-01

    In the near-surface with unconsolidated soils, shear properties can be well imaged, sometimes better than P-wave properties. To facilitate ground prediction ahead of a tunnel boring machine (TBM), active ‘surveys’ with shear-wave vibrators are carried out during boring. In such surveys, only a few

  6. Increased productivity in construction of civil and mining tunnels through the use of high-capacity tunnel-boring machines and continuous belt conveyor muck haulage

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, J.G.; Ganey, R.J.; Killingsworth, J.E. [Perini Corp., Chicago, IL (United States). US Heavy Division

    1994-12-31

    The use of a large diameter high production tunnel boring machine interfaced with a high capacity continuous belt conveyor system provides a highly productive and cost effective construction system for both civil and mining tunnels. Continuous advance of the tunnel boring machine for a distance of 1,000 feet (305 m) allows for very efficient operation of the system. The available cost reductions will likely prove that this approach to waste handling will make marginally viable projects economically feasible. 9 refs., 10 figs., 1 tab.

  7. The use of a Tunnel Boring Machine (TBM) as a seismic source

    Science.gov (United States)

    Kreutzer, Ingrid; Chwatal, Werner; Radinger, Alexander; Brückl, Ewald

    2014-05-01

    The Tunnel Seismic While Drilling (TSWD) method uses the Tunnel Boring Machine (TBM) as the seismic source. The method has been developed to predict the geological situation from reflections ahead of the tunnel face without disturbing the tunneling. The vibrations of the TBM are continuously monitored near the drilling head (pilot signal) as well as the direct and reflected seismic wave field at borehole geophones (geophone signal) situated in the tunnel wall behind the TBM. During the processing these signals are correlated and result in excellent seismic traces comparable to conventional seismic methods. The interpretation of the reflections leads to a nearly daily prognosis about 100 m ahead of the TBM. This system was successfully implemented at three different construction sites in Austria and is currently operating at one further. The cutters on front of the TBM head are pressed against the tunnel face and split the rock during rotating which is called the chipping process. This cutting process generates seismic waves radiated into the rock mass and results also in vibrations of the TBM itself. On the one hand it is important to know the source mechanism of the TBM and the radiation pattern of the seismic waves in all directions. Until now this is not well understood. To investigate this 3C-geophones were installed at the surface above the tunnel axis at different construction sites. The obtained seismograms show the forward and backward radiated seismic wave field of the TBM, for the present without consideration of the influence of the free surface. We compare this data with modelled seismograms in which we use different possible source mechanism, like single force or force due to tensile cracks. First results are shown in the scope of this work. On the other hand it is essential to know how good the recorded pilot signal represents the entire chipping process. Due to technically reasons the pilot signal has been registered so far on the non-rotating part

  8. Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the Research Tunnel of Olkiluoto

    International Nuclear Information System (INIS)

    Autio, J.

    1997-09-01

    Three holes, the size of deposition holes, were bored in the Research Tunnel using a novel full-face boring technique. During the boring test, procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. Evaluation of the quality of the hole included studies of the geometry of the holes, measurements of surface roughness using a laser profilometer, rock mechanical determinations and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, the He-gas method and the 14 C-polymethylmethacrylate ( 14 C-PMMA) method. It was found that there is a distinct disturbed zone adjacent to the surface of the full scale deposition holes which can be divided into three different zones. The zones are as follows: a crushed zone penetrating to a depth of about 3 mm from the surface, a fractured zone extending to a depth of 6 - 10 mm from the crushed zone and a micro fractured zone extending to a depth of 15 - 31 mm from the fractured zone. The porosity of the rock in the disturbed zone measured using the 14 C-PMMA method was clearly greater than the porosity of undisturbed rock to a depth of about 11 mm. The values of permeability and effective diffusion coefficient in the disturbed zone measured in a direction perpendicular to the disturbed surface were found to be approximately one order of magnitude larger than those of undisturbed rock. The degree of disturbance was found to be greater where higher levels of thrust had been employed during the boring process. The results obtained also suggest that the disturbance caused by using 4- and 5-row cutters in the cutter head is more pronounced than the disturbance caused when using 5- and 6-row cutters

  9. Analysis on the Rock-Cutter Interaction Mechanism During the TBM Tunneling Process

    Science.gov (United States)

    Yang, Haiqing; Wang, He; Zhou, Xiaoping

    2016-03-01

    The accurate prediction of rock cutting forces of disc cutters is crucial for tunnel boring machine (TBM) design and construction. Disc cutter wear, which affects TBM penetration performance, has frequently been found at TBM sites. By considering the operating path and wear of the disc cutter, a new model is proposed for evaluating the cutting force and wear of the disc cutter in the tunneling process. The circular path adopted herein, which is the actual running path of the TBM disc cutter, shows that the lateral force of the disc cutter is asymmetric. The lateral forces on the sides of the disc cutter are clearly different. However, traditional solutions are obtained by assuming a linear path, where the later forces are viewed as equal. To simulate the interaction between the rock and disc cutter, a simple brittle damage model for rock mass is introduced here. Based on the explicit dynamic finite element method, the cutting force acting on the rock generated by a single disc cutter is simulated. It is shown that the lateral cutting force of the disc cutter strongly affects the wear extent of disc cutter. The wear mechanism is thus underestimated by the classical model, which was obtained by linear cutting tests. The simulation results are discussed and compared with other models, and these simulation results agree well with the results of present ones.

  10. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  11. ZEDEX - A study of damage and disturbance from tunnel excavation by blasting and tunnel boring

    International Nuclear Information System (INIS)

    Emsley, S.; Olsson, Olle; Stenberg, L.; Alheid, H.J.; Falls, S.

    1997-12-01

    The objectives of the ZEDEX project were to understand the mechanical behaviour of the excavation disturbed zone (EDZ) with respect to its origin, character, magnitude of property change, extent and its dependence on excavation method. Excavation with normal smooth blasting, blasting with low shock explosives and tunnel boring were studied. The drifts are located at Aespoe at a depth of 420 m, the profiles are circular and 5 m in diameter. The results have shown that there is a damaged zone, close to the drift wall dominated by changes in rock properties which are irreversible, and that there is a disturbed zone beyond the damaged zone that is dominated by changes in stress state and mainly reversible. There is no distinct boundary between the two zones. The results from ZEDEX indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The extent of the damaged zone can be limited through application of appropriate excavation methods. By limiting the extent of the damaged zone it should also be feasible to block pathways in the damaged zone by plugs placed at strategic locations

  12. ZEDEX - A study of damage and disturbance from tunnel excavation by blasting and tunnel boring

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, S [Golder Associates, Maidenhead (United Kingdom); Olsson, Olle; Stenberg, L [Swedish Nuclear Fuel and Waste Co., Figeholm (Sweden); Alheid, H J [Federal Inst. for Geosciences and Natural Resources, Hannover (Germany); Falls, S [Queens Univ., Kingston, ON (Canada)

    1997-12-01

    The objectives of the ZEDEX project were to understand the mechanical behaviour of the excavation disturbed zone (EDZ) with respect to its origin, character, magnitude of property change, extent and its dependence on excavation method. Excavation with normal smooth blasting, blasting with low shock explosives and tunnel boring were studied. The drifts are located at Aespoe at a depth of 420 m, the profiles are circular and 5 m in diameter. The results have shown that there is a damaged zone, close to the drift wall dominated by changes in rock properties which are irreversible, and that there is a disturbed zone beyond the damaged zone that is dominated by changes in stress state and mainly reversible. There is no distinct boundary between the two zones. The results from ZEDEX indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The extent of the damaged zone can be limited through application of appropriate excavation methods. By limiting the extent of the damaged zone it should also be feasible to block pathways in the damaged zone by plugs placed at strategic locations 68 refs, 92 figs, 31 tabs

  13. Application of fuzzy methods in tunnelling

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2011-12-01

    Full Text Available Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highwaytunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machinesand the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the determination ofchanges in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated bythe descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the designof fuzzy models and their verification.

  14. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    Science.gov (United States)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  15. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  16. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  17. Utilization of geothermal energy in tunnels driven by tunnel drilling machines; Nutzung von Geothermie in TBM vorgetriebenen Tunneln

    Energy Technology Data Exchange (ETDEWEB)

    Pralle, Norbert; Franzius, Jan-Niklas [Ed. Zueblin AG, Stuttgart (Germany). Zentrale Technik; Liebel, Volker [Rehau AG und Co, Erlangen (Germany)

    2009-07-01

    Tunnels are nowadays more and more often constructed by means of tunnel boring machines rather than by conventional tunnel excavation. This is because tunnel boring provides a greater degree of safety for neighbouring structures, especially when it takes place in near-surface unconsolidated rock. However, bored tunnels offer less favourable framework conditions for the exploitation of geothermal energy because they are usually lined with concrete tubbings. Depending on the tunnel's diameter this normally involves rings of 1 to 2 metres width made up of several concrete elements. Adapting this type of design for geothermal energy production requires the use of an absorber piping system which permits coupling between the individual concrete elements while at the same time meeting the strict geometric tolerances required for its installation. A system of this type has been developed in a cooperation between the Rehau AG +Co. and Ed. Zueblin AG (Central Technology Services). These energy tubbings have already been installed in two tunnel structures and have also been examined in laboratory tests. An extensive measurement programme is under preparation which is aimed at gaining insights for the further optimisation of energy tubbings.

  18. A bayesian nework based risk model for volume loss in soft soils in mechanized bored tunnels

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Al-Jibouri, Saad H.S.; Halman, Johannes I.M.

    2012-01-01

    Volume loss is one of the most important risks when boring a tunnel. This is particularly true when a tunnel is being constructed in soft soils. The risk of excessive volume loss, if materialised can lead to large consequences such as damage in buildings on the surface. This paper describes the

  19. Tunnel boring waste test plan

    International Nuclear Information System (INIS)

    Patricio, J.G.

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs

  20. Construction of a cylindrical brine test room using a tunnel boring machine

    International Nuclear Information System (INIS)

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs

  1. Construction of a cylindrical brine test room using a tunnel boring machine

    International Nuclear Information System (INIS)

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing, technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs

  2. A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine

    NARCIS (Netherlands)

    Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob

    2016-01-01

    The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier

  3. Review on the prevailing methods for the prediction of potential rock burst / rock spalling in tunnels

    OpenAIRE

    Panthi, Krishna Kanta

    2017-01-01

    Rock burst / rock spalling is among the prevailing stability challenges, which can be met while tunneling through hard rock mass. Especially, this is very relevant for the mountainous country like Norway where hard rock is dominating and many road, railway and hydropower tunnels have to be aligned deep into the mountain with steep valley slope topography. Tunnels passing beneath deep rock cover (overburden), in general, are subjected to high in-situ stresses. If the rock mass is relatively un...

  4. An experimental and computational investigation of electrical resistivity imaging for prediction ahead of tunnel boring machines

    Science.gov (United States)

    Schaeffer, Kevin P.

    Tunnel boring machines (TBMs) are routinely used for the excavation of tunnels across a range of ground conditions, from hard rock to soft ground. In complex ground conditions and in urban environments, the TBM susceptible to damage due to uncertainty of what lies ahead of the tunnel face. The research presented here explores the application of electrical resistivity theory for use in the TBM tunneling environment to detect changing conditions ahead of the machine. Electrical resistivity offers a real-time and continuous imaging solution to increase the resolution of information along the tunnel alignment and may even unveil previously unknown geologic or man-made features ahead of the TBM. The studies presented herein, break down the tunneling environment and the electrical system to understand how its fundamental parameters can be isolated and tested, identifying how they influence the ability to predict changes ahead of the tunnel face. A proof-of-concept, scaled experimental model was constructed in order assess the ability of the model to predict a metal pipe (or rod) ahead of face as the TBM excavates through a saturated sand. The model shows that a prediction of up to three tunnel diameters could be achieved, but the unique presence of the pipe (or rod) could not be concluded with certainty. Full scale finite element models were developed in order evaluate the various influences on the ability to detect changing conditions ahead of the face. Results show that TBM/tunnel geometry, TBM type, and electrode geometry can drastically influence prediction ahead of the face by tens of meters. In certain conditions (i.e., small TBM diameter, low cover depth, large material contrasts), changes can be detected over 100 meters in front of the TBM. Various electrode arrays were considered and show that in order to better detect more finite differences (e.g., boulder, lens, pipe), the use of individual cutting tools as electrodes is highly advantageous to increase spatial

  5. Wear analysis of disc cutters of full face rock tunnel boring machine

    Science.gov (United States)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2014-11-01

    Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.

  6. The analysis of creep characteristics of the surrounding rock of the carbonaceous rock tunnel based on Singh-Mitchell model

    Science.gov (United States)

    Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..

  7. System safety analysis of the Yucca Mountain tunnel boring machine

    International Nuclear Information System (INIS)

    Smith, M.G.; Booth, L.; Eisler, L.

    1995-01-01

    The purpose of this analysis was to systematically identify and evaluate hazards related to the tunnel boring machine to be used at Yucca Mountain. This analysis required three steps to complete the risk evaluation: hazard/scenario identification, consequence assessment, and frequency assessment. The result was a 'risk evaluation' of the scenarios identified in this analysis in accordance with MIL-STD-882C. The risk assessment in this analysis characterized the accident scenarios associated with the TBM in terms of relative risk and included recommendations for mitigating all identified risks

  8. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  9. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  10. ROCK MASS DAMAGED ZONE CAUSED BY BLASTING DURING TUNNEL EXCAVATION

    Directory of Open Access Journals (Sweden)

    Hrvoje Antičević

    2012-07-01

    Full Text Available Design of underground spaces, including tunnels, and repositories for radioactive waste include the application of the same or similar technologies. Tunnel excavation by blasting inevitably results in the damage in the rock mass around the excavation profile. The damage in the rock mass immediately next to the tunnel profile emerges as the expanding of the existing cracks and the appearance of new cracks, i.e. as the change of the physical and-mechanical properties of the rock mass. Concerning the design of deep geological repositories, requirements in terms of damaged rock are the same or more rigorous than for the design of tunnel. The aforementioned research is directed towards determining the depth of damage zone caused by blasting. The depth of the damage zone is determined by measuring the changes of physical and-mechanical properties of the rock mass around the tunnel excavation profile. By this research the drilling and blasting parameters were correlated with the depth and size of the damage zone (the paper is published in Croatian.

  11. Large-diameter boring of rock bed by a reveres circulation drill; Ribasu sakyureshon doriru ni yoru daikokei ganban sakko

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, S.; Torii, K. [Kajima Corp., Tokyo (Japan); Hoshino, S.; Motoyama, M.

    1995-09-25

    The Itojima Large Bridge is a road bridge of 675 m in the total length connecting together the Nagashima Island and the Itojima Island in the northwest district of Kagoshima Prefecture, having a central span of 260 m and comprising a 5-span-continuous PC cable stayed bridges and PC box girder bridges. The foundation of this bridge employs a multi-pillar type pile structure. The piling work was started in July, 1991 by a hole inset method in a severe working environment where the depth of water is 20 m, the range of the tides is 4 m, the speed of tidal current is 2 kt, the rock bed structure is complicated and the steep seabed is steeply inclined. This report describes the results of the execution of the reverse circulation drilling, which has a high general versatility in rock bed boring, using self-lifting barges and large working boats during the rock bed boring for the foundation piling for the construction of the Itojima Large Bridge. The report, especially, also introduces the details of the work that casing pipes were driven into a stable rock bed by a vibrojet method for the measure against the collapse of a bore wall which occurred during the boring work. 24 figs., 14 tabs.

  12. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  13. Studying the Effect of Tunnel Depth Variation on the Specific Energy of TBM, Case Study: Karaj–Tehran (Iran Water Conveyance Tunnel

    Directory of Open Access Journals (Sweden)

    Majid Mirahmadi

    2016-09-01

    Full Text Available The tunnel-boring machine (TBM is a common piece of equipment used in tunneling projects. For planning a mechanical excavation project, prediction of TBM performance and the specification of design elements such as required forces are critical. The specific energy of excavation (SE, i.e. drilling energy consumption per unit volume of rock mass, is a crucial parameter for performance prediction of a TBM. In this study, the effect of variation of tunnel depth on SE by considering the post-failure behavior of rock mass was investigated. Several new relations between SE and tunnel depth are proposed according to the statistical analysis obtained from Karaj – Tehran Water Conveyance Tunnel real data. The results showed that there is a direct relation between both parameters and. Polynomial equations are proposed as the best expression of the correlation between these parameters.

  14. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock

    Science.gov (United States)

    Falls, Stephen D.; Young, R. Paul

    1998-04-01

    Acoustic emission (AE) and ultrasonic-velocity monitoring studies have been undertaken at both the Atomic Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Laboratory (HRL). At both locations the excavations were tunnels in granitic material at approximately 420 m depth. However, the stress regime was more severe at the URL Mine-by tunnel site than the HRL ZEDEX tunnel. Different parts of the ZEDEX tunnel were created using different excavation techniques. Using AE and ultrasonic techniques to study these tunnels we have been able to examine the nature of the excavation-disturbed zone around the tunnel, as well as examining the effects of different stress regimes and excavation techniques. Studies were undertaken both during and after the Mine-by tunnel excavation and during excavation in the ZEDEX tunnel. AE monitoring in the wall of the Mine-by tunnel during excavation showed that some activity occurred in the sidewall regions, but the spatial density of AE hypocentres increased toward the regions in the floor and roof of the tunnel where breakout notches formed. This sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE monitoring in the floor of the tunnel showed that small numbers of AE continued to occur in the notch region in the floor of the tunnel over 2 years after excavation was completed. This activity became more acute as the rock was heated, imposing thermally induced stresses on the volume. Ultrasonic-velocity studies both in the floor and the wall of the tunnel showed that the velocity is strongly anisotropic with the direction of slowest velocity orthogonal to the tunnel surface. The velocity increased with distance into the rock from the tunnel surface. In the floor, this effect was seen up to 2 m from the tunnel surface. Most of the change occurred within the first 0.5 m from the tunnel perimeter. At the lower-stress HRL, most of

  15. The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters

    Science.gov (United States)

    Zhang, Zhao-Huang; Fei, Sun; Liang, Meng

    2016-08-01

    At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.

  16. Analysis of effects of geological structures in rock driving by TBM

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2006-12-01

    Full Text Available Although mechanical properties belongs to important parameter for the excavation modelling, effect of geological structures on the rock massive fragmentation is often much higher than varying rock properties. This paper deals with the analysis of geological structures. It is focused on the schistosity orientation towards the tunnel azimuth. The aim is to define of schistosity effect on the penetration rate. It is a basis creating of fuzzy rules for the performance model full-profile tunnel boring machine

  17. STUDY ON THE BLASTING SEISMIC DAMAGE CONTROL TECHNOLOGY FOR SMALL SPACING SOFT ROCK TUNNEL

    Directory of Open Access Journals (Sweden)

    Yang Chengzhong

    2017-07-01

    Full Text Available With a lot construction of transportation infrastructure in Chinese mountainous area, because of its unique advantages such as less land occupation, beautiful appearance and convenient route planning, small spacing tunnels are widely used. The shallow buried tunnel with small spacing, the blasting excavation will lead to tunnel surrounding rock especially in the middle rock wall damage and reduce the self-bearing capacity of surrounding rock. Through detecting and analyzing by the geological radar of the excavated red layer soft rock tunnel surrounding rock found that the middle rock wall loose circle thickness of the tunnel reaches to 1.8 m, the vault and sidewall loose circle thickness is about 1.2 m. Through selection of rational strengthening measures and blasting design scheme to improve drilling parameters and methods, as far as possible to protect the integrity and self-bearing capacity of the surrounding rock, the deformation and vibration of the tunnel would be controlled in reasonable limits and ensure the safety of tunnel construction.

  18. Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study

    Science.gov (United States)

    Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang

    2017-09-01

    Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in

  19. Dynamic design method for deep hard rock tunnels and its application

    Directory of Open Access Journals (Sweden)

    Xia-Ting Feng

    2016-08-01

    Full Text Available Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and time-dependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed: (i determination of design objective, (ii characteristics of site, rock mass and project, and identification of constraint conditions, (iii selection or development of global design strategy, (iv determination of modeling method and software, (v preliminary design, (vi comprehensive integrated method and dynamic feedback analysis, and (vii final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of mechanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions.

  20. Hard-rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1975-01-01

    Intense sub-microsecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this technique appears promising for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a pulsed electron tunnel excavator, capable of tunneling approximately ten times faster than conventional drill/blast methods, is presented. (auth)

  1. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  2. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  3. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    Science.gov (United States)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  4. Rock mass evaluation for predicting tunnel constructability in the preliminary investigation stage. Phenomena causing difficult tunneling and rockburst prediction

    International Nuclear Information System (INIS)

    Shin, Koichi; Sawada, Masataka; Inohara, Yoshiki; Shidahara, Takumi; Hatano, Teruyoshi

    2011-01-01

    For the selection of the Detailed Investigation Areas for HLW disposal, predicting the tunnel constructability is one of the requirements together with assessing long-term safety. This report is the 1st of the three papers dealing with the evaluation of tunnel constructability. This paper deals with the geological factors relating to difficult tunneling such as squeezing, rockburst, and others. Also it deals with the prediction of rockburst. The 2nd paper will deal with the prediction of squeezing. The 3rd paper deals with the engineering characteristics of rock mass through rock mass classification. This paper about difficult tunneling has been based upon analysis of more than 500 tunneling reports about 280 tunnel constructions. The causes of difficult tunneling are related to (1) underground water, (2) mechanical properties of the rock, or (3) others such as gas. The geological factors for excessive water inflow are porous volcanic product of Quarternary, fault crush zone and hydrothermally altered zone of Green Tuff area, and degenerated mixed rock in accretionary complex. The geological factors for squeezing are solfataric clay at Quarternary volcanic zone, fault crush zone and hydrothermally altered zone of Green Tuff area, mudstone and fault crush zone of sedimentary rock of Neogene and later. Information useful for predicting rockburst has been gathered from previous reports. In the preliminary investigation stage, geological survey, geophysical survey and borehole survey from the surface are the source of information. Therefore rock type, P-wave velocity from seismic exploration and in-situ rock stress from hydrofracturing have been considered. Majority of rockburst events occurred at granitic rock, excluding coal mine where different kind of rockburst occurred at pillars. And P-wave velocity was around 5 km/s at the rock of rockburst events. Horizontal maximum and minimum stresses SH and Sh have been tested as a criterion for rockburst. It has been

  5. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  6. Evaluation of rock classifications at B. C. Rail tumbler ridge tunnels

    Science.gov (United States)

    Kaiser, Peter K.; Mackay, C.; Gale, A. D.

    1986-10-01

    Construction of four single track railway tunnels through sedimentary rocks in central British Columbia, Canada, provided an excellent opportunity to compare various rock mass classification systems and to evaluate their applicability to the local geology. The tunnels were excavated by conventional drilling and blasting techniques and supported primarily with rock bolts and shotcrete, and with steel sets in some sections. After a brief project description including tunnel construction techniques, local geology and groundwater conditions, the data collection and filed mapping procedure is reviewed. Four rock mass classification systems ( RQD, RSR, RMR, Q) for empirical tunnel design are reviewed and relevant factors for the data interpretation are discussed. In comparing and evaluating the performance of these classification systems three aspects received special attention. The tunnel support predicted by the various systems was compared to the support installed, a unique correlation between the two most useful and most frequently applied classifications, the RMR and Q systems, was established and assessed, and finally, the non-support limit and size effect were evaluated. It is concluded that the Q-system best predicted the required tunnel support and that the RMR was only adequate after adjustment for the influence of opening size. Correction equations for opening size effects are presented for the RMR system. The RSR and RQD systems are not recommended for empirical tunnel design.

  7. Determinants of dust exposure in tunnel construction work.

    Science.gov (United States)

    Bakke, Berit; Stewart, Patricia; Eduard, Wijnand

    2002-11-01

    In tunnel construction work, dust is generated from rock drilling, rock bolting, grinding, scaling, and transport operations. Other important dust-generating activities are blasting rock and spraying wet concrete on tunnel walls for strength and finishing work. The aim of this study was to identify determinants of dust exposure in tunnel construction work and to propose control measures. Personal exposures to total dust, respirable dust, and alpha-quartz were measured among 209 construction workers who were divided into 8 job groups performing similar tasks: drill and blast workers, shaft drilling workers, tunnel boring machine workers, shotcreting operators, support workers, concrete workers, outdoor concrete workers, and electricians. Information on determinants was obtained from interviewing the workers, observation by the industrial hygienist responsible for the sampling, and the job site superintendent. Multivariate regression models were used to identify determinants associated with the dust exposures within the job groups. The geometric mean exposure to total dust, respirable dust, and alpha-quartz for all tunnel workers was 3.5 mg/m(3) (GSD = 2.6), 1.2 mg/m(3) (GSD = 2.4), and 0.035 mg/m(3) (GSD = 5.0), respectively. A total of 15 percent of the total dust measurements, 5 percent of the respirable dust, and 21 percent of the alpha-quartz exceeded the Norwegian OELs of 10 mg/m(3), 5 mg/m(3), and 0.1 mg/m(3), respectively. Job groups with highest geometric mean total dust exposure were shotcreting operators (6.8 mg/m(3)), tunnel boring machine workers (6.2 mg/m(3)), and shaft drilling workers (6.1 mg/m(3)). The lowest exposed groups to total dust were outdoor concrete workers (1.0 mg/m(3)), electricians (1.4 mg/m(3)), and support workers (1.9 mg/m(3)). Important determinants of exposure were job group, job site, certain tasks (e.g., drilling and scaling), the presence of a cab, and breakthrough of the tunnel. The use of ventilated, closed cabs appeared to be

  8. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  9. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    Science.gov (United States)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  10. Apparatus and method for large tunnel excavation in hard rock

    International Nuclear Information System (INIS)

    Altseimer, J.H.; Hanold, R.J.

    1975-01-01

    A tunneling machine is described for producing large tunnels in rock by progressive detachment of the tunnel core by thermal melting a boundary kerf into the tunnel face and simultaneously forming an initial tunnel wall support by deflecting the molten materials against the tunnel walls to provide, when solidified, a continuous liner; and fragmenting the tunnel core circumscribed by the kerf by thermal stress fracturing and in which the heat required for such operations is supplied by a compact nuclear reactor. (U.S.)

  11. Arrival of the Robbins machine in LSS1 after completing the boring of the SPS tunnel.

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    A few months after the signature of the agreement giving the go-ahead for the expansion of CERN into French territory (see Bulletin no.24/2004), work began on the Super Proton Synchrotron (SPS). Two years later, on 31 July 1974, the Robbins tunnel-boring machine excavating the SPS tunnel returned to its starting point (see photograph). It had excavated a tunnel with a circumference of 7 kilometres, at an average depth of 40 metres below the surface. The tunnel straddled the Franco-Swiss border, making the SPS the first cross-border accelerator. More than a thousand magnets were needed to equip the ring. The civil engineering and installation work was completed in record time after only four years. The SPS was equipped with a control system which was ahead of its time, consisting of 24 small control computers distributed in the tunnel and the control room and communicating by means of a high-rate data transmission system. The main control room housed only four consoles as opposed to the banks of electronic eq...

  12. Tunnel Face Stability & New CPT Applications

    NARCIS (Netherlands)

    Broere, W.

    2001-01-01

    Nearly all tunnels bored in soft soils have encountered problems with the stability of the tunnel face. In several cases these problems led to an extended stand-still of the boring process. A better understanding of the face stability, and of the soil conditions around the tunnel boring machine, can

  13. Key technologies of drilling process with raise boring method

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2015-08-01

    Full Text Available This study presents the concept of shaft constructed by raise boring in underground mines, and the idea of inverse construction can be extended to other fields of underground engineering. The conventional raise boring methods, such as the wood support method, the hanging cage method, the creeping cage method, and the deep-hole blasting method, are analyzed and compared. In addition, the raise boring machines are classified into different types and the characteristics of each type are described. The components of a raise boring machine including the drill rig, the drill string and the auxiliary system are also presented. Based on the analysis of the raise boring method, the rock mechanics problems during the raise boring process are put forward, including rock fragmentation, removal of cuttings, shaft wall stability, and borehole deviation control. Finally, the development trends of raise boring technology are described as follows: (i improvement of rock-breaking modes to raise drilling efficiency, (ii development of an intelligent control technique, and (iii development of technology and equipment for nonlinear raise boring.

  14. Report Tunneling Cost Reduction Study prepared for Fermilab

    International Nuclear Information System (INIS)

    Not Available

    1999-01-01

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations

  15. EXPERIMENTAL STUDY ON THE STABILITY OF SURROUNDING ROCK IN TUNNEL BLASTING CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Hongxian Fu

    2018-04-01

    Full Text Available In this study, criteria and blasting technologies are introduced in order to control the stability of surrounding rock of tunnel built using drill-and-blast safety. The paper is composed of three parts, namely, a blast vibration propagation law in roof surrounding rock in close proximity to tunnel face, two formulae to calculate particle critical vibration velocity of shotcrete and key structural element at the roof of tunnel, and innovative technologies of tunnel blasting. The blast vibration propagation law is the base to control the stability of surrounding rock during tunnel blasting. Based on Morhr-Coulomb criterion and the dynamic analysis, two formulae to calculate the critical particle vibration velocity are proposed. Based on a series of trial blasts using electronic detonators, two innovative blasting technologies are derived. One is the blast holes detonated one by one by using electronic detonator, and another is the blast holes detonated by combining initiation system of electronic detonators and nonel detonators. The use of electronic detonators in tunnel blasting not only leads to a smaller blast vibration but also to a smaller extent of the EDZ (excavation damaged zone.

  16. Analytical Solution of Tunnel Surrounding Rock for Stress and Displacement Based on Lade–Duncan Criterion

    Directory of Open Access Journals (Sweden)

    MingZheng Zhu

    2018-01-01

    Full Text Available The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.

  17. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  18. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  19. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    Science.gov (United States)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  20. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  1. Rock mass seismic imaging around the ONKALO tunnel, Olkiluoto 2007

    International Nuclear Information System (INIS)

    Cosma, C.; Cozma, M.; Balu, L.; Enescu, N.

    2008-11-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock focusing in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. Vibrometric Oy has performed a tunnel seismic survey in ONKALO access tunnel on a 100 m line in December 2007. Tunnel length (chainage) was 1720 - 1820 m (vertical depth 170 - 180 m). Measurement applied 120 source positions at 1 m spacing, and on the both ends at 4 m spacing. Electromechanical Vibsist-20 tool was used as the source. Hammer produced 15.36 s sweeps. Signal was recorded with 2-component geophone assemblies, installed in 400 mm long, 45 mm drillholes in the tunnel wall. Sweeps were recorded with Summit II seismograph and decoded to seismic traces. Also percussion drill rig, which is used in drilling the blasting holes in tunnel excavation, was tested from a 100-m distance as a seismic source. Signal is equally good as from actual seismic source, and may be applied later on for production. Obtained seismic results were processed with tomographic reconstruction of the first arrivals to P and S wave refraction tomograms, and to tomograms of Young's modulus and Shear Modulus. The obtained values correspond the typical levels known from Olkiluoto. There are indications of lower velocity near tunnel wall, but resolution is not adequate for further interpretation. Some variation of velocity is detected in the rock mass. Seismic data was also processed with normal reflection profile interpretation and migrated. As a result there was obtained reflection images to a 100-m distance from the tunnel. Several reflecting events were observed in the rock mass. Features making an angle of 30 deg or more with tunnel axis can be imaged from distances of tens of metres. Vertical fractures perpendicular to tunnel can be imaged only near the tunnel. Gently dipping features can be imaged below and above. Images are 2D, i

  2. Dynamic response of tunnels in jointed rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1992-03-01

    We describe the application of the Discrete Element Method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis

  3. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-10-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented, with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  4. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-01-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  5. The three-dimension model for the rock-breaking mechanism of disc cutter and analysis of rock-breaking forces

    Science.gov (United States)

    Zhang, Zhao-Huang; Sun, Fei

    2012-06-01

    To study the rock deformation with three-dimensional model under rolling forces of disc cutter, by carrying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the theory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the balance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are derived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock-breaking mechanism of disc cutters.

  6. Excavated rock materials from tunnels for sprayed concrete

    OpenAIRE

    Luong, Judy Yuen Wah; Aarstad, Kari; De Weerdt, Klaartje; Bjøntegaard, Øyvind

    2017-01-01

    Sand extracted from natural resources is widely used in concrete production nowadays. The increase in demand for concrete production has resulted in shortage of natural sand resources, especially in terms of suitable materials for concrete production. At the same time, large amounts of excavated rock materials are and have been generated from tunnelling projects and discarded. Hence, there is an opportunity to use these excavated rock materials as aggregates for concrete production. The chall...

