WorldWideScience

Sample records for rock strength values

  1. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  2. Research of compression strength of fissured rock mass

    Directory of Open Access Journals (Sweden)

    А. Г. Протосеня

    2017-03-01

    Full Text Available The article examines a method of forecasting strength properties and their scale effect in fissured rock mass using computational modelling with final elements method in ABAQUS software. It shows advantages of this approach for solving tasks of determining mechanical properties of fissured rock mass, main stages of creating computational geomechanic model of rock mass and conducting a numerical experiment. The article presents connections between deformation during loading of numerical model, inclination angle of main fracture system from uniaxial and biaxial compression strength value, size of the sample of fissured rock mass and biaxial compression strength value under conditions of apatite-nepheline rock deposit at Plateau Rasvumchorr OAO «Apatit» in Kirovsky region of Murmanskaya oblast. We have conducted computational modelling of rock mass blocks testing in discontinuities based on real experiment using non-linear shear strength criterion of Barton – Bandis and compared results of computational experiments with data from field studies and laboratory tests. The calculation results have a high-quality match to laboratory results when testing fissured rock mass samples.

  3. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  4. Relative scale and the strength and deformability of rock masses

    Science.gov (United States)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  5. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-11-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  6. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-01-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  7. Detection of rock strength at Branisko massif

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2000-09-01

    Full Text Available When monitoring and optimizing the driving proces of the exploratory gallery by a computer system, conditions for verification of the interaction between desintegrating head of driving machine and rock massif were created. One of the output values of this mathematical model is the model strength at a simple pressure ótlH, which is defined as a pressure at the discus and the massif contact during the desintigration (a near limit of massif strength. By geological and geological engineering exploration, the section of length 2340 m was divided into fourty-two geological sections and five quasi-homogeneous massif enviroments. In the article, results of scleroscopic strength óCI , the strength in a simple pressure determined from the point load test and the strength at simple pressure ótlH are confronted . The main advance of the electronic geomechanical monitoring is the density of gained information. The two-seconds sample period of input and output data during the driving process makes it possible to describe driving circumstances in an almost continual way for each millimeter of the built tunnel. Then the information about changes of disintegrated rock properties, have the same density (frequency. By comparing a quantity of data gained by examining the index of point strength, scleroscopic strength and the model strength in a simple pressure from the monitoring process of driving process it is obvious that during the driving of exploratory gallery of motorway tunnel Branisko, a proportion of data number from the three “type examinations” of strength was reached and it was approximately 1:7:5000. Approximately in the same proportion, there were determined values for the 42 geologic sections (I. – XLII., which were defined in detail by the geologic, engineering geologic, hydrogeologic and geotechnic research.. The presented quantity values of presented rock mass strength for each geologic section are presented by their arithmetic average

  8. Strength Assessment of Broken Rock Postgrouting Reinforcement Based on Initial Broken Rock Quality and Grouting Quality

    Directory of Open Access Journals (Sweden)

    Hongfa Xu

    2017-01-01

    Full Text Available To estimate postgrouting rock mass strength growth is important for engineering design. In this paper, using self-developed indoor pressure-grouting devices, 19 groups of test cubic blocks were made of the different water cement ratio grouting into the broken rock of three kinds of particle sizes. The shear strength parameters of each group under different conditions were tested. Then this paper presents a quantitative calculation method for predicting the strength growth of grouted broken rock. Relational equations were developed to investigate the relationship between the growth rates of uniaxial compressive strength (UCS, absolute value of uniaxial tensile strength (AUTS, internal friction angle, and cohesion for post- to pregrouting broken rock based on Mohr-Coulomb strength criterion. From previous test data, the empirical equation between the growth rate of UCS and the ratio of the initial rock mass UCS to the grout concretion UCS has been determined. The equations of the growth rates of the internal friction coefficient and UCS for grouting broken rock with rock mass rating (RMR and its increment have been established. The calculated results are consistent with the experimental results. These observations are important for engineered design of grouting reinforcement for broken rock mass.

  9. Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2017-02-01

    Full Text Available Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks. Here we examine dynamic tensile strength values of Laurentian granite (LG measured from three methods: dynamic direct tension, dynamic Brazilian disc (BD test, and dynamic semi-circular bending (SCB. We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.

  10. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  11. The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia

    Science.gov (United States)

    Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli

    2018-04-01

    The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.

  12. Applicability of geomechanical classifications for estimation of strength properties in Brazilian rock masses.

    Science.gov (United States)

    Santos, Tatiana B; Lana, Milene S; Santos, Allan E M; Silveira, Larissa R C

    2017-01-01

    Many authors have been proposed several correlation equations between geomechanical classifications and strength parameters. However, these correlation equations have been based in rock masses with different characteristics when compared to Brazilian rock masses. This paper aims to study the applicability of the geomechanical classifications to obtain strength parameters of three Brazilian rock masses. Four classification systems have been used; the Rock Mass Rating (RMR), the Rock Mass Quality (Q), the Geological Strength Index (GSI) and the Rock Mass Index (RMi). A strong rock mass and two soft rock masses with different degrees of weathering located in the cities of Ouro Preto and Mariana, Brazil; were selected for the study. Correlation equations were used to estimate the strength properties of these rock masses. However, such correlations do not always provide compatible results with the rock mass behavior. For the calibration of the strength values obtained through the use of classification systems, ​​stability analyses of failures in these rock masses have been done. After calibration of these parameters, the applicability of the various correlation equations found in the literature have been discussed. According to the results presented in this paper, some of these equations are not suitable for the studied rock masses.

  13. A Copula-Based Method for Estimating Shear Strength Parameters of Rock Mass

    Directory of Open Access Journals (Sweden)

    Da Huang

    2014-01-01

    Full Text Available The shear strength parameters (i.e., the internal friction coefficient f and cohesion c are very important in rock engineering, especially for the stability analysis and reinforcement design of slopes and underground caverns. In this paper, a probabilistic method, Copula-based method, is proposed for estimating the shear strength parameters of rock mass. The optimal Copula functions between rock mass quality Q and f, Q and c for the marbles are established based on the correlation analyses of the results of 12 sets of in situ tests in the exploration adits of Jinping I-Stage Hydropower Station. Although the Copula functions are derived from the in situ tests for the marbles, they can be extended to be applied to other types of rock mass with similar geological and mechanical properties. For another 9 sets of in situ tests as an extensional application, by comparison with the results from Hoek-Brown criterion, the estimated values of f and c from the Copula-based method achieve better accuracy. Therefore, the proposed Copula-based method is an effective tool in estimating rock strength parameters.

  14. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions

    Science.gov (United States)

    Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao

    2018-02-01

    Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.

  15. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  16. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  17. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  18. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    Science.gov (United States)

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  19. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  20. A state-of-the-art anisotropic rock deformation model incorporating the development of mobilised shear strength

    Science.gov (United States)

    Noor, M. J. Md; Jobli, A. F.

    2018-04-01

    Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.

  1. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  2. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling

    2016-01-01

    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  3. Effect of blasting on the strength of a rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Muller, L

    1964-01-01

    Although the fact that blasting concussions tend to loosen a rock mass has always been known, the enormous reduction in strength associated with such loosening is not generally recognized. Recent investigations of the effect of blasting on a rock mass have shown that even slight loosening may markedly reduce the strength. This factor introduces a new slant on modern blasting methods, some of which will have to be considered more critically. The sensitivity of the mass to impacts depends on stress concentrations at the end of joints (Kerbspannungen) and on tensile stresses developed in the immediate vicinity of a joint, even in regions where the field stresses are not tensile. Thus, the sensitivity depends on the shape and orientation of the joints and particularly on the degree of separation of the individual joint families. The orientation of the joint families to the strains produced by blasting is just as important as the reduction in overall strength arising from the drop in friction due to the effects of the ''knocking out'' process (Foppl) on the joint body complex. Concussions may critically increase the degree of separation of the joint network thus reducing the tensile and shear strengths of the rock mass. (19 refs.)

  4. Effect of blasting on the strength of a rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Muller, L.

    1964-01-01

    Although the fact that blasting concussions tend to loosen a rock mass has always been known, the enormous reduction in strength associated with such loosening is not generally recognized. Recent investigations of the effect of blasting on a rock mass have shown that even slight loosening may markedly reduce the strength. This factor introduces a new slant on modern blasting methods, some of which will have to be considered more critically. The sensitivity of the mass to impacts depends on stress concentrations at the end of joints (Kerbspannungen) and on tensile stresses developed in the immediate vicinity of a joint, even in regions where the field stresses are not tensile. Thus, the sensitivity depends on the shape and orientation of the joints and particularly on the degree of separation of the individual joint families. The orientation of the joint families to the strains produced by blasting is just as important as the reduction in overall strength arising from the drop in friction due to the effects of the ''knocking out'' process (Foppl) on the joint body complex. Concussions may critically increase the degree of separation of the joint network thus reducing the tensile and shear strengths of the rock mass. (19 refs.)

  5. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    Science.gov (United States)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  6. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    Science.gov (United States)

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P values than the Baseline hydraulic dynamometer (P values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used, assessment posture, and elbow position. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  7. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  8. Evaluation of the Impact of Hydrostatic Pressure and Lode Angle on the Strength of the Rock Mass Based on the Hoek–Brown Criterion

    Directory of Open Access Journals (Sweden)

    Marczak Halina

    2015-06-01

    Full Text Available Determination of the global uniaxial compressive strength of rock mass on the basis of the Hoek-Brown failure criterion requires knowledge of the strength parameters: cohesion and the angle of internal friction. In the conventional method for the determination of these parameters given by Balmer, they are expressed by the minimum principal stress. Thus, this method does not allow for the assessment of an impact of hydrostatic pressure and stress path on the value of cohesion, friction angle and global uniaxial compression of rock mass. This problem can be eliminated by using the Hoek-Brown criterion expressed by the invariants of the stress state. The influence of hydrostatic pressure and the Lode angle on the strength parameters of the rock mass was analysed.

  9. Application of Geostatistical Modelling to Study the Exploration Adequacy of Uniaxial Compressive Strength of Intact Rock alongthe Behesht-Abad Tunnel Route

    Directory of Open Access Journals (Sweden)

    Mohammad Doustmohammadi

    2014-12-01

    Full Text Available Uniaxial compressive strength (UCS is one of the most significant factors on the stability of underground excavation projects. Most of the time, this factor can be obtained by exploratory boreholes evaluation. Due to the large distance between exploratory boreholes in the majority of geotechnical projects, the application of geostatistical methods has increased as an estimator of rock mass properties. The present paper ties the estimation of UCS values of intact rock to the distance between boreholes of the Behesht-Abad tunnel in central Iran, using SGEMS geostatistical program. Variography showed that UCS estimation of intact rock using geostatistical methods is reasonable. The model establishment and validation was done after assessment that the model was trustworthy. Cross validation proved the high accuracy (98% and reliability of the model to estimate uniaxial compressive strength. The UCS values were then estimated along the tunnel axis. Moreover, using geostatistical estimation led to better identification of the pros and cons of geotechnical explorations in each location of tunnel route.