  7. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    Science.gov (United States)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  8. Rock mass characterization for tunnels in the Copenhagen limestone

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Jakobsen, Lisa; Jackson, Peter

    2007-01-01

    Tunnels in Copenhagen are drilled through highly anisotropic limestone comprising alternating strongly lithified and less lithified parts. The mass quality of the limestone is usually defined from fracture spacing registered in core samples. The deposit is, however, affected destructively by dril...... by drilling activity yielding a low Rock Quality Designation RQD. In-situ observations of the limestone in excavations or televiewer logs reveal only few natural discontinuities compared to core logging, indicating a very good suitability for tunneling....

  9. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  10. Deposition of high-level radioactive waste products in bore-holes with buffer substance

    International Nuclear Information System (INIS)

    Jacobsson, A.; Pusch, R.

    1977-05-01

    The present investigation comprised a compilation of available literature data concerning the possible use of clayey masses as buffer substances in bore-holes (in rock) with canisters containing radioactive waste products. The aim was to find a suitable composition of the buffer mass and to recommend a suitable storing technique. The criteria concerning the function of the buffer substance were: Sufficient mechanical supporting power, suitable mechanical properties, prevention of free circulation of ground water, ion-adsorption ability, sufficiently good heat conduction properties. These criteria suggest that a buffer substance containing Na-montmorillonite would be suitable. Literature studies and own experience show that montmorillonite is permanently stable at 100 degrees C temperature and 5 MPa pressure when pH is within the range of 6.5-10 while quartz is stable at pH <9. The authors conclude that the suggested principle of storing the canisters in sealed bore-holes filled with a 10 percent bentonite/90 percent quartz (silt, sand) mass is suitable provided that the tunnel system, from which the holes are bored, is sealed with a dense buffer mass consisting of quartz (silt, sand) and 20-50 percent bentonite powder. (author)

  11. Determination of near field excavation disturbance in crystalline rock

    International Nuclear Information System (INIS)

    Koopmans, R.; Hughes, R.W.

    1986-01-01

    The computerized dilatometer system has rapidly and economically provided deformation moduli of low and high modulus rock, determined the extent of excavation disturbance surrounding an underground opening and located open fracture within a rock mass. Results from both test sites indicate that the moduli obtained were influenced by the in situ tangential stress field. It has been shown that the near field excavation disturbance is kept to a minimum through the use of careful excavation techniques such as the tunnel boring machine. In turn, the in situ tangential stress levels and deformation moduli are maximized while the corresponding permeability is minimized

  12. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM

    Science.gov (United States)

    Exadaktylos, G.; Stavropoulou, M.; Xiroudakis, G.; de Broissia, M.; Schwarz, H.

    2008-12-01

    Basic principles of the theory of rock cutting with rolling disc cutters are used to appropriately reduce tunnel boring machine (TBM) logged data and compute the specific energy (SE) of rock cutting as a function of geometry of the cutterhead and operational parameters. A computational code written in Fortran 77 is used to perform Kriging predictions in a regular or irregular grid in 1D, 2D or 3D space based on sampled data referring to rock mass classification indices or TBM related parameters. This code is used here for three purposes, namely: (1) to filter raw data in order to establish a good correlation between SE and rock mass rating (RMR) (or tunnelling quality index Q) along the chainage of the tunnel, (2) to make prediction of RMR, Q or SE along the chainage of the tunnel from boreholes at the exploration phase and design stage of the tunnel, and (3) to make predictions of SE and RMR or Q ahead of the tunnel’s face during excavation of the tunnel based on SE estimations during excavation. The above tools are the basic constituents of an algorithm to continuously update the geotechnical model of the rock mass based on logged TBM data. Several cases were considered to illustrate the proposed methodology, namely: (a) data from a system of twin tunnels in Hong Kong, (b) data from three tunnels excavated in Northern Italy, and (c) data from the section Singuerlin-Esglesias of the Metro L9 tunnel in Barcelona.

  13. RAM analysis of earth pressure balance tunnel boring machines: A case study

    Directory of Open Access Journals (Sweden)

    Hasel Amini Khoshalan

    2015-12-01

    Full Text Available Earth pressure balance tunnel boring machines (EPB-TBMs are favorably applied in urban tunneling projects. Despite their numerous advantages, considerable delays and high maintenance cost are the main disadvantages these machines suffer from. Reliability, availability, and maintainability (RAM analysis is a practical technique that uses failure and repair dataset obtained over a reasonable time for dealing with proper machine operation, maintenance scheduling, cost control, and improving the availability and performance of such machines. In the present study, a database of failures and repairs of an EBP-TBM was collected in line 1 of Tabriz subway project over a 26-month interval of machine operation. In order to model the reliability of the TBM, this machine was divided into five distinct subsystems including mechanical, electrical, hydraulic, pneumatic, and water systems in a series configuration. According to trend and serial correlation tests, the renewal processes were applied, for analysis of all subsystems. After calculating the reliability and maintainability functions for all subsystems, it was revealed that the mechanical subsystem with the highest failure frequency has the lowest reliability and maintainability. Similarly, estimating the availability of all subsystems indicated that the mechanical subsystem has a relatively low availability level of 52.6%, while other subsystems have acceptable availability level of 97%. Finally, the overall availability of studied machine was calculated as 48.3%.

  14. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  15. Effects of statistical distribution of joint trace length on the stability of tunnel excavated in jointed rock mass

    Directory of Open Access Journals (Sweden)

    Kayvan Ghorbani

    2015-12-01

    Full Text Available The rock masses in a construction site of underground cavern are generally not continuous, due to the presence of discontinuities, such as bedding, joints, faults, and fractures. The performance of an underground cavern is principally ruled by the mechanical behaviors of the discontinuities in the vicinity of the cavern. During underground excavation, many surrounding rock failures have close relationship with joints. The stability study on tunnel in jointed rock mass is of importance to rock engineering, especially tunneling and underground space development. In this study, using the probability density distribution functions of negative exponential, log-normal and normal, we investigated the effect of joint trace length on the stability parameters such as stress and displacement of tunnel constructed in rock mass using UDEC (Universal Distinct Element Code. It was obtained that normal distribution function of joint trace length is more critical on the stability of tunnel, and exponential distribution function has less effect on the tunnel stability compared to the two other distribution functions.

  16. Analysis of mechanical behavior of soft rocks and stability control in deep tunnels

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2014-06-01

    Full Text Available Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and water-weakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deep tunnel construction in similar geological conditions.

  17. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling

    Science.gov (United States)

    Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.

    2018-02-01

    The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.

  18. Aespoe Hard Rock Laboratory Annual Report 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs

  19. Aespoe Hard Rock Laboratory Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs.

  20. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  1. Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel

    Science.gov (United States)

    Jiang, Quan; Cui, Jie; Chen, Jing

    2012-01-01

    In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.

  2. Numerical Simulation of Rock Mass Damage Evolution During Deep-Buried Tunnel Excavation by Drill and Blast

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng

    2015-09-01

    Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.

  3. Back-analysing rock mass modulus from monitoring data of two tunnels in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Robert Bertuzzi

    2017-10-01

    Full Text Available This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney, Australia. The case studies comprise the widening of existing twin road tunnels within Hawkesbury sandstone and the excavation of a large cavern within Ashfield shale. While back-analysis from detailed systematic monitoring has been previously published, this paper presents a relatively simple methodology to derive rock mass modulus and in situ stress from the relatively simple displacement data routinely recorded during tunnelling.

  4. Apparatus and method for large tunnel excavation in soft and incompetent rock or ground

    International Nuclear Information System (INIS)

    Altseimer, J.H.; Hanold, R.J.

    1975-01-01

    A tunneling machine is described for producing large tunnels in soft rock or wet, clayey, unconsolidated or bouldery earth by simultaneously detaching the tunnel core by thermal melting a boundary kerf into the tunnel face and forming a supporting excavation wall liner by deflecting the molten materials against the excavation walls to provide, when solidified, a continuous wall supporting liner, and detaching the tunnel face circumscribed by the kerf with powered mechanical earth detachment means and in which the heat required for melting the kerf and liner material is provided by a compact nuclear reactor. (U.S.)

  5. Conducting Rock Mass Rating for tunnel construction on Mars

    Science.gov (United States)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  6. Influence of Subjectivity in Geological Mapping on the Net Penetration Rate Prediction for a Hard Rock TBM

    Science.gov (United States)

    Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund

    2018-05-01

    The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.

  7. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China

    Science.gov (United States)

    Xu, N. W.; Li, T. B.; Dai, F.; Zhang, R.; Tang, C. A.; Tang, L. X.

    2016-03-01

    Rockbursts were frequently encountered during the construction of deep tunnels at the Jinping II hydropower station, Southwest China. Investigations of the possibility of rockbursts during tunnel boring machine (TBM) and drilling and blasting (D&B) advancement are necessary to guide the construction of tunnels and to protect personnel and TBM equipment from strainburst-related accidents. A real-time, movable microseismic monitoring system was installed to forecast strainburst locations ahead of the tunnel faces. The spatiotemporal distribution evolution of microseismic events prior to and during strainbursts was recorded and analysed. The concentration of microseismic events prior to the occurrence of strainbursts was found to be a significant precursor to strainbursts in deep rock tunnelling. During a 2-year microseismic investigation of strainbursts in the deep tunnels at the Jinping II hydropower station, a total of 2240 strainburst location forecasts were issued, with 63 % correctly forecasting the locations of strainbursts. The successful forecasting of strainburst locations proved that microseismic monitoring is essential for the assessment and mitigation of strainburst hazards, and can be used to minimise damage to equipment and personnel. The results of the current study may be valuable for the construction management and safety assessment of similar underground rock structures under high in situ stress.

  8. Hydraulic and tracer experiments in the TVO research tunnel 1993- 1994

    International Nuclear Information System (INIS)

    Hautojaervi, A.; Ilvonen, M.; Vieno, T.; Viitanen, P.

    1995-04-01

    Three full-size deposition holes (diameter 1.5 m, depth 7.5 m) for spent fuel canisters in a KBS-3 type repository have been bored with a new fullface boring method in the TVO Research Tunnel. The Research Tunnel lies in the crystalline bedrock at the depth of 60 metres in the VLJ Repository for low and medium level waste. The holes are 6 metres apart. The boring tests were accompanied by comprehensive pre- and post-characterization of the rock and the bored wells. The inflow rates of groundwater in two of the three full-size holes are 6 and 20 litres/hour. The well in the middle is almost dry as expected on the basis of the pre-characterization. In the tracer tests two different tracers, a dye and a radioactive tracer, were used at the same time. The comprehensive data analysis performed showed that novel techniques (e.g. Extreme Value Estimation, EVE) can be successfully applied to determine the impulse response from the experimental results even in cases where the measured signals are disturbed. Hydraulic and tracer tests as well as visual inspection of the inflow gave clear indications of flow and transport in sparse and narrow channels. Transport velocities could be predicted with a reasonable accuracy by using a simple concept of fracture cavities determining the transport time and 'bottlenecks' causing the hydraulic resistance. The observed non-Fickian dispersion is thought to be caused by velocity differences over the channel width or by diffusion into stagnant pools in the fracture filling. (orig.) (36 refs., 67 figs., 1 tab.)

  9. The Interplay of In Situ Stress Ratio and Transverse Isotropy in the Rock Mass on Prestressed Concrete-Lined Pressure Tunnels

    Science.gov (United States)

    Simanjuntak, T. D. Y. F.; Marence, M.; Schleiss, A. J.; Mynett, A. E.

    2016-11-01

    This paper presents the mechanical and hydraulic behaviour of passively prestressed concrete-lined pressure tunnels embedded in elastic transversely isotropic rocks subjected to non-uniform in situ stresses. Two cases are distinguished based on whether the in situ vertical stress in the rock mass is higher, or lower than the in situ horizontal stress. A two-dimensional finite element model was used to study the influence of dip angle, α, and horizontal-to-vertical stress ratio, k, on the bearing capacity of prestressed concrete-lined pressure tunnels. The study reveals that the in situ stress ratio and the orientation of stratifications in the rock mass significantly affect the load sharing between the rock mass and the lining. The distribution of stresses and deformations as a result of tunnel construction processes exhibits a symmetrical pattern for tunnels embedded in a rock mass with either horizontal or vertical stratification planes, whereas it demonstrates an unsymmetrical pattern for tunnels embedded in a rock mass with inclined stratification planes. The results obtained for a specific value α with coefficient k are identical to that for α + 90° with coefficient 1/ k by rotating the tunnel axis by 90°. The maximum internal water pressure was determined by offsetting the prestress-induced hoop strains at the final lining intrados against the seepage-induced hoop strains. As well as assessing the internal water pressure, this approach is capable of identifying potential locations where longitudinal cracks may occur in the final lining.

  10. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    Science.gov (United States)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  11. A study about long-term deformation of soft rock. 2

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Yoshino, Naoto; Miyanomae, Shunichi; Mizutani, Kazuhiko; Noda, Kenji

    2004-02-01

    In this study, the laboratory mechanical tests of sedimentary soft rock sampled at Horonobe area in Hokkaido prefecture were conducted in order to build the confidence of Okubo model for long term deformation of sedimentary rock. And the stability of rock around tunnel in building under the condition assumed the underground of Horonobe area was examined by numerical simulation using information of boring data obtained before 2002 year. As a result, authors could obtain many values of parameter in Okubo model under various conditions. These conditions have the difference of temperature and water saturation. In addition, the life time in creep predicted by Okubo model could be compared with the real one. And numerical simulations, assuming various conditions such as stiffness of buffer material and yielding of support, had been carried out to evaluate the long-term stability of rock surrounding buffer material. Results show the decreasing tendency of time dependency of rock. (author)

  12. Late Permian wood-borings reveal an intricate network of ecological relationships.

    Science.gov (United States)

    Feng, Zhuo; Wang, Jun; Rößler, Ronny; Ślipiński, Adam; Labandeira, Conrad

    2017-09-15

    Beetles are the most diverse group of macroscopic organisms since the mid-Mesozoic. Much of beetle speciosity is attributable to myriad life habits, particularly diverse-feeding strategies involving interactions with plant substrates, such as wood. However, the life habits and early evolution of wood-boring beetles remain shrouded in mystery from a limited fossil record. Here we report new material from the upper Permian (Changhsingian Stage, ca. 254-252 million-years ago) of China documenting a microcosm of ecological associations involving a polyphagan wood-borer consuming cambial and wood tissues of the conifer Ningxiaites specialis. This earliest evidence for a component community of several trophically interacting taxa is frozen in time by exceptional preservation. The combination of an entry tunnel through bark, a cambium mother gallery, and up to 11 eggs placed in lateral niches-from which emerge multi-instar larval tunnels that consume cambium, wood and bark-is ecologically convergent with Early Cretaceous bark-beetle borings 120 million-years later.Numerous gaps remain in our knowledge of how groups of organisms interacted in ancient ecosystems. Here, Feng and colleagues describe a late Permian fossil wood-boring beetle microcosm, with the oldest known example of complex tunnel geometry, host tissue response, and the presence of fungi within.

  13. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  14. Joint ANDRA/Nirex/SKB zone of excavation disturbance experiment (ZEDEX) at the Aspo hard rock laboratory

    International Nuclear Information System (INIS)

    Hooper, A.J.; Olsson, O.

    1995-01-01

    The excavation of access shafts and tunnels and of the disposal areas of a waste repository will cause a disturbance in the surrounding rock mass with possible alterations to rock mass stability and hydraulic properties. For a number of disposal concepts this disturbance may be important for the operational and/or post-closure safety of the repository. Furthermore the disturbance may extend over time as a consequence of processes such as stress relaxation. The sponsors of ZEDEX, namely ANDRA, Nirex and SKB, are interested in developing the ability to produce reliable models of the disturbed zone that will develop around large cross-section excavations in fractured hard rock masses that are initially water saturated. Various models have been developed to calculate the important characteristics of the disturbed zone in such rock masses as a function of parameters related to the rock mass quality and the geometric description of the excavation. ZEDEX was initiated in the Aspo Hard Rock Laboratory in April 1994 with drilling and instrumentation of boreholes running alongside the planned extension of the spiral access ramp and a planned parallel experimental tunnel. ZEDEX has been designed to generate information for alternative methods of excavation. The extension to the spiral ramp is to be made by tunnel boring whereas the parallel experimental tunnel will be excavated in part by ''normal'' basting and in part by smooth blasting. The objective is to build confidence in the modelling of the disturbed zone to support the selection of excavation methods for repository construction. (authors). 3 figs

  15. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    OpenAIRE

    Liang, Zhengzhao; Liu, Xiangxin; Zhang, Yanbo; Tang, Chunan

    2013-01-01

    To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE) and far infrared (FIR) techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE wa...

  16. Tunnel sealing: concept and feasibility evidence

    International Nuclear Information System (INIS)

    Brenner, R.P.; Eppinger, G.; Mettler, K.

    1991-01-01

    This report discusses first the aim and purpose of tunnel seals as well as the requirements which should be satisfied. The basic seal concept is a zoned plug consisting of key zones and intermediate zones. The key zones act as barrier elements and will be placed into sections of competent and sound rock. The main function of the intermediate zones is that of a support and the requirements for sealing efficiency may be somewhat relaxed. Three sealing concepts have been devised for both the key zones and the intermediate zones. They differ in the materials used for the seal and in the placement method. For the key zones highly compacted bentonite is recommended, but also cement-based materials, such as standard concrete or prepact concrete are considered suitable. For the intermediate zones, the use of pumped concrete with subsequent grouting of the roof zone is favourable, but also a combination of concrete with a sand/gravel mixture or with properly compacted excavation material is feasible. The concepts introduced can all be realized by conventional tunnelling methods. Excavation by tunnel boring machine is most advantageous as it minimizes disturbance of the rock caused by the cavity-forming process. By employing simple material models, it can be shown that the depth of the excavation disturbed zone can be minimized if support of the tunnel is provided as early as possible after excavation. The cutting of a groove in the tunnel wall along the key zone can further contribute to reduce the depth of the excavation-disturbed zone. In order to ensure the quality of a seal, the quantities of the materials used can be checked and the work procedures to place the seal can be supervised. For the latter the experiences obtained from a large-scale test should be available. Finally, it is also shown that when considering safety analytical aspects, the proposed sealing concepts represent adequate solutions in spite of the probably increased permeability in the excavation

  17. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  18. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  19. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  20. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)

    Science.gov (United States)

    Feng, Xia-Ting; Xu, Hong; Qiu, Shi-Li; Li, Shao-Jun; Yang, Cheng-Xiang; Guo, Hao-Sen; Cheng, Yuan; Gao, Yao-Hui

    2018-04-01

    To study rock spalling in deep tunnels at China Jinping Underground Laboratory Phase II (CJPL-II), photogrammetry method and digital borehole camera were used to quantify key features of rock spalling including orientation, thickness of slabs and the depth of spalling. The failure mechanism was analysed through scanning electron microscope and numerical simulation based on FLAC3D. Observation results clearly showed the process of rock spalling failure: a typical spalling pattern around D-shaped tunnels after top-heading and bottom bench were discovered. The orientation and thickness of the slabs were obtained. The slabs were parallel to the excavated surfaces of the tunnel and were related to the shape of the tunnel surface and orientation of the principal stress. The slabs were alternately thick and thin, and they gradually increased in thickness from the sidewall inwards. The form and mechanism of spalling at different locations in the tunnels, as influenced by stress state and excavation, were analysed. The result of this study was helpful to those rethinking the engineering design, including the excavation and support of tunnels, or caverns, at high risk of spalling.

  1. A Wear Rule and Cutter Life Prediction Model of a 20-in. TBM Cutter for Granite: A Case Study of a Water Conveyance Tunnel in China

    Science.gov (United States)

    Liu, Quansheng; Liu, Jianping; Pan, Yucong; Zhang, Xiaoping; Peng, Xingxin; Gong, Qiuming; Du, Lijie

    2017-05-01

    Disc cutter wear is one of the comprehensive results of the rock-machine interaction in tunnel boring machine (TBM) tunneling. The replacement of the disc cutter is a time-consuming and costly activity that can significantly reduce the TBM utilization ( U) and advance rate (AR), and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of predicting the cutter life accurately can never be overemphasized. Most cutter wear prediction models are only suitable for 17-in. or smaller disc cutters. However, use of large-diameter disc cutters has been an irresistible trend for large-section hard rock TBMs. This study attempts to reveal the genuine wear rule of a 20-in. disc cutter and develop a new empirical model for predicting the cutter life in granite based on field data collected from a water conveyance tunnel constructed by the TBM tunneling method in China. The field data including the actual cutter wear and the geological parameters along the studied tunnel were compiled in a special database that was subjected to statistical analysis to reveal the genuine wear rule of a 20-in. disc cutter and develop the reasonable correlations between some common intact rock parameters and the disc cutter life. These equations were developed based on data from massive to very massive granite with a UCS range of 40-100 MPa, which can be applied for the assessment of the cutter life of a 20-in. disc cutter in similar hard rock projects with similar rock strengths and rock abrasivities.

  2. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. (AF-Consult Ltd, Vantaa (Finland))

    2009-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  3. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2009-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  4. Use of the 14C-PMMA and He-gas methods to characterise excavation disturbance in crystalline rock

    International Nuclear Information System (INIS)

    Autio, J.; Kirkkomaeki, T.; Siitari-Kauppi, M.; Timonen, J.; Laajalahti, M.; Aaltonen, T.; Maaranen, J.

    1999-04-01

    Characterisation of the excavation disturbance caused by boring of experimental full-scale deposition holes in the Research Tunnel at Olkiluoto was carried out successfully by using two novel methods; the 14 C-PMMA and He-gas methods, which were modified and applied for the first time in this type of study. The experience obtained implies that the techniques are feasible and can be used to study similar types of rock excavation disturbance such as that caused by boring with mini discs, a technique which will be used in the underground Hard Rock Laboratory at Aespoe during late 1998 and early 1999. Both of the measurement methods have been in continuous use and the work has included development of both the measuring and interpretation techniques. Use of the 14 C-PMMA method is suggested for studies of rock structure and the spatial distribution of porosity. The 14 C-PMMA method also provides quantitative information about nanometer-range porosity which is beyond the scope of most standard methods of microscopic investigation. The use of He-gas methods are proposed for determining the diffusion coefficient, permeability and complementary porosity of rock samples taken from the disturbed zone. (orig.)

  5. Disc Bit Abrasion Parameters in TBM Tunnelling regarded exemplarily for the Gotthard Base Tunnel

    Directory of Open Access Journals (Sweden)

    Edmund a Wax

    2005-11-01

    Full Text Available In this article the author presents Amund Bruland’s empirical approach to determine the disc bit abrasion of TBMs (Tunnel Boring Machines, transforms the respective empirical dependencies into approximated mathematical relations and verifies them exemplarily for the currently constructed Gotthard Base Tunnel.

  6. Modeling and Dynamic Analysis of Cutterhead Driving System in Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-01-01

    Full Text Available Failure of cutterhead driving system (CDS of tunnel boring machine (TBM often occurs under shock and vibration conditions. To investigate the dynamic characteristics and reduce system vibration further, an electromechanical coupling model of CDS is established which includes the model of direct torque control (DTC system for three-phase asynchronous motor and purely torsional dynamic model of multistage gear transmission system. The proposed DTC model can provide driving torque just as the practical inverter motor operates so that the influence of motor operating behavior will not be erroneously estimated. Moreover, nonlinear gear meshing factors, such as time-variant mesh stiffness and transmission error, are involved in the dynamic model. Based on the established nonlinear model of CDS, vibration modes can be classified into three types, that is, rigid motion mode, rotational vibration mode, and planet vibration mode. Moreover, dynamic responses under actual driving torque and idealized equivalent torque are compared, which reveals that the ripple of actual driving torque would aggravate vibration of gear transmission system. Influence index of torque ripple is proposed to show that vibration of system increases with torque ripple. This study provides useful guideline for antivibration design and motor control of CDS in TBM.

  7. Investigation of the Rock Fragmentation Process by a Single TBM Cutter Using a Voronoi Element-Based Numerical Manifold Method

    Science.gov (United States)

    Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi

    2018-04-01

    In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.

  8. Quiet tunneling method in hard rock mass by cutting grooves and fracturing rock; Mizo wo hori, iwa wo wari, katai tonneru wo shizukani kussaku

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T. [Fujita Corp., Tokyo (Japan)

    1998-08-15

    Where blasting cannot be applied due to large vibration and noise, adoption of mechanical tunneling is essential to tunneling of hard rock. In tunneling of hard rock, the existing of free surface is important. The free surface means a surface which does not restrict destruction on fracturing and it is important to form a continuous free surface efficiently and economically. The development of a new free surface forming engineering method is described. It requires no exclusive machines and all drilling works can be operated with general drill jumbo machine. In this new engineering method, the free surface is formed by continuous drilling of a single hole. Spinning anti-bend (SAB) rod is inserted into the existing drilled hole and a drill bit generates the free surface by contact with and blow the SAB rod. The procedure of the continuous drilling, an application example and the features of the procedure are described. This method has an ability to form a free surface more than 3.5m{sup 2}h even for rock bed wit compression strength more than 200MPa. 2 refs., 8 figs.

  9. Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave

    Science.gov (United States)

    Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei

    2018-02-01

    A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.

  10. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  11. Design management and stress analysis of a circular rock tunnel and emplacement holes for storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kandalaft-Ladkany, N.; Wyman, R.V.

    1992-01-01

    This paper discusses a critical path method (CPM) diagram and logic net which are used for the design cycle of the rock tunnel system for a high level nuclear waste repository. In the analysis the design tunnel is subjected to pre-existing temperature and overburden loads at time of construction. high thermal stresses develop later due to the long term influx of heat from the canisters stored in vertical emplacement holes. Results indicate that thermal stresses reach a critical level for the rock in the vicinity of the canisters which could lead to local collapse of the rock and damage to the canisters

  12. Rock mechanical conditions at the Aespoe HRL. A study of the correlation between geology, tunnel maintenance and tunnel shape

    International Nuclear Information System (INIS)

    Andersson, Christer; Soederhaell, Joergen

    2001-12-01

    Maintenance records including scaling, shotcreting and bolting have been kept since the excavation start of Aespoe HRL 1990 together with records of groundwater flow and all other activities taking place in the tunnels. When the facility was constructed one objective was to limit the rock support as much as possible. The reason for this was that it should be possible to go back and easily study the exposed rock surface. Support during the operational phase has only been carried out where and when necessary. This type of maintenance and its location is documented in the digital database each time. The maintenance records have been compiled and areas requiring more maintenance than average noted. An interview has also been held with one of the miners conducting scaling and bolting in the tunnel. His experiences together with the study of the database maintenance records led to the selection of certain areas in the tunnel to be studied by numerical modelling. The probable reason for the need of additional maintenance in all areas, not only these numerically modelled, has been investigated. Almost all maintenance in the main tunnel both during construction and the operational phase has been located in the widened curves of the access tunnel. The maintenance is also located in areas containing veins or intrusions of Smaaland granite or fine-grained granite. These areas are often located in fracture zones of different sizes or show an increasing fracture frequency. The areas numerically modelled indicate stress concentrations or unloaded stress conditions. The stress concentrations are created by the geometry of the niches and side-tunnels in relation to the in situ stress field. The angle between the tunnel and the major principal stress has an impact on the need for maintenance. The areas with the largest angles towards the principal stress direction need more maintenance than the areas almost parallel to the major principal stress direction. The maintenance work in

  13. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  14. 13th Australian tunnelling conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The theme of the conference was 'Engineering in a changing environment'. Topics covered include Australian tunnelling projects, design and development of ground support, tunnelling, international projects, fire and life safety, mining projects, risk management in tunnelling, and tunnel boring machine tunnelling. Papers of particular interest to the coal industry are: improving roadway development in underground coal mine (G. Lewis and G. Gibson), and polymer-based alternative to steel mesh for coal mine strata reinforcement (C. Lukey and others).

  15. Extruded Tunnel Lining System : Phase 1. Conceptual Design and Feasibility Testing.

    Science.gov (United States)

    1979-09-01

    The Extruded Tunnel Lining System (ETLS) has been conceived as a means of continuously placing the final concrete tunnel lining directly behind a tunnel boring machine. The system will shorten the time required to excavate and line a tunnel section, ...

  16. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the MandO is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment

  17. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  18. Rock Fragmentation Characteristics by TBM Cutting and Efficiency under Bi-Lateral Confinement

    Directory of Open Access Journals (Sweden)

    Yulong Chen

    2018-03-01

    Full Text Available In this study, the mechanisms of rock breakage are assessed using tunnel boring machine (TBM disc cutters under bi-axial pressure. Sequential indentation tests were conducted on granite specimens using a tri-axial testing platform. The morphology and volume of the fractured surface were measured and analyzed using a three-dimensional surface profilometer. An analysis of rock breaking growth and efficiency was performed as well. When the minor confining pressure (σ1 is constant, the results show that a larger difference in confining pressure leads to a larger volume of fractured surface, thereafter improving the rock-breaking efficiency even though the penetration energy is enlarged. On the other hand, when the major confining pressure (σ2 is constant, the penetration energy increases proportionally with the σ1; however, the volume of fractured surface is decreased, and the breaking efficiency is attenuated as well.

  19. Research on Dynamic Models and Performances of Shield Tunnel Boring Machine Cutterhead Driving System

    Directory of Open Access Journals (Sweden)

    Xianhong Li

    2013-01-01

    Full Text Available A general nonlinear time-varying (NLTV dynamic model and linear time-varying (LTV dynamic model are presented for shield tunnel boring machine (TBM cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR and optimal transmission ratio (OTR are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.

  20. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    International Nuclear Information System (INIS)

    Olsson, Mats; Niklasson, Bengt; Wilson, Lasse; Andersson, Christer; Christiansson, Rolf

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m 2 tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m 2 . After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack length in

  1. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Mats [Swebrec, Luleaa (Sweden); Niklasson, Bengt [Skanska Teknik, Stockholm (Sweden); Wilson, Lasse [Skanska Stora Projekt, Stockholm (Sweden); Andersson, Christer; Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m{sup 2} tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m{sup 2}. After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack

  2. Boring sponges (Porifera, Clionidae) collected during the "Tydeman" Canary Islands expedition Cancap-II, 1977

    NARCIS (Netherlands)

    Groot, de R.A.

    1980-01-01

    INTRODUCTION AND MATERIAL The boring sponges of the Canary Islands have never been studied in any detail, but the boring fauna of this archipelago cannot be expected to be very rich. All islands are volcanic and calcareous rocks are not common. Consequently, in most areas large shells and rhodophyte

  3. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    Science.gov (United States)

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  4. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    International Nuclear Information System (INIS)

    Ittner, Henrik

    2009-01-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  5. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ittner, Henrik (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-07-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  6. Study on the Reinforcement Measures and Control Effect of the Surrounding Rock Stability Based on the Shield Tunneling Under Overpass Structure

    Directory of Open Access Journals (Sweden)

    Qian-cheng Fang

    2016-04-01

    Full Text Available To study the stability of surrounding rocks for shield tunneling under overpass structures and the safety of existing bridge structures, a practical example of the method was cited through a shield tunneling project under the overpass structure between K1+110 and K1+700 on Line 2 of Shenyang Subway, China. The sub-area reinforcement was proposed according to surrounding rock deformation characteristics during shield tunnel excavation. The bridge foundation (i.e., the clear spacing to the shield tunnel is less than 2 m was reinforced by steel support, the bridge foundation (the clear spacing is about 2~7m used “jet grouting pile” reinforcement, whereas the bridge foundation (the clear spacing is greater than 7 m did not adopt any reinforcement measures for the moment. For this study, the mean value and material heterogeneity models were established to evaluate the reinforcement effect from several aspects, such as surrounding rock deformation, plastic zone development, and safety factor. The simulation results were consistent with those of field monitoring. After reinforcement, the maximum deformation values of the surrounding rock were reduced by 4.9%, 12.2%, and 48.46%, and the maximum values of surface subsidence were decreased by 5.6%, 72.2%, and 88.64%. By contrast, the overall safety factor was increased by 4.1%, 55.46%, and 55.46%. This study posited that this reinforcement method can be adopted to solve tunnel construction problems in engineering-geological conditions effectively. References for evaluating similar projects are provided.