  10. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

    Science.gov (United States)

    Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo

    2018-05-01

    The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

  11. A study on the strength properties of the rock mass based on triaxial tests conducted at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Ishii, Eiichi; Fujita, Tomoo; Kondo, Keiji; Tsusaka, Kimikazu

    2015-03-01

    Japan Atomic Energy Agency (JAEA) has been conducting R and D activities at the off-site URL at Horonobe, Hokkaido, Japan in order to enhance reliability of technology related to deep geological disposal of HLW in sedimentary rocks. In this report, strength properties (cohesion and frictional angle) of rock masses in the Koetoi and Wakkanai formations are investigated on the basis of triaxial tests conducted in the Horonobe URL considering the relative depths to the formation. Strength properties investigated in this report are compared with the properties obtained in the designing phase. The cohesion in the Koetoi Formation increased with increasing depth. On the other hand, in the transition zone of the Wakkanai Formation, the cohesion increased significantly in the shallow Wakkanai formation (transition zone). Below the transition zone, the cohesion does not significantly depend on the depth. Thus the strength properties between two formations were found to be different. Comparing the cohesions and frictional angles determined from triaxial tests with the values determined in the designing phase, there was no agreement between these values in almost all the depth. Thus it is essential to determine cohesion and frictional angle considering the relative depths to the formation for detailed understanding of strength properties of rock mass. A CD-ROM is attached as an appendix. (J.P.N.)

  12. Rock Strength Anisotropy in High Stress Conditions: A Case Study for Application to Shaft Stability Assessments

    Directory of Open Access Journals (Sweden)

    Watson Julian Matthew

    2015-03-01

    Full Text Available Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM, which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.

  13. The variability and controls of rock strength along rocky coasts of central Spitsbergen, High Arctic

    Science.gov (United States)

    Strzelecki, Mateusz Czesław

    2017-09-01

    This paper presents the results of the Schmidt Hammer Rock Tests (SHRTs) across a range of rocky coastal landforms. Northern Billefjorden (central Spitsbergen), represents typical High Arctic microtidal fjord environment. Sheltered location and prolonged sea-ice conditions limit wave action. Coastal cliffs, shore platforms and skerries are developed in various rock types including limestone, sandstone, anhydrite/gypsum, dolomite and metamorphic outcrops. SHRT demonstrated a broad variety of relationships between rock strength and distance from shoreline, presence of sediment cover, distribution of snow patches and icefoot, and accumulations of seaweed and driftwood. In general, rock cliff surfaces were the most resistant in their lower and middle zones, that are thermally insulated by thick winter snowdrifts. More exposed cliff tops were fractured and weathered. The differences in rock strength observed along the shore platforms were highly dependent on thickness of sediment cover and shoreline configuration promoting stronger rock surfaces in areas exposed to the longest wave fetch and washed from gravel deposits. Rock strength of skerry islands is influenced by tidal action controlling the duration of tide inundation and movement of sea-ice scratching boulder surfaces. The results presented in this paper emphasize the richness of rock coast geomorphology and processes operating in High Arctic settings.

  14. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  15. Effective diffusion coefficients and porosity values for argillaceous rocks and bentonite: measured and estimated values for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Van Loon, L.R.

    2014-11-01

    In Stage 2 of the Sectoral Plan for Deep Geological Repositories, safety analyses have to be performed. Geochemical parameters describing the transport and retardation of radionuclides in the argillaceous rocks considered and in compacted bentonite are required. In the present report, diffusion parameters for all clay host rocks, confining units and compacted bentonite are derived. Diffusion of tritiated water (HTO), "3"6Cl"- and "2"2Na"+ was studied. The measurements gave values for effective diffusion coefficients (D_e) and diffusion accessible porosities. The general observed trend "N"aD_e > "H"T"OD_e > "C"lD_e is in agreement with the expected behaviour of the three species in clay materials: ion exchanging cations show an enhanced mobility due to surface diffusion effects and anions are slowed down due to anion exclusion. Due to the negatively charged clay surfaces, anionic species are repelled from these surfaces resulting in an accessible porosity that is smaller than the total porosity as measured with HTO. The effect of porewater composition on the diffusion of HTO, "3"6Cl"- and "2"2Na"+ in Opalinus Clay was investigated. For ionic strength (IS) values between 0.17 M and 1.07 M, no significant effect on D_e could be observed. In the case of "3"6Cl"-, no effect on the accessible porosity was observed. The anion diffusion accessible porosity equals 50-60 % of the total porosity, independent on the ionic strength of the porewater. The diffusion parameters were measured on sedimentary rocks such as chalk, clay and limestone rocks. All data could be described by one single modified version of Archie's relation (extended Archie's relation). For values of porosity greater than about 0.1, the classical Archie's relation was valid. For values smaller than 0.1, the data deviated from the classical Archie's relation; this can be explained by additional changes of tortuosity with porosity values. At high porosity values (low density rocks), the microfabric of the clay

  16. Healing of shear strength and its time dependency in a single rock fracture

    International Nuclear Information System (INIS)

    Kawaguchi, Yuta; Nakashima, Shinichiro; Yasuhara, Hideaki; Kishida, Kiyoshi

    2011-01-01

    Evolution of the long-term mechanical, hydraulic, and transport characteristics of rock fractures should be, in advance, predicted in considering an issue on entombment of energy byproducts of high level radioactive wastes. Under stressed and temperature conditions, those behaviors of the rock fractures of interest may be evolved in time and space likely due to the change in topographical aperture distributions. This irreversible process may be induced by pure mechanical and/or chemo-mechanical creeps such as water-rock reactions like stress corrosion and pressure solution, and chemical effects including mineral dissolution and reprecipitation in the free-walls of fractures. Specifically, the chemo-mechanical processes active at the contacting asperities within rock fractures may exert a significant influence on the mechanical, hydraulic, and transport behaviors throughout a long period, and thus, should be vigorously examined theoretically and experimentally. This paper presents the slide-hold-slide shear test results for fully saturated, single-jointed mortar specimens so as to investigate the effects of load holding on mechanical properties of rock joints. From the test results, it was confirmed that shear strength increased for mortar specimens in both short and long time holding cases. However, the evolution of shear strength recovery in two cases is different. This is because a dominant factor of shear strength recovery during the short time holding may be attributed to a pure mechanical process like creep deformation at contacting asperities, while the one during long time holding is affected by both mechanical and chemical processes like pressure solution. Moreover, to reproduce the shear strength recovery during short time holding we develop a direct shear model by including temporal variation of dilation during holding. The model predictions are in relatively good agreement with the test measurements. (author)

  17. New true-triaxial rock strength criteria considering intrinsic material characteristics

    Science.gov (United States)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian

  18. BEM-DDM modelling of rock damage and its implications on rock laboratory strength and in-situ stresses

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2008-03-01

    Within the framework of JAEA's Research and Development on deep geological environments for assessing the safety and reliability of the disposal technology for nuclear waste, this study was conducted to determine the effects of sample damage on the strength obtained from laboratory results (uniaxial compression and Brazilian test). Results of testing on samples of Toki granite taken at Shobasama and at the construction site for the Mizunami Underground Research Laboratory (MIU) at Mizunami, Gifu Pref., Japan, were analysed. Some spatial variation of the results along the boreholes suggested the presence of a correlation between the laboratory strength and the in-situ stresses measured by means of the hydro-fracturing method. To confirm this, numerical analyses of the drilling process in brittle rock by means of a BEM-DDM program (FRACOD 2D ) were carried out to study the induced fracture patterns. These fracture patterns were compared with similar results reported by other published studies and were found to be realistic. The correlation between strength and in-situ stresses could then be exploited to estimate the stresses and the location of core discing observed in boreholes where stress measurements were not available. A correction of the laboratory strength results was also proposed to take into account sample damage during drilling. Modelling of Brazilian tests shows that the calculated fracture patterns determine the strength of the models. This is different from the common assumption that failure occurs when the uniform tensile stress in the sample reaches the tensile strength of the rock material. Based on the modelling results, new Brazilian tests were carried out on samples from borehole MIZ-1 that confirmed the failure mechanism numerically observed. A numerical study of the fracture patterns induced by removal of the overburden on a large scale produces fracture patterns and stress distributions corresponding to observations in crystalline hard rock in

  19. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    Science.gov (United States)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  20. Evaluation of Relationships between Drilling Rate Index and Physical and Strength Properties of Selected Rock Units of Pakistan

    International Nuclear Information System (INIS)

    Shafique, U.; Abu Bakar, M. Z.

    2015-01-01

    Fifteen selected rock types collected from different formations of Pakistan were subjected to Drilling Rate Index (DRI) tests and various physical and strength properties tests including, porosity (n), density, primary wave velocity (V/sub p/), uniaxial compressive strength (sigma/sub c/), Brazilian tensile strength (sigma/sub t/) and Schmidt hammer rebound number (R/sub n/),. Prior knowledge of the drill ability of rocks and their physico-mechanical properties plays a decisive role in planning and design of rock drilling and excavation processes. DRI tests developed by NTNU/SINTEF are in use by the industry since 1960s and have proved very successful in estimation of the boreability of rocks, but no such work has been reported for Pakistani rocks to date. Reasonable correlations were found between the DRI and the properties of the tested rocks. The trends shown in this paper are of interest for the machine manufacturers and operators working on various projects involving the use of drilling machines and other mechanical excavators. (author)

  1. Current status of the quantification of roughness and the peak shear strength criteria for rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Kang, Chul Hyung

    1999-04-01

    In order to understand the effects of spent nuclear fuel on the hydraulic behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulic properties of the fractures. The roughness of a fracture surface govern the dilation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics. Joint roughness is an important factor in the shear resistance of a joint. The joint shear strength shows anisotropic properties due to roughness variation with the shearing direction in direct shear tests. Various shear strength criteria are described in this report. (author)

  2. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  3. Statistical fracture mechanics approach to the strength of brittle rock

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1981-06-01

    Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models

  4. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  5. Mechanical properties of granitic rocks from Gideaa, Sweden

    International Nuclear Information System (INIS)

    Ljunggren, C.; Stephansson, O.; Alm, O.; Hakami, H.; Mattila, U.

    1985-10-01

    The elastic and mechanical properties were determined for two rock types from the Gideaa study area. Gideaa is located approximately 30 km north-east of Oernskoeldsvik, Northern Sweden. The rock types that were tested were migmatitic gneiss and migmatitic granite. The following tests were conducted: - sound velocity measurements; - uniaxial compression tests with acoustic emission recording; - brazilian disc tests; - triaxial tests; - three point bending tests. All together, 12 rock samples were tested with each test method. Six samples of these were migmatic gneiss and six samples were migmatitic granite. The result shows that the migmatitic gneiss has varying strength properties with low compressive strength in comparison with its high tensile strength. The migmatitic granite, on the other hand, is found to have parameter values similar to other granitic rocks. With 15 refs. (Author)

  6. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    Science.gov (United States)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  7. Estimating RMR Values for Underground Excavations in a Rock Mass

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2018-02-01

    Full Text Available During underground excavations for civil or mining engineering purposes, the variations in rock mass quality are important, especially for the design of the most suitable support to be applied to ensure stability. The aim of this investigation is to model the expected behavior of the ground, and thus to predict the scenarios indicating potential variations in the quality of the rock mass during underground excavation. When considering the rock mass rating (RMR values observed at the excavation face in six study cases, which together total more than 27 km in length of underground excavation by drilling and blasting (D&B, and based on the observed RMR values at the face, the most probable value (1–100 is estimate for the RMR index at the five subsequent front advances. It is concluded that, up to about 20 m ahead of the current face, the quality of the rock mass for the next advances is close to the quality observed at the present face, and that, with increasing distance, there is a greater deviation of RMR values with respect to the quality observed at the current face.

  8. A sampling study on rock properties affecting drilling rate index (DRI)

    Science.gov (United States)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  9. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  10. Crack propagation from a filled flaw in rocks considering the infill influences

    Science.gov (United States)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  11. A review of shear strength models for rock joints subjected to constant normal stiffness

    Directory of Open Access Journals (Sweden)

    Sivanathan Thirukumaran

    2016-06-01

    Full Text Available The typical shear behaviour of rough joints has been studied under constant normal load/stress (CNL boundary conditions, but recent studies have shown that this boundary condition may not replicate true practical situations. Constant normal stiffness (CNS is more appropriate to describe the stress–strain response of field joints since the CNS boundary condition is more realistic than CNL. The practical implications of CNS are movements of unstable blocks in the roof or walls of an underground excavation, reinforced rock wedges sliding in a rock slope or foundation, and the vertical movement of rock-socketed concrete piles. In this paper, the highlights and limitations of the existing models used to predict the shear strength/behaviour of joints under CNS conditions are discussed in depth.

  12. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  13. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    Science.gov (United States)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  14. Application of Ga-Al discrimination plots in identification of high strength granitic host rocks for deep geological repository of high level radioactive waste

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.; Trivedi, R.K.; Purohit, M.K.

    2010-01-01

    The permanent disposal of vitrified high level wastes and in some cases even spent fuel, is being planned in specifically designed and built deep geological repository located in the depth range of 500-600m in appropriate host rock at carefully selected sites. Such facilities are expected to provide very long term isolation and confinement to the disposed waste by means of long term mechanical stability of such structures that results from very high strength and homogeneity of the chosen rock, geochemical compatible environment around the disposed waste and general lack of groundwater. In Indian geological repository development programme, granites have been selected as target host rock and large scale characterization studies have been undertaken to develop database of mineralogy, petrology, geochemistry and rock mechanical characteristics. The paper proposes a new approach for demarcation of high strength homogeneous granite rocks from within an area of about 100 square kilometres wherein a cocktail of granites of different origins with varying rock mass characteristics co exists. The study area is characterised by the presence of A, S and I type granites toughly intermixed. The S type granites are derived from sedimentary parent material and therefore carry relics of parent fabric and at times undigested material with resultant reduction in their strength and increased inhomogeneity. On the other hand I type varieties are derived from igneous parents and are more homogeneous with sufficient strength. The A type granites are emplaced as molten mass in a complete non-tectonic setting with resultant homogeneous compositions, absence of tectonic fabric and very high strength. Besides they are silica rich with less vulnerability to alterations with time. Thus A type granites are most suited for construction of Deep Geological Repository. For developing a geochemical approach for establishing relation between chemical compositions and rock strength parameters, a

  15. Deformation properties of sedimentary rocks in the process of underground coal gasification

    Directory of Open Access Journals (Sweden)

    Mirosława Bukowska

    2015-01-01

    Full Text Available The article presents results of research into changes in deformation properties of rocks, under influence of temperature, during the process of underground coal gasification. Samples of carboniferous sedimentary rocks (claystones and sandstones, collected in different areas of Upper Silesian Coal Basin (GZW, were heated at the temperature of between 100 and 1000–1200 °C, and then subjected to uniaxial compression tests to obtain a full stress-strain curves of the samples and determine values of residual strain and Poisson's ratio. To compare the obtained values of deformation parameters of rocks, tested in dry-air state and after heating in a given range of temperature, normalised values of residual strain and Poisson's ratio were determined. Based on them, coefficient of influence of temperature on tested deformation parameters was determined. The obtained values of the coefficient can be applied in mining practice to forecast deformability of gangue during underground coal gasification, when in the direct surrounding of a georeactor there are claystones or sandstones. The obtained results were analysed based on classification of uniaxial compression strength of GZW gangue, which formed the basis for dividing claystones and sandstones into very low, low, medium and high uniaxial compression strength rocks. Based on the conducted tests it was concluded that the influence of uniaxial compression strength on the value of residual strain, unlike the influence of grain size of sandstones, is unambiguous within the range of changes in the parameter. Among claystones changes in the value of Poisson's ratio depending on their initial strength were observed. Sandstones of different grain size either increased or decreased the value of Poisson's ratio in comparison with the value determined at room temperature in dry-air conditions.

  16. Influence of Lithophysal Geometry on the Uniaxial Compression of Tuff-Like Rock

    International Nuclear Information System (INIS)

    Rigby, Douglas B.

    2007-01-01

    A large portion of the rock of the high-level nuclear waste repository at Yucca Mountain contains lithophysae or voids. These voids have a significant detrimental effect on the engineering properties of the rock mass and its performance. The lithophysae were formed at the time of volcanic deposition by pockets of gas trapped within the compressing and cooling pyroclastic flow material. Lithophysae vary by size, shape, and spatial frequency of occurrence. Due to the difficulties of testing actual lithophysal rock, the current mechanical property data set is limited and the numerical models of lithophysal rock are not well validated. The purpose of this task was to experimentally quantify the effect of void geometry in the mechanical compression of cubes of analog lithophysal-like rock. In this research the mechanical properties of the analog rock were systematically studied by examining various patterns of voids based on variables consisting of hole shape, size, and geometrical distribution. Each specified hole pattern was cast into 6 by 6 by 6-in. Hydro-StoneTB(reg s ign) specimens (produced in triplicate) and then tested under uniaxial compression. Solid Hydro-StoneTB(reg s ign) specimens exhibited similar mechanical properties to those estimated for rock mass solid specimens of Topopah Spring tuff. The results indicated that the compressive strength and Young's Modulus values decrease with increasing specimen void porosity. The modulus and strength with void porosity relationships are essentially linear over the 5 to 20 percent void porosity range. When zero void porosity (solid specimen) results are added, exponential functions do not provide a good fit to the data due to a significant sensitivity of strength and modulus to the presence of macro-sized voids. From solid specimens there is roughly a 60 percent drop in strength with about 7 percent void porosity, increasing to an 80 percent drop at about 20 percent void porosity. The percent change in modulus from

  17. Normative values of eccentric hip abduction strength in novice runners

    DEFF Research Database (Denmark)

    Ramskov, D; Pedersen, M B; Kastrup, K

    2014-01-01

    normative values of maximal eccentric hip abduction strength in novice runners. METHODS: Novice healthy runners (n = 831) were recruited through advertisements at a hospital and a university. Maximal eccentric hip abduction strength was measured with a hand-held dynamometer. The demographic variables...... was found, p values were identified using a regression equation adjusting for age and gender. Based on this, the equation to calculate normative values for relative eccentric hip abduction strength became: (1.600 + (age * -0.005) + (gender (1 = male / 0 = female) * 0.215) ± 1 or 2 * 0......PURPOSE: Low eccentric strength of the hip abductors, might increase the risk of patellofemoral pain syndrome and iliotibial band syndrome in runners. No normative values for maximal eccentric hip abduction strength have been established. Therefore the purpose of this study was to establish...

  18. Utilization of hard rock dust with red clay to produce roof tiles

    Directory of Open Access Journals (Sweden)

    Mst. Shanjida Sultana

    2015-03-01

    Full Text Available Utilization of rock dust to produce roof tiles and its effects on properties of tiles, mixed with red clay collected from Naogaon district of Bangladesh were investigated. After proper characterization of the raw materials, tiles were prepared with different percentages of rock dust (10-50% mixed with clay sintered from 850-1100 °C temperature. Rock dust has been found good for using as fluxing material after XRF study. The samples were tested for different properties such as water absorption, porosity, mechanical strength, linear shrinkage, and bulk density. The strength values have exceeded the minimum standard requirement for roof tiles with low water absorption in most samples. The results obtained made it possible to conclude about the possibility of producing roof tiles incorporating up to 40% of rock dust having better properties (lower water absorption 6.5%, strength value 31.97 MPa fired at 900 °C. Therefore these dust acts as a fluxing agent and reducing the sinteringtemperature of the clay material.

  19. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    Science.gov (United States)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  20. Recovering phosphorus and uranium values from phosphate rock

    International Nuclear Information System (INIS)

    Sze, M.C.Y.; Long, R.H.

    1981-01-01

    Phosphate rock is acidulated with aqueous nitric acid to produce an aqueous solution containing phosphate values, calcium and uranium values. The aqueous solution is contacted with an extraction solvent for the uranium values: the extraction solvent comprising a water immiscible organic diluent, a dialkyl phosphoric acid having at least 10 carbon atoms, and an organic phosphorus compound having the formula R 1 R 2 R 3 P = O where R 1 , R 2 and R 3 are each either alkyl or alkoxy, the organic phosphorus compound having at least 10 carbon atoms. The uranium values are then recovered from the extraction solvent. In an example the extraction solvent is HDEHP and TOPO in kerosene. (author)

  1. Normative values of eccentric hip abduction strength in novice runners

    DEFF Research Database (Denmark)

    Jørgensen, Daniel Ramskov; Pedersen, Mette Broen; Kastrup, Kristrian

    2014-01-01

    .354) Nm/kg. CONCLUSION: Normative values for maximal eccentric hip abduction strength in novice runners can be calculated by taking into account the differences in strength across genders and the decline in strength that occurs with increasing age. Age and gender were associated with maximal eccentric hip...... associated with maximal eccentric hip abduction strength from a univariate analysis were included in a multivariate linear regression model. Based on the results from the regression model, a regression equation for normative hip abduction strength is presented. RESULTS: A SIGNIFICANT DIFFERENCE IN MAXIMAL...... was found, p gender. Based on this, the equation to calculate normative values for relative eccentric hip abduction strength became: (1.600 + (age * -0.005) + (gender (1 = male / 0 = female) * 0.215) ± 1 or 2 * 0...

  2. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.

    2016-01-01

    We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.