  7. In situ tests for investigating thermal and mechanical rock behaviors at an underground research tunnel

    International Nuclear Information System (INIS)

    Kwon, Sangki; Cho, Won-Jin

    2013-01-01

    The understanding of the thermal and mechanical behaviors expected to be happened around an underground high-level radioactive waste (HLW) repository is important for a successful site selection, construction, operation, and closure of the repository. In this study, the thermal and mechanical behaviors of rock and rock mass were investigated from in situ borehole heater test and the studies for characterizing an excavation damaged zone (EDZ), which had been carried out at an underground research tunnel, KURT, constructed in granite for the validation of a HLW disposal concept. Thermal, mechanical, and hydraulic properties in EDZ could be predicted from various in situ and laboratory tests as well as numerical simulations. The complex thermo-mechanical coupling behavior of rock could be modeled using the rock properties. (author)

  8. Rock deformation equations and application to the study on slantingly installed disc cutter

    Science.gov (United States)

    Zhang, Zhao-Huang; Meng, Liang; Sun, Fei

    2014-08-01

    At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.

  9. Application of Geostatistical Modelling to Study the Exploration Adequacy of Uniaxial Compressive Strength of Intact Rock alongthe Behesht-Abad Tunnel Route

    Directory of Open Access Journals (Sweden)

    Mohammad Doustmohammadi

    2014-12-01

    Full Text Available Uniaxial compressive strength (UCS is one of the most significant factors on the stability of underground excavation projects. Most of the time, this factor can be obtained by exploratory boreholes evaluation. Due to the large distance between exploratory boreholes in the majority of geotechnical projects, the application of geostatistical methods has increased as an estimator of rock mass properties. The present paper ties the estimation of UCS values of intact rock to the distance between boreholes of the Behesht-Abad tunnel in central Iran, using SGEMS geostatistical program. Variography showed that UCS estimation of intact rock using geostatistical methods is reasonable. The model establishment and validation was done after assessment that the model was trustworthy. Cross validation proved the high accuracy (98% and reliability of the model to estimate uniaxial compressive strength. The UCS values were then estimated along the tunnel axis. Moreover, using geostatistical estimation led to better identification of the pros and cons of geotechnical explorations in each location of tunnel route.

  10. Full waveform inversion for mechanized tunneling reconnaissance

    Science.gov (United States)

    Lamert, Andre; Musayev, Khayal; Lambrecht, Lasse; Friederich, Wolfgang; Hackl, Klaus; Baitsch, Matthias

    2016-04-01

    In mechanized tunnel drilling processes, exploration of soil structure and properties ahead of the tunnel boring machine can greatly help to lower costs and improve safety conditions during drilling. We present numerical full waveform inversion approaches in time and frequency domain of synthetic acoustic data to detect different small scale structures representing potential obstacles in front of the tunnel boring machine. With the use of sensitivity kernels based on the adjoint wave field in time domain and in frequency domain it is possible to derive satisfactory models with a manageable amount of computational load. Convergence to a suitable model is assured by the use of iterative model improvements and gradually increasing frequencies. Results of both, time and frequency approach, will be compared for different obstacle and source/receiver setups. They show that the image quality strongly depends on the used receiver and source positions and increases significantly with the use of transmission waves due to the installed receivers and sources at the surface and/or in bore holes. Transmission waves lead to clearly identified structure and position of the obstacles and give satisfactory guesses for the wave speed. Setups using only reflected waves result in blurred objects and ambiguous position of distant objects and allow to distinguish heterogeneities with higher or lower wave speed, respectively.

  11. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  12. Seismic prediction ahead of tunnel construction using Rayleigh-waves

    OpenAIRE

    Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas

    2008-01-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...

  13. In situ stresses in rock masses: methodology for its study in tunnel projects in Spain

    International Nuclear Information System (INIS)

    Madirolas Perez, G.; Perucho Martinez, A.

    2014-01-01

    In situ stress is one of the main factors to be taken into account in the design of tunnels, as it can cause inadmissible stresses and strains leading to high deviations in the budgets. For that reason, the stress state is directly introduced into the numerical models used for the design of tunnels. In Spain, although several tunnels have been carried out with an important overburden in tectonically relevant zones, a quantitative determination of the stresses has not been usually included in civil work projects. Therefore, it is considered necessary to implement a routine procedure of study of civil work projects involving tunnels excavated in rock, and a new detailed methodology is proposed. The challenge is that project managers, who face works in which stresses may play a determinant role, may have a practical reference enabling them to optimize available resources and to include the real stress information in the design of underground works. (Author)

  14. Cooling of a polyethylene tunnel type greenhouse by means of a rock bed

    Energy Technology Data Exchange (ETDEWEB)

    Kurklu, Ahmet; Bilgin, Sefai [Akdeniz Univ., Dept. of Agricultural Mechanisation, Antalya (Turkey)

    2004-10-01

    An experiment was conducted to cool a 15 m{sup 2} ground area plastic-tunnel-type greenhouse by the use of a rock bed. An identical greenhouse with no rock bed was also erected for control purposes. Two rock-bed canals, each with the dimensions of 3 x l.25 x 0.75 m, were dug in the soil of the experimental greenhouse. After the canals were filled with the rocks and insulated, the top surface was covered by a soil layer of thickness enough for the root development depth of the plants. Air was pushed through the rock bed by a centrifugal fan with a 1100 m{sup 3}/h flow rate. Energy stored in the rock bed during the day was dumped outside the greenhouse at night using the cooler outside air. The results of the measurements showed that the rock-bed system maintained air temperature 14 deg C lower at maximum in the experimental greenhouse than the control one. The temperature difference seemed to increase with increasing solar radiation and outside air temperature. Relative humidity during the day remained at about 40% in the experimental greenhouse and was always higher than that in the control one. The coefficient of performance (COP) of the rock-bed system was higher than 3 in general, and it was observed that this value increased with decreasing rock-bed temperature. The average solar collection efficiency was 38%. The rock-bed system seems to have a significant potential for cooling applications in greenhouses. (Author)

  15. Applying the information received in the process of drilling for the estimation of the state of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Denissov, N Ya; Paushkin, G A; Zaytzev, A S

    1966-01-01

    In estimating rock foundations for construction, data on the condition of the degree of jointing and weathering are of major importance. For estimating the condition, (in particular, data on core recovery and the speed of boring) drill holes are used. In this paper it is shown that the data on core recovery during the boring of drill holes in regions with complex tectonics can give a wrong idea about the state of rock. However, data on the speed of clean boring may prove to be useful. In some cases low core recovery and its large crushing are caused by the influence of the heterogeneity of rock composition as well as by the influence of changes in the stressed state of rock during boring. The data on the speed of clean boring can be used in engineering geological practice to estimate the intensity and character of spreading rock jointing and to determine the depth of weathering penetration.

  16. Mechanical stability of repository tunnels and factors to be considered for determining tunnel spacing

    International Nuclear Information System (INIS)

    Takeuchi, Kunifumi

    1994-01-01

    Kristallin-1 organized by Nagra is currently advanced as a synthetic project regarding a high level radioactive waste (HLW) repository in Switzerland. Its host rock is granitic rocks, and the potential siting area is located in northern Switzerland. The objective of this project is to demonstrate the long term safety of a HLW repository under more site-specific conditions than before. As the detailed geological data were investigated, the average size of undisturbed crystalline rock blocks is limited horizontally to about several hundred meter, therefore, the HLW repository area must be divided into several panels to avoid fracture zones. It is necessary to make tunnel spacing as small as possible for the purpose of reasonably designing the entire layout of repository tunnels. The main factors to be considered for determining repository tunnel spacing are listed. Rock mass modeling, rock mass material properties, the analysis model and parameters, the numerical analysis of repository tunnel stability and its main conclusion are reported. The numerical analysis of the temperature distribution in near field was carried out. Tunnel spacing should be set more than 20 m in view of the maximum temperature. (K.I.)

  17. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel

    Science.gov (United States)

    Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun

    2016-04-01

    Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

  18. Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,

    Science.gov (United States)

    1981-12-01

    systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria

  19. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    Science.gov (United States)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  20. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Hyunku Park

    2018-01-01

    Full Text Available A case study of monitoring and analysis of ground settlement caused by tunnelling of stacked twin tunnels for underground metro line construction through the densely populated area using the slurry pressure-balanced TBM is presented. Detailed ground settlement monitoring was carried out for the initial stage of down-track tunnelling in order to estimate trough width factor and volume losses including face, shield, and tail losses. In addition, using the gap model, prediction of volume loss and ground settlement was carried out with consideration of the ground condition, TBM configurations, and actual operation data. The predictions of the gap model were compared with the observed results, and adjustment factors were determined for volume loss estimation. The adjusted factors were applied to predict ground settlement of the up-track tunnel, and its results were compared with the field measurements.

  1. In-bore instrumentation/diagnostics for large-bore EMLs

    International Nuclear Information System (INIS)

    Fernandez, M.J.; Ager, S.A.; Hudson, R.D.

    1991-01-01

    This paper reports on a flying laboratory technique of in-bore diagnostics for large-bore electromagnetic launchers (EMLs). The high pressure, heat, and magnetic flux environment of the EML and its containment structures do not allow easy implementation of conventional diagnostic techniques. Researchers have relied on remote sensing methods, such as B probes (isolated from the bore), for data. The accuracy and relevance of such discrete, remote measurement is somewhat questionable. An in-house program has been initiated to determine the feasibility of making measurement of EML parameters on board a projectile. This technique utilizes off-the-shelf components in a configuration that has been proven effective in measuring projectile acceleration in the bore of propellant driven guns

  2. Choice of rock excavation methods for the Swedish deep repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, Goeran [Conrox, Stockholm (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Lagerstedt, Leif [SwedPower AB, Stockholm (Sweden)

    2004-09-01

    Choice of rock excavation methods will or may have implications for a number of issues like repository layout, long term and operational safety, environmental impact, design of and operation of transport vehicles and methodology for backfilling the repository before closure as well as effects on costs and schedules. To fully analyse the issues at hand related to selection of excavation methods, SKB organized a project with the objectives: To investigate and compare principal technical solutions for rock excavation, both methods that are used at present but also methods that may be feasible 10 years from now; To assess how the selection of excavation method influences the design and operation of the deep repository; To present a definition of the Excavation Damaged/Disturbed Zone and practical methods for measurements of EDZ; To present advantages and disadvantages with different excavation methods for the various tunnels and underground openings as a basis for selection of preferred excavation methods; To present the Design Justification Statement for the selection of particular excavation methods for the different tunnels and openings in the deep repository to underpin a decision on excavation method; and To present background data that may be required for the evaluation of the long term safety of the deep repository. Main alternatives studied are very smooth blasting, excavation with a tunnel-boring machine (TBM) and excavation with horizontal pull-reaming using more or less conventional raise-boring equipment. The detailed studies were carried through in co-operation with major suppliers and end-users of the technology. An observation in this study is that all excavation technologies are mature; no major breakthroughs are foreseen within a 10 year period but it is likely that for any technology selected, SKB would specifically fine-tune the design of the equipment and work procedures in view of requirements and site specific conditions. Excavation methods have

  3. Choice of rock excavation methods for the Swedish deep repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Baeckblom, Goeran; Christiansson, Rolf; Lagerstedt, Leif

    2004-09-01

    Choice of rock excavation methods will or may have implications for a number of issues like repository layout, long term and operational safety, environmental impact, design of and operation of transport vehicles and methodology for backfilling the repository before closure as well as effects on costs and schedules. To fully analyse the issues at hand related to selection of excavation methods, SKB organized a project with the objectives: To investigate and compare principal technical solutions for rock excavation, both methods that are used at present but also methods that may be feasible 10 years from now; To assess how the selection of excavation method influences the design and operation of the deep repository; To present a definition of the Excavation Damaged/Disturbed Zone and practical methods for measurements of EDZ; To present advantages and disadvantages with different excavation methods for the various tunnels and underground openings as a basis for selection of preferred excavation methods; To present the Design Justification Statement for the selection of particular excavation methods for the different tunnels and openings in the deep repository to underpin a decision on excavation method; and To present background data that may be required for the evaluation of the long term safety of the deep repository. Main alternatives studied are very smooth blasting, excavation with a tunnel-boring machine (TBM) and excavation with horizontal pull-reaming using more or less conventional raise-boring equipment. The detailed studies were carried through in co-operation with major suppliers and end-users of the technology. An observation in this study is that all excavation technologies are mature; no major breakthroughs are foreseen within a 10 year period but it is likely that for any technology selected, SKB would specifically fine-tune the design of the equipment and work procedures in view of requirements and site specific conditions. Excavation methods have

  4. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    Science.gov (United States)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  5. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  6. Construction of Tai Lam tunnel under a Build, Operate and Transfer (BOT) scheme in Hong Kong; BOT hoshiki ni yoru Hong Kong root 3 (Tai Lam tunnel) kensetsu koji

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Endo, S. [Nishimatsu Construction Co. Ltd., Tokyo (Japan)

    1998-01-01

    Hongkong Route 3 construction under the BOT scheme (covering the basic plan, design, and construction, and the management of the completed tunnel as a private, toll facility) is described. The new route aims at dealing with aggravating traffic conditions as part of the major highway network joining Hongkong and Guanzhou, China proper. It is a dual three lane system, consisting of a 3.7km-long road tunnel, a 1.5km-long southern approach, and a 6.3km-long northern approach. Geologically speaking, the tunnel section as a whole is on a relatively hard and stable basement made of fine-grain granite and granitic diorite. Also introduced in this report are the project-executing organization and the flow of tendering under the BOT scheme. Since the shortening of the construction time is quite important in the 30-year BOT franchise period, rapid boring technologies were introduced into tunnel excavation. The 5.6m long-hole blasting enabled a maximum monthly progress of 460m. For the assurance of high boring accuracy and cycle time reduction, a fully automatic boring machine was adopted for speedy positioning and marking. An emulsion-type explosive was used, which can be pump-fed under pressure, for shortening the charging time. 5 figs.

  7. Tunnel boring machine collision with an ancient boulder beach during the excavation of the Barcelona city subway L10 line: a case of adverse geology and resulting engineering solutions

    OpenAIRE

    Filbà, Marta; Salvany Duran, Josep Maria; Jubany, Jordi; Carrasco, Laura

    2016-01-01

    The existence of a layer of hard boulders up to 1 m in size within the soft sediments of the Holocene Llobregat delta in the SW of Barcelona city caused the damage and stoppage of the EPB-type tunnel boring machine that excavated the subway L10 line. This layer constitutes a detrital deposit of exceptionally large grain size developed in the base of the delta. It originated as an alluvial fan in the northern margin of the delta during the last fall of the Mediterranean Sea level, at the end o...

  8. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  9. Light at the end of the tunnel: Thermal technology uses heat to slice through rock

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2003-11-01

    Potential applications of thermal light technology, a technique that breaks through rocks and concrete in a fashion similar to the effect visible when a glass jug shatters when boiling water is poured into it, is discussed. The intense heat is achieved by putting 500 kilowatts of electricity through a short tube filled with argon gas. Half that energy is converted into light which creates the heat source. The heat generated by the white light can reach over 12,000 degrees C, one of the brightest lights on the planet today. Mounted on a moving support, the argon arc water-cooled lamp is silent and vibration-free, and has obvious applications in mining, tunnelling and construction, due to its ability to cut through rock, or break concrete loose from reinforcing rods. However, the technology only works in hard rock; it is ineffective in soft formations, hence in its current form, not suitable in drilling for oil or gas. Some other applications considered include use as a light source in areas such as the High Arctic, where one unit may light up as much as 50 acres; as a tool in repairing concrete, and for hardening metals that are used in drill bits. First sale of the technology went to the Korean Institute of Energy Research, where the unit will be used for solar stimulation in the further development of solar panels. Its use in subway tunnelling will also be investigated.

  10. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Markstroem, Ingemar; Bockgaard, Niklas (Golder Associates (Sweden)); Hardenby, Carljohan (Vattenfall Power Consultant, Stockholm (Sweden)); Hultgren, Peter (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-05-15

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  11. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  12. Geological mappability of bored versus drill and blast excavations for radioactive waste repositories

    International Nuclear Information System (INIS)

    Nilsen, B.; Ozdemir, L.

    1992-01-01

    The issue of accurate geological mappability has been subject of intense debate in the selection of bored versus drill and blast excavation for radioactive waste repositories. This paper is intended to provide an assessment of the problems usually encountered in mappability on the basis of field experience from a large number of completed tunnels, mainly as part of the Norwegian hydropower projects. The main conclusion is that mapping in a mechanically excavated underground opening, with very few exceptions, reflects the in-situ conditions more accurately than mapping in a drill and blast tunnel. This is due to the overbreak effects of drill and blast excavation, primarily

  13. Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualisation and Technical Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Butron, Christian

    2012-07-01

    A conceptual model of the groundwater hydraulic conditions around the tunnel contour in ancient brittle crystalline rocks has been developed and verified. The general aim has been to reach an understanding of the groundwater conditions in and close to the tunnel roof where dripping takes place and to propose technical and practical strategies for waterproofing. Dripping is accompanied by ice growth and icicle formation in cold regions, creating additional problems such as shotcrete fall-outs, icicle fall-outs, damage to vehicles, damage to trains, etc. The methodology for the development of the conceptual model is based mainly on transmissivity determinations from short-duration hydraulic tests and analyses of the connectivity of the fracture structure by means of semi-variogram analysis. The determination of the dimensionality of the flow in the fractures has also been found to be essential in order to describe the conductive system. This conceptual model describes the fracture systems as a combination of transmissive patches (2D-flow fractures) connected by less pervious channels (1D-flow fractures). It provides an understanding of the heterogeneity and connectivity of the fracture network and thus the groundwater conditions, not only in the roof but also around the tunnel contour. The pre-excavation grouting design process used in the tunnelling projects followed a structured approach and the evaluation showed that the grouting design reduced the inflow and fulfilled the environmental demands. However, dripping remained, making its characterisation very important when proposing a possible solution for its control. It is proposed that the remaining dripping comes from a channelised system that has been left unsealed and which would be extremely difficult to intersect with future boreholes, as well as from some ungrouted fractures with inconvenient orientations. Geomembrane lining and post-excavation grouting are possible solutions, although particular attention

  14. Aespoe Hard Rock Laboratory. Annual report 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs

  15. Aespoe Hard Rock Laboratory. Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs.

  16. Developing a Fracture Model of the Granite Rocks Around the Research Tunnel at the Mizunami Underground Research Laboratory in Central Japan

    Science.gov (United States)

    Kalinina, E.; Hadgu, T.; Wang, Y.

    2017-12-01

    The Mizunami Underground Research Laboratory (MIU) is located in Tono area in Central Japan. It is operated by the Japan Atomic Energy Agency (JAEA) with the main purpose of providing scientific basis for the research and development of technologies needed for deep geological disposal of radioactive waste in fractured crystalline rocks. The current work is focused on the research and experiments in the tunnel located at 500 m depth. The data collected in the tunnel and exploratory boreholes were shared with the participants of the DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), an international research and model comparison collaboration. This study describes the development of the fracture model representing granite rocks around the research tunnel. The model domain is 100x150x100m with the main experimental part of the tunnel, Closure Test Drift, located approximately in the center. The major input data were the fracture traces measured on the tunnel walls (total of 2,023 fractures), fractures observed in the horizontal borehole parallel to the tunnel, and the packer tests conducted in this borehole and one vertical borehole located within the modeling domain. 78 fractures (the ones with the inflow) in the tunnel were incorporated in the development of the fracture model. Fracture size was derived from the fracture trace analysis. It was shown that the fracture radius followed lognormal distributions. Fracture transmissivity was estimated from an analytical solution of inflow into the tunnel through an individual fracture and the total measured inflow into the tunnel. 16 fractures were incorporated in the model along the horizontal borehole. The packer test data in the different well intervals were used to estimate the range in fracture transmissivity. A relationship between the fracture transmissivity and fracture radius was developed. The fractures in the tunnel and borehole were used to derive fracture orientation and

  17. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  18. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling

    2016-01-01

    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  19. Design of a machine to bore and line a long horizontal hole in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Friant, J.E.; Dowden, P.B.

    1987-09-01

    This report describes an engineering design for equipment capable of simultaneously drilling and lining deep horizontal bore holes. The ultimate use of the equipment is to bore up to 600 ft long, 3 ft diameter emplacement holes for a nuclear waste repository. The specific system designed is referred to as a Development Prototype Boring Machine (DPBM) which will be used to demonstrate the drilling/lining capability in field development tests. The system utilizes as in-hole electric drive and a vacuum chip removal and handling system. The drilling unit is capable of active directional control and uses laser-type alignment equipment. The system combines the features of a small steerable tunnel boring machine, combined with a horizontally-oriented raise drill, thereby utilizing current technology. All elements of the system are compact and mobile as required for a shaft entry, underground mining environment. 3 refs., 35 figs., 1 tab

  20. Tunnel Design by Rock Mass Classifications

    Science.gov (United States)

    1990-01-01

    Engineering," revised second edition, Institution of Mining and Metallurgy, London, 1977, pp 113-115 and 150-192. 42. Selmer - Olsen , R., and Broch, E...to wall when a)/03 > 10, re- stability) ................ 10-5 0.66-0.33 0.5-2.0 duce oc and ot to L. Mild rock burst (massive 0.6 cc and 0.6 on rock ...5-2.5 0.33-0.16 5-10 where: 0 c = uncon-fined compression M. Heavy rock burst (massive strength, at = rock

  1. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    International Nuclear Information System (INIS)

    Markstroem, Ingemar; Bockgaard, Niklas; Hardenby, Carljohan; Hultgren, Peter

    2010-05-01

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  2. Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter

    Science.gov (United States)

    Labra, Carlos; Rojek, Jerzy; Oñate, Eugenio

    2017-03-01

    This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool-rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.

  3. LSSVM-Based Rock Failure Criterion and Its Application in Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Changxing Zhu

    2015-01-01

    Full Text Available A rock failure criterion is very important for the prediction of the failure of rocks or rock masses in rock mechanics and engineering. Least squares support vector machines (LSSVM are a powerful tool for addressing complex nonlinear problems. This paper describes a LSSVM-based rock failure criterion for analyzing the deformation of a circular tunnel under different in situ stresses without assuming a function form. First, LSSVM was used to represent the nonlinear relationship between the mechanical properties of rock and the failure behavior of the rock in order to construct a rock failure criterion based on experimental data. Then, this was used in a hypothetical numerical analysis of a circular tunnel to analyze the mechanical behavior of the rock mass surrounding the tunnel. The Mohr-Coulomb and Hoek-Brown failure criteria were also used to analyze the same case, and the results were compared; these clearly indicate that LSSVM can be used to establish a rock failure criterion and to predict the failure of a rock mass during excavation of a circular tunnel.

  4. Tunnel support design by comparison of empirical and finite element analysis of the Nahakki tunnel in mohmand agency, pakistan

    Directory of Open Access Journals (Sweden)

    Riaz Asif

    2016-03-01

    Full Text Available The paper analyses the geological conditions of study area, rock mass strength parameters with suitable support structure propositions for the under construction Nahakki tunnel in Mohmand Agency. Geology of study area varies from mica schist to graphitic marble/phyllite to schist. The tunnel ground is classified and divided by the empisical classification systems like Rock mass rating (RMR, Q system (Q, and Geological strength index (GSI. Tunnel support measures are selected based on RMR and Q classification systems. Computer based finite element analysis (FEM has given yet another dimension to design approach. FEM software Phase2 version 7.017 is used to calculate and compare deformations and stress concentrations around the tunnel, analyze interaction of support systems with excavated rock masses and verify and check the validity of empirically determined excavation and support systems.

  5. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  6. Evaluation of TBM tunnels with respect to stability against spalling

    Science.gov (United States)

    Shaalan, Heyam; Ismail, Mohd Ashraf Mohd; Azit, Romziah

    2017-10-01

    As the depth of tunnels and underground construction increases, instability occurs in the form of rock bursting or spalling because of the induced stresses. Spalling may appear as a strong compressive stress causing crack growth behind the excavated surface and buckling of the thin rock slabs. In this paper, we describe how to reduce the rock spalling failure to increase the underground safety and the tunnel stability. Thus, a parametric study is implemented using 2-D Elasto-plastic finite elements stress analysis software to investigate the parameters that can minimize the extent and depth of the failure zone. The critical section of Pahang Selangor Raw Water Transfer Tunnel under high overburden is analyzed. The effect of the shotcrete lining thickness, tunnel size and the removal of fallouts or scaled v-notch on the failure zone depth is investigated. The results demonstrate that the shotcrete lining thickness has less influence on the failure depth, while a small tunnel diameter minimizes the failure depth. In addition, the stability of the tunnel improves by removing the loose rock mass.

  7. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  8. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  9. TBM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    This paper discusses performance prediction which were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah String welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. The result show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The result also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  10. Experimental Verification of a Pneumatic Transport System for the Rapid Evacuation of Tunnels, Part II - Test Program

    Science.gov (United States)

    1978-12-01

    This study is the final phase of a muck pipeline program begun in 1973. The objective of the study was to evaluate a pneumatic pipeline system for muck haulage from a tunnel excavated by a tunnel boring machine. The system was comprised of a muck pre...

  11. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    International Nuclear Information System (INIS)

    Martin, C.D.; Christiansson, Rolf; Soederhaell, J.

    2001-12-01

    borehole walls. Two major tasks must be accomplished during this period: 1. an assessment of the quality of the rock mass and 2. an assessment of the state of stress within the volume of rock containing the repository. Empirical methods such as the Q system can be used to establish the domains of rock mass quality and to assess tunnel support requirements during the preliminary design phase. The laboratory testing should be carried out to determine the crack initiation stress, the long-term strength, peak strength and post-peak response. The determination of these parameters should be determined from stress-strain data, as well acoustic emission testing techniques, using testing methods based on accepted national standards, such as the ISRM suggested methods or ASTM. The in-situ stress state must be measured with confidence. The number of measurements and the method(s) used will be a function of the geology of the site. Practical experience indicates that stress-induced failure (spalling) will occur on the boundary of an underground opening in hard rocks when the maximum tangential stresses on the boundary of the opening exceed approximately 0.3 to 0.4 of the laboratory uniaxial compressive strength. Hence to assess the potential for spalling, numerical analysis will be required for the various shaped openings planned for the repository. These numerical analysis can be used to optimize the shape of the tunnels, the orientation of the tunnels relative to the far-field stress state, intersection support, and deposition tunnel/borehole spacing. The support for the tunnels in a repository is expected to range from light support pressure equivalent to standard spot-bolting to local bolts with mesh and fibre-reinforced shotcrete. At major intersections medium to heavy support pressure may be required. The layout of a repository will be similar to a mine using a room-and-pillar mining method but the extraction ratio will be of the order of <30%. A drill-and-blast excavation

  12. Experiments at the Aespoe Hard Rock Laboratory[Information for the general public

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small

  13. A boring solution

    Energy Technology Data Exchange (ETDEWEB)

    Radiuk, M I; Iushkova, N E; Kozubovskii, A I

    1979-10-25

    A boring solution is being patented for boring for oil and gas, which can be used in wells, where the temperature of the circulating liquid reaches 100/sup 0/. Polyvinyl acetate emulsion (PVE) is added for the purpose of decreasing viscosity of the solution at a temperature of agression into the boring solution containing clay, water, carboxymethylcellulose (CBC), a chloride from the number of sodium, potassium, or magnesium chlorides. The solution has the following composition in %: clay, 10 to 20; CBC, 1.5 to 2.0; chloride, 5 to 20; PVE, 0.5 to 2; water, up to 100. In accordance to GOST 1000-62 for the accepted PVE, the compound has the following composition, in %: monomer, 0.8; dry residue, greater than or equal to 50; plasticizer (tributyl phthalate), 5 to 15. The boring solution is processed according to the following method. The original solution, containing clay, water, salts, receives 1.5 to 2% CBC and afterwards it is processed with 0.5 to 2% PVE.

  14. Mind where you bore!

    CERN Document Server

    Anaïs Schaeffer

    2012-01-01

    With renewable energies on the up and up, geothermal heating is becoming increasingly popular. An ardent supporter of sustainable development, CERN welcomes this trend, even though it has certain risks for the Laboratory.   More and more people in Switzerland and France are switching to geothermal heating, with the result that more and more bore holes are being sunk for geothermal probes. Since, on average, such bore holes go down to depths of 100 m they can have an impact on CERN’s underground facilities, which are also located at approximately that depth. In the Canton of Geneva, all bore holes, whatever their depth, are subject to planning permission. Applications for planning permission are granted – or refused – only after consultation with the Ground survey department (GESDEC). In France, only bore holes below a depth of 100 m require planning permission. In theory, bore holes to lesser depths simply need to be declared to the DREAL (Dire...

  15. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.D. [Univ. of Alberta, Edmonton (Canada); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Soederhaell, J. [VBB VIAK AB, Stockholm (Sweden)

    2001-12-01

    mapping of the borehole walls. Two major tasks must be accomplished during this period: 1. an assessment of the quality of the rock mass and 2. an assessment of the state of stress within the volume of rock containing the repository. Empirical methods such as the Q system can be used to establish the domains of rock mass quality and to assess tunnel support requirements during the preliminary design phase. The laboratory testing should be carried out to determine the crack initiation stress, the long-term strength, peak strength and post-peak response. The determination of these parameters should be determined from stress-strain data, as well acoustic emission testing techniques, using testing methods based on accepted national standards, such as the ISRM suggested methods or ASTM. The in-situ stress state must be measured with confidence. The number of measurements and the method(s) used will be a function of the geology of the site. Practical experience indicates that stress-induced failure (spalling) will occur on the boundary of an underground opening in hard rocks when the maximum tangential stresses on the boundary of the opening exceed approximately 0.3 to 0.4 of the laboratory uniaxial compressive strength. Hence to assess the potential for spalling, numerical analysis will be required for the various shaped openings planned for the repository. These numerical analysis can be used to optimize the shape of the tunnels, the orientation of the tunnels relative to the far-field stress state, intersection support, and deposition tunnel/borehole spacing. The support for the tunnels in a repository is expected to range from light support pressure equivalent to standard spot-bolting to local bolts with mesh and fibre-reinforced shotcrete. At major intersections medium to heavy support pressure may be required. The layout of a repository will be similar to a mine using a room-and-pillar mining method but the extraction ratio will be of the order of <30%. A drill

  16. Challenges and Thoughts on Risk Management and Control for the Group Construction of a Super-Long Tunnel by TBM

    Directory of Open Access Journals (Sweden)

    Mingjiang Deng

    2018-02-01

    Full Text Available The total length of the second stage of the water supply project in the northern areas of the Xinjiang Uygur Autonomous Region is 540 km, of which the total length of the tunnels is 516 km. The total tunneling mileage is 569 km, which includes 49 slow-inclined shafts and vertical shafts. Among the tunnels constructed in the project, the Ka–Shuang tunnel, which is a single tunnel with a length of 283 km, is currently the longest water-conveyance tunnel in the world. The main tunnel of the Ka–Shuang tunnel is divided into 18 tunnel-boring machine (TBM sections, and 34 drilling-and-blasting sections, with 91 tunnel faces. The construction of the Ka–Shuang tunnel has been regarded as an unprecedented challenge for project construction management, risk control, and safe and efficient construction; it has also presented higher requirements for the design, manufacture, operation, and maintenance of the TBMs and their supporting equipment. Based on the engineering characteristics and adverse geological conditions, it is necessary to analyze the major problems confronted by the construction and systematically locate disaster sources. In addition, the risk level should be reasonably ranked, responsibility should be clearly identified, and a hierarchical-control mechanism should be established. Several techniques are put forward in this paper to achieve the objectives mentioned above; these include advanced geological prospecting techniques, intelligent tunneling techniques combined with the sensing and fusion of information about rock parameters and mechanical parameters, monitoring and early-warning techniques, and modern information technologies. The application of these techniques offers scientific guidance for risk control and puts forward technical ideas about improving the efficiency of safe tunneling. These techniques and ideas have great significance for the development of modern tunneling technologies and research into major

  17. Scoping calculations for canister-tunnel migration of corrodants, oxidants and radionuclides

    International Nuclear Information System (INIS)

    Shaw, W.; Worth, D.

    1992-03-01

    This report presents the mathematical models and results obtained for a set of scooping calculations which estimate the possible extent of the vertical migration of canister corrodants, oxidants (forming a redox front) and radionuclides between a copper canister containing spent nuclear fuel, and an overlying emplacement tunnel. The KBS-3 concept for the disposal of spent nuclear fuel is copper canisters, vertically emplaced in deposition holes bored in the floor of a tunnel, situated deep underground. The deposition holes are filled with a buffer of bentonite and the tunnel is backfilled with a mixture of sand and bentonite. (au)

  18. Construction monitoring activities in the ESF starter tunnel

    International Nuclear Information System (INIS)

    Pott, J.; Carlisle, S.

    1994-01-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented

  19. Performance of concrete backfilling materials for shafts and tunnels in rock formations

    International Nuclear Information System (INIS)

    Storer, G.; Mistry, N.; Galliara, J.