  3. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    Science.gov (United States)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary

  4. Recovering phosphorus and uranium values from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Sze, M C.Y.; Long, R H

    1981-02-11

    Phosphate rock is acidulated with aqueous nitric acid to produce an aqueous solution containing phosphate values, calcium and uranium values. The aqueous solution is contacted with an extraction solvent for the uranium values: the extraction solvent comprising a water immiscible organic diluent, a dialkyl phosphoric acid having at least 10 carbon atoms, and an organic phosphorus compound having the formula R/sub 1/ R/sub 2/ R/sub 3/ P = O where R/sub 1/, R/sub 2/ and R/sub 3/ are each either alkyl or alkoxy, the organic phosphorus compound having at least 10 carbon atoms. The uranium values are then recovered from the extraction solvent. In an example the extraction solvent is HDEHP and TOPO in kerosene.

  5. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  6. Characterization and testing of rock aggregates of the Santa Marta Batholith, (Colombia

    Directory of Open Access Journals (Sweden)

    Nancy Paola Figueroa Madero

    2014-12-01

    Full Text Available Aggregates of intrusive rocks are the major source of crushed fine and coarse aggregates for use in concrete in several countries and they have to meet a number of specifications relating to strength and durability. This research reports the evaluation of aggregates of granitoids and associated rocks of Santa Marta Batholith, Sierra Nevada de Santa Marta Massif, Colombia, based on petrographic analysis and mechanical and chemical acceptance tests. The strength and durability of a particular rock type depends on its intrinsic characteristic, thus petrographic analysis is very important to understand its mechanical and chemical properties. Numerous standard tests used to ensure aggregates meet the appropriate specifications; however, petrographic analysis represents the most valuable test for predicting the overall performance of concrete aggregates in any control test. Aggregates were analyzed to determine their petrographic, physical, mechanical and chemical properties. Samples were categorized as hornblendite, gabbro, quartzmonzodiorite, monzodiorite and monzonite groups. Among these, of the quartzmonzodiorite was the dominant group. Specific gravity indicates values in the range 2673-2956kg/m3. Water absorption values are in the range 0.908-1.194%. Aggregate impact values of samples (37.82 to 61.36% showed good soundness only for one of the aggregates, which are considered acceptable for use in the preparation of a good quality concrete. Values of Methylene Blue Adsorption reveal the organic matter content is below the threshold. Magnesium sulphate values ranged between 0.11 and 4.75% suggesting good resistance against chemical atmospheric agents. The compressive strength test shows values in the range 35.22-59.45MPa indicating that the geomechanical behavior of rock cylinders is satisfactory. The geomechanical behavior of rock tablets under flexion is also satisfactory for SMA-2 sample (16.53MPa, although not for SMA-6 and SMA-8 samples

  7. High Temperature Versus Geomechanical Parameters of Selected Rocks – The Present State of Research

    Directory of Open Access Journals (Sweden)

    Anna Sygała

    2013-01-01

    Full Text Available This paper presents the current state of knowledge concerning the examination of the impact of increased temperatures on changes of geomechanical properties of rocks. Based on historical data, the shape of stress–strain characteristics that illustrate the process of the destruction of rock samples as a result of load impact under uniaxial compression in a testing machine, were discussed. The results from the studies on changes in the basic strength and elasticity parameters of rocks, such as the compressive strength and Young’s modulus were compared. On their basis, it was found that temperature has a significant effect on the change of geomechanical properties of rocks. The nature of these changes also depends on other factors (apart from temperature. They are, among others: the mineral composition of rock, the porosity and density. The research analysis showed that changes in the rock by heating it at various temperatures and then uniaxially loading it in a testing machine, are different for different rock types. Most of the important processes that cause changes in the values of the strength parameters of the examined rocks occured in the temperature range of 400 to 600 °C.

  8. Regression-Correlation of Petrophysical Inter-Parameter of Igneous Rocks and Limestone from Kulonprogo Mountain Region, Yogyakarta Special Region

    Directory of Open Access Journals (Sweden)

    Sigit Maryanto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.127Laboratory test of complete petrophysic parameters encompasing water absorption, compressive strength, Los Angeles abrasive strength, Rudellof abrasive strength, and wear resistance with Na2SO4 has been carried out for igneous and carbonate rocks taken from Kulonprogo Mountains region. Statistical verification of the data exhibits variation of correlation coefficients among parameters ranging from medium to very high value. The values of petrophysic test results are determined by the rock types. The result of this study is useful to estimate the accuracy of values of each parameter test result in Geological Survey Institute Laboratory using regression formula representing each relationship.

  9. The added value of measuring thumb and finger strength when comparing strength measurements in hypoplastic thumb patients.

    Science.gov (United States)

    Molenaar, H M Ties; Selles, Ruud W; de Kraker, Marjolein; Stam, Henk J; Hovius, Steven E R

    2013-10-01

    When interventions to the hand are aimed at improving function of specific fingers or the thumb, the RIHM (Rotterdam Intrinsic Hand Myometer) is a validated tool and offers more detailed information to assess strength of the involved joints besides grip and pinch measurements. In this study, strength was measured in 65 thumbs in 40 patients diagnosed with thumb hypoplasia. These 65 thumbs were classified according to Blauth. Longitudinal radial deficiencies were also classified. The strength measurements comprised of grip, tip, tripod and key pinch. Furthermore palmar abduction and opposition of the thumb as well as abduction of the index and little finger were measured with the RIHM. For all longitudinal radial deficiency patients, grip and pinch strength as well as palmar abduction and thumb opposition were significantly lower than reference values (P<0.001). However, strength in the index finger abduction and the little finger abduction was maintained or decreased to a lesser extent according to the degree of longitudinal radial deficiency. All strength values decreased with increasing Blauth-type. Blauth-type II hands (n=15) with flexor digitorum superficialis 4 opposition transfer including stabilization of the metacarpophalangeal joint showed a trend toward a higher opposition strength without reaching statistical significance (P=0.094),however compared to non-operated Blauth-type II hands (n=6) they showed a lower grip strength (P=0.019). The RIHM is comparable in accuracy to other strength dynamometers. Using the RIHM, we were able to illustrate strength patterns on finger-specific level, showing added value when evaluating outcome in patients with hand related problems. © 2013.

  10. An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek-Brown Failure Criterion

    Science.gov (United States)

    Wu, Li; Adoko, Amoussou Coffi; Li, Bo

    2018-04-01

    In tunneling, determining quantitatively the rock mass strength parameters of the Hoek-Brown (HB) failure criterion is useful since it can improve the reliability of the design of tunnel support systems. In this study, a quantitative method is proposed to determine the rock mass quality parameters of the HB failure criterion, namely the Geological Strength Index (GSI) and the disturbance factor ( D) based on the structure of drilling core and weathering condition of rock mass combined with acoustic wave test to calculate the strength of rock mass. The Rock Mass Structure Index and the Rock Mass Weathering Index are used to quantify the GSI while the longitudinal wave velocity ( V p) is employed to derive the value of D. The DK383+338 tunnel face of Yaojia tunnel of Shanghai-Kunming passenger dedicated line served as illustration of how the methodology is implemented. The values of the GSI and D are obtained using the HB criterion and then using the proposed method. The measured in situ stress is used to evaluate their accuracy. To this end, the major and minor principal stresses are calculated based on the GSI and D given by HB criterion and the proposed method. The results indicated that both methods were close to the field observation which suggests that the proposed method can be used for determining quantitatively the rock quality parameters, as well. However, these results remain valid only for rock mass quality and rock type similar to those of the DK383+338 tunnel face of Yaojia tunnel.

  11. Laboratory testing of gneissic rocks in Olkiluoto borehole OL-KR24

    International Nuclear Information System (INIS)

    Eloranta, P.

    2006-10-01

    The stress-strain behaviour of anisotropic gneissic rocks from Olkiluoto, Finland, was studied for a total of 25 rock mechanics tests. Samples were selected from borehole OLKR24 at a depth level of 417-442 m. Tests included 15 uniaxial compression tests, 10 indirect tensile strength tests and 6 triaxial compression tests. Strain gauges were installed in five samples to evaluate the anisotropic properties, and acoustic emission sensors were installed in ten samples to estimate the stress damage levels. The specimen preparation and tests were carried out at the Laboratory of Rock Engineering, Helsinki University of Technology, Finland. Specimens were tested under laboratory-air-dry conditions and were photographed before and after the tests. The values obtained for the uniaxial compressive strength were in the range 56.5 - 165.9 MPa and for the indirect tensile strength 7.7 - 12.1 MPa. The anisotropic ratio of Young's modulus, E/E', was of the order of 1.1. (orig.)

  12. Punk Rock and the Value of Auto-ethnographic Writing about Music

    OpenAIRE

    Attfield, Sarah

    2011-01-01

    Why do many of the books on punk rock and hardcore punk come with punk attitude? Why are a good number of the books written from a personal perspective? What kind of value do the diary entries of Nils Stevenson in 'Vacant: A Diary of the Punk Years 1976-79' have compared to an article on the rhetoric of class by David Simonelli in the journal 'Contemporary British History'? In some respects scholarly writing on punk rock seems like a contradiction. How can music so rooted in anti-establishmen...

  13. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    Science.gov (United States)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  14. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  15. Forensic Excavation of Rock Masses: A Technique to Investigate Discontinuity Persistence

    Science.gov (United States)

    Shang, J.; Hencher, S. R.; West, L. J.; Handley, K.

    2017-11-01

    True persistence of rock discontinuities (areas with insignificant tensile strength) is an important factor controlling the engineering behaviour of fractured rock masses, but is extremely difficult to quantify using current geological survey methodologies, even where there is good rock exposure. Trace length as measured in the field or using remote measurement devices is actually only broadly indicative of persistence for rock engineering practice and numerical modelling. Visible traces of discontinuities are treated as if they were open fractures within rock mass classifications, despite many such traces being non-persistent and actually retaining considerable strength. The common assumption of 100% persistence, based on trace length, is generally extremely conservative in terms of strength and stiffness, but not always so and may lead to a wrong prediction of failure mechanism or of excavatability. Assuming full persistence would give hopelessly incorrect predictions of hydraulic conductivity. A new technique termed forensic excavation of rock masses is introduced, as a procedure for directly investigating discontinuity persistence. This technique involves non-explosive excavation of rock masses by injecting an expansive chemical splitter along incipient discontinuities. On expansion, the splitter causes the incipient traces to open as true joints. Experiments are described in which near-planar rock discontinuities, through siltstone and sandstone, were opened up by injecting the splitter into holes drilled along the lines of visible traces of the discontinuities in the laboratory and in the field. Once exposed the surfaces were examined to investigate the pre-existing persistence characteristics of the incipient discontinuities. One conclusion from this study is that visible trace length of a discontinuity can be a poor indicator of true persistence (defined for a fracture area with negligible tensile strength). An observation from this series of experiments