    1985-10-01

    This report (Part 2) describes the mathematical modelling studies carried out within a research project into the performance of concrete backfilling materials for shafts and tunnels comprising a hard rock geological disposal repository for High Level, Heat Generating Wastes (HLW/HGW) or Intermediate Level Wastes (ILW) with long lived isotopes. A complementary volume (Part 1) describes laboratory research studies into the development, manufacture and testing of a pre-placed aggregate concrete (PAC). The ongoing objective is to demonstrate that concrete will serve as a beneficial engineered barrier, part of a multi-barrier system, in isolating potentially harmful radionuclides from the biosphere. The report recognises that the backfill cannot be considered in isolation and that there are many interactions between the primary repository elements of host rock, waste and backfill. The interactions considered include mechanical, thermal, creep and moisture movement. Analyses were carried out using the ADINA finite element system, by programmed analytical formulae and using the TEMPOR program (for thermally driven moisture migration in concrete). The emphasis has been directed at establishing basic mathematical approaches to the understanding and quantification of the phenomena involved and applying them to simplified and idealised repository scenarios. The methods devised lay foundations for future work on more defined disposal scenarios. (author)

  20. Analysis of labour accidents in tunnel construction and introduction of prevention measures.

    Science.gov (United States)

    Kikkawa, Naotaka; Itoh, Kazuya; Hori, Tomohito; Toyosawa, Yasuo; Orense, Rolando P

    2015-01-01

    At present, almost all mountain tunnels in Japan are excavated and constructed utilizing the New Austrian Tunneling Method (NATM), which was advocated by Prof. Rabcewicz of Austria in 1964. In Japan, this method has been applied to tunnel construction since around 1978, after which there has been a subsequent decrease in the number of casualties during tunnel construction. However, there is still a relatively high incidence of labour accidents during tunnel construction when compared to incidence rates in the construction industry in general. During tunnel construction, rock fall events at the cutting face are a particularly characteristic of the type of accident that occurs. In this study, we analysed labour accidents that possess the characteristics of a rock fall event at a work site. We also introduced accident prevention measures against rock fall events.

  1. Deep bore well water level fluctuations in the Koyna region, India: the presence of a low order dynamical system in a seismically active environment

    Directory of Open Access Journals (Sweden)

    D. V. Ramana

    2009-05-01

    Full Text Available Water level fluctuations in deep bore wells in the vicinity of seismically active Koyna region in western India provides an opportunity to understand the causative mechanism underlying reservoir-triggered earthquakes. As the crustal porous rocks behave nonlinearly, their characteristics can be obtained by analysing water level fluctuations, which reflect an integrated response of the medium. A Fractal dimension is one such measure of nonlinear characteristics of porous rock as observed in water level data from the Koyna region. It is inferred in our study that a low nonlinear dynamical system with three variables can predict the water level fluctuations in bore wells.

  2. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique

    NARCIS (Netherlands)

    Vellinga, T. P. Van Rees; Sterk, W.; de Boer, A. G. E. M.; van der Beek, A. J.; Verhoeven, A. C.; van Dijk, F. J. H.

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth.

  3. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  4. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  5. Analysis of labour accidents in tunnel construction and introduction of prevention measures

    Science.gov (United States)

    KIKKAWA, Naotaka; ITOH, Kazuya; HORI, Tomohito; TOYOSAWA, Yasuo; ORENSE, Rolando P.

    2015-01-01

    At present, almost all mountain tunnels in Japan are excavated and constructed utilizing the New Austrian Tunneling Method (NATM), which was advocated by Prof. Rabcewicz of Austria in 1964. In Japan, this method has been applied to tunnel construction since around 1978, after which there has been a subsequent decrease in the number of casualties during tunnel construction. However, there is still a relatively high incidence of labour accidents during tunnel construction when compared to incidence rates in the construction industry in general. During tunnel construction, rock fall events at the cutting face are a particularly characteristic of the type of accident that occurs. In this study, we analysed labour accidents that possess the characteristics of a rock fall event at a work site. We also introduced accident prevention measures against rock fall events. PMID:26027707

  6. Long-term monitoring of rock mass properties in the underground excavation

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2015-04-01

    It is generally agreed today that hazardous waste should be placed in repositories hundreds of meters below the Earth's surface. In our research we deal with the long-term monitoring of the underground excavation by seismic and electrical resistivity measurements. Permanent measuring system was developed and installed at the Bedřichov gallery test site (northern Bohemia). The gallery was excavated using TBM (Tunnel Boring Machine) in granitic rocks. Realized repeated measurements include ultrasonic time of flight measurement and electrical resistivity tomography (ERT). The seismic measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The main emphasis is devoted to P-waves; however, recording of full waveform enables analyzing of S- waves and other types of waves as well. The comparison of repeated measurements is used for an assessment of changes in seismic velocities with very high-accuracy. The repetition rate of measurements can be selected from seconds; however such fast changes in the rock mass are unexpected. The ERT measurement is performed on the same rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. The conductivity of undisturbed granitic rocks is extremely low. Therefore the observed local increase of conductivity can be associated with joints and fractures saturated with water, resulting in their ionic conductivity. Repeated ERT measurement can reveal some changes in the rock mass. Due to time requirements of ERT measurement the repetition rate can be about three hours. The data collected by measuring system is transferred by means of computer network and can be accessed via internet. This contribution deals with preliminary results gained so far during the testing of developed monitoring system. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA

  7. An update of conditions in the Donkin-Morien tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Seedsman, R.W. [Seedsman Geotechnics Pty Ltd., Mt. Kembla (Australia)

    2009-07-01

    Two 7.6 diameter tunnels were constructed in the Donkin-Morien peninsula in Nova Scotia in 1984 and 1985. Ground support designs of the tunnel were based on the identification of rock failure zones using finite element analyses and the Hoek Brown failure criterion. The tunnels were flooded in 1992 when the mining project was abandoned. However, subsequent monitoring data from the tunnels were used to analyze brittle rock behaviour before and after its subsequent dewatering. This paper discussed the results of a feasibility study conducted to compare collapse zones in the roof and sides of the tunnel with results obtained from a simple elastic analysis technique that used brittle parameters, a spalling limit of 5, and a low-dependent shear modulus. Analyses were conducted to examine the potential maximum height of failure as a function of the coal seams. The study showed that coal measure rocks can be analyzed using the brittle failure criterion when both transverse anisotropy and low spalling limits were included. However, it is not possible to determine the contribution of corrosion to the deterioration of the tunnels. The analysis will be used to form a design for re-supporting the tunnels. 7 refs., 2 tabs., 7 figs.

  8. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  9. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  10. A case history of a tunnel constructed by ground freezing

    Science.gov (United States)

    Lacy, H. S.; Jones, J. S., Jr.; Gidlow, B.

    Artificial ground freezing was used for structural support and groundwater control for a 37 m long, 3.2 m diameter tunnel located about 2 m beneath high speed railroad lines in Syracuse, New York. A double row of freeze pipes spaced approximately 0.9 m on-center was used around the periphery of the tunnel above the spring line, while only a single row of freeze pipes was required below the spring line. Excavation of the frozen soil within the tunnel was accomplished with a small road header tunnel boring machine. The results of in situ testing of frozen soil, laboratory testing of frozen soils, computer analysis to predict stress deformation-time characteristics under static and cyclic loading, the instrumentation program including a comparison of estimated and measured performance are discussed.

  11. TRM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    Performance predictions were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah Spring welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. Guidelines were developed for the optimal design of the TBM cutterhead to achieve high production rates at the lowest possible excavation costs. The results show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The results also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  12. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    International Nuclear Information System (INIS)

    Pusch, Roland

    2008-09-01

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m 3 . Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m 3 . Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  13. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland (Geodevelopment International AB/SWECO AB, Lund (Sweden))

    2008-09-15

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m3. Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m3. Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  14. Use of explosives in pipeline construction work

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M J

    1976-08-01

    Explosives are an essential tool in Great Britain's pipeline-construction industry, with applications on dry land and under water, in trench blasting and tunneling for road and service crossings, demolition of unwanted sections, and removal of coatings. Nobels Explosive Co. Ltd. describes basic explosives operations as pertaining to the requirements of rock trenching, submarine operations, thrust-bore and tunneling operations, demolitions, and precision blasting.

  15. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  16. Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

    Science.gov (United States)

    Agangi, Andrea; Reddy, S. M.; Plavsa, D.; Vieru, C.; Selvaraja, V.; LaFlamme, C.; Jeon, H.; Martin, L.; Nozaki, T.; Takaya, Y.; Suzuki, K.

    2018-02-01

    The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system.

  17. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    Science.gov (United States)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  18. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  19. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  20. Construction of tunnel Bôrik

    Directory of Open Access Journals (Sweden)

    Jozef Čížik

    2009-09-01

    Full Text Available When tunneling engineers talk on NATM, they often mean different things because some of them define it as a special technique,but others as a sort of philosophy. Recently the scene has been complicated by new terms and even alternative names, when discussingcertain aspects of NATM.The NATM integrates the principles of the behaviour of rock masses under load and monitoring the performance of undergroundconstruction during construction. The NATM is not a set of specific excavation and support techniques. Based on the computationof the optimal cross section, just a thin shotcrete protection is necessary. Additionally, geotechnical instruments are installed to measurethe later deformation of excavation. Therefore a monitoring of the stress distribution within the rock is possible. This monitoring makesthe method very flexible, even at surprising changes of the geomechanical rock consistency during the tunneling work.

  1. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  2. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  3. The Mechanical and Fracturing of Rockburst in Tunnel and Its Acoustic Emission Characteristics

    Directory of Open Access Journals (Sweden)

    Xiangxin Liu

    2018-01-01

    Full Text Available The phenomenon of acoustic emission (AE is associated with rock failure and rock fracturing. In order to investigate the influence of tectonic stress on rockburst in tunnel, a biaxial loading experiment system was used in this study. The excavation operation is undertaken at the center of samples to monitor the tunnel forming process in situ, and the different horizontal stresses can be studied by using the AE monitoring technique. The dynamical fracturing process of the tunnel model was summarized, and the timing parameters of AE signals in rockburst stages were obtained. The curves of AE energy and cumulative AE energy with time show a “step-like” rising trend before the occurrence of rockburst. The evolution of macro- and mesocracks is captured, and the mechanical conditions for a “V-shaped” rockburst pit are derived. As the horizontal stress increases, the effect of excavation unloading becomes more pronounced, and the damage caused by the rockburst intensifies. In the early stage of rockburst evolution, the fracturing type follows a model of tensile-shear mix model. A positive relationship between the ratio of shear fracturing type and the horizontal stress can be noted when the rock is about to burst, and the high intensity and the high energy released of from the rock-fracturing event have become evident. Thus, the results indicate that one should focus on monitoring both sides of the surrounding rock of the tunnel so as to extract the characteristics of the process of tunnel in tunnel. The applications of biaxial loading system and during an excavation operation provide a useful tool to simulate the rock burst in tunnel at an engineering site.

  4. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  5. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  6. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  7. On the effects of the TBM-shield body articulation on tunnelling in soft soil

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    When a Tunnel Boring Machine (TBM) is driven in soft soil, the TBM-shield constantly interacts with the surrounding soil profile excavated by the cutting wheel. The interaction pattern of shield-soil interface displacements determines compression and extension sectors in the surrounding soil. Soil

  8. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  9. Principles of Mechanical Excavation

    International Nuclear Information System (INIS)

    Lislerud, A.

    1997-12-01

    Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.)

  10. Principles of Mechanical Excavation

    Energy Technology Data Exchange (ETDEWEB)

    Lislerud, A. [Tamrock Corp., Tampere (Finland)

    1997-12-01

    Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.). 21 refs.

  11. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    Science.gov (United States)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. TBM tunneling on the Yucca Mountain Project: Proceedings

    International Nuclear Information System (INIS)

    Williamson, G.E.; Gowring, I.M.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  13. A draining concept for tunnels with the aim of optimizing their geothermal utilization; Concept de drainage des tunnels en vue d'une optimisation de l'utilisation geothermique (valorisation du potentiel geothermique des tunnels - Recherche d'optimisation)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J.

    2006-07-01

    Since almost 30 years, the geothermal potential of mountain water has been exploited in Swiss tunnels. The first known application was at the southern mouth of the St. Gotthard road tunnel, where the draining water was collected for heating a waiting-room in Airolo. The present report prepared for the Swiss Federal Office of Energy (SFOE) examines the possibilities for enhancing the efficiency and thus the potential of this geothermal application. They include: a) Reducing thermal losses by thermally insulating the water pipes along the tunnel. b) Increasing the usable quantity of water by providing additional drillings along the tunnel. c) Providing more than one water pipe, thus allowing to collect water of different temperatures in separate pipes. d) New technologies: add heat exchangers to tunnel construction elements in direct contact with the rocks, e.g. rock anchors, liners, concrete elements in the floor. The last chapter examines possible improvements for two large tunnels currently in project.

  14. PIPE ROOF APPLICATION ON THE "JAVOROVA KOSA" AND "POD VUGLES" TUNNELS

    Directory of Open Access Journals (Sweden)

    Pavle Jureta

    2003-12-01

    Full Text Available The modes of pipe roof technology implementation in order to stabilize the excavations on the "Javorova Kosa" and "Pod Vugles" Tunnels are described in the paper. Both tunnels are specific regarding their geological structure and geo-technical characteristics of the rock mass in which the excavations were performed as well as regarding the mutual distance of 50 m measured alongside the highway axis. The multiphase New Austrian Tunneling Method (NATM was used for the excavations in weak rock/soil (the paper is published in Croatian.

  15. An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek-Brown Failure Criterion

    Science.gov (United States)

    Wu, Li; Adoko, Amoussou Coffi; Li, Bo

    2018-04-01

    In tunneling, determining quantitatively the rock mass strength parameters of the Hoek-Brown (HB) failure criterion is useful since it can improve the reliability of the design of tunnel support systems. In this study, a quantitative method is proposed to determine the rock mass quality parameters of the HB failure criterion, namely the Geological Strength Index (GSI) and the disturbance factor ( D) based on the structure of drilling core and weathering condition of rock mass combined with acoustic wave test to calculate the strength of rock mass. The Rock Mass Structure Index and the Rock Mass Weathering Index are used to quantify the GSI while the longitudinal wave velocity ( V p) is employed to derive the value of D. The DK383+338 tunnel face of Yaojia tunnel of Shanghai-Kunming passenger dedicated line served as illustration of how the methodology is implemented. The values of the GSI and D are obtained using the HB criterion and then using the proposed method. The measured in situ stress is used to evaluate their accuracy. To this end, the major and minor principal stresses are calculated based on the GSI and D given by HB criterion and the proposed method. The results indicated that both methods were close to the field observation which suggests that the proposed method can be used for determining quantitatively the rock quality parameters, as well. However, these results remain valid only for rock mass quality and rock type similar to those of the DK383+338 tunnel face of Yaojia tunnel.

  16. Slurry Transport : Fundamentals, a historical overview and the Delft Head Loss & Limit Deposit Velocity Framework

    NARCIS (Netherlands)

    Miedema, S.A.; Ramsdell, RC

    2016-01-01

    In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other applications, sand, clay or rock has to be excavated. After the soil has been excavated it is usually transported hydraulically as a slurry over a short (TSHD’s) or a long distance (CSD’s). Estimating the pressure

  17. Application of quality assurance controls to TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Christensen, J.D.

    1996-01-01

    As part of the Yucca Mountain Project (YMP), a 7.62-meter diameter tunnel is being constructed using a Tunnel Boring Machine (TBM). This tunnel, which may form a portion of a permanent high-level nuclear waste repository, is being constructed under the auspices of a nuclear quality assurance (QA) program. The YMP nuclear QA program applies to items and activities determined to be important to radiological safety, waste isolation, and potential interactions with the environment. The items and activities determined to be important have been assigned a quality assurance classification. This paper focuses on the items (rockbolts, steel sets, and shotcrete) and quality affecting activities involved in providing ground support and excavating the tunnel. Typical activities that have been assigned QA classifications include TBM maintenance, control of water used in the tunnel during construction, and control of diesel emissions in the tunnel. The paper concludes that the key to the successful implementation of nuclear QA requirements for tunneling at Yucca Mountain was the assignment of personnel with the appropriate mix of tunneling and nuclear experience

  18. USING GROUND PENETRATING RADAR TO DETERMINE THE TUNNEL LOCATION BURIED UNDER THE GLACIER

    Directory of Open Access Journals (Sweden)

    Deryuga Andrey Mikhaylovich

    2013-09-01

    Full Text Available The works were carried out with the help of ground penetrating radar “Grot-10”. Doublet broadband antennas with the central frequency of 100 MHz were used. Georadar measures the speed of EM waves v in ice-saturated soil and then the value ε′ is calculated. The radargrams received as a result of georadar survey, which represents stacked data (the two-way time is indicated on vertical scale, were transformed into depth sections, which reflect the space structure located below ground. The distance between the bottom landing and buried mountain road near the north tunnel portal is 78,5 m (profile # 1, and the distance from the upper landing is 84,5 m (profile no. 2. Later, in the April 2003 during the hole boring with the diameter 1,2 m the vertical distance between the upper landing, where ground penetrating works were carried out, and the carpet road of the tunnel was calculated. This distance appeared to be 83 m, that means, the discrepancy between boring and georadar data (84,5 m was only 1,5 m. Thus, the results of ground penetrating investigations helped the workers of glacier to make the correct conclusion on time about the location and burial depth of the tunnel.

  19. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  20. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  1. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  2. Numerical simulations of earthquake effects on tunnels for generic nuclear waste repositories

    International Nuclear Information System (INIS)

    Wahi, K.K.; Trent, B.C.; Maxwell, D.E.; Pyke, R.M.; Young, C.; Ross-Brown, D.M.

    1980-12-01

    The objectives of this generic study were to use numerical modeling techniques to determine under what conditions seismic waves generated by an earthquake might cause instability to an underground opening, or cause fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 meters. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, pore pressures, and the presence or absence of a fault. Three different sets of earthquake motions were used to excite the rock mass. The calculations were performed using the STEALTH codes in a three-stage process. It was concluded that the methodology is suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass. A rock-burst tremor with accelerations up to 0.95 g, however, was found to be amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In shale, even moderate seismic loading resulted in tunnel collapse. Other questions appraised in the study include the stability of granite tunnels under various combinations of joint geometry and in situ stress states, and the overall stability of tunnels in shale subject to the thermomechanical loading conditions anticipated in an underground waste repository

  3. Ground water movements around a repository. Rock mechanics analyses

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1977-09-01

    The determination and rational assessment of groundwater flow around a repository depends upon the accurate analysis of several interdependent and coupled phenomenological events occuring within the rock mass. In particular, the groundwater flow pathways (joints) are affected by the excavation and thermomechanical stresses developed within the rock mass, and the properties, of the groundwater are altered by the temperature perturbations in the rock mass. The objective of this report is to present the results of the rock mechanics analysis for the repository excavation and the thermally-induced loadings. Qualitative analysis of the significance of the rock mechanics results upon the groundwater flow is provided in this report whenever such an analysis can be performed. Non-linear rock mechanics calculations have been completed for the repository storage tunnels and the global repository domain. The rock mass has been assumed to possess orthoganol joint sets or planes of weakness with finite strength characteristics. In the local analyses of the repository storage tunnels the effects of jointorientation and repository ventilation have been examined. The local analyses indicated that storage room support requirements and regions of strength failure are highly dependent upon joint orientation. The addition of storage tunnel ventilation was noted to reduce regions of strength failure, particularly during the 30 year operational phase of the repository. Examination of the local stresses around the storage tunnels indicated the potential for perturbed hydraulic permeabilities. The permeabilities can be expected to be altered to a greater degree by the stresses resulting from excavation than from stresses which are thermally induced. The thermal loading provided by the instantaneous waste emplacement resulted in stress states and displacements quite similar to those provided by the linear waste emplacement sequence

  4. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  5. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  6. Possible Concepts for Waterproofing of Norwegian TBM Railway Tunnels

    Science.gov (United States)

    Dammyr, Øyvind; Nilsen, Bjørn; Thuro, Kurosch; Grøndal, Jørn

    2014-05-01

    The aim of this paper is to evaluate and compare the durability, life expectancy and maintenance needs of traditional Norwegian waterproofing concepts to the generally more rigid waterproofing concepts seen in other European countries. The focus will be on solutions for future Norwegian tunnel boring machine railway tunnels. Experiences from operation of newer and older tunnels with different waterproofing concepts have been gathered and analyzed. In the light of functional requirements for Norwegian rail tunnels, some preliminary conclusions about suitable concepts are drawn. Norwegian concepts such as polyethylene panels and lightweight concrete segments with membrane are ruled out. European concepts involving double shell draining systems (inner shell of cast concrete with membrane) and single shell undrained systems (waterproof concrete segments) are generally evaluated as favorable. Sprayable membranes and waterproof/insulating shotcrete are welcomed innovations, but more research is needed to verify their reliability and cost effectiveness compared to the typical European concepts. Increasing traffic and reliance on public transport systems in Norway result in high demand for durable and cost effective solutions.

  7. The Impact of Temperatures on the Stability of Rocks Surrounding a Single Fracture

    Science.gov (United States)

    Zhang, Yan; Li, Ning; Dai, Jun

    2018-05-01

    Research on the influence of temperature and the accompanying stress on the stability of the rocks surrounding an underground tunnel has become ever more important. This paper constructs a geometric model of a single-fracture tunnel by combining a high-temperature underground tunnel as the object of study with an example that uses a high-temperature tunnel segment in the water diversion tunnel of a hydropower station in Xinjiang. Based on the relevant theoretical analysis, with the consideration of different working conditions, a numerical experimental analysis was conducted to determine the two-dimensional transient temperature field distribution of the tunnel rock mass by using a numerical analysis software. The experimental data was consistent with the measured data. The calculated results show the following: a. when the temperature difference is greater, the stress concentration is higher near the fracture of the surrounding rock; b. the degree of the stress concentration in the crack tip region is not positively correlated to the distance, and there is a sensitive region where the stress varies.

  8. Geostatistical methods for rock mass quality prediction using borehole and geophysical survey data

    Science.gov (United States)

    Chen, J.; Rubin, Y.; Sege, J. E.; Li, X.; Hehua, Z.

    2015-12-01

    For long, deep tunnels, the number of geotechnical borehole investigations during the preconstruction stage is generally limited. Yet tunnels are often constructed in geological structures with complex geometries, and in which the rock mass is fragmented from past structural deformations. Tunnel Geology Prediction (TGP) is a geophysical technique widely used during tunnel construction in China to ensure safety during construction and to prevent geological disasters. In this paper, geostatistical techniques were applied in order to integrate seismic velocity from TGP and borehole information into spatial predictions of RMR (Rock Mass Rating) in unexcavated areas. This approach is intended to apply conditional probability methods to transform seismic velocities to directly observed RMR values. The initial spatial distribution of RMR, inferred from the boreholes, was updated by including geophysical survey data in a co-kriging approach. The method applied to a real tunnel project shows significant improvements in rock mass quality predictions after including geophysical survey data, leading to better decision-making for construction safety design.

  9. Geological Hazards analysis in Urban Tunneling by EPB Machine (Case study: Tehran subway line 7 tunnel

    Directory of Open Access Journals (Sweden)

    Hassan Bakhshandeh Amnieh

    2016-06-01

    Full Text Available Technological progress in tunneling has led to modern and efficient tunneling methods in vast underground spaces even under inappropriate geological conditions. Identification and access to appropriate and sufficient geological hazard data are key elements to successful construction of underground structures. Choice of the method, excavation machine, and prediction of suitable solutions to overcome undesirable conditions depend on geological studies and hazard analysis. Identifying and investigating the ground hazards in excavating urban tunnels by an EPB machine could augment the strategy for improving soil conditions during excavation operations. In this paper, challenges such as geological hazards, abrasion of the machine cutting tools, clogging around these tools and inside the chamber, diverse work front, severe water level fluctuations, existence of water, and fine-grained particles in the route were recognized in a study of Tehran subway line 7, for which solutions such as low speed boring, regular cutter head checks, application of soil improving agents, and appropriate grouting were presented and discussed. Due to the presence of fine particles in the route, foam employment was suggested as the optimum strategy where no filler is needed.

  10. An innovative jet boring mining method available for the high grade uranium ore underground deposits

    International Nuclear Information System (INIS)

    Narcy, J.L.

    1996-01-01

    An innovative mining method, based on the capability of a high pressure water jet to desaggregate rock, has been conceived and tested with success at the highest grade uranium ore deposit in the world, the Cigar Lake deposit in Saskatchewan, Canada. 113 tonnes of ore at 13% U were mined out by a new jet-boring mining method operated on a semi-industrial basis, in 1992 during the test mining program of Cigar Lake Project. (author). 9 figs

  11. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  12. The Boring Billion, a slingshot for Complex Life on Earth.

    Science.gov (United States)

    Mukherjee, Indrani; Large, Ross R; Corkrey, Ross; Danyushevsky, Leonid V

    2018-03-13

    The period 1800 to 800 Ma ("Boring Billion") is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800-1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the "Boring Billion" was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.

  13. Thermo-mechanical effects from a KBS-3 type repository. Performance of pillars between repository tunnels

    International Nuclear Information System (INIS)

    Hakami, E.; Olofsson, Stig-Olof

    2000-03-01

    The aim of this study has been to investigate how the rock mass, in the near field of a KBS-3 type repository, will be affected by the excavation of tunnels and deposition holes and the thermal load from the deposited waste. The three-dimensional finite difference program FLAC 3D was used to perform numerical simulation of the rock mass behaviour. The rock mass was modelled as a homogeneous and isotropic continuum. The initial area heat intensity of the repository was assumed to be 10 W/m 2 in all models. The results show that in the middle of the pillar between the repository tunnels the temperature reaches a maximum of about 70 deg C after 55 years of deposition. The extent of areas where the rock is predicted to yield depends on the assumed quality of the rock mass and the initial in-situ stress field. The volume of yielded rock reaches a maximum after about 200 years after deposition. For a rock mass with internal friction angle of 45 deg and cohesion of 5 MPa (using a Mohr-Coulomb material model), the extent of yielded rock is limited to about 1.5 m behind the excavation periphery. The largest rock displacements are found in the tunnel floor at the upper part of the deposition holes. Tension and shear failure in the periphery of the excavations is predicted to occur during the rock excavation, with a depth extension depending on the magnitude and orientation of the in-situ stresses, as well as on the rock mass quality. Both the excavation effects and the then-no-mechanical effects are smallest when the major principal stress is oriented parallel with the deposition tunnels. The maximum convergence between tunnel walls was calculated to occur after 200 years and be about 9 mm, in the model assuming a rock mass with 5 MPa cohesion, 45 deg internal friction angle and maximum horizontal stress perpendicular to the tunnel. In this study confining effects from the buffer and backfill material was neglected. The effective stress concept was used in most of the models

  14. Small-scale bentonite injection test on rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  15. Application feasibility study of evaluation technology for long-term rock behavior. 2. Parameter setting of variable compliance type model and application feasibility study for rock behavior evaluation

    International Nuclear Information System (INIS)

    Sato, Shin; Noda, Masaru; Niunoya, Sumio; Hata, Koji; Matsui, Hiroya; Mikake, Shinichiro

    2012-01-01

    Creep phenomenon is one of the long-term rock behaviors. In many of rock-creep studies, model and parameter have been verified in 2D analysis using model parameter acquired by uniaxial compression test etc considering rock types. Therefore, in this study model parameter was set by uniaxial compression test with classified rock samples which were taken from pilot boring when the main shaft was constructed. Then, comparison between measured value and 3D excavation analysis with identified parameter was made. By and large, the study showed that validity of identification methodology of parameter to identify reproduction of measured value and analysis method. (author)

  16. Tunneling on the Yucca Mountain Project: Progress and lessons learned

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Rogers, D.J.; Wightman, W.D.

    1996-01-01

    The Yucca Mountain Site Characterization Project is the US's effort to confirm the technical acceptability of Yucca Mountain as a repository for high-level nuclear waste. A key part of the site characterization project is the construction of a 7.8-km-long, 7.6-m-diameter tunnel for in-depth geologic and other scientific investigations. The work is governed in varying degrees by the special requirements for nuclear quality assurance, which imposes uncommon and often stringent limitations on the materials which can be used in construction, the tunneling methods and procedures used, and record-keeping for many activities. This paper presents the current status of what has been learned, how construction has adapted to meet the requirements, and how the requirements were interpreted in a mitigating way to meet the legal obligations, yet build the tunnel as rapidly as possible. With regard to design methodologies and the realities of tunnel construction, ground support with a shielded Tunnel Boring Machine is discussed. Notable lessons learned include the need for broad design analyses for a wide variety of conditions and how construction procedures affect ground support

  17. Tunnelers carve niche for new atom smasher

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This fall, two tunnel-boring machines will start carving out a 17-mile ring beneath the French-Swiss border. Each 15-ft. dia machine will advance more than 100 ft/day, creating an underground home for an advanced accelerator. The $470-million large electron-positron storage ring (LEP) is already behind rival projects, particularly the $113-million Stanford linear collider now being built at Stanford University in Palo Alto, California and scheduled to start up in 1986. The construction of the underground chambers for the LEP is described

  18. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  19. The influence of rock movement on the stress/strain situation in tunnels or bore holes with radioactive canisters embedded in a bentonite/quartz buffer mass

    International Nuclear Information System (INIS)

    Pusch, R.

    1977-08-01

    The report presents the author's main ideas concerning the possible recurence of large unexpected movements in Swedish pre-Cambrian rock and gives the theoretical basis for the calculation of stress and strain in the canisters and the buffer mass. A rough calculation shows that a sudden and large shear strain at actual depths will only occur along already existing continous weak zones in the bedrock. In situ rock investigations to find and locate weak zones are essential. Shear tests with a model shear apparatus were run with the canister embedded in 10 percent bentonite 90 percent quarz buffer mass. The least favourable theory (Meyerhof) gave high contact pressures which cause high bending momentum on the canister. The stresses can be reduced by changing the geometry of the canister. (L.B.)

  20. Experience in design and construction of the Log tunnel

    Directory of Open Access Journals (Sweden)

    Jovičić Vojkan

    2017-09-01

    Full Text Available A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gruškovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM, in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  1. Experience in design and construction of the Log tunnel

    Science.gov (United States)

    Jovičić, Vojkan; Goleš, Niko; Tori, Matija; Peternel, Miha; Vajović, Stanojle; Muhić, Elvir

    2017-09-01

    A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gru\\vskovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM), in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  2. Sampling and specimen preparation of rocks from the Asse mine, for sorption studies

    International Nuclear Information System (INIS)

    Bode, W.

    1986-01-01

    Within the framework of siting exploratory work in the Asse salt mine, five deep holes have been brought down, a series of hydrogeological wells (up to a depth of 300 m), and some gauge wells (up to 110 m). Most of the borings are core drills with a diameter of 100 mm. In addition to the usual experiments for rock property determination, samples for the determination of sorption properties have been taken. In order to reduce the effect of the O 2 in the air on the rocks during storage, the bore kernels have been put into O 2 -tight casks immediately after sampling and cleaning. Processing has been done by means of a jawbreaker, hammer milling, and a shaking device, all equipped with argon-conditioned boxes. The specimens have been shipped in Al-coated and Ar-conditioned polyethylene containers. (orig.) [de

  3. TMI-2 core bore acquisition summary report

    International Nuclear Information System (INIS)

    Tolman, E.L.; Smith, R.P.; Martin, M.R.; McCardell, R.K.; Broughton, J.M.

    1986-09-01

    Core bore samples were obtained from the severely damaged TMI-2 core during July and August, 1986. A description of the TMI-2 core bore drilling unit used to obtain samples; a summary and discussion of the data from the ten core bore segments which were obtained; and the initial results of analysis and evaluation of these data are presented in this report. The impact of the major findings relative to our understanding of the accident scenario is also discussed

  4. Analysis of an underground structure settlement risk due to tunneling- A case study from Tabriz, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Vahdatirad

    2010-05-01

    Full Text Available The tunnel of the Tabriz urban railway line 2 (TURL2, Iran, will pass through an underground commercial center onits way. Too little distance between the tunnel crown and the underground structure foundation will probably cause collapseor excessive settlement during the tunnel construction based on studied geotechnical conditions of the region. In this paper,a method of risk level assessment for various types of structures, such as frame and masonry structures, and various typesof foundation, such as continuous and isolated, is well defined and the risk level is classified. Moreover, the value of theunderground commercial center structure settlement is estimated using both empirical and numerical methods. The settlementrisk level of the commercial center structure is determined based on presented definitions about risk classification ofvarious types of structures. Consequently, tunneling processes in this section need a special monitoring system and consolidationmeasures before the passage of a tunnel boring machine.