  16. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    In Switzerland the site selection procedure for both high level waste (HLW) and low and intermediate level waste (L/ILW) repositories is specified by the Swiss Federal Office of Energy in the Sectoral Plan for Deep Geological Repositories. In the forthcoming stage 2 of this plan, potential sites will be identified within regions previously selected based on the presence of suitable host rocks, namely Opalinus Clay, 'Brauner Dogger', Effingen Member and Helvetic Marl. Preliminary safety analyses are an integral part of this procedure, and require, amongst other information, the radionuclide sorption properties of the host rock. This report describes a methodology to develop a Generic Rock Sorption Data Base (GR-SDB) for argillaceous rocks. The method will be used to compile specific SDBs for the above mentioned host rocks. Arguments are presented that the main factor influencing sorption on argillaceous rocks is the phyllosilicate mineral content. These minerals are particularly effective at binding metals to their surfaces by cation exchange and surface complexation. Generally, the magnitude of sorption is directly correlated with the phyllosilicate content (2:1 type clays: illite/smectite/illitesmectite mixed layers), and this parameter best reflects the sorption potential of a given mineral assembly. Consequently, sorption measurements on illite were preferably used as source data for the GR-SDB. The second component influencing radionuclide sorption is the porewater chemistry. In the present report, generic water compositions were extracted from the analytical ranges of deep ground waters in various sedimentary formations in Switzerland. In order to cover the range of ionic strength (I) and pH values of Swiss ground waters in argillaceous rocks, five types of generic water compositions were defined, combining low, intermediate and high values of ionic strength and pH. The GR-SDB for in situ conditions was derived using conversion factors (CF). As the name

  17. Experimental investigation of incipient shear failure in foliated rock

    NARCIS (Netherlands)

    Ikari, Matt J.; Niemeijer, André R.; Marone, Chris

    It has long been known that rock fabric plays a key role in dictating rock strength and rheology throughout Earth's crust; however the processes and conditions under which rock fabric impacts brittle failure and frictional strength are still under investigation. Here, we report on laboratory

  18. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  19. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  20. Selection of basic data for numerical modeling of rock mass stress state at Mirny Mining and Processing Works, Alrosa Group of Companies

    Science.gov (United States)

    Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK

    2018-03-01

    The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.

  1. Fractal Analysis of Rock Joint Profiles

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  2. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  3. Effect of Water on Coal Strength | Singh | Momona Ethiopian Journal ...

    African Journals Online (AJOL)

    Water content is one of the most important factors influencing the rock strength. The present study has been conducted to see how coal strength changes under dry and water saturated conditions. The study reveals that the strength of coal decreases with increasing moisture. For rock mechanics and rock engineering ...

  4. Effect of rock joint roughness on its cyclic shear behavior

    Directory of Open Access Journals (Sweden)

    S.M. Mahdi Niktabar

    2017-12-01

    Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.

  5. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    International Nuclear Information System (INIS)

    Kim, Kunsoo; Gao, Hang

    1996-01-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design

  6. Estimated strength of shear keys in concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.D. [Hatch Energy, Niagara Falls, ON (Canada); Lum, K.K.Y. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro requested that Hatch Energy review the seismic stability of Ruskin Dam which was constructed in 1930 at Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock in a narrow valley. The vertical joints between blocks are keyed and grouted. The strength of the shear keys was assessed when a non-linear finite element model found that significant forces were being transferred laterally to the abutments during an earthquake. The lateral transfer of loads to the abutment relies on the strength of the shear keys. The dynamic finite element analysis was used to determine the stability of the dam. A review of the shear strength measurements reported in literature showed that the measurements compared well to those obtained by BC Hydro from cores taken from Ruskin Dam. The cohesive strength obtained using the Griffith failure criteria was also in good agreement with both sets of measurements. A simple ultimate shear strength equation was developed using the Mohr-Coulomb failure criteria to determine combined cohesive and frictional strength of shear keys. Safety factors of 2.0 for static loads and 1.5 for seismic loads were proposed to reduce the ultimate strength to allowable values. It was concluded that given the relatively high shear strength established for the shear keys, the abutment rock or dam/abutment contact will control the amount of load which can arch to the abutments. 8 refs., 4 tabs., 5 figs.

  7. 14 CFR 23.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... statistical basis. (b) Design values must be chosen to minimize the probability of structural failure due to... must be shown by selecting design values that ensure material strength with the following probability... failure of which would result in loss of structural integrity of the component; 99 percent probability...

  8. Experimental Researches on Long-Term Strength of Granite Gneiss

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2015-01-01

    Full Text Available It is important to confirm the long-term strength of rock materials for the purpose of evaluating the long-term stability of rock engineering. In this study, a series of triaxial creep tests were conducted on granite gneiss under different pore pressures. Based on the test data, we proposed two new quantitative methods, tangent method and intersection method, to confirm the long-term strength of rock. Meanwhile, the isochronous stress-strain curve method was adopted to make sure of the accuracy and operability of the two new methods. It is concluded that the new methods are suitable for the study of the long-term strength of rock. The effect of pore pressure on the long-term strength of rock in triaxial creep tests is also discussed.

  9. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Directory of Open Access Journals (Sweden)

    Pei-Yun Shu

    2018-06-01

    Full Text Available Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing

  10. Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests

    Czech Academy of Sciences Publication Activity Database

    Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.

    2015-01-01

    Roč. 80, December 2015 (2015), s. 418-424 ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 2.010, year: 2015 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac

  11. Assessment of ECISS draft standard for derivation of high temperature proof strength values

    Energy Technology Data Exchange (ETDEWEB)

    Linde, L.; Sandstroem, R.

    1996-03-01

    New European material standards are under development and modern data evaluation techniques must be able to supply these standards with accurate design values. A draft standard for the derivation of high temperature proof strength values has been proposed. This standard (EDS) has been used to calculate strength values for six steels; one unalloyed steel, one 12 % Cr steel and four austenitic stainless steels. Although large data sets were available, it was not possible to satisfy the requirement in the EDS of 80 % temperature coverage in the proof strength data for several steels. It suggests that temperature coverage specified in the EDS is unrealistically high. Due to the limited number of heats satisfying the temperature coverage requirements for each steel, the statistical error in the derived values exceeds 10-20 % which must be considered as unacceptably high. Instead it is recommended that the full data sets are used irrespective of temperature coverage. The variation of proof strength values represented by the analysed heats did not cover the corresponding variation in the larger data set available. This was the case even for the steel where 16 heats satisfied the temperature coverage requirement. Thus a limited number of heats can not be expected to be a good representation of more complete data sets. This has the consequence that absolute strength values can not be derived without access to a standardised proof strength at room temperature. Two derivation methods investigated in this report are both based on the ISO 2605/III procedure for proof strength assessments at elevated temperature. Method I and II use an essentially temperature independent and temperature dependent reduction term respectively. The methods have been assessed by the same data sets for the six steels. One or both methods gave satisfactory results for most of the investigated steels. Presented results are based on work carried out in ECISS TC22 WG1. 17 refs, 20 figs, 7 tabs.

  12. Reference values for muscle strength: a systematic review with a descriptive meta-analysis.

    Science.gov (United States)

    Benfica, Poliana do Amaral; Aguiar, Larissa Tavares; Brito, Sherindan Ayessa Ferreira de; Bernardino, Luane Helena Nunes; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais

    2018-05-03

    Muscle strength is an important component of health. To describe and evaluate the studies which have established the reference values for muscle strength on healthy individuals and to synthesize these values with a descriptive meta-analysis approach. A systematic review was performed in MEDLINE, LILACS, and SciELO databases. Studies that investigated the reference values for muscle strength of two or more appendicular/axial muscle groups of health individuals were included. Methodological quality, including risk of bias was assessed by the QUADAS-2. Data extracted included: country of the study, sample size, population characteristics, equipment/method used, and muscle groups evaluated. Of the 414 studies identified, 46 were included. Most of the studies had adequate methodological quality. Included studies evaluated: appendicular (80.4%) and axial (36.9%) muscles; adults (78.3%), elderly (58.7%), adolescents (43.5%), children (23.9%); isometric (91.3%) and isokinetic (17.4%) strength. Six studies (13%) with similar procedures were synthesized with meta-analysis. Generally, the coefficient of variation values that resulted from the meta-analysis ranged from 20.1% to 30% and were similar to those reported by the original studies. The meta-analysis synthesized the reference values of isometric strength of 14 muscle groups of the dominant/non-dominant sides of the upper/lower limbs of adults/elderly from developed countries, using dynamometers/myometer. Most of the included studies had adequate methodological quality. The meta-analysis provided reference values for the isometric strength of 14 appendicular muscle groups of the dominant/non-dominant sides, measured with dynamometers/myometers, of men/women, of adults/elderly. These data may be used to interpret the results of the evaluations and establish appropriate treatment goals. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights

  13. Development of in-situ rock shear test under low compressive to tensile normal stress

    International Nuclear Information System (INIS)

    Nozaki, Takashi; Shin, Koichi

    2003-01-01

    The purpose of this study is to develop an in-situ rock shear testing method to evaluate the shear strength under low normal stress condition including tensile stress, which is usually ignored in the assessment of safety factor of the foundations for nuclear power plants against sliding. The results are as follows. (1) A new in-situ rock shear testing method is devised, in which tensile normal stress can be applied on the shear plane of a specimen by directly pulling up a steel box bonded to the specimen. By applying the counter shear load to cancel the moment induced by the main shear load, it can obtain shear strength under low normal stress. (2) Some model tests on Oya tuff and diatomaceous mudstone have been performed using the developed test method. The shear strength changed smoothly from low values at tensile normal stresses to higher values at compressive normal stresses. The failure criterion has been found to be bi-linear on the shear stress vs normal stress plane. (author)

  14. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  15. Geomechanical properties of rocks from the Altnabreac area

    International Nuclear Information System (INIS)

    McEwen, T.J.; Horseman, S.T.; Lai, S.F.