  5. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  6. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lomazzi, Eleonora [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Passoni, Alice [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Bagnati, Renzo [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lodi, Marco [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Viarengo, Aldo; Sforzini, Susanna [Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria (Italy); Benfenati, Emilio [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Fanelli, Roberto [Department of Environmental Health Sciences, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy)

    2015-10-15

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  7. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    International Nuclear Information System (INIS)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-01-01

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  8. Parameter Sensitivity of Shallow-Bias Tunnel with a Clear Distance Located in Rock

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2018-01-01

    Full Text Available In order to obtain the seismic internal force response laws of a shallow-bias tunnel with a small clear distance, the reliability of the numerical simulation is verified by the shaking table model test. The parameter sensitivity of the tunnel is studied by using MIDAS-NX finite element software. The effects of seismic wave peak (0.1 g, 0.2 g, 0.3 g, 0.4 g, 0.5 g, and 0.6 g, existing slope angle (30°, 45°, 60°, and 90°, clear distance (1.0 D, 1.5 D, 2.0 D, and 3.0 D, and excitation mode (X direction, Z direction, XY direction, and XYZ direction on the internal force response law of the tunnel are studied, respectively. The results show that (1 the shear force gradually increases with the increasing of seismic peak. The amplification is different with different measuring points. (2 Under different existing slope-angle conditions, the variation trend of shear force of the tunnel is similar, but the shear force is different. The existing slope has significant effect on the shear force response of the tunnel, and the degree is different with different slope angles. (3 Under the conditions of 1.5 D and 2.0 D, the shear force response of the tunnel is stronger, but the response of other conditions is relatively weak. The tunnel with 1.5 D to 2.0 D clear distance should be avoided. Different excitation modes have a significant effect on the shear force response of the tunnel. (4 Under the same excitation mode, the different excitation directions also have a significant effect on the shear force response. (5 The shear force response of the tunnel crosssection shows nonlinear variation trend. The shear force response is strongest at the arch shoulder and arch foot of the tunnel. The research results provide a useful reference for the design of antishock and vibration resistance of the tunnel.

  9. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  10. Strata control in tunnels and an evaluation of support units and systems currently used with a view to improving the effectiveness of support, stability and safety of tunnels.

    CSIR Research Space (South Africa)

    Haile, AT

    1998-12-01

    Full Text Available This report details a methodology for rational design of tunnel support systems based on a mechanistic evaluation of the interaction between the components of a tunnel support system and a highly discontinuous rock mass structure. This analysis...

  11. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    NARCIS (Netherlands)

    Gharouni-Nik, M.; Naeimi, M.; Ahadi, S.; Alimoradi, Z.

    2014-01-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute

  12. Installation of depository for radioactive material in rocks

    International Nuclear Information System (INIS)

    Bergman, S.G.A.; Sagefors, K.I.; Aakesson, B.Aa.

    1985-01-01

    The rock outside the depository has a hollow space which is filled by elastoplastic material possible to deform. The solid body of the depository has a central vertical shaft and concentric vertical outer shafts. Between the shafts there are vertically oriented layers with tunnels for storage of waste. The tunnels slope down from the central shaft. (G.B.)

  13. Evaluation of the Influence Caused by Tunnel Construction on Groundwater Environment: A Case Study of Tongluoshan Tunnel, China

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-01-01

    Full Text Available Problems related to water inflow during tunnel construction are challenging to designers, workers, and management departments, as they can threaten tunneling project from safety, time, and economic aspects. Identifying the impacts on groundwater environment resulting from tunnel drainage and making a correct assessment before tunnel construction is essential to better understand troubles that would be encountered during tunnel excavation and helpful to adopt appropriate countermeasures to minimize the influences. This study presents an indicator system and quantifies each indicator of Tongluoshan tunnel, which is located in southwest China with a length of 5.2 km and mainly passes through carbonate rocks and sandstones, based on field investigation and related technological reports. Then, an evaluation is made using fuzzy comprehensive assessment method, with a result showing that it had influenced the local groundwater environment at a moderate degree. Information fed back from environmental investigation and hydrologic monitoring carried out during the main construction period proves the evaluation, as the flow of some springs and streams located beside the tunnel route was found experiencing an apparent decline.

  14. Static design of steel-concrete lining for traffic tunnels

    Science.gov (United States)

    Vojtasik, Karel; Mohyla, Marek; Hrubesova, Eva

    2017-09-01

    Article summarizes the results of research focused on the structural design of traffic tunnel linings that have been achieved in the framework of a research project TE01020168 that supports The Technology Agency of Czech Republic. This research aim is to find and develop a process for design structure parameters of tunnel linings. These are now mostly build up by a shotcrete technology. The shotcrete is commonly endorsed either with steel girders or steel fibres. Since the installation a lining structure is loaded while strength and deformational parameters of shotcrete start to rise till the setting time elapses. That’s reason why conventional approaches of reinforced concrete are not suitable. As well as there are other circumstances to step in shown in this article. Problem is solved by 3D analysis using numerical model that takes into account all the significant features of a tunnel lining construction process inclusive the interaction between lining structure with rock massive. Analysis output is a view into development of stress-strain state in respective construction parts of tunnel lining the whole structure around, including impact on stability of rock massive. The proposed method comprises all features involved in tunnel fabrication including geotechnics and construction technologies.

  15. From Monitored Values to the Model Creation of the Dynamic System

    Directory of Open Access Journals (Sweden)

    Vladena BARANOVÁ

    2015-11-01

    Full Text Available Current information technology allow sensing and processes data recording under severe conditions of operation with new technical means in real time, storing the measurement data, its processing and evaluation in situ or in the laboratory. An example would be the monitoring system boring machine-rock used in tunneling Branisko. The monitored variables of the boring process were downforce of disconnecting head of boring machine, torque, speed of disconnecting head, the power consumption of the aggregate and the extended position of disconnecting head depending on the drilled length. These measured values allowed the creation of models, which help to modeling various properties of boring process within the meaning of Eykhoff definition: "A model is an expression of the essential characteristics of an existing object, which describes the knowledge of this object in a usable form".

  16. Mechanical and thermo-mechanical analyses of the tapered plug for plugging of deposition tunnels. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Faelth, Billy (Clay Technology AB, Lund (Sweden)); Gatter, Patrik (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2009-09-15

    This report presents results from a study that was carried out in order to examine the applicability of the tapered plug concept for plugging of deposition tunnels in the deep repository for spent nuclear fuel. The report presents results from mechanical and thermo-mechanical models of the tapered plug. The models were analyzed with 3DEC. The models included a portion of a deposition tunnel and its intersection with a main tunnel. In the deposition tunnel, a tapered concrete plug was installed. The plug was subjected to the combined load from the swelling backfill material and from pore pressure inside the deposition tunnel. The thermo-mechanical effects due to the heat generation in the spent fuel were also included in the analyses. Generic material parameter values for the concrete were used. The following items were studied: - Stresses and displacements in the plug. - Shear stresses and shear displacements in the rock-concrete interface. - Stress additions in the rock due to the loads. The sensitivity of the results to changes of constitutive models, to changes of the plug geometry and to pore water pressure in the rock-concrete interface was examined. The results indicate that the displacements in the plug will be within reasonable ranges but the stresses may locally be high enough that they exceed acceptable levels. However, they can be reduced by choice of advantageous plug geometry and by having a good rock-concrete bond. The results also show that the stress additions in the rock due to the thermal load may yield stresses that locally exceed the spalling strength of the rock. At most locations, however, the rock stresses will amount at lower levels. It was concluded that, with choice of an appropriate design, the tapered plug seems to be an applicable concept for plugging of deposition tunnels. It was also concluded that further studies of the tapered plug concept should use material properties parameter values for low-pH concrete. Further, they should also

  17. Turbulent mixing and wave radiation in non-Boussinesq internal bores

    DEFF Research Database (Denmark)

    Borden, Zac; Koblitz, Tilman; Meiburg, Eckart

    2012-01-01

    Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...

  18. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  19. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  20. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not

  1. Programme for repository host rock characterisation in the ONKALO (ReRoC)

    International Nuclear Information System (INIS)

    Aalto, P.; Aaltonen, I.; Kemppainen, K.

    2009-04-01

    The excavation of the ONKALO is now entering the deep bedrock regime, where the ambient rock conditions are representative of those to be found in the vicinity of future deposition tunnels and deposition holes. It is proposed to study the properties of the rock under these conditions using specially-excavated rock rooms, investigation niches or stations and characterisation holes. This report provides an overview of these plans, which are designed to obtain the relevant site-specific knowledge. This report summarises the outstanding issues of the site modelling that are driving the deep rock investigations. It also lists the main long-term safety needs from the site characterisation and presents a short description of the data needs raised by the RSC (Rock Suitability Criteria) programme. The report presents the general characterisation programme of the ONKALO access tunnel. It includes geological mapping in the tunnel and the shafts and investigations in pilot, probe and characterisation hole. It also presents a programme for the pre-grouting hole studies in the shafts. The main aim of the report is to present the experimental studies that are to be carried out in the niches and studies that will be carried out below hydrogeological zone HZ20 at different locations in the tunnel, in order to obtain information on rock properties that are comparable to the rock at the disposal depth. This document provides a detailed discussion of the following experiments: (1) the sulphate reduction experiment at a depth of between 300-350 m to investigate the production, presence and effects of sulphide in the groundwater; (2) the hydrogeological interference experiment at tunnel chainage 3620 or 3748 for a detailed characterisation of connected fracture networks in the rock mass, representative of those in the near field of the deposition holes; (3) the rock matrix diffusion experiment(s) below chainage 4000 to determine the bedrock's essential retention properties for

  2. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  3. Removing well bore liquid blockage by gas injection

    International Nuclear Information System (INIS)

    Ahmed, Tarek

    2000-01-01

    Gas condensate reservoirs have long presented production problems when the pressure around the well bore drops below the dew point pressure. The formation of the condensate around the well bore can be thought of as an additional 'skin' that causes a reduction in the gas flow rates. Many processes have been used successfully to prevent or reduce the formation of liquids within the entire reservoir, such as pressure maintenance schemes and gas cycling processes. The pressure maintenance scheme is designed to keep the reservoir pressure at or above the dew point pressure while the gas cycling process is intended to reduce the liquid dropout by vaporization.Often times the pressure in the near-well bore region of the reservoir falls below the dew point pressure, while the pressure in the reservoir remains higher than the dew point pressure. As the near-well bore pressure drops below the dew point pressure, retrograde condensation occurs leading to the formation and then the mobilization of the condensate phase towards the producing wells. The liquid phase accumulates in the near Well bore region, forming a ring, which progressively reduces the gas deliverability. This study is designed to provide an insight into the mechanism of gas injection process in reducing gas-well productivity losses due to condensate blocking in the near well bore region. The study also evaluates the effectiveness of lean gas, N 2 , and CO 2 Huff 'n' Puff injection technique in removing the liquid dropout accumulation in and around the well bore. Results of the study show the importance of selecting the optimum injection volume and pressure. (author)

  4. Results of monitoring at Olkiluoto in 2012. Rock mechanics

    International Nuclear Information System (INIS)

    Johansson, E.; Siren, T.

    2014-01-01

    The rock mechanics monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The rock mechanics monitoring programme 2012 consisted of seismic measurements, GPS measurements, surface levelling measurements and temperature measurements at Olkiluoto and vicinity and displacement measurements, temperature measurements and visual tunnel observations carried out in the ONKALO. The Posiva's microseismic network consists of 17 seismic stations and 22 triaxial sensors. Six stations are in the ONKALO. In spite of few breaks the network operated continuously and well during 2012. The number of located events was much smaller in 2012 than during the previous years due to the interruption of the excavation. Altogether 337 events were located in the Olkiluoto area of which about half (181) were explosions. Two excavation induced earthquakes were observed at -420 m level and were associated with a known tunnel crosscutting fracture. According to the seismic monitoring the rock mass has been stable in 2012. The local GPS network consists of 19 stations. The whole network was measured twice in 2012. Most of the inner network baselines showed very small motions as in the previous years: 80 % of change rates were smaller than 0.10 mm/a. Roughly one third of the change rates are statistically significant. One baseline was also measured using electronic distance measurements (EDM) and the results fitted well to the times series. The surface levelling network currently consists of 87 fixed measuring points. During 2012 only measuring loops VLJ, ONKALO and Olkiluoto Strait were measured. The results indicated that vertical deformations were small compared to 2011 results. The largest deformations around 0.6 mm upwards existed above the VLJ-repository. The displacement measurements in 2012 consisted of the extensometer measurements in the technical rooms of the ONKALO. Readings were taken continuously once a hour by a

  5. Influence of the mineral composition of clay rocks on the stability of oil wells

    International Nuclear Information System (INIS)

    Amorocho, P. R; Badillo, Juan

    2012-01-01

    In the oil companies, the operation of drilling well bore could be more expensive if the composition of the rocks is clay, the cost could increase between 10 and 15% from the starting budget. In order to decrease this problem, the oil industry has spent too much money for developing mechanisms that can provide better control and stability in clay formations during the drilling. The Society Petroleum Engineers (SPE) in some researches have published that the main chemical effects that are involved in the interaction of perforation fluids and the clay formation are: 1) chemical osmosis; and 2) hydration stresses, although, there are others like: Capillary effects, dehydration, differences in pressure and cationic exchange. These factors are not present generally in independent form. At Piedemonte Llanero the problem of the well bore stability represents a high spending of money for oil companies, caused in this region by chemical factors between fluid/rock and mechanical factors as resulted of the stresses in the area. Metil Blue Testing (MBT) and X-ray Diffraction (DR-X) were made in samples of clay; these were taken from cuts extracted of boreholes drilled in some places of the Colombian Llanos. It was found that these samples had a moderate content of reactive and low content of swell minerals.The samples main component was kaolinite, this mineral does not let the rock get swell, but it produces caving in the hole. However, it is necessary to do other tests to quantify the damages and evaluate the influence of there gime of the stress during the perforation of well bore.

  6. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  7. Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI.

    Science.gov (United States)

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-07-01

    This study aimed to compare the uniformity of fat suppression and image quality between liver acquisition with volume acceleration flex (LAVA-Flex) and LAVA on 60-cm conventional-bore and 70-cm wide-bore 3.0-T magnetic resonance imaging (MRI). The uniformity of fat suppression by LAVA-Flex and LAVA was assessed as the efficiency of suppression of superficial fat at the levels of the liver dome, porta, and renal hilum. Percentage standard deviation (%SD) was calculated using the following equation: %SD (%) = 100 × SD of the regions of interest (ROIs)/mean value of the signal intensity (SI) in the ROIs. Signal-to-noise ratio (SNR) and contrast ratio (CR) were calculated. In the LAVA sequence, the %SD in all slices on wide-bore 3.0-T MRI was significantly higher than that on conventional-bore 3.0-T MRI (P 3.0-T MRI.

  8. Excavation damage and disturbance in crystalline rock - results from experiments and analyses

    International Nuclear Information System (INIS)

    Baeckblom, Goeran

    2008-11-01

    calculations using the PHREEQC code showed that fracture precipitation is unlikely to clog the water-conducting fractures within a 10-year period, even when considering construction material such as cement and nitrogen compounds. For most of the modelling cases, the estimated decrease in hydraulic conductivity over a period of ten years is less than 2% due to mineral precipitation. It was further concluded that it is more likely for fractures to clog (self-heal) than become open as a result of fracture mineral dissolution. With respect to the microbial evolution it was concluded that the potential for microbial iron hydroxide production will be large in all groundwater with ferrous iron. The potential for microbial calcite formation production will be large in all groundwater with high concentrations of Dissolved Organic Carbon (DOC) and methane, irrespective of oxygen, Eh (redox) or pH. The kinetics of the microbial evolution is not yet known, and microbes may then play a role in fracture clogging which could possibly be the factor that contributes to lower groundwater inflow to underground facilities with time, as shown for many facilities. The compilation of results from the relevant tests at underground laboratories in Canada, Japan, Sweden and Switzerland was focussed on the extent of the damage and its dependency on excavation methods and measurements of the hydraulic properties. The most important factor controlling the excavation damage is the choice of excavation method. Use of mechanical excavation may create irreversible damage less than 30 mm from the rock wall where increased micro-fracturing contributes to an increase in hydraulic conductivity. Several methods and sample scales have been used to characterise the damage zone. For a Tunnel Boring Machine -9 m/s over a distance of 1-2 mm from the tunnel periphery, 2x10 -11 m/s at a depth of 5 mm, and 10 -13 m/s at a distance of 30 mm from the tunnel wall. The virgin crystal matrix of the rock is in the range of 10

  9. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Müller, H.R.; Garitte, B.; Vogt, T.; and others

    2017-04-15

    Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the 'Full-Scale Emplacement' (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted 'granulated bentonite mixture' (GBM), the development and construction of the prototype 'backfilling machine' (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months

  10. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  11. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A new design concept of fully grouted rock bolts in underground construction

    Science.gov (United States)

    Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke

    2018-04-01

    The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.

  13. 高地应力软岩隧道合理支护方案研究%STUDY OF REASONABLE SUPPORT SCHEME FOR SOFT ROCK TUNNEL IN HIGH GEOSTRESS ZONE

    Institute of Scientific and Technical Information of China (English)

    田洪铭; 陈卫忠; 谭贤君; 王辉; 田田

    2011-01-01

    Based on the evident rheology characteristic of soft rock tunnel in high geostress zone, a new support scheme which adds U-steels compressible stent and foam concretes filling layer to the spray anchor network support is proposed. The long-term stability of Xiakou soft rock tunnel with high geostress in Yichang-Badong expressway is studied by using the new U-steel connector mechanical model and contact model between U-steel and surrounding rock in two support schemes. The results show that: (1) The relationship between the compression and friction resistance for U-steel support is well reflected by the built model consisting of U-steel connector mechanical model and contact model between U-steel and surrounding rock. (2) The combined support of U-steels compressible stent and foam concretes filling layer can absorb rheological deformation of surrounding rocks, which reduces the deformation pressure of the secondary lining; and also, it can provide stable supporting force, which is helpful to keep long-term stability for soft rock tunnel with high geostress.%基于高地应力软岩隧道明显流变效应的特点,提出在喷锚网支护的基础上增设U型钢可压缩支架和泡沫混凝土填充层的支护方案.利用建立的U型钢连接件力学模型和围岩与支架接触模型,分析2种支护方案下,宜昌-巴东(宜巴)高速公路峡口高地应力软岩隧道的长期稳定性.研究表明:(1) 建立的U型钢可压缩支架的连接件力学模型和围岩与支架之间的接触模型可以很好地反映支架缩动性与摩阻力之间的关系;(2) U型钢可压缩支架和泡沫混凝土填充层的联合支护既可以吸收围岩的流变变形,减小二次衬砌上的形变压力,又可以提供稳定的支护力,有利于高地应力软岩隧道的长期稳定.

  14. Field Monitoring of Deformations and Internal Forces of Surrounding Rocks and Lining Structures in the Construction of the Gangkou Double-Arched Tunnel—A Case Study

    Directory of Open Access Journals (Sweden)

    Qixiang Yan

    2017-02-01

    Full Text Available Double-arched tunnel is a special and complex underground structure which needs to be monitored carefully during construction. Taking the Gangkou tunnel as the engineering background, this paper presents a case study of field monitoring of a representative double-arched tunnel. Typical cross sections were chosen in each class of surrounding rock masses in the tunnel area and different types of sensors were embedded in designed locations, and the deformations and forces of both surrounding rocks and lining structures were monitored systematically. The dynamic evolution as well as the spatial distribution characteristics of the monitoring data including the internal displacements of surrounding rocks and the contact pressures between surrounding rocks and primary linings, the axial forces in rock bolts and the internal forces in both steel arches and secondary linings were analyzed. The monitoring and analysis results show that the deformations and forces of both surrounding rocks and lining structures are directly related to the construction procedures, geological conditions and locations in the double-arched tunnel. According to the results, some reasonable suggestions were provided for the improvement of the tunnel construction. This study will provide useful reference and guidance for the design, construction and monitoring of similar engineering projects in future.

  15. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  16. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  17. Rock mechanics stability at Olkiluoto, Haestholmen, Kivetty and Romuvaara

    International Nuclear Information System (INIS)

    Johansson, E.; Rautakorpi, J.

    2000-02-01

    Posiva Oy is studying the suitability of the Finnish bedrock for the geological disposal of spent nuclear fuel at four sites, Olkiluoto in Eurajoki, Haestholmen in Loviisa, Kivetty in Aeaenekoski and Romuvaara in Kuhmo. To enable the rock properties to be specified in great detail, the site-selection research programme has included rock mechanics investigations such as the measurement of in-situ rock stress and laboratory tests on rock samples. This report presents the results of the rock mechanics analyses performed on the main rock types at the Olkiluoto, Romuvaara, Kivetty and Haestholmen sites. The objective of this study was to assess the near-field stability of the final disposal tunnels and deposition holes at each of the investigation sites. Two empirical methods and a numerical method based on three-dimensional element code (3DEC) were used the analysis tools. A statistical approach was used to select the necessary input data and to specify the cases being analysed. The stability of the KBS-3 and MLH (Medium Long Hole) repository concepts during the pre-closure and post-closure phases was analysed. The repository depths investigated lay between 300 m and 700 m. The empirical methods are based on the study of the ratios between rock strength and the in-situ stress which could result in possible fracturing of the rock mass. Interpretation of the numerical analyses is based on the assumption of an elastic distribution of stress around the disposal tunnel and the deposition hole and the brittle rock strength criterion. The results obtained in this study indicate that in general, the rock mechanics conditions during the pre-closure and post-closure phases at each of the investigated sites remain good and stable between the studied depth levels, especially when the deposition rooms are oriented in a direction parallel to the major in-situ stress. If the disposal tunnels are orientated in a direction perpendicular to the major in-situ stress, the resultant

  18. In situ determination of the dynamic properties of thinly-layered rock to evaluate rock-structure interaction at a nuclear power plant site

    International Nuclear Information System (INIS)

    Johnson, William J.; Rizzo, Paul C.

    1988-01-01

    The presence of layers of weak sedimentary rock in a column of otherwise competent rock can significantly affect the seismic response of nuclear power plant structures due to rock-structure interaction effects. The determination of the dynamic properties of thinly-layered rock is, however, difficult. When borings are placed close enough to allow for a characterization of refracted waves, other potential problems such as the identification of clear P- and S-wave arrivals, extremely short duration of records, near-field waves, instrumental stability, and overall record resolution become magnified. Other problems such as cultural noise and signal amplitude can become critical when high resolution is required. Conventional storage oscilloscopes and seismographs are inadequate under these conditions, but modern digital recording systems with the application of stringent calibration and recording procedures can yield successful results. A case history of a high-precision cross-hole survey to a depth of 150 meters in thinly-bedded sedimentary rock at a nuclear power plant site is presented in order to illustrate the systems and procedures necessary to obtain successful results under adverse conditions. (author)

  19. Application of large strain analysis for estimation of behavior and stability of rock mass

    International Nuclear Information System (INIS)

    Nakagawa, Mitsuo; Jiang, Yujing; Esaki, Tetsuro.

    1997-01-01

    It is difficult to simulate a large deformation phenomena with plastic flow after failure by using a general numerical approach, such as the FEM (finite element method), based on the infinitesimal strain theory. In order to investigate the behavior of tunnels excavated in soft rock mass, a new simulation technique which can represent large strain accurately is desired, and the code FLAC (Fast Lagragian Analysis of Continua) adopted in this study is being thought a best mean for this propose. In this paper, the basic principles and the application of the large strain analysis method to stability analysis and prediction of the deformational behavior of tunnels in soft rock are presented. First, the features of the large strain theory and some different points from the infinitesimal strain theory are made up. Next, as the examples, the reproduction of uniaxial compression test for soft rock material and the stability analysis of tunnel in soft rock are tried so as to determine the capability of presenting the large deformational behavior. (author)

  20. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  1. Buffer mass test - Rock drilling and civil engineering

    International Nuclear Information System (INIS)

    Pusch, R.

    1982-09-01

    The buffer mass test (BMT) is being run in the former 'ventilation drift' in which a number of rock investigations were previously conducted. A number of vertical pilot holes were drilled from the tunnel floor to get information of the water inflow in possible heater hole position. The final decision of the location of the heater holes was then made, the main principle being that much water should be available in each hole with the possible exception of one of the holes. Thereafter, the diameter 0.76 m heater holes were drilled to a depth of 3-3.3 m. Additional holes were then drilled for rock anchoring of the lids of the four outer heater holes, for the rock mechanical investigation, as well as for a number of water pressure gauges. The inner, about 12 m long part of the tunnel, was separated from the outer by bulwark. The purpose of this construction was to confine a backfill, the requirements of the bulwark being to withstand the swelling pressure as well as the water pressure. Outside the bulwark an approximately 1.5-1.7 m thick concrete slab was cast on the tunnel floor, extending about 24.7 m from the bulwark. Boxing-outs with the same height as the slab and with the horizontal dimensions 1.8 x 1.8 m, were made and rock-anchored concrete lids were cast on top of them after backfilling. The slab which thus represents 'rock', also forms a basal support of the bulwark. The lids permits access to the backfill as well as to the underlying, highly compacted bentonite for rapid direct determination of the water distributin at the intended successive test stops. The construction of the slab and lids will be described in this report. (Author)

  2. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  3. Characterization of the influence of building a road on the stability of the tunnel lining in a Banska Bystrica railway tunnel

    Directory of Open Access Journals (Sweden)

    Vavrek Pavol

    2001-06-01

    Full Text Available This paper deals with solving the problem of tunnel lining stability in a railway tunnel. The road cut was made into the overburden of the tunnel. I investigated the effect of the road cut on the stability of tunnel lining. The FLAC3D mathematical modelling technique was used for this purpose. The solution consist of: - - - - - - - - - - - -modelling the initial situation before building the intervention,Determing the internal characteristics of the tunnel lining in its original state,modelling the situation after making the road cut,Determing the internal characteristics of the tunnel lining after the building intervention,Comparison of the internal characteristics of the tunnel lining before and after the building intervention.In the model, I used these general geotechnical properties of the rock environment and the tunnel lining:Material Youngus modulus [MPa] Poissons RatioClay 8 0,42Weakly wheathered calcite 3 000 0,25Hard wheathered calcite 600 0,30Fill 300 0,25Lining 20 000 0,20The arbitration of the tunnel lining stability was executed on the basis of the Mohr – Coulomb limit of the state. Building the road cut does not lead to loss of stability in the tunnel a at Station 1.225 00 or at Station 1.300 00.

  4. Deep fracturation of granitic rock mass

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.; Bonijoly, D.; Dutartre, P.; Feybesse, J.L.; Gros, Y.; Landry, J.; Martin, P.

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater [fr

  5. The Mont Terri rock laboratory: International research in the Opalinus Clay

    International Nuclear Information System (INIS)

    Bossart, P.

    2015-01-01

    This article reports on a visit made to the rock laboratory in Mont Terri, Switzerland, where research is being done concerning rock materials that can possibly be used for the implementation of repositories for nuclear wastes. Emphasis is placed on the project’s organisation, rock geology and on-going experiments. International organisations also involved in research on nuclear waste repositories are listed. The research facilities in tunnels built in Opalinus Clay at the Mont Terri site are described. The geology of Opalinus Clay and the structures found in the research tunnels are discussed, as is the hydro-geological setting. The research programme and various institutions involved are listed and experiments carried out are noted. The facilities are now also being used for research on topics related to carbon sequestration

  6. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    Science.gov (United States)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  7. Elastic-Plastic Numerical Analysis of Tunnel Stability Based on the Closest Point Projection Method Considering the Effect of Water Pressure

    Directory of Open Access Journals (Sweden)

    Zhan-ping Song

    2016-01-01

    Full Text Available To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM. Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.

  8. Vulnerability Analysis of Soft Caving Tunnel Support System and Surrounding Rock Optimal Control Technology Research

    Directory of Open Access Journals (Sweden)

    Ming Ji

    2014-01-01

    Full Text Available The vulnerability assessment model, composed by 11 vulnerability factors, is established with the introduction of the concept of “vulnerability” into the assessment of tunnel support system. Analytic hierarchy process is utilized to divide these 11 factors into human attributes and natural attributes, and define the weight of these factors for the model. The “vulnerability” applied io the assessment of the tunnel support system model is reached. The vulnerability assessment model was used for evaluating and modifying the haulage tunnel #3207 of Bo-fang mine panel #2. The results decreased the vulnerability of the tunnel support system and demonstrated acceptable effects. Furthermore, the results show that the impact of human attributes on tunnel support systems is dramatic under the condition that natural attributes are permanent, and the “vulnerability” is exactly a notable factor to manifest the transformation during this process. The results also indicate that optimizing human attributes can attenuate vulnerability in tunnel support systems. As a result, enhancement of stability of tunnel support systems can be achieved.

  9. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    In connection with the project ''Environmental and community useful tunnels'' the Norwegian Geologic Survey (NGU) has made geologic and geophysical investigations along parts of the tunnel at the Grualia in the Lunner county. The purpose of the geologic studies was to map and investigate weakness zones in the rock foundations. The geophysical studies aimed at testing techniques that was in little use in preliminary studies for tunnel operations. The methods used have been optical inspection of drill holes, measurements of temperature and conductivity in the water and the measuring of the natural gamma radiation in the drill holes. The resistivity in the drill holes is also determined and test pumping with flow measurements is carried out in order to calculate the well water influx capacity. These methods may contribute to information about the rock condition (cracking, water influx). Previously the NGU has made 2D resistivity measurements at the ground in the tunnel in order to map the weakness zones. The results from the measurements in 6 wells show large variations in the rock qualities. The wells are drilled towards indicated weakness zones. Open water conducting cracks and sections with largely cracked rocks are detected in or in the proximity of the tunnel route. The weakness zone between the hornfels and the syenite west of the Langvatnet is largely cracked, has a large water conducting capacity and there are some unstable masses. Further east several open, water- conducting cracks are detected in the syenite. Furthest to the east in the route cracked and unstable rocks are found. Several of the holes are blocked by ravines which confirm the poor rock quality. In the particular areas problems are to be expected during the operation with respect to water influx and stability. Methodically the drill hole studies have shown great value for the follow up of the 2D resistivity measurements on the ground. The indicated weakness zones through the 2D have been

  10. Excavation Technology for Hard Rock - Problems and Prospects

    International Nuclear Information System (INIS)

    Gillani, S.T.A.; Butt, N.

    2009-01-01

    Civil engineering projects have greatly benefited from the mechanical excavation of hard rock technology. Mining industry, on the other hand, is still searching for major breakthroughs to mechanize and then automate the winning of ore and drivage of access tunnels in its metalliferous sector. The aim of this study is to extend the scope of drag bits for road headers in hard rock cutting. Various factors that can impose limitations on the potential applications of drag bits in hard rock mining are investigated and discussed along with alternative technology options. (author)

  11. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    International Nuclear Information System (INIS)

    Holmen, J.G.

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs

  12. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, J.G. [Uppsala Univ. (Sweden). Inst. of Earth Sciences]|[Golder Associates AB (Sweden)

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs.

  13. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    Science.gov (United States)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  14. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    OpenAIRE

    Yan, Xi; Jun, Li; Gonghui, Liu; Xueli, Guo

    2017-01-01

    Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining a...

  15. Method of degassifying a massive of rock

    Energy Technology Data Exchange (ETDEWEB)

    Levin, M M; Krivosheev, V O; Preobrazhenskaia, E I; Talapkerov, A Sh; Taushkin, G T

    1979-05-30

    This invention concerns the mining industry, chiefly the coal industry, and can be used for the degasification of coal layers and interfering rock. The method of preliminary extraction of gas with underground development of burning minerals, including the pumping of gas through a collector, carried in the plane of the degasifying layer, discharged from rock pressure by means of extracting the lower lying layer, is known. However, the given method does not make it possible to degasify the interfering rock. Another method, consisting of the fact that from the mining development in the lateral rock, chambers are made, from which a group of wells are bored, and the latter are united with the gas removing system, is well known. This method has the inadequacy that the well of each chamber is connected to the gas removing system of the pipelines, and this leads to an increase in the price of the method. A new system is presented for the degasification of the massive of rock which is presented in an illustration...... The advantage of the suggested method consists of the fact that material outlays are reduced for the unification of each chamber with the gas removing pipeline, and besides this, the wells, connecting the chambers are drains for the surrounding rock, which increases the effectiveness of the degasification.

  16. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  17. Very high precision survey equipment for great distances Surface surveys used to map out the surface network and the tunnelling machines then gyroscopically steered underground.