    1980-06-01

    Laboratory test results are presented for core samples of Strath Halladale Granite and Moine metasediments from the Altnabreac Research Site in Caithness, Scotland. Properties measured include indirect tensile strength, uniaxial compressive strength, shear strength under triaxial confinement, stress-strain parameters, density and porosity. Strength data are interpreted using Hoek and Brown's (1980) empirical failure criterion which is found to provide an adequate fit to the failure envelopes. The rocks at the site have been classified using Deere and Millers' (1966) engineering classification system for intact rocks. (author)

  16. THEORETICAL AND EXPERIMENTAL ASPECTS OF PLASTIC DEFORMATION AND DESTRUCTION OF ROCKS

    Directory of Open Access Journals (Sweden)

    A. V. Zhabko

    2018-03-01

    Full Text Available The urgency of the problem. The main process in mining is the process of destruction of rocks, so the establishment of laws and criteria for plastic deformation and destruction of rocks is the most important and fundamental object. Purpose of the work. The work is devoted to the establishment of laws of plastic deformation of rocks (solids. Methods of research. Analytical and experimental research methods are widely used in this work. Results. On the basis of the earlier studies, which were carried out by the author, the functions of the yield surface and the plastic potential are proposed. The limiting surface for these functions is the surface of the ultimate strength of solids (rocks, described by the Coulomb criterion. The author indicated the fundamental similarity between the proposed criterion of plastic deformation and rock strength with the Mora criterion and with the dry friction law of Amonton. The possibility of applying the proposed criterion as passport dependence is demonstrated. The characteristics of rock strength for shear adhesion and the angle of internal friction act as the parameters of this dependence. The paper provides comparison of the proposed theoretical criterion of plasticity and strength to the experimental data under the conditions of the three-dimensional stress state. The detailed analysis of this comparison between theoretical and experimental data is given, the corresponding conclusions are drawn. An analytical dependence was derived on the basis of the stability criterion obtained earlier by the author. It determines the value of the fundamental parameter of the hierarchy during shear and discontinuous destruction of mountain ranges. The relationship of this parameter hierarchy with the so-called number of Phidias, which determines the “Golden ratio”, is indicated. The dependence for calculation of a large-scale factor of the phenomenon of zonal disintegration of rocks around mine workings is offered. The

  17. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  18. Experimental study of polyurethane foam reinforced soil used as a rock-like material

    Directory of Open Access Journals (Sweden)

    Eren Komurlu

    2015-10-01

    Full Text Available In this study, polyurethane foam type thermoset polymerizing, due to chemical reaction between its liquid ingredients, was tested as binder after solidifying and then a rock-like material mixing with a sandy silt type soil was prepared. The uniaxial compressive strengths (UCSs of polyurethane foam reinforced soil specimens were determined for different polyurethane ratios in the mixture. Additionally, a series of tests on slake durability, impact value, freezing–thawing resistance, and abrasion resistance of polyurethane reinforced soil (PRS mixture was conducted. The UCS values over 3 MPa were measured from the PRS specimens. The testing results showed that treated soil can economically become a desirable rock-like material in terms of slake durability and resistances against freezing–thawing, impact effect and abrasion. As another characteristic of the rock-like material made with polyurethane foam, unit volume weight was found to be quite lower than those of natural rock materials.

  19. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  20. Prediction of tunnel boring machine performance using machine and rock mass data

    International Nuclear Information System (INIS)

    Dastgir, G.

    2012-01-01

    Performance of the tunnel boring machine and its prediction by different methods has been a hot issue since the first TBM came into being. For the sake of safe and sound transport, improvement of hydro-power, mining, civil and many other tunneling projects that cannot be driven efficiently and economically by conventional drill and blast, TBMs are quite frequently used. TBM parameters and rock mass properties, which heavily influence machine performance, should be estimated or known before choice of TBM-type and start of excavation. By applying linear regression analysis (SPSS19), fuzzy logic tools and a special Math-Lab code on actual field data collected from seven TBM driven tunnels (Hieflau expansion, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve and Varzo tunnel), an attempt was made to provide prediction of rock mass class (RMC), rock fracture class (RFC), penetration rate (PR) and advance rate (AR). For detailed analysis of TBM performance, machine parameters (thrust, machine rpm, torque, power etc.), machine types and specification and rock mass properties (UCS, discontinuity in rock mass, RMC, RFC, RMR, etc.) were analyzed by 3-D surface plotting using statistical software R. Correlations between machine parameters and rock mass properties which effectively influence prediction models, are presented as well. In Hieflau expansion tunnel AR linearly decreases with increase of thrust due to high dependence of machine advance rate upon rock strength. For Hieflau expansion tunnel three types of data (TBM, rock mass and seismic data e.g. amplitude, pseudo velocity etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces. No appreciable correlation between seismic data (Amplitude and Pseudo velocity) and rock mass properties and machine parameters could be found. Tool wear as a function of TBM operational parameters was analyzed which revealed that tool wear is minimum if applied thrust is moderate and that tool wear is high when thrust is

  1. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks

    Science.gov (United States)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh

    2017-11-01

    Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.

  2. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    Science.gov (United States)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent

  3. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  4. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  5. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  6. Effect of Micro-Structure on Fatigue Behavior of Intact Rocks under Completely Reversed Loading

    Directory of Open Access Journals (Sweden)

    Saeed Jamali Zavareh

    2017-01-01

    Full Text Available Rock formations and structures can be subjected to both static and dynamic loadings. Static loadings resulting from different sources such as gravity and tectonic forces and dynamic forces are intermittently transmitted via vibrations of the earth’s crust, through major earthquakes, rock bursts, rock blasting and drilling and also, traffic. Reaction of rocks to cyclic and repetitive stresses resulting from dynamic loads has been generally neglected with the exception of a few rather limited studies. In this study, , two crystalline quarry stones in Iran; (Natanz gabbro and Green onyx and one non-crystalline rock (Asmari limestone are used to evaluate the effect of micro-structure of intact rock on fatigue behavior. These rocks have different mineral compositions and formation conditions. A new apparatus based on rotating beam fatigue testing machine (R.R.Moore, which is commonly used for laboratory fatigue test in metals, is developed and fatigue behavior and existence of the endurance limit were evaluated for the mentioned rocks based on stress-life method. The obtained results in the variation of applied amplitude stress versus loading cycle number (S-N diagram followed common relationship in other materials. In addition, the endurance limit is perceived for all tested rocks. The results also illustrated that the endurance limits for all types of tested rocks in this study are ranged between 0.4 and 0.6 of their tensile strengths. The endurance limit to tensile strength fraction of green onyx and Natanz gabbro were approximated in a higher value compared to the Asmari limestone with non-crystalline micro-structure.

  7. Rock discontinuity surface roughness variation with scale

    Science.gov (United States)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  8. Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model

    Directory of Open Access Journals (Sweden)

    Spyridon Liakas

    2017-08-01

    Full Text Available The particulate discrete element method (DEM can be employed to capture the response of rock, provided that appropriate bonding models are used to cement the particles to each other. Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors. Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional (2D models. In situ rock formations are often heterogeneous, thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis. In situ stress states are basically three-dimensional (3D, and therefore it is important to develop 3D models for this purpose. This paper revisits an earlier experimental study on heterogeneous specimens, of which the relative proportions of weaker material (siltstone and stronger, harder material (sandstone were varied in a controlled manner. Using a 3D DEM model with the parallel bond model, virtual heterogeneous specimens were created. The overall responses in terms of variations in strength and stiffness with different percentages of weaker material (siltstone were shown to agree with the experimental observations. There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations, suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.

  9. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach

    Directory of Open Access Journals (Sweden)

    Pooya Hamdi

    2015-12-01

    Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in

  10. ROCK I Has More Accurate Prognostic Value than MET in Predicting Patient Survival in Colorectal Cancer.

    Science.gov (United States)

    Li, Jian; Bharadwaj, Shruthi S; Guzman, Grace; Vishnubhotla, Ramana; Glover, Sarah C

    2015-06-01

    Colorectal cancer remains the second leading cause of death in the United States despite improvements in incidence rates and advancements in screening. The present study evaluated the prognostic value of two tumor markers, MET and ROCK I, which have been noted in other cancers to provide more accurate prognoses of patient outcomes than tumor staging alone. We constructed a tissue microarray from surgical specimens of adenocarcinomas from 108 colorectal cancer patients. Using immunohistochemistry, we examined the expression levels of tumor markers MET and ROCK I, with a pathologist blinded to patient identities and clinical outcomes providing the scoring of MET and ROCK I expression. We then used retrospective analysis of patients' survival data to provide correlations with expression levels of MET and ROCK I. Both MET and ROCK I were significantly over-expressed in colorectal cancer tissues, relative to the unaffected adjacent mucosa. Kaplan-Meier survival analysis revealed that patients' 5-year survival was inversely correlated with levels of expression of ROCK I. In contrast, MET was less strongly correlated with five-year survival. ROCK I provides better efficacy in predicting patient outcomes, compared to either tumor staging or MET expression. As a result, ROCK I may provide a less invasive method of assessing patient prognoses and directing therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Tunnel Design by Rock Mass Classifications

    Science.gov (United States)

    1990-01-01

    Engineering," revised second edition, Institution of Mining and Metallurgy, London, 1977, pp 113-115 and 150-192. 42. Selmer - Olsen , R., and Broch, E...to wall when a)/03 > 10, re- stability) ................ 10-5 0.66-0.33 0.5-2.0 duce oc and ot to L. Mild rock burst (massive 0.6 cc and 0.6 on rock ...5-2.5 0.33-0.16 5-10 where: 0 c = uncon-fined compression M. Heavy rock burst (massive strength, at = rock

  12. Initial settlements of rock fills on soft clay

    OpenAIRE

    Pedersen, Truls Martens

    2012-01-01

    Rock fills that hit the seabed will remold the underlying material. If this material is a clay with sufficiently low shear strength, it will adopt rheological properties, causing flow through the rock fill, and contributing to the initial settlements of the rock fill in addition to conventional consolidation theory. The settlements of the rocks depend upon the height of the rock fill and how the rocks have been laid out. This is due to the viscosity of the clay, and the fact that clay is thix...

  13. Evaluation of dynamic characteristics of hard rock based on numerical simulations of in situ rock tests

    International Nuclear Information System (INIS)

    Yamagami, Yuya; Ikusada, Koji; Jiang, Yujing

    2009-01-01

    In situ rock tests of hard rock of conglomerate in which discontinuities in high angle are dominant were conducted. In this study, in order to confirm the validity of the test results and the test condition, and in order to elucidate the deformation behaviour and the mechanism of shear strength of the rock mass, the numerical simulations of the in situ rock tests by using distinct element method were performed. As a result, it was clarified that the behaviour of the rock mass strongly depends on both geometrical distribution of discontinuities and those mechanical properties. It is thought that a series of evaluation processes showed in this study contribute to improve the reliability of the dynamic characteristic evaluation of the rock mass. (author)

  14. Phenomenological study on crystalline rock for evaluating of long-term behavior (Contract research)

    International Nuclear Information System (INIS)

    Okubo, Seisuke; Fukui, Katsunori; Hashiba, Kimihiro; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; Matsui, Hiroya; Sato, Toshinori

    2012-02-01

    Rock, under in situ conditions, shows time-dependent behavior such as creep/relaxation. With respect to high-level radioactive waste disposal, knowledge of the long-term mechanical stability of shafts and galleries excavated in rock is required, not only during construction and operation but also over a period of thousands of years after closure. Therefore, it is very important to understand the time-dependent behavior of rock for evaluating long-term mechanical stability. The purpose of this study is determining the mechanisms of time-dependent behavior of rock by precise testing, observation and measurement in order to develop methods for evaluating long-term mechanical stability of a rock mass. In the previous work, testing techniques have been established and basic evaluation methods were developed. Recently, some parameters needed for simulation of time-dependent behavior were determined at the Mizunami underground research facilities. However, sufficient data to check the reliability of the evaluation method for these parameters were not available. This report describes the results of the activities in fiscal year 2010. In Chapter 1, we provide an overview and the background to this study. In Chapter 2, the results of a long-term creep test on Tage tuff, started in fiscal year 1997 are described. In Chapter 3, the relation of loading-rate dependency of strength and stress dependency of creep life, the relation of time dependency, probability distribution and size effects are discussed to indicate more clearly the meaning of the value of 'n' to express the degree of time dependency of the rock. Furthermore, past studies concerning the value of 'n' are reviewed and the tests that could be carried out in future studies of mechanical properties and time dependency of Toki granite are considered in this Chapter. In Chapter 4, failure criterions of a rock mass considering time dependency are discussed. In Chapter 5, the FEM analysis implemented with a generalized

  15. Determination of the mechanical parameters of rock mass based on a GSI system and displacement back analysis

    Science.gov (United States)

    Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam

    2017-08-01

    It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.