    CERN Document Server

    1983-01-01

    At the beginning of the 1980s, CERN embarked on the enormous Large Electron-Positron Collider construction project. The excavation of the 27-kilometre LEP tunnel was a huge technical challenge. The tunnel-boring machines excavated the tunnel in 3.3 km octants and had to be operated with extraordinary precision to ensure that they reached their destination - the bottom of the next vertical shaft - precisely on target. The tunnel was excavated before high-performance instruments were developed for the construction of the Channel Tunnel. As no firms were willing to perform the surveying work, CERN's own surveyors, with experience from the SPS behind them, took up the challenge. At the surface, the surveyors established the world's most accurate geodetic network, performing measurements to an accuracy of 10-7, or 1mm per 10 km, using the Terrameter (see photo). The excavation of the tunnel was completed in 1988 and the finished tunnel's trajectory was found to diverge from the theoretical value specified by the p...

  18. Excavation of the SPS tunnel (view of a section prior to lining by a concrete shell)

    CERN Multimedia

    1974-01-01

    The SPS ring (6911 m in circumference) is housed at a depth of 40 m (average) under the surface. The tunnel with an overall cross-sectional diameter of 4.8 m was drilled by big tunnelling machines (see 7406022X, 7406027X) into the molasse rock present in the Geneva basin. After the passage of the tunnelling machine the tunnel walls were lined with a concrete layer of about 30cm thickness.

  19. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  20. Investigation on vibrational evaluation criteria for small-bore pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo; Kato, Minoru; Torigoe, Yuichi

    2013-01-01

    The well-known organization such as API and SwRI in USA developed criteria for piping vibrational evaluation. These criteria are targeted for main pipes, but not branch pipes with small bore. In this study, applicability of criteria of API and SwRI to branch pipes was investigated. Vibration test using piping system with small bore branch pipe was conducted and amplitudes of vibrational stress and displacement were measured for various exciting force. In comparison of the measurements with the two criteria, though the criteria of API and SwRI were applicable to small bore branch pipe, they made too conservative evaluation. (author)

  1. Results of pressurized-slot measurements in the G-Tunnel underground facility

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Mann, K.L.; Dodds, D.J.

    1989-01-01

    A rock-mechanics field-testing program is underway at Sandia National Laboratories (SNL) as part of the YMP. SNL has the responsibility for assessing the repository design and performance as well as characterizing the geomechanical behavior of the rock. SNL has conducted field experiments in G-Tunnel in Rainier Mesa at the NTS, where tuffs similar to those at Yucca Mountain, the potential repository site, are found. Later experiments are planned as part of the YMP Exploratory Shaft investigations at Yucca Mountain. Major geomechanical factors in repository developments are determinations of the stress state and the deformability of the rock mass (described by the modulus of deformation). One feature of SNL's rock-mechanics program was the development of a testing program for cutting thin slots in a jointed welded tuff and utilizing flatjacks for pressurizing these thin-slots on a relatively, large scale. Objectives in the pressurized-slot testing in G-Tunnel have been to apply and possibly improve methods for (1) utilizing the flatjack cancellation (FC) method for measuring stresses normal to the slot and (2) measuring the modulus of deformation of the jointed rock surrounding the slot. This paper discusses the results of field measurements in and around a single slot and evaluates potential applications and limitations. 10 refs., 1 fig., 4 tabs

  2. In situ stresses in rock masses: methodology for its study in tunnel projects in Spain; Metodologia de estudio y obtencion de las tensiones in situ en los proyectos de obra subterranea realizados en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Madirolas Perez, G.; Perucho Martinez, A.

    2014-07-01

    In situ stress is one of the main factors to be taken into account in the design of tunnels, as it can cause inadmissible stresses and strains leading to high deviations in the budgets. For that reason, the stress state is directly introduced into the numerical models used for the design of tunnels. In Spain, although several tunnels have been carried out with an important overburden in tectonically relevant zones, a quantitative determination of the stresses has not been usually included in civil work projects. Therefore, it is considered necessary to implement a routine procedure of study of civil work projects involving tunnels excavated in rock, and a new detailed methodology is proposed. The challenge is that project managers, who face works in which stresses may play a determinant role, may have a practical reference enabling them to optimize available resources and to include the real stress information in the design of underground works. (Author)

  3. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  4. Analysis of Driven Pile Capacity within Pre-Bored Soil : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    Pre-boring is a method used to facilitate large displacement pile driving in hard/dense soils (see Figure 1). By pre-boring a pilot hole, the end bearing and side friction within the pre-bored zone are reduced, thus aiding pile driving installation. ...

  5. Analysis and management of risks experienced in tunnel construction

    Directory of Open Access Journals (Sweden)

    Cagatay Pamukcu

    2015-12-01

    Full Text Available In this study, first of all, the definitions of "risk", "risk analysis", "risk assessment" and "risk management" were made to avoid any confusions about these terms and significance of risk analysis and management in engineering projects was emphasized. Then, both qualitative and quantitative risk analysis techniques were mentioned and within the scope of the study, Event Tree Analysis method was selected in order to analyze the risks regarding TBM (Tunnel Boring Machine operations in tunnel construction. After all hazards that would be encountered during tunnel construction by TBM method had been investigated, those hazards were undergoing a Preliminary Hazard Analysis to sort out and prioritize the risks with high scores. When the risk scores were taken into consideration, it was seen that the hazards with high risk scores could be classified into 4 groups which are excavation + support induced accidents, accidents stemming from geologic conditions, auxiliary works, and project contract. According to these four classified groups of initiating events, Event Tree Analysis was conducted by taking into care 4 countermeasures apart from each other. Finally, the quantitative and qualitative consequences of Event Tree Analyses, which were undertaken for all initiating events, were investigated and interpreted together by making comparisons and referring to previous studies.

  6. A first look at roadheader construction and estimating techniques for site characterization at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Neil, D.M.; Taylor, D.L.

    1991-01-01

    The Yucca Mountain site characterization program will be based on mechanical excavation techniques for the mined repository construction and development. Tunnel Boring Machines (TBM's), Mobile Miners (MM), Raiseborers (RB), Blind Hole Shaft Boring Machines (BHSB), and Roadheaders (RH) have been selected as the mechanical excavation machines most suited to mine the densely welded and non-welded tuffs of the Topopah Springs and Calico Hills members. Heavy duty RH in the 70 to 100 ton class with 300 Kw cutter motors have been evaluated and formulas developed to predict machine performance based on the rock physical properties and the results of Linear Cutting Machine (LCM) tests done at the Colorado School of Mines (CSM) for Sandia National Labs. (SNL)

  7. ONKALO 3D tunnel seismic investigations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    Cosma, C.; Enescu, N.; Balu, L.; Jacome, M.

    2011-02-01

    POSIVA Oy conducts bedrock investigations at the spent nuclear fuel final disposal site at Olkiluoto, in western Finland. The excavation of the access tunnel to the repository hosts the ONKALO underground rock characterization facility. The investigations carried out at ONKALO focus on the bedrock and groundwater conditions prevailing on the final disposal site and how construction work affects them. Tunnel seismic investigations were carried out in July 2009, as an extension of similar work performed in December 2007. The main objective of the tunnel seismic investigations have been to demonstrate the possibility to detect, locate and image cost effectively steeply and gently dipping fractures, at the side and/or below the tunnel and to characterize the volume of rock surrounding a 250 m long segment of the ONKALO tunnel. The survey was conducted at a depth of 350 m, over a 240 m long line of 3-components receivers, spaced at 3m intervals. Seismic signals were produced along two lines, on the tunnel wall and floor, with source points spaced at 1m. A timedistributed swept-impact, the Vibsist-250 hydraulic source, was used. The source was hosted on a mini excavator. Receiver holes approximately 0.4 m deep were drilled prior to the survey, horizontally into the tunnel wall. One of the procedures used for data stacking and migration is based on a proprietary method combining the DMO (Dip Move Out) correction and an expression of the Radon Transform. Horizontal and vertical migrated profiles were computed both for the P wave and S wave reflected wave fields. A true 3D migration technique (Image Point migration) was used to create 3D migrated sections oriented to incremental azimuths around the tunnel, the result being a cylindrical imaging volume. A general conclusion is that seismic surveys along the tunnel can economically be used for rock mass characterization. High quality results can be obtained by operations in tunnel working conditions, provided that due

  8. In situ stress determination by the overcoring of large surface strain gauge rosettes on the walls of a raise-bored shaft at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Chandler, N.A.

    1991-08-01

    AECL Research is conducting a series of experiments to examine the influence of scale on measured in situ stresses in granite rock. The ventilation raise rosette overcoring experiment is one such test. This experiment, modelled on a previous test conducted in Australia, consisted of overcoring four 120-mm strain gauge rosettes glued to the surface of a 1.8-m-diameter bored raise. The in situ stresses were calculated from the measured strains using the equations for stresses around a cylindrical excavation in an elastic material. The possibility of excavation disturbance around the ventilation raise was investigated using overcore stress measurements, elastic modulus tests on retrieved core, and visual inspection of thin sections obtained from removed core. The effect of a stress-dependent elastic modulus (referred to as non-linear elastic behaviour) is also addressed. Results from the ventilation raise rosette overcoring experiment suggest that rosette overcoring in a bored raise is an acceptable stress-measurement method. The effects of scale and excavation damage on the stress measurements were not considered to be significant; however, if the elastic modulus of the rock is strongly stress-dependent, non-linear elastic behaviour may have a small effect on the measured stresses

  9. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    International Nuclear Information System (INIS)

    Chandler, N.A.; Cournut, A.; Dixon, D.

    2002-01-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties of

  10. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, N A; Cournut, A; Dixon, D [and others

    2002-07-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties of

  11. Lep vertical tunnel movements - lessons for future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, R [CERN-Conseil Europeen pour la recherche nucleaire, Clic-Study Group and the Survey Group, Geneve (Switzerland)

    1999-07-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  12. Lep vertical tunnel movements - lessons for future colliders

    International Nuclear Information System (INIS)

    Pitthan, R.

    1999-01-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  13. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  14. Simulation of hydraulic disturbances caused by the underground rock characterisation facility in Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Loefman, J.; Ferenc, M.

    2004-01-01

    Spent fuel from the Finnish nuclear power plants will be disposed of in a repository to be excavated in crystalline bedrock at a depth of 400-700 metres in Olkiluoto. The extensive site investigations carried out since the early 1980's will next focus on the construction of an underground rock characterisation facility (ONKALO) in 2004-2010. The open tunnel system will constitute a major hydraulic disturbance for the site's groundwater conditions for hundreds of years. Especially, inflow of groundwater into the tunnels results in a drawdown of groundwater table and upcoming of deep saline groundwater, which the present study aimed to assess by means of a 3D finite element simulation. The modelled bedrock volume, which horizontally covered the whole Olkiluoto island, was conceptually divided into hydraulic units, planar fracture zones and sparsely fractured rock between the zones, which were both separately treated as porous media. The geometry of the fracture zones was based on the geological bedrock model. Simulations showed that without engineering measures (e.g. grouting) taken to limit inflow of groundwater into the open tunnels, the hydraulic disturbances could be drastic. The tunnels draw groundwater from all directions in the bedrock. A major part of inflow comes from the well-conductive subhorizontal fracture zones intersected by the access tunnel and the shaft. The simulations show that the resulting drawdown of groundwater table may be from tens to hundreds of metres and the depressed area may extend over the area of the island. The results also indicate that the salinity of groundwater is gradually rising around and below the tunnel system, and locally concentration (TDS) may rise rather high in the vicinity of the tunnels. However, the disturbances can significantly be reduced by the grouting of rock. (orig.)

  15. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  16. Hydrogeological impact on Gran Sasso tunnels; Impatto idrogeologico delle gallerie autostradali del Gran Sasso

    Energy Technology Data Exchange (ETDEWEB)

    Massoli Novelli, R. [Societa' Italiana di Geologia Ambientale, Rome (Italy); Petitta, M. [Rome Univ., Rome (Italy). Dipt. Scienze della Terra

    2001-07-01

    In 1970-1980 two highway tunnels, 10.150 km long, were bored in the Gran Sasso mountain, at an elevation of 900 m. a.s.l. the tunnels have a rectilinear axis trending SW-NE and they pass about 2 km SE of Corno Grande (2912 m.), the highest peak in the entire Apennines chain. Both tunnels intercepted the regional aquifer in the central part of the massif, with a maximum discharge, during the first year of boring, of about 3m{sup 3}/s. Actually the discharge from the tunnels is about 1,2 m{sup 3}/s on the northern side and about 0,5 m{sup 3}/s on the southern one. Both discharges are mainly used to provide neighbouring towns with drinking water. In 1994 it was begun monitoring monthly the southern springs. The Vera spring data (1994-1996) show a very steady regime and a mean discharge of about 1m{sup 3}/s, considerably less than the pre-tunnels mean discharge value (1,8 m{sup 3}/s). On the contrary, the data about the springs located at an inferior elevation (Tirino Valley) show that tunnels produced on lower springs a minor impact. The impact of rainfall diminishing during recent years is considered. About the third tunnel project to serve the INFN Gran Sasso Laboratory, it must be considered that the new tunnel will be excavated in a dried zone, up the two existent tunnels. Moreover it is necessary to avoid the actual, very dangerous access to the INFN Lab inside one of the highway tunnels. [Italian] Il massiccio del Gran Sasso (Abruzzo) occupa un'area di circa 800 kmq e presenta con il Corno Grande un'altitudine massima di m. 2912. La necessita' di collegare Roma e il versante tirrenico dell'Appennino con il versante Adriatico (Teramo) e' stato assicurato dalla strada statale N. 80 che dall'Aquila conduceva a Teramo, attraverso una serie di dorsali e di vette che descrivono un ampio arco di circa 40 km, in direzine E-W e poi N-S. La strada era soggetta a imponenti nevicate e gelate. Una soluzione poteva essere rappresentata da un

  17. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    International Nuclear Information System (INIS)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng; Berglund, Johan; Johansson, Malin; Mas Ivars, Diego; Olsson, Mats

    2009-05-01

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  18. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng (AaF - Berg och Maetteknik, Stockholm (Sweden)); Berglund, Johan (Vattenfall Power Consultant, Stockholm (Sweden)); Johansson, Malin; Mas Ivars, Diego (Itasca Geomekanik AB, Solna (Sweden)); Olsson, Mats (SweBefo, Stockholm (Sweden))

    2009-07-15

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  19. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  20. Aespoe Hard Rock Laboratory. Annual Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below.

  1. Aespoe hard rock laboratory. Annual report 2010

    International Nuclear Information System (INIS)

    2011-02-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  2. Aespoe Hard Rock Laboratory. Annual Report 2011

    International Nuclear Information System (INIS)

    2012-03-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below

  3. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  4. Estimation of strong motions on free rock surface. Identification of soil structures and strong motions on free rock surface in Kashiwazaki-Kariwa nuclear power plant during the 2007 Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro

    2009-01-01

    Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)

  5. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  6. A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock

    International Nuclear Information System (INIS)

    Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

    2006-01-01

    In heated tunnels such as those designated for emplacement of radioactive waste at Yucca Mountain, axial temperature gradients may cause natural convection processes that can significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells would provide an effective mechanism for axial vapor transport, driving moisture out of the formation away from the heated tunnel section into cool end sections (where no waste is emplaced). To study such processes, we have developed and applied an enhanced version of TOUGH2 (Pruess et al., 1999) adding a new module that solves for natural convection in open cavities. The new TOUGH2 simulator simultaneously handles (1) the flow and energy transport processes in the fractured rock; (2) the flow and energy transport processes in the cavity; and (3) the heat and mass exchange at the rock-cavity interface. The new module is applied to simulate the future thermal-hydrological (TH) conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages

  7. Numerical Evaluation on Dynamic Response of Existing Underlying Tunnel Induced by Blasting Excavation of a Subway Tunnel

    Directory of Open Access Journals (Sweden)

    Jixue Zhou

    2017-01-01

    Full Text Available In Southwest China, most regions are mountainous, where traditional drill-and-blast method is adopted to excavate relatively harder rocks. However, blasting would cause vibration to adjacent structures and might result in damage or even failure. This paper considers a case where subway tunnel is overlying an existing railway tunnel, while the excavation requires blasting method. Vibration and stress distribution are calculated via Dynamic Finite Element Method (DFEM for both full-face excavation and CD method. Result shows that vibration induced by CD method is only 28% of that caused by full-face blasting with same distance. Peak vibration is located on the lining facing the blasting source, while peak tensile stress is on the other side of the contour due to the reflection of stress wave on strata boundary. And peak value of tensile stress induced by full-face blasting is capable of causing lining failure; thus full-face blasting is not suggested within 40 m beyond the underlying tunnel axis. However, CD method has shown much advantage, since blasting within 25 m is also considered safe to the underlying tunnel. But when the blasting source is as near as 12 m within the underlying tunnel, the CD method is no longer safe.

  8. Case study of geostructural prospect of a tunnel by using geophysical methods; Butsuri tansa ni yoru tunnel chisan yosoku to jissai

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, H [Japan Railway Construction Public Corp., Tokyo (Japan); Kawakami, J [Taisei Construction Corp., Tokyo (Japan); Nagasue, I; Hiwatashi, S; Wakuno, M [Oyo Corp., Tokyo (Japan)

    1997-05-27

    A preliminary survey was carried out by combining elastic wave exploration (using a refraction method) and electrical exploration (using a resistivity imaging method) on a long tunnel planned in a granite distributed area. This paper describes a case of verifying geological condition in the area by using a trial survey well and horizontal boring. This tunnel goes through the Seburi mountainous area on the border of Fukuoka Prefecture and Saga Prefecture for a total distance of 12 km. The refraction method and the resistivity imaging method were selected from the necessity of identifying the weathering condition in natural ground, and distributions of fault crush zones and underground water in a section extending 560 m from the well entrance. As a result of comparing the natural ground condition interpreted from the geophysical survey results with the construction records, the fault was detected as a cracked or deformed section in the part where the resistivity value changes abruptly or where the resistivity is low. The tunnel natural ground classification showed a good correspondence with the elastic wave velocities. The largest flooding section showed a good agreement with the section where the resistivity changes suddenly to a lateral direction. Thus, the geological information interpreted from both surveys presented a good correspondence with the construction records, leading to a judgment that the prediction is possible. 3 refs., 4 figs., 5 tabs.

  9. Bore pile foundation tall buildings closed in the heritage building

    Science.gov (United States)

    Triastuti, Nusa Setiani

    2017-11-01

    Bore pile foundation for high building surroundings heritage building should be not damage. Construction proses must good, no necking, no mixed deep water, no sliding soil, nonporous concrete. Objective the execution of bore pile so that heritage buildings and neighboring buildings that are old do not experience cracks, damage and tilting. The survey methodology was observe the process of the implementation of the dominant silt, clay soil, in addition a limited space and to analyze the results of loading tests, investigations of soil and daily reports. Construction process determines the success of the structure bore pile in high building structure bearing, without damaging a heritage building. Attainment the hard soil depth, density concrete, observable clean reinforcement in the implementation. Monitoring the implementation of, among others, the face of the ground water little reduce in the area and outside the footprint of the building, no impact of vibration drilling equipment, watching the mud content on the water coming out at the time of drilling, concrete volume was monitored each 2 m bore depth of pile, The result researched heritage building was not damage. The test results bore pile axial, lateral analyzed the results have the appropriate force design required.

  10. Frictional sliding in layered rock: laboratory-scale experiments

    International Nuclear Information System (INIS)

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ''wearing-in'' effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs

  11. Optimal chest drain size: the rise of the small-bore pleural catheter.

    Science.gov (United States)

    Fysh, Edward T H; Smith, Nicola A; Lee, Y C Gary

    2010-12-01

    Drainage of the pleural space is not a modern concept, but the optimal size of chest drains to use remains debated. Conventional teaching advocates blunt dissection and large-bore tubes; but in recent years, small-bore catheters have gained popularity. In the absence of high-quality randomized data, this review summarizes the available literature on the choice of chest drains. The objective data supporting the use of large-bore tubes is scarce in most pleural diseases. Increasing evidence shows that small-bore catheters induce less pain and are of comparable efficacy to large-bore tubes, including in the management of pleural infection, malignant effusion, and pneumothoraces. The onus now is on those who favor large tubes to produce clinical data to justify the more invasive approach. © Thieme Medical Publishers.

  12. Neural network based inspection of voids and karst conduits in hydro-electric power station tunnels using GPR

    Science.gov (United States)

    Kilic, Gokhan; Eren, Levent

    2018-04-01

    This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.

  13. Ground penetrating radar measurements at the ONKALO research tunnel and eastern part of the Olkiluoto investigation area at July 2006

    International Nuclear Information System (INIS)

    Sipola, V.; Tarvainen, A.-M.

    2007-04-01

    Ground Penetrating Radar (GPR) measurements were carried out at ONKALO research site in summer 2006. Measurements included 400 metres of measurements inside ONKALO access tunnel and about 1800 metres of measurements on the ground, at the eastern parts of Olkiluoto investigation area. The purpose of the measurements done inside the access tunnel was to investigate, whether it would be possible to locate deformation structures or long fractures in the rock mass below the tunnel. The purpose of the measurements made on top of the ground was to investigate, whether it would be possible to locate glacio-isostatic faults from the soils. A secondary target was to try and locate the rock surface. The chosen part of ONKALO tunnel was measured using five different frequencies, which enabled comparing the results to each other. It also enabled getting a higher resolution picture of the top rock, than what would have been possible using only one low-frequency antenna. The on-the-ground measurements were measured using only one frequency. (orig.)

  14. Project JADE. Geo scientific studies

    International Nuclear Information System (INIS)

    Munier, R.; Follin, S.; Rhen, I.; Gustafson, Gunnar; Pusch, R.

    2001-08-01

    In the present report an evaluation of the geological impact on various deposition methods is presented. The studied methods are KBS-3 V (vertical deposition), KBS-3 H (horizontal deposition) and MLH (medium long holes).The investigation has been subdivided into three separate studies concerning rock mechanics, hydrogeology and structural geology. These are included as appendices. Various methods have been used for the analyses for example DFN-models (Discrete Fracture Networks), DFN, FEM (Finite Element Method), BEM (Boundary Element Method), DEM (Discrete Element Method) and BayMar (Bayesian-Markov). The prerequisites used for these investigations are based on earlier investigations of the TBM tunnel at the Aespoe Hard Rock Laboratory. As a consequence thereof, the results presented here are specific to the locale but some conclusions of general character still can be made. In short the results of the investigations can be concluded as follows: If the rock mass exhibits a hydraulic anisotropy, the level of acceptance is strongly correlated to the direction of the deposition tunnels (applies to MLH and KBS-3 H). Differences between the methods concerning mechanical stability have been identified. The final choice of method will depend on the possibility to place the deposition tunnels in a favorable orientation. However, engineering can solve the problems associated to instability in the tunnels. KBS-3 (bored deposition tunnels) is recommended for rock masses in which the stress field has a moderate variation in magnitude and orientation. KBS-3 V (drilled and blasted deposition tunnels) and MLH are considered more robust and therefore recommended for rock masses in which the stress field has a large variation in magnitude or orientation. The impact of the fracture array differs for the studied methods. The level of acceptance differs but the differences are considered to be of no practical importance. For the studied rock mass (Aespoe), KBS-3 is recommended. MLH

  15. Uncertainty and risk assessment of leakage in water tunnels - a case from Nepal Himalaya

    OpenAIRE

    Panthi, Krishna Kanta; Nilsen, Bjørn

    2008-01-01

    Safety and stability are the key issues in underground excavations. Making tunnels water tight plays an important role in this regards. Water leakage problems in unlined or shotcrete lined water tunnels are not new issues. In many occasions severe water inflow as well as leakage problems have been faced that not only reduced stability of the rock mass surrounding the tunnel, but also valuable water has been lost from it, causing safety risk as well as huge economic loss to the projects. I...

  16. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  17. Assessment of the potential for rock spalling in the technical rooms of the ONKALO

    International Nuclear Information System (INIS)

    Siren, T.; Martinelli, D.; Uotinen, L.

    2011-06-01

    It is important to be able to predict the rock spalling in the ONKALO while the excavation advances deeper. When stresses at the excavation boundary reach the rock mass spalling strength, a brittle failure occurs that is often called 'spalling'. The spalling phenomenon occurs as a strong compressive stress induces crack growth behind the excavated surface. Spalling is, expressly, an event that can create problems in the ONKALO, not so much for the overall stability of all of the excavations, but rather in particular areas that can cause unnecessary and unintended over-excavations and hazards. For rock engineering and layout design purposes, the knowledge of the predicted spalling in the excavation surface is crucial. Optimization of the design is mainly done by directing the tunnels parallel to the major principal stress direction. However, due to the complex forms and crossing tunnels, especially at the shaft access drift area, sophisticated methods are required in order to minimize spalling and to support the unavoidable spalling that occurs. The complex tunnels require three-dimensional analysis. The software used for the main calculation has been MIDAS/GTS, a geotechnical 3-D FEM that is able to calculate complex geometries rather easily. Most of the models have also been verified with Rocscience Examine3D, which returns the results with a high precision at boundary. The area to model is large, and due to the computational limits, it is divided into six blocks. This analysis, carried out step by step for each block, permitted to draw a map of the spalling depth prevision in the whole tunnel contract 5 (TU5) area. The dominating rock types in the area are migmatitic gneiss and pegmatitic granite. The strength of these rocks has been broadly tested with point load and uniaxial compressive strength tests. The test results show a deviation of the UCS as well as other parameters. Due to this large deviation, a Monte Carlo has been used as an auxiliary analysis

  18. Study on long-term behavior of weak rock

    International Nuclear Information System (INIS)

    Okubo, Seisuke

    2003-03-01

    Using the boring core obtained in the Horonobe region, the beta in triaxial compression stress state was acquired, and the examination was carried out on the effect of the confirming pressure on long-term deformation or stability of the sample rock. At first, triaxial compression tests were carried out. In the test, loading rate (strain rate) was changed several times to obtain viscoelastic properties of the sample rock. Multi-stage creep tests were also performed in triaxial compression stress. The parameter set of a constitutive equation of variable compliance type was obtained based on the testing results. In this study, a transparent triaxial cell recently developed by this author was used. The external cylinder of this vessel was made of the transparent acrylic resin. Therefore, gradual deformation of the sample under testing was easily and clearly observed. (author)

  19. Improvement of the center boring device for the irradiated fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Koji; Onozawa, Atsushi; Kimura, Yasuhiko; Sakuraba, Naotoshi; Shiina, Hidenori; Harada, Akito; Nakata, Masahito [Japan Atomic Energy Agency, Nuclear Science Research Inst., Tokai, Ibaraki (Japan)

    2012-03-15

    The power ramp tests performed at JMTR in Oarai R and D Center are objected to study the safety margin of the high burnup fuels. One of the important parameters measured during this test is the center temperature of the fuel pellet. For this measurement, a thermocouple is installed into the hole bored at the pellet center by the center boring device, which can fix the fuel pellet with the frozen CO{sub 2} gas during its boring process. At the Reactor Fuel Examination Facility (RFEF) in Tokai R and D Center, several improvements were applied for the previous boring device to gain its performance and reliability. The major improvements are the change of the drill bit, modification of the boring process and the optimization of the remote operability. The mock-up test will be performed with the irradiated fuel pellet to confirm the benefit of improvement. This study was conducted under a contract with the Nuclear and Industrial Safety Agency (NISA) of the Ministry of Economy, Trade and Industry (METI). (author)

  20. Key technologies and risk management of deep tunnel construction at Jinping II hydropower station

    Directory of Open Access Journals (Sweden)

    Chunsheng Zhang

    2016-08-01

    Full Text Available The four diversion tunnels at Jinping II hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500–2000 m and a maximum depth of 2525 m. The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones (EDZs, and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittle–ductile–plastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.

  1. Development of a tunnel backfilling concept for nuclear waste disposal

    International Nuclear Information System (INIS)

    Gunnarsson, D.; Borgesson, L.

    2003-01-01

    In the main concept for disposal of the Swedish Nuclear Waste (KBS-3V) it is vital that the drifts can be backfilled with sufficiently good material at high density to fulfill the following requirements: - to obstruct upwards swelling of bentonite from the deposition holes, - to prevent or restrict the water flow in the tunnel and around the canister, - to resist chemical conversion for a long period of time, - not to cause any significant chemical conversion of the buffer surrounding the canister. Investigations and tests of backfill material and techniques have been running in the Swedish underground laboratory, Aspo HRL, since 1996. In the first test, Field Test of Tunnel Backfilling, the objectives were to test the manufacturing of backfill material, to develop and test a backfilling technique and to investigate what densities could be achieved with different backfill materials in the field. Horizontal layers were applied and compacted by a roller in 0.2 m thick layers to 1.5 m from the floor. The rest of the tunnel was backfilled with inclined layers. Five different backfill materials were tested; TBM-muck, TBM-muck crushed to a maximum grain size of 20 mm and crushed TBM-muck mixed with 10, 20 and 30% MX-80 bentonite. The main conclusions from these tests were that the technique for manufacturing backfill material and for backfilling the tunnel were suitable but that the horizontal backfill layers were sensitive to wet conditions, that the backfilling equipment needed to be improved to better reach the areas close to the rock walls and roof and that the durability of the equipment needed to be improved. For the continued development for the Backfill and Plug Test and the Prototype Repository it was decided that the backfilling should be made with inclined layers in the entire cross section of the tunnel in order to decrease the sensitivity to water inflow. The backfilling equipment was improved; two new compactors, the so-called slope compactor and the so

  2. Development of a tunnel backfilling concept for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, D.; Borgesson, L. [Clay Technology AB, Ideon, Lund (Sweden)

    2003-07-01

    In the main concept for disposal of the Swedish Nuclear Waste (KBS-3V) it is vital that the drifts can be backfilled with sufficiently good material at high density to fulfill the following requirements: - to obstruct upwards swelling of bentonite from the deposition holes, - to prevent or restrict the water flow in the tunnel and around the canister, - to resist chemical conversion for a long period of time, - not to cause any significant chemical conversion of the buffer surrounding the canister. Investigations and tests of backfill material and techniques have been running in the Swedish underground laboratory, Aspo HRL, since 1996. In the first test, Field Test of Tunnel Backfilling, the objectives were to test the manufacturing of backfill material, to develop and test a backfilling technique and to investigate what densities could be achieved with different backfill materials in the field. Horizontal layers were applied and compacted by a roller in 0.2 m thick layers to 1.5 m from the floor. The rest of the tunnel was backfilled with inclined layers. Five different backfill materials were tested; TBM-muck, TBM-muck crushed to a maximum grain size of 20 mm and crushed TBM-muck mixed with 10, 20 and 30% MX-80 bentonite. The main conclusions from these tests were that the technique for manufacturing backfill material and for backfilling the tunnel were suitable but that the horizontal backfill layers were sensitive to wet conditions, that the backfilling equipment needed to be improved to better reach the areas close to the rock walls and roof and that the durability of the equipment needed to be improved. For the continued development for the Backfill and Plug Test and the Prototype Repository it was decided that the backfilling should be made with inclined layers in the entire cross section of the tunnel in order to decrease the sensitivity to water inflow. The backfilling equipment was improved; two new compactors, the so-called slope compactor and the so

  3. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    OpenAIRE

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei

    2015-01-01

    Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...

  4. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    Science.gov (United States)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  5. Thrust and torque characteristics based on a new cutter-head load model

    Science.gov (United States)

    Liu, Jianqin; Ren, Jiabao; Guo, Wei

    2015-07-01

    Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.

  6. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, N.A.; Cournut, A.; Dixon, D. (and others)

    2002-07-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties

  7. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 4390-4990 m tunnel chainage and the technical rooms

    Energy Technology Data Exchange (ETDEWEB)

    Simelius, C. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO underground research facility at the Olkiluoto site, western Finland. This report is an extension of two previously published reports describing the geometrical and mechanical properties of the fractures and brittle deformation zones based on ONKALO tunnel mapping from tunnel chainages 0-2400 m (Kuula 2010) and 2400-4390 m (Moenkkoenen et al. 2012). This updated report makes use of mapping data from tunnel chainage 4390-4990 m, including the technical rooms located at the -420 m below the sea level. Analysis of the technical rooms is carried out by dividing the premises according to depth into three sections: the demonstration tunnel level, the technical rooms level and the -457 level. The division is executed in order to define the fracture properties in separate areas and to compare the properties with other technical rooms levels. Drillhole data from holes OL-KR1...OL-KR57 is also examined. This report ends the series of three parameterization reports. The defined rock mechanics parameters of the fractures are based on the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. No new data from laboratory joint shear and normal tests was available at the time of the report. The fracture wall compressive strength (JCS) data is available from the chainage range 1280-2400 m. New data for fracture wall compressive strength is not available although new Schmidt hammer measurements were performed in order to obtain the ratio of the intact rock mass vs. an intact brittle deformation zone. Estimation of the mechanical properties of the 23 brittle deformation zones (BDZ) is based on the mapped Q' value, which is converted into the GSI value in order to estimate the strength and deformability

  8. A Review of Rock Bolt Monitoring Using Smart Sensors

    Directory of Open Access Journals (Sweden)

    Gangbing Song

    2017-04-01

    Full Text Available Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  9. A Review of Rock Bolt Monitoring Using Smart Sensors.