  16. Strength and deformability of light-toned layered deposits observed by MER Opportunity: Eagle to Erebus craters, Mars

    Science.gov (United States)

    Okubo, Chris H.

    2007-10-01

    Quantifying host rock deformation is vital to understanding the geologic evolution and productivity of subsurface fluid reservoirs. In support of on-going characterization of fracture controlled fluid flow through the light-toned layered deposits on Mars, key parameters of strength and deformability are derived from Microscopic Imager and Rock Abrasion Tool data collected by the Mars Exploration Rover Opportunity in Meridiani Planum. Analysis of 21 targets of light-toned layered deposits yields a median apparent porosity of 0.25. Additional physical parameters for each target are derived from these porosity measurements. The median value of unconfined compressive strength is 11.23 MPa, Young's modulus is 1.86 GPa, and the brittle-ductile transition pressure is 8.77 MPa.

  17. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  18. EXPERIMENTAL STUDY OF DECOMPRESSION, PERMEABILITY AND HEALING OF SILICATE ROCKS IN FAULT ZONES

    Directory of Open Access Journals (Sweden)

    V. Ya. Medvedev

    2014-01-01

    Full Text Available The article presents results of petrophysical laboratory experiments in studies of decompression phenomena associated with consequences of abrupt displacements in fault zones. Decompression was studied in cases of controlled pressure drop that caused sharp changes of porosity and permeability parameters, and impacts of such decompression were analyzed. Healing of fractured-porous medium by newly formed phases was studied. After experiments with decompression, healing of fractures and pores in silicate rock samples (3×2×2 cm, 500 °C, 100 MPa took about 800–1000 hours, and strength of such rocks was restored to 0.6–0.7 of the original value. In nature, fracture healing is influenced by a variety of factors, such as size of discontinuities in rock masses, pressure and temperature conditions, pressure drop gradients, rock composition and saturation with fluid. Impacts of such factors are reviewed.

  19. A thermo-elastic model for soft rocks considering structure

    International Nuclear Information System (INIS)

    He, Z.; Zhang, S.; Teng, J.; Xiong, Y.

    2017-01-01

    In the fields of nuclear waste geological deposit, geothermal energy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the super-loading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the super-loading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase. (authors)

  20. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  1. Mechanical Properties of Shock-Damaged Rocks

    Science.gov (United States)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  2. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  3. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  4. Permeability Evolution and Rock Brittle Failure

    OpenAIRE

    Sun Qiang; Xue Lei; Zhu Shuyun

    2015-01-01

    This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape paramete...

  5. Laboratory characterization of rock joints

    International Nuclear Information System (INIS)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A.

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed

  6. STRESSES AND DEFORMABILITY OF ROCK MASS UPON OPEN PIT EXPLOITATION OF DIMENSION STONE

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    2003-12-01

    Full Text Available The appearance of increased stresses and deformability of rock mass in the quarry of Zečevo (exploitation field of Selca – island of Brač has caused a considerable decrease of usability of mineral raw materials, which put into question the survival of the pit. Therefore the research and measurements of the state of stresses and deformability of rock mass within the pit were carried out. Besides detailed laboratory testings (testings on small samples performed were trial in-situ testings on large samples including the corresponding numerical analyses. The exploitation of dimension stone by sowing regularly shaped rectangular blocks has been proved to be appropriate for in-situ testing of bending strength. The paper presents the results of carried out laboratory testings, in-situ testings of bending strength including measuring of deformations after sowing cuts and numerical analyses by which the possible range of horizontal stresses was determined. Since for the case of massive rocks, for which the continuum concept is applied, there are no specifically defined methods of corrections, presented is a possible relation for correction of input size values based on the carried out laboratory and in-situ testings.

  7. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  8. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    Science.gov (United States)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  9. Punk Rock and the Value of Auto-ethnographic Writing about Music

    Directory of Open Access Journals (Sweden)

    Sarah Attfield

    2011-08-01

    Full Text Available Why do many of the books on punk rock and hardcore punk come with punk attitude? Why are a good number of the books written from a personal perspective? What kind of value do the diary entries of Nils Stevenson in 'Vacant: A Diary of the Punk Years 1976-79' have compared to an article on the rhetoric of class by David Simonelli in the journal 'Contemporary British History'? In some respects scholarly writing on punk rock seems like a contradiction. How can music so rooted in anti-establishment sentiment be appropriated into an institutional setting? The auto-ethnographic approach found in many of the studies of punk might be an answer to this question. The writers have used their own experiences as musicians and fans to reflect on and analyse the music and scenes which arguably provides the reader with a more immediate insight. This paper argues for an auto-ethnographic approach to the writing of punk and hardcore punk and suggests that this style of writing about music offers the reader an ‘authentic’ insight into these particular music scenes.

  10. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  11. Strength Measurements in Acute Hamstring Injuries: Intertester Reliability and Prognostic Value of Handheld Dynamometry.

    Science.gov (United States)

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H; Tol, Johannes L; Verhaar, Jan A N; Weir, Adam

    2016-08-01

    Study Design Cohort study, repeated measures. Background Although hamstring strength measurements are used for assessing prognosis and monitoring recovery after hamstring injury, their actual clinical relevance has not been established. Handheld dynamometry (HHD) is a commonly used method of measuring muscle strength. The reliability of HHD has not been determined in athletes with acute hamstring injuries. Objectives To determine the intertester reliability and the prognostic value of hamstring HHD strength measurement in acute hamstring injuries. Methods We measured knee flexion strength with HHD in 75 athletes at 2 visits, at baseline (within 5 days of hamstring injury) and follow-up (5 to 7 days after the baseline measurement). We assessed isometric hamstring strength in 15° and 90° of knee flexion. Reliability analysis testing was performed by 2 testers independently at the follow-up visit. We recorded the time needed to return to play (RTP) up to 6 months following baseline. Results The intraclass correlation coefficients of the strength measurements in injured hamstrings were between 0.75 and 0.83. There was a statistically significant but weak correlation between the time to RTP and the strength deficit at 15° of knee flexion measured at baseline (Spearman r = 0.25, P = .045) and at the follow-up visit (Spearman r = 0.26, P = .034). Up to 7% of the variance in time to RTP is explained by this strength deficit. None of the other strength variables were significantly correlated with time to RTP. Conclusion Hamstring strength can be reliably measured with HHD in athletes with acute hamstring injuries. The prognostic value of strength measurements is limited, as there is only a weak association between the time to RTP and hamstring strength deficit after acute injury. Level of Evidence Prognosis, level 4. J Orthop Sports Phys Ther 2016;46(8):689-696. Epub 12 May 2016. doi:10.2519/jospt.2016.6363.

  12. Rock mass classification system : transition from RMR to GSI.

    Science.gov (United States)

    2013-11-01

    The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...

  13. Lower blasthole pressures: a means of reducing costs when blasting rocks of low to moderate strength

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, T.N.; Gibson, I.M.

    1988-03-01

    From a purely mechanical viewpoint, each explosive charge should produce a peak blasthole pressure (P/sub b/) that just fails to crush (i.e. pulverise or plastically deform) the rock which surrounds it. Where P/sub b/ exceeds a critical value, some explosion energy is wasted in crushing an annular section of rock immediately around each charge. As a rock's dynamic compressive breaking strain decreases, so should P/sub b/ (Hagan, 1977b). This paper reviews information on, and anticipates the blasting performance of, bulk charges having effective densities which are as low as about 40% of that for ammonium nitrate fuel oil (ANFO). It also outlines the potential advantages of extending the reaction periods of charges, even to the extent that explosive reactions continue after the blasthole wall and stemming have started to move. The paper then proceeds to define situations in which the use of such lower-pressure charges is likely to result in greatest reductions in mining costs. Some methods of applying bulk charges having effective densities in the 0.3-0.8 g cm/sup -3/ range and/or lower reaction rates are suggested. 15 refs., 3 figs.

  14. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    Science.gov (United States)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  15. Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

    DEFF Research Database (Denmark)

    Goetz, W.; Leer, K.; Gunnlaugsson, H.P.

    2008-01-01

    The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting...... is interpreted as magnetite. The amount of abraded rock material adhering to the magnets varied strongly during the mission and is correlated in a consistent way to the amount of magnetite inferred from Mossbauer spectra for the corresponding rock. The RAT magnet experiment as performed on Opportunity also...

  16. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  17. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  18. The results of the investigations on rock mechanics in HDB-9-11 boreholes and update of the rock mechanical model around the Horonobe URL construction area

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya

    2008-09-01

    Horonobe URL (Underground Research Laboratory) Project is conducted at Horonobe-cho, Teshio-gun, Hokkaido. This research report shows the result of the rock mechanical investigations which have been carried out from 2004 to 2005 as a part of the project. The objectives of the rock mechanical investigation are as follows: To obtain the data which were necessary for construction design of URL. To confirm the distribution of rock mechanical properties in and around URL construction area. The results of the investigations are summarized as follows: 1) Variation and values of depth direction of physical and mechanical properties in the laboratory construction area corresponded approximately to the results obtained from the rock mechanical investigations of HDB-1-8. 2) The major redesign had been not had about physical and mechanical properties in the laboratory construction area being able to divide into three zones and length of its own zone in updating rock mechanical model. 3) From the results of initial stress measured by hydraulic fracturing, the results that the direction of the maximum principle stress is E-W was no different from results obtained from the investigations of HDB-1-8, but the magnitude correlation among maximum, minimum principle stress and overburden pressure measured around G.L.-927 m showed different trends compared with the results of HDB-1-8. 4) Diatomaceous mudstone was yielded under isotropic compression. Cam-clay model as constitutive law of diatomaceous mudstone should be used for tunnel excavation analysis. 5) Uniaxial compression strength of rock saturated under saline water is larger than that of saturated under freshwater. Poisson's ratio of rock saturated under saline water is smaller than that of saturated under saline water. 6) The effective confining pressure increases with the equivalent opening width and permeability decreases. 7) The value of principle stress obtained from DSCA method is larger than that obtained from hydraulic

  19. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  20. Experimental Studies on the Mechanical Behaviour of Rock Joints with Various Openings

    Science.gov (United States)

    Li, Y.; Oh, J.; Mitra, R.; Hebblewhite, B.