    Science.gov (United States)

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  10. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  11. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    Science.gov (United States)

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  13. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  14. Host Rock Classification (HRC) system for nuclear waste disposal in crystalline bedrock

    International Nuclear Information System (INIS)

    Hagros, A.

    2006-01-01

    A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q' and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q', fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of

  15. Development of rock segment for reduction of amount of cement use

    International Nuclear Information System (INIS)

    Tada, Hiroyuki; Kumasaka, Hiroo; Saito, Akira; Nakaya, Atsushi; Ishii, Takashi; Sanada, Masanori; Noguchi, Akira; Kishi, Hirokazu; Nakama, Shigeo; Fujita, Tomoo

    2013-01-01

    The authors have been developing methods for constructing tunnels using the minimum quantities of cement-type support materials in high-level radioactive waste disposal facilities and advancing research and development about the technical formation of rock segment using low alkali mortar. In this study, the mechanical characteristic values concerning the rock segment and backfill materials were examined. The stability analysis of drift supported by the rock segment and backfilling with gravel were performed. Technical formation and effectiveness of the support planned for further reduction in cement influence was confirmed from the study result. (author)

  16. Aespoe Hard Rock Laboratory. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation.

  17. Aespoe Hard Rock Laboratory. Annual Report 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation

  18. Ozone generation by rock fracture: Earthquake early warning?

    Energy Technology Data Exchange (ETDEWEB)

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  19. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  20. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    Science.gov (United States)

    Gharouni-Nik, Morteza; Naeimi, Meysam; Ahadi, Sodayf; Alimoradi, Zahra

    2014-06-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute to stability of the tunnel structure are recognized owing to identify various aspects of reliability and sustainability in the system. The selection of efficient support methods for rock tunneling is a key factor in order to reduce the number of problems during construction and maintain the project cost and time within the limited budget and planned schedule. This paper introduces a smart approach by which decision-makers will be able to find the overall reliability of tunnel support system before selecting the final scheme of the lining system. Due to this research focus, engineering reliability which is a branch of statistics and probability is being appropriately applied to the field and much effort has been made to use it in tunneling while investigating the reliability of the lining support system for the tunnel structure. Therefore, reliability analysis for evaluating the tunnel support performance is the main idea used in this research. Decomposition approaches are used for producing system block diagram and determining the failure probability of the whole system. Effectiveness of the proposed reliability model of tunnel lining together with the recommended approaches is examined using several case studies and the final value of reliability obtained for different designing scenarios. Considering the idea of linear correlation between safety factors and reliability parameters, the values of isolated reliabilities determined for different structural components of tunnel support system. In order to determine individual safety factors, finite element modeling is employed for different structural subsystems and the results of numerical analyses are obtained in

  1. A 3D finite element simulation model for TBM tunnelling in soft ground

    Science.gov (United States)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  2. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  3. The technical challenge of mechanized excavation for nuclear waste repositories

    International Nuclear Information System (INIS)

    Smith, A.I.

    1991-01-01

    This paper presents the historical background of the tunnel boring machine and discusses its integration into the design of a nuclear waste repository. It is essential that the designers of a project utilize the productivity of the system to their advantage. An example would be the construction of a pair of small tunnels instead of a single large diameter access ramp. The pair of tunnels would be more effective in use and less expensive to bore than the single all-purpose tunnel. The designers of an underground nuclear waste repository must recognize the capabilities of the Tunnel Boring Machine system and tailor their design to employ the technological advantages which have been made in recent years

  4. [From 1878 to 2006 - working in hyperbaric conditions during tunnelling].

    Science.gov (United States)

    Le Péchon, Jean-Claude

    2006-01-01

    To review the impact of Paul Bert's researches on hyperbaric work in tunnelling, the status of the industry in 1878 is described. Mostly based on the application of Triger's machine it was used to mine coal below the water table or to dig foundations for bridges in rivers or close to rivers. The results and conclusions obtained by Paul Bert which are applicable in that particular field are listed. The major steps of research or remarkable achievements in construction between 1878 and 2006 are presented as well as the evolution of decompression tables. Improvement in safety and conditions of caisson workers has been continuous until the technical revolution resulting from the introduction and the development of tunnelling boring machines (TBM) in the late 80's. TBM technology has resulted in major changes in tunnel construction. Hyperbaric interventions have also changed completely since human operators no longer work in pressurized conditions. Only occasional inspections and repairs are carried out under pressure. Present performance in hyperbaric conditions are reported, and high pressures reached in the 2000's using saturation technology are described. The future of hyperbaric works is also discussed whether for very high pressure, or complete replacement of caisson workers in TBMs. These descriptions show that Paul Bert provides us with very clear directions to improve safety in hyperbaric conditions and that none of his recommendations were mistaken, most being still relevant.

  5. Rock samples from LEP/LHC tunnel excavation

    CERN Multimedia

    1985-01-01

    Rock samples taken from 0 to 170 m below ground on the CERN site when the LEP (Large Electron Positron collider) pit number 6 was drilled in Bois-chatton (Versonnex). The challenges of LHC civil engineering: A mosaic of works, structures and workers of differents crafts and origins. Three consulting consortia for the engineering and the follow-up of the works. Four industrial consortia for doing the job. A young team of 25 CERN staff, 30 surface buildings, 32 caverns of all sizes, 170 000 m3 of concrete, 420 000 m3 excavated. 1998-2004 : six years of work and 340 millions Swiss Francs.

  6. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  7. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    Science.gov (United States)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  8. Raise Boring of the ventilation shaft in Olkiluoto, 17. - 23.5.2006. Preliminary analysis of seismic signal

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. [AaF-Enprima Oy, Vantaa (Finland)

    2007-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine has been investigated. Characteristics of the seismic signal generated by the raise boring machine are analysed. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. (orig.)

  9. Raise Boring of the ventilation shaft in Olkiluoto, 17. - 23.5.2006. Preliminary analysis of seismic signal

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2007-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine has been investigated. Characteristics of the seismic signal generated by the raise boring machine are analysed. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. (orig.)

  10. Selfinjection of highly compacted bentonite into rock joints

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-02-01

    When radioactive waste is disposed in bore holes in rocks there will be some space between rock and canister. Other investigations have suggested that the space could be filled with highly compacted bentonite. In this report it is discussed if open joints formed or widened in the surrounding rock after the deposition will be sealed by self-injecting bentonite. Bentonite in contact with water will swell. The flow pattern and properties of the swelling bentonite, the permeability of the extruded bentonite and the viscosity of the extruded bentonite have been investigated. The following statements are done. In the narrow joints that can possibly be opened by various processes, the rate of bentonite extrusion will be very slow except for the first few centimeter move, which may take place in a few mounths. The swelling pressure of the extruded bentonite will decrease rapidly with the distance from the deposition hole. The loss of bentonite extruded through the narrow joints will be negligible. In the outer part of the bentonite zone there will be a successive transition to a very soft, dilute bentonite suspension. It will consist of fairly large particle aggregates which will be stuck where the joint width decreases

  11. Long-term bedrock behavior research for soft rock

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Noda, Kenji

    2002-02-01

    When a formation disposal system is thought about, it is important to evaluate long-term dynamics behavior of boundary condition and near field bedrock of an artificial barrier adequately. In this study, three matters were executed for improvement of a dependability of the evaluation as follows. (1) Creep test was executed as purpose by dependability improvement of evaluation technique of creep problem by Okubo model. Okubo model constant was calculated than the unconfined compression test which let strain rate change with true rock, and the creep test which the constant was used, and estimated breaking time was done. As a result, the estimation of breaking time by Okubo model almost suffered according to the estimation although a variation of test-piece influenced it. (2) A tunnel model apparatus was produced in the purpose which grasped near field bedrock behavior, and it was tested. Simulation rock test body of 1 m * 1 m * 0.5 m was used for a test, and 15 cm tunnel excavation was carried out in an initial stress bottom. Quantities of inner space displacement were measured in a test, and a hardness-test was done after dismantlement, and looseness area was grasped quantitatively. As a result, the looseness area was able to be estimated with about 17.5 cm than tunnel center position. (3) A test approach in deep underground laboratory was examined, and examination/the in situ test which took advantage of rock core analysis/borehole as purpose and done examination item by grip of long-term bedrock behavior (a bord is taken advantage of, and bord itself is used) was shown. In addition, layout of the deep underground laboratory which carried out various tests about long-term behavior in 3 depth was shown. (author)

  12. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kozak, E.T.; Davison, C.C.

    1992-09-01

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10 -10 to 10 -6 m 2 /s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10 -7 to 10 -5 m 2 /s in FZ2, and 10 -9 to 10 -7 m 2 /s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  13. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  14. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  15. Pre-construction geologic section along the cross drift through the potential high-level radioactive waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Juan, C.S.; Drake, R.M. II

    1998-01-01

    As part of the Site Characterization effort for the US Department of Energy's Yucca Mountain Project, tunnels excavated by tunnel boring machines provide access to the volume of rock that is under consideration for possible underground storage of high-level nuclear waste beneath Yucca Mountain, Nevada. The Exploratory Studies Facility, a 7.8-km-long, 7.6-m-diameter tunnel, has been excavated, and a 2.8-km-long, 5-m-diameter Cross Drift will be excavated in 1998 as part of the geologic, hydrologic and geotechnical evaluation of the potential repository. The southwest-trending Cross Drift branches off of the north ramp of the horseshoe-shaped Exploratory Studies Facility. This report summarizes an interpretive geologic section that was prepared for the Yucca Mountain Project as a tool for use in the design and construction of the Cross Drift

  16. Geotechnical characterization and construction methods for SSC tunnel excavation

    International Nuclear Information System (INIS)

    Nelson, P.P.; Lundin, T.K.

    1990-06-01

    The site for the Superconducting Super Collider (SSC) facility was selected in 1988 after a nationwide proposal competition. The selected site is located in Ellis County, Texas, surrounding the town of Waxahachie which is about 30 miles (48 km) south of the City of Dallas central business district. This paper will describe the geotechnical conditions anticipated for excavation at the SSC site. A general geologic and geomechanical description of the rock present will be followed by a summary of the site-specific conceptual design for the tunneled components of the SSC machine. The Supercollider project will include about 70 miles (113) km of tunnel excavation

  17. Shear-flow coupling in non-planar rock joints

    International Nuclear Information System (INIS)

    Makurat, A.; Barton, N.

    1985-01-01

    Crystalline rock masses are regarded as a possible host rock for permanent nuclear waste disposal. During the excavation of the required shafts and tunnels, the initial state of stress will be changed and cause a deformation of the rock mass and discontinuities. During the lifetime of the nuclear repository joint apertures may change due to thermally induced stress variations during the heating and cooling phase. As the conductivity of a joint is very sensitive to its aperture, fluid flow from and towards a repository, as well as the potential transport times of radionuclides are highly dependent on the deformability of the joints. Theoretical calculations of coupled flow in rock joints (Barton et al. 1984) predict an increase of conductivity of several orders of magnitude for the first few millimeters for shear displacement. The shear-dilation-conductivity coupling for two block sizes at two effective stress levels is shown

  18. Evaluation methods of vibration stress of small bore piping

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Miki; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Fatigue fracture by vibration stress is one of the main causes of troubles which occur at small bore piping in nuclear power plants. Therefore at the plants they manage small bore piping using a method in which their vibration accelerations are measured and the vibration stresses are calculated. In this work, vibration tests for two sets of mock-ups simulating actual piping in the plants by sinusoidal oscillation and by that obtained at an actual plant were carried out, and then an evaluation method was developed to obtain proper value of vibration stress from the measured data by the vibration tests. In comparison of the vibration stress obtained from the measured acceleration with that directly measured using strain gauges, it is confirmed that accurate vibration stress can be evaluated by a formula in which the real center of gravity of small bore piping and the acceleration of main (system) piping are considered. (author)

  19. Underground Excavation Behaviour of the Queenston Formation: Tunnel Back Analysis for Application to Shaft Damage Dimension Prediction

    Science.gov (United States)

    Perras, Matthew A.; Wannenmacher, Helmut; Diederichs, Mark S.

    2015-07-01

    The Niagara Tunnel Project (NTP) is a 10.1 km long water-diversion tunnel in Niagara Falls, Ontario, which was excavated by a 7.2 m radius tunnel boring machine. Approximately half the tunnel length was excavated through the Queenston Formation, which locally is a shale to mudstone. Typical overbreak depths ranged between 2 and 4 m with a maximum of 6 m observed. Three modelling approaches were used to back analyse the brittle failure process at the NTP: damage initiation and spalling limit, laminated anisotropy modelling, and ubiquitous joint approaches. Analyses were conducted for three tunnel chainages: 3 + 000, 3 + 250, and 3 + 500 m because the overbreak depth increased from 2 to 4 m. All approaches produced similar geometries to those measured. The laminated anisotropy modelling approach was able to produced chord closures closest to those measured, using a joint normal to shear stiffness ratio between 1 and 2. This understanding was applied to a shaft excavation model in the Queenston Formation at the proposed Deep Geological Repository (DGR) site for low and intermediate level nuclear waste storage in Canada. The maximum damage depth was 1.9 m; with an average of 1.0 m. Important differences are discussed between the tunnel and shaft orientation with respect to bedding. The models show that the observed normalized depth of failure at the NTP would over-predict the depth of damage expected in the Queenston Formation at the DGR.

  20. Parameters Optimization of Curtain Grouting Reinforcement Cycle in Yonglian Tunnel and Its Application

    Directory of Open Access Journals (Sweden)

    Qingsong Zhang

    2015-01-01

    Full Text Available For practical purposes, the curtain grouting method is an effective method to treat geological disasters and can be used to improve the strength and permeability resistance of surrounding rock. Selection of the optimal parameters of grouting reinforcement cycle especially reinforcement cycle thickness is one of the most interesting areas of research in curtain grouting designs. Based on the fluid-structure interaction theory and orthogonal analysis method, the influence of reinforcement cycle thickness, elastic modulus, and permeability on water inflow of tunnel after grouting and stability of surrounding rock was analyzed. As to the water inflow of tunnel after grouting used as performance evaluation index of grouting reinforcement cycle, it can be concluded that the permeability was the most important factor followed by reinforcement cycle thickness and elastic modulus. Furthermore, pore water pressure field, stress field, and plastic zone of surrounding rock were calculated by using COMSOL software under different conditions of reinforcement cycle thickness. It also can be concluded that the optimal thickness of reinforcement cycle and permeability can be adopted as 8 m and 1/100 of the surrounding rock permeability in the curtain grouting reinforcement cycle. The engineering case provides a reference for similar engineering.

  1. Comparing flows to a tunnel for single porosity, double porosity and discrete fracture representations of the EDZ

    International Nuclear Information System (INIS)

    Hawkins, I.; Swift, B.; Hoch, A.; Wendling, J.

    2010-01-01

    Document available in extended abstract form only. Andra is studying the Callovo-Oxfordian mud-stones, located at a depth of approximately 500 m beneath the borders of the Meuse and the Haute-Marne Departements, in order to assess the feasibility of constructing a repository for radioactive waste in this low-permeability geological formation. The construction of a repository will lead to the formation of a zone adjacent to the repository (the Excavation Damaged Zone, or EDZ) in which the rock suffers mechanical damage. In the EDZ, fractures and cracks will develop, and therefore the hydraulic properties (including the permeability) will be different from those of the undamaged rock. There are some experimental data which, despite significant uncertainties, allow a conceptual model of the fractures to be defined. The objectives of this study were: - To develop a Discrete Fracture Network (DFN) model of the EDZ; - To derive effective properties for both single continuum and Multiple Interacting Continua (MINC) models from the DFN model; and - To use the various models to simulate desaturation of the rock during the operational phase of the repository, and subsequent re-saturation of a tunnel post-closure (a period of thousands of years). The approaches to modelling flow and transport in fractured systems fall into two rough classes: DFN models; and continuum models. DFN models account explicitly for the effects of individual fractures on fluid flow and solute transport, and usually do not consider the interaction between the fractures and the rock matrix. Continuum models may be single continuum, double continuum or MINC. Single continuum models are applicable when the interaction between the fractures and the rock matrix is sufficient to establish a local equilibrium. Double continuum models account for the two interacting systems (i.e. fractures and rock matrix) by conceptualising each as a continuum occupying the entire domain. An exchange function describes mass

  2. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks

    Science.gov (United States)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh

    2017-11-01

    Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.

  3. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2015-01-01

    Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.

  4. Backfilling of deposition tunnels, block alternative

    International Nuclear Information System (INIS)

    Keto, P.; Roennqvist, P.-E.

    2007-03-01

    This report presents a preliminary process description of backfilling the deposition tunnels with pre-compacted blocks consisting of a mixture of bentonite and ballast (30:70). The process was modified for the Finnish KBS-3V type repository assuming that the amount of spent fuel canisters disposed of yearly is 40. Backfilling blocks (400 x 300 x 300 mm) are prepared in a block production plant with a hydraulic press with an estimated production capacity of 840 blocks per day. Some of the blocks are modified further to fit the profile of the tunnel roof. Prior to the installation of the blocks, the deposition tunnel floor is levelled with a mixture of bentonite and ballast (15:85). The blocks are placed in the tunnel with a modified reach truck. Centrifugal pellet throwing equipment is used to fill the gap between the blocks and the rock surface with bentonite pellets. Based on a preliminary assessment, the average dry density achieved with block backfill is sufficient to fulfil the criteria set for the backfill in order to ensure long-term safety and radiation protection. However, there are uncertainties concerning saturation, homogenisation, erosion, piping and self-healing of the block backfill that need to be studied further with laboratory and field tests. In addition, development efforts and testing concerning block manufacturing and installation are required to verify the technical feasibility of the concept. (orig.)

  5. Post-Grampian top-to-WNW Caledonian ductile shear in the Grampian Highlands [abstract only

    OpenAIRE

    Leslie, Graham; Campbell, Seumas

    2008-01-01

    The Glendoe Hydro Scheme involves construction of an 4.6 m diameter bored tunnel, extending 8.6 km SSE-ward from Fort Augustus and the Great Glen, through mainly Grampian Group Dalradian rocks deformed in the Grampian orogeny. The great prize though is access to an 8 km long borehole driven perpendicular to regional strike through the footwall and hanging wall of the Eilrig Shear Zone. The Eilrig Shear Zone is unique in the geology of the Grampian Highland ‘terrane’ and is reve...

  6. THE ROLE OF ASTRO-GEODETIC IN PRECISE GUIDANCE OF LONG TUNNELS

    Directory of Open Access Journals (Sweden)

    M. Mirghasempour

    2015-12-01

    Full Text Available One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the ground surveying, including Improper geometry in underground transverse, low precise measurement in direction and length due to condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and direction of gravity and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In this article, the role of astronomy is defined in two subjects: 1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite to use them in Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 5000 is 1.2 cm over a distance of one kilometre (2.4 arcsecond. Furthermore, the calibration methods that will be mention in this article, have significance effects on underground transverse. 2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in Arak- Khoram Abad freeway, to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile

  7. Development and management of a radon assessment strategy suitable for underground railway tunnelling projects

    International Nuclear Information System (INIS)

    Purnell, C. J.; Frommer, G.; Chan, K.; Auch, A. A.

    2004-01-01

    The construction of underground tunnels through radon-bearing rock poses a radiation health risk to tunnelling workers from exposure to radon gas and its radioactive decay products. This paper presents the development and practical application of a radon assessment strategy suitable for the measurement of radon in tunnelling work environments in Hong Kong. The assessment strategy was successfully evaluated on a number of underground railway tunnelling projects over a 3 y period. Radon measurements were undertaken using a combination of portable radon measurement equipment and track etch detectors (TEDs) deployed throughout the tunnels. The radon gas monitoring results were used to confirm that ventilation rates were adequate or identified, at an early stage, when further action to reduce radon levels was required. Exposure dose estimates based on the TED results showed that the exposure of tunnel workers to radon did not exceed 3 mSv per annum for the duration of each project. (authors)

  8. Assessments of applicability of Q and RMi systems in binary tunnels of Bakhtiari dam_ Iran

    Directory of Open Access Journals (Sweden)

    Farshad Nejadshahmohamad

    2013-06-01

    Full Text Available The main rock mass classification systems make use of similar rock mass parameters. Due to lack of comprehensive estimation systems, determining the real specifications of jointed rocks faces some difficulties. A vast number of parameters with various degrees of impact are involved in such definitions. Combination impact of all the effective parameters is to be figured out in order to come up with an acceptable value. Different classification systems have some well-known drawbacks and limitations mainly due to their empirical base. However, they are still very useful in practice. Therefore, there is a need to improve their efficiency. Two of these classification systems are the RMi and the Q-system. Bakhtiari dam site is located in the southwest of Iran. The project area consists of the sedimentary bedrocks of Sarvak and Garau formations. The Sarvak Formation is divided into 7 units from Sv1 (oldest to Sv7 (youngest. Deviation system of Bakhtiari dam includes two tunnels, namely upper and lower tunnels. In this paper, the result of geological scanning of rock masses in seven geological zones hosting binary tunnels of Bakhtiari dam have been utilized. This information along with data produced from many different laboratory tests have been used to estimate the values of Q and RMi for each of the geological zones. The pros and cons of both systems are revealed and relationships are driven between the two systems through statistical analysis. The paper also shows that there are good correlations between the two systems. Finally, the support details suggested by each system are determined.

  9. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  10. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  11. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  12. Empyema and Effusion: Outcome of Image-Guided Small-Bore Catheter Drainage

    International Nuclear Information System (INIS)

    Keeling, A. N.; Leong, S.; Logan, P. M.; Lee, M. J.

    2008-01-01

    Empyema and complicated pleural effusion represent common medical problems. Current treatment options are multiple. The purpose of this study was to access the outcome of image-guided, small-bore catheter drainage of empyema and effusion. We evaluated 93 small-bore catheters in 82 patients with pleural effusion (n = 30) or empyema (n = 52), over a 2-year period. Image guidance was with ultrasound (US; n = 56) and CT (n = 37). All patients were followed clinically, with catheter dwell times, catheter outcome, pleural fluid outcome, reinsertion rates, and need for urokinase or surgery recorded. Ninety-three small-bore chest drains (mean=10.2 Fr; range, 8.2-12.2 Fr) were inserted, with an average dwell time of 7.81 days for empyemas and 7.14 days for effusions (p > 0.05). Elective removal rates (73% empyema vs 86% effusions) and dislodgement rates (12% empyema vs 13% effusions) were similar for both groups. Eight percent of catheters became blocked and 17% necessitated reinsertion in empyemas, with no catheters blocked or requiring reinsertion in effusions (p < 0.05). Thirty-two patients (51%) required urokinase in the empyema group, versus 2 patients (6%) in the effusion group (p < 0.05). All treatment failures, requiring surgery, occurred in the empyema group (19%; n = 12; p < 0.05). In conclusion, noninfected pleural collections are adequately treated with small-bore catheters, however, empyemas have a failure rate of 19%. The threshold for using urokinase and larger-bore catheters should be low in empyema

  13. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  14. Robustness evaluation of cutting tool maintenance planning for soft ground tunneling projects

    Directory of Open Access Journals (Sweden)

    Alena Conrads

    2018-03-01

    Full Text Available Tunnel boring machines require extensive maintenance and inspection effort to provide a high availability. The cutting tools of the cutting wheel must be changed timely upon reaching a critical condition. While one possible maintenance strategy is to change tools only when it is absolutely necessary, tools can also be changed preventively to avoid further damages. Such different maintenance strategies influence the maintenance duration and the overall project performance. However, determine downtime related to a particular maintenance strategy is still a challenging task. This paper shows an analysis of the robustness to achieve the planned project performance of a maintenance strategy considering uncertainties of wear behavior of the cutting tools. A simulation based analysis is presented, implementing an empirical wear prediction model. Different strategies of maintenance planning are compared by performing a parameter variation study including Monte-Carlo simulations. The maintenance costs are calculated and evaluated with respect to their robustness. Finally, an improved and robust maintenance strategy has been determined. Keywords: Mechanized tunneling, Maintenance, Wear of cutting tools, Process simulation, Robustness, Uncertainty modeling

  15. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boring-type machines equipped for auxiliary..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for...

  16. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    Science.gov (United States)

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  17. Developing two-phase flow modelling concepts for rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))

    2010-01-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  18. Developing two-phase flow modelling concepts for rock fractures

    International Nuclear Information System (INIS)

    Keto, V.

    2010-01-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  19. Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers.

    Science.gov (United States)

    Bakke, B; Ulvestad, B; Stewart, P; Eduard, W

    2004-03-01

    To study the relation between lung function decrease and cumulative exposure to dust and gases in tunnel construction workers. A total of 651 male construction workers (drill and blast workers, tunnel concrete workers, shotcreting operators, and tunnel boring machine workers) were followed up by spirometric measurements in 1989-2002 for an average of six years. Outdoor concrete workers, foremen, and engineers served as a low exposed referent population. The between worker component of variability was considerably reduced within the job groups compared to the whole population, suggesting that the workers within job groups had similar exposure levels. The annual decrease in FEV1 in low-exposed non-smoking workers was 21 ml and 24 ml in low-exposed ever smokers. The annual decrease in FEV1 in tunnel construction workers was 20-31 ml higher than the low exposed workers depending on job group for both non-smokers and ever smokers. After adjustment for age and observation time, cumulative exposure to nitrogen dioxide showed the strongest association with a decrease in FEV1 in both non-smokers, and ever smokers. Cumulative exposure to nitrogen dioxide appeared to be a major risk factor for lung function decreases in these tunnel construction workers, although other agents may have contributed to the observed effect. Contact with blasting fumes should be avoided, diesel exhaust emissions should be reduced, and respiratory devices should be used to protect workers against dust and nitrogen dioxide exposure.

  20. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  1. Correlation of basement rocks from Waka Nui-1 and Awhitu-1, and the Jurassic regional geology of Zealandia

    International Nuclear Information System (INIS)

    Mortimer, N.; Raine, J.I.; Cook, R.A.

    2009-01-01

    Core and cuttings of sandstone and mudstone from Waka Nui-1, an offshore oil exploration well west of Northland, and from Awhitu-1, a water bore in western Auckland, add to the growing number of samples retrieved from otherwise inaccessible basement of the Zealandia continent. On the basis of pollen and spores, the sedimentary rocks at the bottom of Waka Nui-1 are dated as Early-Middle Jurassic, and rocks from Awhitu-1 are Late Jurassic. On the basis of age, sandstone petrology, and geographic position, a correlation of rocks in both wells with Murihiku Terrane is probable. In New Zealand, Jurassic sedimentary rocks have usually been interpreted in a tectonostratigraphic terrane context. An alternative way to look at the New Zealand Late Jurassic to Early Cretaceous sedimentary rocks is as potentially interconnected forearc, intra-arc, back-arc, and intracontinental basins that evolved adjacent to an active margin. (author). 47 refs., 6 figs., 3 tabs

  2. Zedex - an in-situ study of the importance of the excavation disturbed zone to repository performance

    International Nuclear Information System (INIS)

    Olsson, O.; Slimane K.B.; Davies, N.

    1995-01-01

    The excavation of shafts and tunnels in a waste repository will cause a disturbance to the surrounding rock mass with possible alterations to rock mass stability and hydraulic properties. The properties and extent of the disturbed zone must be considered in the design of a repository and in the assessment of its long-term safety. In addition, the data collected in drifts, which will be used for detailed characterization of the repository, will be affected by excavation effects. ANDRA, UK Nirex, and SKB have jointly set up the ZEDEX Project at the Aespoe Hard Rock Laboratory, Sweden, in order to improve understanding of the properties and extent the Excavation Disturbed Zone (EDZ). The main objective is to study the mechanical behavior of the EDZ with respect to its origin, character, magnitude of property change, extent, and its dependence of excavation method. The project will also provide a test of equipment and methodology for quantifying the EDZ. The ZEDEX Project includes tests of open-quote normal close-quote excavation by drill and blast, a smooth blasting procedure based on low shock explosives, and excavation by tunnel boring. The ZEDEX Project is still in progress and results have not been fully analyzed. The preliminary analysis of the results indicates that the measurable changes in properties induced by tunnel excavation are comparatively small

  3. Aespoe hard rock laboratory. Annual report 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of the

  4. 48 CFR 52.236-4 - Physical Data.

    Science.gov (United States)

    2010-10-01

    ..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic...

  5. Excavation damage and disturbance in crystalline rock - results from experiments and analyses

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, Goeran (Conrox AB, Stockholm (Sweden))

    2008-11-15

    calculations using the PHREEQC code showed that fracture precipitation is unlikely to clog the water-conducting fractures within a 10-year period, even when considering construction material such as cement and nitrogen compounds. For most of the modelling cases, the estimated decrease in hydraulic conductivity over a period of ten years is less than 2% due to mineral precipitation. It was further concluded that it is more likely for fractures to clog (self-heal) than become open as a result of fracture mineral dissolution. With respect to the microbial evolution it was concluded that the potential for microbial iron hydroxide production will be large in all groundwater with ferrous iron. The potential for microbial calcite formation production will be large in all groundwater with high concentrations of Dissolved Organic Carbon (DOC) and methane, irrespective of oxygen, Eh (redox) or pH. The kinetics of the microbial evolution is not yet known, and microbes may then play a role in fracture clogging which could possibly be the factor that contributes to lower groundwater inflow to underground facilities with time, as shown for many facilities. The compilation of results from the relevant tests at underground laboratories in Canada, Japan, Sweden and Switzerland was focussed on the extent of the damage and its dependency on excavation methods and measurements of the hydraulic properties. The most important factor controlling the excavation damage is the choice of excavation method. Use of mechanical excavation may create irreversible damage less than 30 mm from the rock wall where increased micro-fracturing contributes to an increase in hydraulic conductivity. Several methods and sample scales have been used to characterise the damage zone. For a Tunnel Boring Machine < 5 mm of damage was recorded at Aespoe HRL and at Grimsel in Switzerland. The hydraulic conductivity was at e.g. Aespoe HRL determined to be in the range of 10-9 m/s over a distance of 1-2 mm from the tunnel

  6. Mechanism of water inrush in tunnel construction in karst area

    Directory of Open Access Journals (Sweden)

    Liping Li

    2016-05-01

    Full Text Available With the rapid developing trend of long, large and deep construction characteristics for underground engineering in the world, China has the largest number of karst tunnels with the wide scales and great difficulties. As the hydrogeological conditions are becoming unprecedentedly complex, water inrush disaster becomes the bottleneck problem for the further development of traffic tunnels. Based on the statistical analysis of a large number of cases of water inrush in karst tunnels, influence factors of water inrush have been put forward from the view of karst hydrogeological factors and engineering disturbance of human factors. Karst hydrogeological factors include geological defect, strata dip, formation lithology, landform and underground level. Human factors of engineering disturbance include excavation and reinforcement geological prediction, monitoring and measurement of surrounding rock. It also introduces some geological disasters caused by the water inrush in tunnel excavation. In terms of the formation of water inrush channel, water inrush types are divided into geological defects inrush, non-geological defects inrush and the combination. Conclusions will be beneficial to further research on hazards control of underground construction.

  7. Rock sealing - large scale field test and accessory investigations

    International Nuclear Information System (INIS)

    Pusch, R.

    1988-03-01

    The experience from the pilot field test and the basic knowledge extracted from the lab experiments have formed the basis of the planning of a Large Scale Field Test. The intention is to find out how the 'instrument of rock sealing' can be applied to a number of practical cases, where cutting-off and redirection of groundwater flow in repositories are called for. Five field subtests, which are integrated mutually or with other Stripa projects (3D), are proposed. One of them concerns 'near-field' sealing, i.e. sealing of tunnel floors hosting deposition holes, while two involve sealing of 'disturbed' rock around tunnels. The fourth concerns sealing of a natural fracture zone in the 3D area, and this latter test has the expected spin-off effect of obtaining additional information on the general flow pattern around the northeastern wing of the 3D cross. The fifth test is an option of sealing structures in the Validation Drift. The longevity of major grout types is focussed on as the most important part of the 'Accessory Investigations', and detailed plans have been worked out for that purpose. It is foreseen that the continuation of the project, as outlined in this report, will yield suitable methods and grouts for effective and long-lasting sealing of rock for use at stategic points in repositories. (author)

  8. Fissures in rock under water pressure, implications on stability : 3 unusual cases

    Energy Technology Data Exchange (ETDEWEB)

    Helwig, P.C. [Helwig Hydrotechnique Ltd., St. John' s, NL (Canada)

    2006-07-01

    The presence of water in rock joints has important implications on the stability of rock foundations. Appropriate analyses are needed to assess the stability of dam foundations, abutments and rock walls. This paper presented 3 case studies in which the freezing of seepage flows in rock joints and transient pressure in rock walls were investigated: (1) an assessment of the effects of freezing water in rock joints at the Paradise River arch dam in Newfoundland; (2) stability of rock walls in the unlined power tunnel of the Cat Arm hydroelectric development in Newfoundland due to transient pressures; and (3) assessing the influence of fluctuating water pressures in a stilling basin excavated in rock. After an investigation of the Paradise River canyon walls, a drainage system comprised of peripheral drain holes was drilled into the foundation and walls at regular intervals to intercept seepage flows and to relieve uplift water pressures. However, no special treatment was found for the potential freezing of water in the joints of the dam walls and foundation. The Cat Arm tunnel was used to study the depth at which significant transient pressures can be used to assess rock stability. Rock properties, typical fracture apertures and spacing were assumed and joint deformability was taken into account. An axisymmetric solution was obtained by considering the continuity and flow through an annular element of the rock wall. A finite difference method was used to solve the resulting nonlinear differential equation. In the final case study, blast-damaged rock was undermining the toe of a spillway. A cut-off wall was constructed as a series of drilled, cast-in-place concrete caisson piles. Criteria for the design included extending the cut-off wall to a depth beyond the effects of fluctuating surface pressures. Depth was assessed by considering the transient behaviour of water penetrating a sub-vertical joint subject exposed to fluctuating pressures. Results of the calculations

  9. Analysis on pile testing results of post-grouting bored pile

    Science.gov (United States)

    Zheng, A. R.

    2017-04-01

    Based on static load test results, the bearing capacity of bored piles with pile-toe and pile-shaft post-grouting has been analyzed. The analysis reveals that: with post-grouting, the interface between pile and surrounding soil are strengthened and the relative sliding displacement in between is reduced; end resistance of pile is enhanced and can be mobilized at earlier stage with smaller sliding displacement. As a result, the performance of bored pile is improved with increased bearing capacity and reduced settlement.

  10. Derivation of muon range spectrum under rock from the recent primary spectrum

    International Nuclear Information System (INIS)

    Pal, P.; Bhattacharyya, D.P.

    1985-01-01

    The muon range spectra under Mont Blanc Tunnel and Kolar Gold Field rocks have been calculated from the recently measured primary cosmic ray spectrum. The scaling hypothesis of Feynman has been used for the calculation of pion and kaon spectra in the atmosphere. The meson atmospheric diffusion equation has been solved by following the method of Bugaev et al. The derived muon energy spectrum has been found to be in good agreement with the measured data of the Kiel, Durham, DEIS, and Moscow University groups. The calculated muon energy spectra at large polar angles have been compared with the different experimental results. The integral muon spectrum up to 20 TeV supports the MARS burst data favourably. Using the procedure of Kobayakawa, the muon energy loss in rock due to ionization, pair production, and bremsstrahlung and nuclear interactions from Bezrukov and Bugaev, we have constructed the range-energy relation in Mont Blanc and Kolar Gold Field rocks. The estimated range spectra have been corrected for range fluctuations and have been compared with the Mont Blanc Tunnel data of Castagnoli et al., Bergamasco et al., and Sheldon et al. and the Kolar Gold Field data compilation by Krishnaswamy et al

  11. A Computer-Controlled Laser Bore Scanner

    Science.gov (United States)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  12. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2009-08-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed.

  13. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2010-05-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  14. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2009-08-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  15. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2010-05-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  16. The Bolmen tunnel project - evaluation of geophysical site investigation methods

    International Nuclear Information System (INIS)

    Stanfors, R.

    1987-12-01

    The report presents geophysical measurements along and adjacent to the tunnel and an evaluation of the ability of the various methods to permit prediction of rock mass parameters of significance to stability and water bearing ability. The evaluation shows that, using airborne electro-magnetic surveys, it was possible to indicate about 80% of alla the zones of weakness more than 50 m wide in the tunnel. Airborne magnetic surveys located about 90% of all dolerite dykes more than 10 m wide. Ground-level VLF and Slingram methods of electro-magnetic measurement indicated 75% and 85% respectively of all zones of weakness more than 50 m wide. Resistivity methods were successfully used to locate clay filled and water-bearing fracture zones. About 75% of the length of tunnel over which resistivity values below 500 ohm m were measured required shotcrete support and pre-grouting. (orig./DG)

  17. The LEP program

    International Nuclear Information System (INIS)

    Allaby, J.V.

    1986-01-01

    Details of the LEP program are discussed in this paper. LEP is an electron-positron collider 26 kms in circumference. At present, four interaction regions are to be equipped with experiments, although there is the potential for eight crossing points with four-bunch operation. Before reviewing the experiments, some basic facts about LEP are recalled. The collider is located underground between the outskirts of Geneva and the Jura mountains. The major part of the tunnel in which LEP will be installed will be bored by machine in the ''molasse'' (a kind of sandstone) that lies at depths of several tens of meters below the surface of the ground in this region, which is formed of glacial moraine. However, about one-eighth of the circumference lies under the foothills of the Jura and here the tunnel must pass through the limestone rock where a boring machine cannot be used. Since the surface of the ground is itself not flat over this huge area, the plane of the machine is not horizontal, but slightly inclined to minimize the distance from the surface to the interaction regions; hence, the cost of the access shafts

  18. Investigation of stress in a circular tunnel due to overburden and thermal loading of horizontally placed 21 PWR multi purpose canisters

    International Nuclear Information System (INIS)

    Kandalaft-Ladkany, N.; Wyman, R.V.

    1994-01-01

    The drift of a High Level Nuclear Waste (HLNW) Repository were subjected to 2-D thermal loading resulting from the horizontal emplacement of 125 Ton Multi-Purpose Canisters (MPC). Ten 2-D temperature profiles, resulting from 57 Kw/acre and 114 Kw/acre thermal loading conditions, were used in a finite element analysis of the drift; in which a quadrant of the drift and surrounding rock ±100m above and below the drift were modeled. Our analysis shows that the 114 Kw/acre thermal loading results in compressive stresses around the drift, 60 years after emplacement, that exceed the unconfined compressive strength of the TSW tuff analyzed. Stresses resulting from a 57 Kw/acre thermal loading are within the acceptable limit in tunnel rock. A parametric analysis of the invert backfill material showed that Young's modulus for the invert backfill should closely match that of the surrounding unconfined rock in the tunnel in order to prevent an unacceptable stress rise in both rock and backfill

  19. tunnel, wilaya of Jijel – Algeria

    Directory of Open Access Journals (Sweden)

    Yellas Chahra

    2018-01-01

    Full Text Available The construction of a civil engineering work requires many preliminary studies as well as various calculation methods to give an assessment or a forecast of the state of the rock in place and the behavior of the structure in its real environment and under various conditions (construction phase, service and operating phase. The present work concerns the access zone of the Dar-El-Oued tunnel, located on the national road n°43 about 40 km West of the city of Jijel (northeastern Algeria. The geotechnical study of this tunnel was carried out following the classification methods relating to underground structures. Through the results of this study we have determined the influence of land pressures on the mechanical behavior of the ground, which allowed us to measure the state of stress in the rock and to make a comparison between the results of the measurements of convergence and that of numerical modeling. On the other hand, the influence of the velocity of vibration induced by explosive shots has been discussed in order to check the stability of the face as the digging progresses. From the results obtained, it can be said that the surface displacements of the soil are relatively small compared to those determined by the numerical model at the level of the vault and the slab. Note the good agreement between the results provided by our numerical model and those obtained in-situ.

  20. THE ULTIMATE STATE CONCEPT APPLIED TO TUNNEL SUPPORT

    Directory of Open Access Journals (Sweden)

    Mladen Hudec

    2000-12-01

    Full Text Available The most questionable are the values of pressures between rock and support resulting from common deformations on the contact area between rock and support. Therefore the modelling and design of the tunnel support is not reliable, if it is based on active rock pressure resulting from this common deformations. The inversion of the design procedure is proposed. Instead of the active extreme pressure of the rock on support, the influence of ultimate reaction of the support on the rock has to be analysed. This procedure can be performed using the ultimate load principle, as proposed by Eurocodc 7 (Geotechnies. Normally, the rock has the tendency to increase the common conver¬gence until the support reaches its ultimate state. So, loading of profile boundary with the ultimate possible reaction of the support is very plausible. The reactive support pressures have to be probable and itself in equilibrium. The ultimate reactive load has to be reduced by Euro-code safety factor for structural elements and applied on the rock with given properties, or alternatively (as proposed by Eurocode 7 the soil or rock properties have to be diminished and calculated with full ultimate support pressures. If the rock with given (or proposed pro¬perties and loaded with ultimate reactive pressures resulting from supposed support, satisfy its failure criterion, then is the compound system support-rock verificatcd. By this procedure, the number of relevant material properties is reduce to the primary stress ratio and the constants defining the failure criterion. The verification can be performed by any of numerical methods, but we prefer here used boundary elements method (the paper is published in Croatian.

  1. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  2. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    International Nuclear Information System (INIS)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens; Starsec, Peter

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is established

  3. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  4. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles

    NARCIS (Netherlands)

    Schöll, van L.; Kuyper, T.W.; Smits, M.M.; Landeweert, R.; Hoffland, E.; Breemen, van N.

    2008-01-01

    A decade ago, tunnels inside mineral grains were found that were likely formed by hyphae of ectomycorrhizal (EcM) fungi. This observation implied that EcM fungi can dissolve mineral grains. The observation raised several questions on the ecology of these ¿rock-eating¿ fungi. This review addresses

  5. Deep fracturation of granitic rock mass. Fracturation profonde des massifs rocheux granitiques

    Energy Technology Data Exchange (ETDEWEB)

    Bles, J L; Blanchin, R; Bonijoly, D; Dutartre, P; Feybesse, J L; Gros, Y; Landry, J; Martin, P

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater.

  6. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  7. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  8. Grinding tool for making hemispherical bores in hard materials

    Science.gov (United States)

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  9. Cutting tool for removing materials from well bore

    International Nuclear Information System (INIS)

    Lynde, G.D.; Harvey, H.H. Jr.

    1991-01-01

    This patent describes a cutting tool adapted to be positioned downhole in a well bore for removing a metal member from the well bore; a tool body adapted to be received within said well bore and to be supported at its upper end for rotation about a longitudinal axis; blades at spaced intervals on the body and extending outwardly therefrom, each of the blades having a base with a leading surface relative to the direction of rotation; closely spaced cutting elements of hard cutting material secured to said leading surface of the base in a plurality of transversely extending rows, each cutting element being of a predetermined size and shape and arranged in a predetermined generally symmetrical pattern on the base relative to the other elements, each of said cutting elements having an exposed from cutting face forming a cutting surface, a rear face secured to the leading surface of said base, a peripheral surface extending between said faces, and a relatively sharp edge formed at the juncture of the front face and peripheral surface; the front cutting face of each cutting element being arranged and constructed for directing an extending end portion of a turning cut form said member to effect a breaking of said turning from the member being cut in a predetermined manner to minimize interesting of the turning

  10. Backfilling of deposition tunnels: Use of bentonite pellets

    International Nuclear Information System (INIS)

    Dixon, David; Sanden, Torbjoern; Jonsson, Esther; Hansen, Johanna

    2011-02-01

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  11. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  12. Final report of the borehole, shaft, and tunnel sealing test. Vol. 3

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-02-01

    Like the borehole and shaft plugging tests, the tunnel test gave evidence of the very effective sealing power of Na betonite. The test arrangement consisted of a 9 m long 1.5 m diameter steel tube surrounded by sand and cast in concrete plugs at each end. These plugs contained bentonite forming 'O-ring' sealings at the concrete/rock interface. The test had the form of injecting water into the sand and measuring the leakage that took place through the adjacent rock and along the plug. It was concluded that the drop in leakage from more than 200 l at 100 kPa water pressure early in the test to 75 l at 3 MPa pressure at the end was due partly to the swelling pressure exerted by the bentonite on the rock and by penetration of bentonite into water-bearing rock fractures. The major sealing process appears to be the establishment of a very tight bentonite/rock interface. (orig./HP)

  13. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  14. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  15. Magnetic coupling at perovskite and rock-salt structured interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Matvejeff, M., E-mail: mikko.matvejeff@picosun.com [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8581 Chiba (Japan); Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo (Finland); Ahvenniemi, E. [Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo (Finland); Takahashi, R.; Lippmaa, M. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8581 Chiba (Japan)

    2015-10-05

    We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.

  16. Studies on the reconstruction of the concept of rock mass around the tunnel. Japanese fiscal year, 2013 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Keiji [Geospace Laboratory, Tokyo (Japan); Ohnishi, Yuzo [Kansai Univ., Suita, Osaka (Japan); Aoki, Kenji [Geosystem Research Inst., Kyoto (Japan); Tochiyama, Osamu [Nuclear Safety Research Association, Radioactive Waste Disposal Safety Center, Tokyo (Japan); Nishigaki, Makoto [Okayama Univ., Okayama (Japan); Tosaka, Hiroyuki [Tokyo Univ., Tokyo (Japan); Yoshida, Hidekazu [Nagoya Univ., Nagoya, Aichi (Japan); Ogata, Nobuhisa [Japan Atomic Energy Agency, Sector of Decommissioning and Radioactive Waste Management, Tono Geoscience Center, Mizunami, Gifu (Japan)

    2014-09-15

    This report is concerned with research to reconstruct more realistic near-field (NF) concept for the geological disposal. In previous year, we examined the realistic concept for near-field, including rock mass around the tunnel, particularly based on the nuclide migration scenario. The time-series change of the field was divided into five stages of 0 to IV through the process of geological disposal (Excavation, Operation and Post-closure). Then, at each respective stage, post-closure stage in particular; we examined interaction between environmental factors and exhaustive extraction of those factors affecting the near-field, focusing on each scale-time cross-section. Subsequently, we committee, presented tasks for the next fiscal year. This year, to reflect/develop the results obtained from above study, we tried to establish a realistic conceptual model of near-field focusing on, which is among the factors that have been extracted. In addition, Japan Atomic Energy Agency is planning to re-flood studies at the -500m Research Gallery, which leads to the verification of the matters as part of reconstructing practical near-field concept. The committee has conducted this plan and exchanging of views was held among the committee members. Comments on the chapter I from respective members are compiled in Appendix. In chapter II, we discussed and then summarized the 'Realistic conceptual model description of near field focusing on fault and fractures in crystalline rock' described in chapter I. In addition, since the 'Great East Japan Earthquake 2011', a paradigm shift for safety has dramatically changed. In the reconstruction of realistic near-field concept, it is necessary to analyze security matters are unacceptable by society, regarding geological disposal. In the committee, we also exchanged views on those matters and presented the future direction of research and development for geological disposal. (author)

  17. Technique treatment of early stage support construction system for Gaoling mountain tunnel engineering of Daya Bay nuclear power station

    International Nuclear Information System (INIS)

    Ma Keli

    2010-01-01

    This article studies the technical treatment of primary support system used in Gaoling mountain tunnel construction process at Daya by nuclear power plant in combination with the new austrian tunneling construction method, this article first analyzes the design of primary support system, and the key point of the analyses lies in the primary support technical treatment schemes of Gaoling mountain tunnel with the examples of tunnel collapse and primary support design alteration for bias voltage section, then the construction technology of the primary support system is summarized, and the safety of wall rock is analyzed as well with the measurement data. In the end, suggestions are put forward on the design and construction of primary support system for tunnels on the basis of practical working experience. (author)

  18. Injection sealing of the TASS tunnel. Progress report

    International Nuclear Information System (INIS)

    Funehag, Johan

    2008-12-01

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole distance

  19. The first tunnel section of the Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Lundin, T.K.; Laughton, C.; Nelson, P.P.

    1990-11-01

    The Superconducting Super Collider (SSC) project will be constructed for the United States Department of Energy at a competitively-selected site in Ellis County, Texas, about 30 mile (50 km) south of the central business district of Dallas. The injector system and main collider ring will be housed in 70 mile (110 km) of tunnel, and the project will include additional shafts and underground enclosures with clear spans up to 30 ft (10 m) at depths of more than 250 ft (75 m). The first tunnel segment to be designed and constructed will include approximately 5.9 mile (9.4 km) of 12 ft (3.7 m) finished internal diameter tunnel, four shafts up to 55 ft (16.8 m) diameter, and various connecting tunnels and adits. Construction will be in weak rock lithologies, including mudstones, marls, and chalks with compressive strengths typically between 300 and 2500 psi (2.0 and 17.2 MPa). Design is underway, with an expected bid date before the end of 1990, and with start of construction following in the spring of 1991. 7 refs., 8 figs., 1 tab

  20. Shear wave experiments at the US site at the Grimsel laboratory

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E. Jr.; Bluemling, P.; Sattel, G.

    1990-07-01

    As part of the United States Department of Energy (USDOE) cooperative project with the National Cooperative for the Storage of Radioactive Waste (Nagra) of Switzerland, there have been a series of studies carried out at the Nagra underground test facility at Grimsel. The Grimsel test facility is several 3.5 meter diameter tunnels excavated with a tunnel boring machine in the southern Swiss Alps. The rock type is granitic, although there is a large variation in the granitic fabric throughout the facility. The work described here was the first phase of a multiyear project to evaluate and develop seismic imaging techniques for fracture detection and characterization for the use in siting underground nuclear waste facilities. Data from a crosshole tomographic survey in the Underground Seismic (US) site at the Nagra Grimsel test facility in Switzerland and successfully reprocessed to enhance the S-wave arrivals. The results indicate that in a saturated granite Vp/Vs ratios approach 2.0 in the fractured rock. These results indicate that S-wave data would be very useful for fracture detection, especially in detecting thinner fractures

  1. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  2. Simulation of bearing capacity of bored piles

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed

    2018-01-01

    Full Text Available This study focuses on how one can possibly predict the ultimate load for the piles that did not reach failure. This challenge was acquired through Chin- Konder method by which, the estimated settlement that correspond to failure load is well defined. Hence, this research aims to make a comparative study between the results of pile load tests carried out in Al-Basrah sewage treatment plant project, and those results induced from the numerical analysis in term of ultimate pile capacity. Consequently, it may give a clear idea on the ability of numerical simulation in getting close to the actual behavior of piles. In the current study, a numerical study using Plaxis 3D Foundation program has been performed on bored piles by the assistance of site investigations of soil. Mohr- Coulomb and linear elastic models were adopted in the simulation for soil and pile respectively. Ten bored piles were used in this analysis under different values of loading. The diameter and length of pile are 0.6m and 24m respectively. The test results indicate that, an excellent agreement has been found as a response of pile capacity between the field and numerical studies. Also, ideal load- settlement curves were created using Chin- Konder method to predict the failure load of bored piles. Also, the results have demonstrated that, the pile capacity obtained from the simulation process is larger about 51% than that design load estimated before the design of piles. This may present a priority to use the finite element method to be accounted as an effective approach in the primary analysis.

  3. DECOVALEX-THMC Project. Task C. Excavation Damaged Zone (EDZ) in argillaceous rock at Tournemire site (France). Report of Task C1

    Energy Technology Data Exchange (ETDEWEB)

    Rejeb, A. (comp.) [Inst. of Radioprotection and Nuclear Safety (France); Stephansson, O. (comp.) [GeoForschungsZentrum-Potsdam (Germany); Millard, A. [CEA/IRSN (France); Ziefle, G.; Kohlmeier, M.; Massmann, J.; Zielke, W. [ISEB/BGR (Germany); Uehara, S.; Kobayashi, A.; Chijimatsu, M.; Fujita, T. [KU/JAEA (Japan)

    2007-02-15

    rocks and in particular the stress field, mechanical properties and hydraulic properties. Thereafter, the EDZ characterization from geological mapping and permeability measurements are presented. The EDZ in the 100 years old tunnel drilled manually and with its reinforcement of limestone blocks is very different from the EDZ observed in drifts excavated with road-headers 3 and 10 years ago. Numerical models have to be developed to predict the extent of the EDZ around the tunnel. The CEA/IRSN team contribution to Task C1 concerns three calculations: a pure mechanical calculation, a coupled hydro-mechanical calculation with saturated rock, and coupled hydro-mechanical calculation with unsaturated rock. The EDZ around the tunnel has been estimated on the basis of a post-processing of the stress calculations, using Mohr-Coulomb failure criterion. These calculations were performed by using the CEA finite element code CASTEM, which can simulate fully coupled THM processes. All the results from the calculations show that an EDZ around the tunnel can only be predicted if we consider mechanical rock properties lower than those measured in laboratory. However, none of the predictions provided the shape and the real extent of the observed EDZ in the tunnel. The evaluation of the EDZ by a simple post-processing technique does not account for the irreversible effect of damage on the mechanical as well as hydraulic behaviour of the argillite. The ISEB/BGR team performed the simulations by using the finite element code Rock Flow. The team simulated three cases where the influence of capillary pressure shows that a change of saturation at the boundary of the tunnel influences an area around the tunnel with time. In the near field of the tunnel, the effect of seasonal fluctuation is high. This result is influenced by the boundary conditions, the permeability and the relation between the capillary pressure and the saturation. Case 2 incorporates the swelling or shrinking of the argillite

  4. Evolution Characteristic Analysis of Pressure-arch of a Double-arch Tunnel in Water-rich Strata

    Directory of Open Access Journals (Sweden)

    C. L. Li

    2016-03-01

    Full Text Available It is of importance to analyze the morphological characterization, the evolution process and the skewed effect of pressure-arch of a double-arch tunnel in the water-rich strata. Taking a buried depth 80 m double-arch tunnel as an example, a computational model of the double-arch tunnel was built by using FLAC3D technique. Then considering some aspects including groundwater conditions, tunnel depth, construction sequences and permeability coefficients, the coupling effect of stress field and seepage field in the pressure-arch of the double-arch tunnel was analyzed. The results show that the thickness of the pressure-arch induced by step-by-step excavation and display a step-descent skewed distribution from the left to the right of the double-arch tunnel. The permeability coefficient has a significant influence on the shape and the skewed effect of the pressure arch. The excavation of the bench method has a better arching condition than that of the expanding method. The abtained results provide a basic reference for the rock reinforcement design and safety construction of double-arch tunnels in the water-rich strata.

  5. Outcome of the geological mapping of the ONKALO underground research facility access tunnel, chainage 1980-3116

    International Nuclear Information System (INIS)

    Nordbaeck, N.

    2010-06-01

    This report describes the lithology and geological structures of the ONKALO underground rock characterization facility access tunnel in chainage 1980-3116. This part of the tunnel was excavated and mapped from spring 2007 to autumn 2008. The bedrock is very heterogeneous and mainly composed of veined gneiss and diatexitic gneiss, but many felsic dykes and sections of pegmatitic granite also occur. In addition, small sections of mica gneiss and K-feldspar porphyry are present. There are also numerous inclusions of mica gneiss, quartz gneiss and skarn. The foliation dips moderately towards SE. 14 fold axes and axial planes were measured from the ONKALO tunnel in chainage 1980-3116 and all have been interpreted to belong to deformation phase D 3 . The measured fold axes have various orientations, but most have moderate plunges and ENE- or WSW-trending ones dominate. The axial planes typically dip moderately towards SE. An almost vertical lineation was also measured from mica gneiss on two locations. A total of 7668 fractures were measured. Three main fracture sets were distinguished from the measured orientations: set 1 fractures are vertical and strike approximately NS, set 2 fractures are more or less horizontal and set 3 fractures are vertical and ENEWSW- striking. The most common filling minerals are calcite, pyrite, chlorite, kaolinite, epidote, muscovite, quartz, biotite, and illite. Of the measured fractures, 579 were slickensided. The slickensided fractures are mainly either sub-vertical N-S-trending (set 1) or sub-vertical NE-SW-trending, with dip to SE. Slickenside surfaces show N-S- and NE-SW-trending lineations, with shallow dip. The slickensided fractures are mostly strike-slip faults with both sinistral and dextral sense of movement. The chainage 1980- 3116 contains 170 tunnel-crosscutting fractures. The orientation is mostly vertical N-Sstriking, sub-horizontal or vertical E-W- trending. 27 deformation zone intersections were also observed, 23 brittle

  6. Thermal condition of open KBS.3H tunnel

    International Nuclear Information System (INIS)

    Ikonen, Kari

    2008-12-01

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  7. Thermal condition of open KBS.3H tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, Kari (VTT Processes (Finland))

    2008-12-15

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  8. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy

    International Nuclear Information System (INIS)

    Tokuda, Junichi; Tuncali, Kemal; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Fennessy, Fiona M; Tempany, Clare M; Hata, Nobuhiko; Iordachita, Iulian; Lasso, Andras

    2012-01-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 T MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with a Z-frame that gives a physician access to the perineum of the patient at the imaging position and allows the physician to perform MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right–left (RP) and anterior–posterior (AP) axes were 1.1 ± 0.8 and 1.4 ± 1.1 mm, respectively, while the rotational errors around the RL, AP and superior–inferior axes were (0.8 ± 1.0)°, (1.7 ± 1.6)° and (0.0 ± 0.0)°, respectively. The 2D root-mean-square (RMS) needle-placement error was 3 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle-placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop setup and software, which supports manual needle placement without moving the patient out of the magnet. (paper)

  9. Evaluation of an advanced rotor bore examination system

    International Nuclear Information System (INIS)

    Alford, J.W.

    1990-01-01

    Evaluations of in-service turbine-generator rotor forgings are often based on an ultrasonic examination of the near-bore region. A portable rotor bore examination system has been developed that provides discontinuity characterization required for a thorough rotor evaluation. This automated system, its procedures and operations personnel have now been qualified for full-scale field application. System development has benefited from merging several technologies with new methods for precise alignment of the drive unit, calibration block and rotor. The system runs a custom interactive software package that allows for flexible calibration and motion control as well as data acquisition and manipulation. A comprehensive evaluation procedure was developed for system qualification using test specimens with natural and artificial reflectors, including a unique fatigue-crack block. Following a discussion of the system features, this paper discusses the system evaluation based on this procedure

  10. Large Bore Powder Gun Qualification (U)

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  11. Study on crystalline rock for evaluating method of long-term behavior. FY2012 (Contract research)

    International Nuclear Information System (INIS)

    Fukui, Katsunori; Hashiba, Kimihiro; Tanno, Takeo; Hikima, Ryoichi; Sanada, Hiroyuki; Sato, Toshinori

    2013-12-01

    Rock shows time-dependent behavior such as creep/relaxation. With respect to high-level radioactive waste disposal, knowledge of the long-term mechanical stability of shafts and galleries excavated in rock are required, over a period of thousands of years after closure as well as during construction and operation. Therefore, it is very important to understand the time-dependent behavior of rock for evaluating long-term mechanical stability. The purpose of this study is to determine the mechanisms of time-dependent behavior of rock by the precise test (e.g. laboratory creep test), observation and measurement and to develop methods for evaluating long-term mechanical stability. In previous works, testing techniques were established and basic evaluation methods were developed. Recently, some parameters, which required for simulation of time-dependent behavior, were determined for the modeling of biotite granite (Toki granite) distributed around the Mizunami underground research laboratory. However, we were not able to obtain enough data to assess the reliability of the method to evaluate these parameters. This report describes the results of the research activities carried out in fiscal year 2012. In Chapter 1, we provide background and an overview of this study. In Chapter 2, the results of a long-term creep test on Tage tuff, started in fiscal year 1997, are described. In Chapter 3, the experimental results concerning the loading-rate dependency of rock strength were examined to understand the time-dependent behavior of rock. In Chapter 4, the stability of tunnels, under conditions which rock stress is larger than that around a circular tunnel, were examined to obtain useful information on the future plan for in-situ tests in the underground research laboratory. (author)

  12. Aespoe hard rock laboratory. Annual report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The Aespoe hard rock laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual report 1992 for the Aespoe hard rock laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are being carried out in parallel. December 1992 1925 m of the tunnel has been excavated to a depth of 255 m below surface. An important and integrated part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. This work is carried out in cooperation with seven organizations from six countries that participate in the project. (25 refs.)

  13. Simulation of Single Reed Instruments Oscillations Based on Modal Decomposition of Bore and Reed Dynamics

    OpenAIRE

    Silva, Fabrice; Debut, Vincent; Kergomard, Jean; Vergez, Christophe; Deblevid, Aude; Guillemain, Philippe

    2007-01-01

    This paper investigates the sound production in a system made of a bore coupled with a reed valve. Extending previous work (Debut, 2004), the input impedance of the bore is projected on the modes of the air column. The acoustic pressure is therefore calculated as the sum of modal components. The airrrflow blown into the bore is modulated by reed motion, assuming the reed to be a single degree of freedom oscillator. Calculation of self-sustained oscillations controlled by time-varyi...

  14. Investigation on the Vibration Effect of Shock Wave in Rock Burst by In Situ Microseismic Monitoring

    Directory of Open Access Journals (Sweden)

    Mingshi Gao

    2018-01-01

    Full Text Available Rock burst is a physical explosion associated with enormous damage at a short time. Due to the complicity of mechanics of rock burst in coal mine roadway, the direct use of traditional investigation method applied in tunnel is inappropriate since the components of surrounding rock are much more complex in underground than that of tunnel. In addition, the reliability of the results obtained through these methods (i.e., physical simulation, theoretical analysis, and monitoring in filed application is still not certain with complex geological conditions. Against this background, present experimental study was first ever conducted at initial site to evaluate the effect of shock wave during the rock burst. TDS-6 microseismic monitoring system was set up in situ to evaluate the propagation of shock wave resulting in microexplosions of roadway surrounding rock. Various parameters including the distance of epicentre and the characteristic of response have been investigated. Detailed test results revealed that (1 the shock wave attenuated exponentially with the increase of the distance to seismic source according to the equation of E=E0e-ηl; particularly, the amplitude decreased significantly after being 20 m apart from explosive resource and then became very weak after being 30 m apart from the seismic source; (2 the response mechanics are characteristic with large scatter based on the real location of surrounding rock despite being at the same section. That is, the surrounding rock of floor experienced serious damage, followed by ribs, the roof, and the humeral angles. This in situ experimental study also demonstrated that microseismic monitoring system can be effectively used in rock burst through careful setup and data investigation. The proposed in situ monitoring method has provided a new way to predict rock burst due to its simple instalment procedure associated with direct and reasonable experimental results.

  15. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Thermal-cycle testing of the G-tunnel heated block

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Wilson, M.L.; Board, M.P.; Hall, M.E.; Schuch, R.L.

    1985-01-01

    Volcanic tuffs are being considered by the Department of Energy (DOE) as a medium for disposal of high-level radioactive wastes. The Nevada Nuclear Waste Storage Investigations (NNWSI) Project was established in 1977 to evaluate such disposal in geologic formations on or adjacent to the Nevada Test Site (NTS). Sandia National Laboratories (SNL), as one of the NNWSI project participants, is responsible for the rock mechanics program to support the design of underground portions of a radioactive-waste repository in tuff. A rock mechanics field testing program is underway in G-Tunnel in Rainier Mesa on the NTS, where tuffs similar to those at Yucca Mountain, the potential candidate site, are found; later experiments are planned as part of the exploratory shaft investigations in Yucca Mountain. Science Applications International Corporation has been under contract to SNL to prepare and install instrumentation and control systems and to aid in the evaluation of the heated-block rock mechanics experiment

  17. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  18. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2008-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing

  19. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  20. Application of unconventional geoelectrical methods to the hydrogeological examination of the Mt. S. Croce rock formations (Umbria, Italy involved in a railway tunnel project

    Directory of Open Access Journals (Sweden)

    D. Patella

    1994-06-01

    Full Text Available he project of doubling and developing of the railway line Orte-Falconara, committed by the Italian State Railway Company to the COMAVI Consortium (Rome, Italy, envisaged building the Mt. S. Croce tunnel, about 3200 m long between the stations of Narni and Nera Montoro (Umbria, ltaly. During the last phase of the feasibility project, a geophysical research based on geoelectrical prospecting methods was carried out to complement other geognostic investigations with the following goals: a to outline the complex geotectonic model of the rock system, which will be affected by the new railway layout; b to gain information on the hydrogeologic features of the survey area, in relation to the existing geologic situation and the consequent effects on the digging conditions of the tunnel and on the operation conditions of the railway layout. The geophysical work was thus organized according to the following scheme: a execution of dipole electrical sounding pro-files, to depict a series of significant tomographic pseudosections, both across and along the new railway layout; b execution of self-potential measurements, to draw an anomaly map over the whole hydrogeological network system in the survey area. The research provided information which has helped to improve the geological-structural model of the area and disclosed the hydrogelogic network, conforming to the classified field surface manifestations. At present, further detailed field investigations are being carried out, which confirm all the results obtained by the geoelectrical survey.