    2016-03-01

    The mechanical behaviour of rough joints is markedly affected by the degree of joint opening. A systematic experimental study was conducted to investigate the effect of the initial opening on both normal and shear deformations of rock joints. Two types of joints with triangular asperities were produced in the laboratory and subjected to compression tests and direct shear tests with different initial opening values. The results showed that opened rock joints allow much greater normal closure and result in much lower normal stiffness. A semi-logarithmic law incorporating the degree of interlocking is proposed to describe the normal deformation of opened rock joints. The proposed equation agrees well with the experimental results. Additionally, the results of direct shear tests demonstrated that shear strength and dilation are reduced because of reduced involvement of and increased damage to asperities in the process of shearing. The results indicate that constitutive models of rock joints that consider the true asperity contact area can be used to predict shear resistance along opened rock joints. Because rock masses are loosened and rock joints become open after excavation, the model suggested in this study can be incorporated into numerical procedures such as finite-element or discrete-element methods. Use of the model could then increase the accuracy and reliability of stability predictions for rock masses under excavation.

  1. FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2016-01-01

    Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.

  2. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  3. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  4. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  5. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    Science.gov (United States)

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  6. Rock Expansion Boundary Anti-Permeability Strength and Its Application in the Coal Mine Floor Water Inrush Evaluation%岩石膨胀界限抗渗强度及在底板突水评价中应用

    Institute of Scientific and Technical Information of China (English)

    段宏飞; 姜振泉; 王一栋; 邵明喜; 赵丽娟; 朱前林

    2012-01-01

    在岩石全应力应变伺服渗透试验的基础上,提出了岩石膨胀界限抗渗强度的概念,并在此基础上建立了底板突水评价模型,模型考虑了底板岩层有效隔水层厚度、岩性、岩体完整程度以及膨胀界限抗渗强度并详细分析了各参数的取值,以兖矿集团杨村煤矿17煤及其2702工作面突水评价为例,证实了以膨胀界限抗渗强度为基础的底板突水评价模型在突水评价上具有可行性.%To solve the difficulties in coal mine floor water inrush evaluation, on the basis of the servo-controlled permeability test of rock in the complete stress-strain process, we proposed the concept of rock expansion boundary anti-permeability strength, and established a theoretical evaluation model of floor water inrush. In the model, several factors, such as the floor aquifuge effective thickness, lithology, rock mass integrity, and expansion boundary anti-permeability strength were considered, and the taking values of all factors were described in detail. Taking the No. 17 coal seam and 2702 working face in Yangcun coal mine, Yanzhou mining group as an example, it proves that the evaluation model based on the expansive boundary anti-permeability strength is feasible to evaluate the coal mine floor water inrush.

  7. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  8. The long-term strength and deformation properties of crystalline rock in a high level nuclear waste repository

    International Nuclear Information System (INIS)

    Tuokko, T.

    1990-12-01

    The time-dependent phenomena which can affect the strength and deformation properties of hard crystal line rock are clarified. Suitable measuring methods for field conditions are also summarized. The significance of time is evaluated around a shaft in a high level nuclear waste repository. According to the investigation it is generally held that creep and cyclic fatigue are the most important phenomena. They arise from subcritical crack growth which is most affected by stress intensity, chemical environment, temperature, and microstructure. There are many theoretical models, which can be used to analyse creep and cyclic fatigue, but they are defective in describing the triaxial stress condition and strength criteria. Additionally, the required parameters are often too difficult to determine with adequate accuracy. The joint creep rate depends on the affecting stress regime, on the water conditions, and on the properties of filling material. The acoustic emission method is suited to observe long-term microcrack development in field conditions. The computer program developed by Atomic Energy of Canada Limited (AECL) is used to evaluate the time-dependent de-formation around a main shaft. According to the model the enlargement of the shaft radius by 30 cm takes millions of years. The possible reduction of shaft radius by 3 mm will happen during 200 years. The model is very sensitive to changes in stress state, in the uniaxial compressive strength, and in the stress corrosion index

  9. Strength, Deformation and Friction of in situ Rock

    Science.gov (United States)

    1974-12-01

    Kayenta sandstone, Mixed Company site, Colorado. 30 21. Strength as a function of density for specimen cored perpendicular and parallel to bedding. 30...saturation. 33 24. Photomicrograph of Kayenta sandstone (x 30). 35 25. Stress difference as a function of density for triaxial tests up to P = 4.0...specimen size on strength for Kayenta sandstone, Mixed Company site Colorado. m Sä £ 3 s Q 3/« In, j. O 2 In. X ’ X3/4(n.ll • 2ln. II it

  10. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  11. Hip strength and range of motion: Normal values from a professional football league.

    Science.gov (United States)

    Mosler, Andrea B; Crossley, Kay M; Thorborg, Kristian; Whiteley, Rod J; Weir, Adam; Serner, Andreas; Hölmich, Per

    2017-04-01

    To determine the normal profiles for hip strength and range of motion (ROM) in a professional football league in Qatar, and examine the effect of leg dominance, age, past history of injury, and ethnicity on these profiles. Cross-sectional cohort study. Participants included 394 asymptomatic, male professional football players, aged 18-40 years. Strength was measured using a hand held dynamometer with an eccentric test in side-lying for hip adduction and abduction, and the squeeze test in supine with 45° hip flexion. Range of motion measures included: hip internal and external rotation in 90° flexion, hip IR in prone, bent knee fall out and hip abduction in side-lying. Demographic information was collected and the effect on the profiles was analysed using linear mixed models with repeated measures. Strength values (mean±SD) were: adduction=3.0±0.6Nm/kg, abduction=2.6±0.4Nm/kg, adduction/abduction ratio=1.2±0.2, Squeeze test=3.6±0.8N/kg. Range of motion values: internal rotation in flexion=32±8°, external rotation=38±8°, internal rotation in prone=38±8°, bent knee fall out=13±4.4cm, abduction in side-lying=50±7.3°. Leg dominance had no clinically relevant effect on these profiles. Multivariate analysis demonstrated that age had a minor influence on squeeze strength (-0.03N/kg/year), external rotation (-0.30°/year) and abduction range (-0.19°/year) but past history of injury, and ethnicity did not. Normal values are documented for hip strength and range of motion that can be used as reference profiles in the clinical assessment, screening, and management of professional football players. Leg dominance, recent past injury history and ethnicity do not need to be accounted for when using these profiles for comparison purposes. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Knowing your customer better: the strengths of a self-regulatory value approach

    NARCIS (Netherlands)

    Förster, J.

    2009-01-01

    Regulatory engagement theory's strength over alternative accounts of consumer attitudes is highlighted. In line with the theory, it is argued that in order to predict behavior, one needs to understand the processes involved in goal pursuit, including the dynamic processes of value creation. The

  13. Final report of the rock sealing project - Sealing properties and longevity of smectitic clay grouts

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Hoekmark, H.; Sanden, T.; Boergesson, L.

    1991-12-01

    Na and Ca bentonite clay grouts with densities that make them easily injected into fine fractures have been hydrothermally treated and investigated with respect to the hydraulic conductivity and shear strength. Exposure of the grouts to salt groundwater increased the hydraulic conductivity up to around 10 -5 m/s, which is on the same order of magnitude as the value at complete conversion of soft montmorillonite clay to hydrous mica, i.e. the major ultimate reaction product. Still, even this 'worst scenario' case will not lead to a higher bulk conductivity of the grouted rock than around 10 -10 m/s of rock with a conductivity of 10 -8 m/s before grouting. The rate of such conversion, which is entirely dependent on the potassium content of the groundwater, can be anything from a few hundred years to several thousand years depending primarily on the magnitude of prevailing hydraulic gradients. The shear strength of the grouts, which determines the resistance to piping and erosion, increases with time and temperature. The most critical situation is immediately after injection into the rock, when hydraulic gradients exceeding about 30 may produce piping. (au)

  14. Characterization of the rock joint surface. A contribution to DECOVALEX II Task 3 'Constitutive relationships of rock joints'

    International Nuclear Information System (INIS)

    Vuopio, J.; Poellae, J.

    1997-12-01

    In order to understand the effects of spent fuel on the hydraulical behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulical properties of the fractures. The roughness of a fracture surface governs the dilatation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics

  15. A structural behavior study of rock caverns considering the effects of discontinuities

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Seo, Jeong Moon; Choi, Kyu Seop; Kim, Dae Hong; Lee, Kyung Jin; Choi, In Gil; Lee, Dong Yong

    1990-06-01

    The objective of this study is to understand the effects of discontinuities within rock masses on the structural behavior of underground rock caverns for radioactive waste disposal, and then develop a computer program for the structural analysis of rock caverns considering these effect of discontinuities. The behavior of rock masses, such as strength, deformation modes, ect., is very difficult to predict because discontinuities in the form of microcracks or joints are randomly distributed within rock masses. Discontinuties existing around the rock cavern for underground radioactive waste disposal may become the main transport pathways of radionuclides, and reduce the strength of rock masses eventually causing the rock cavern structure unstable. Therefore, a comprehensive understanding of the mechanical properties and behavior of discontinuous rock masses and an improvement of structural analysis methods are essential in order to understand the behavior of underground rock cavern structures properly in order to design safe and economic understanding the behavior of discontinuous rock masses is essential. Therfore, this study includes literature review on mechanical properties of and computational models for discontinuous rock masses, and on structures. Then, bases on the engineering judgement a suitable selection and slight modifications on computational models and analysis methods have been made before developing the structural analysis computer program for underground radioactive waste disposal structures. (author)

  16. The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation

    Science.gov (United States)

    Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.

    2018-03-01

    The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .

  17. MCDIRC: A model to estimate creep produced by microcracking around a shaft in intact rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1989-12-01

    Atomic Energy of Canada Limited (AECL) is studying the concept of disposing of nuclear fuel waste in a vault in plutonic rock. Models are being developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. A model has been constructed to consider the perturbation of the stress state of intact rock by a vertical cylindrical opening. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which the movement (creep) of the opening wall and radial strain in the rock mass can be estimated

  18. Isometric Shoulder Strength Reference Values for Physically Active Collegiate Males and Females

    Science.gov (United States)

    Westrick, Richard B.; Duffey, Michele L.; Cameron, Kenneth L.; Gerber, J. Parry; Owens, Brett D.

    2013-01-01

    Background: It is common clinical practice to assess muscle strength during examination of patients following shoulder injury or surgery. Strength comparisons are often made between the patient’s injured and uninjured shoulders, with the uninjured side used as a reference without regard to upper extremity dominance. Despite the importance of strength measurements, little is known about expected normal baselines of the uninjured shoulder. The purpose of this study was to report normative values for isometric shoulder strength for physically active college-age men and women without history of shoulder injury. Methods: University students—546 males (18.8 ± 1.0 years, 75.3 ± 12.2 kg) and 73 females (18.7 ± 0.9 years, 62.6 ± 7.0 kg)—underwent thorough shoulder evaluations by an orthopaedic surgeon and completed bilateral isometric strength measurements with a handheld dynamometer. Variables measured included internal rotation, external rotation, abduction, supine internal rotation and external rotation at 45°, and lower trapezius in prone flexion. Results: Significant differences were found between the dominant and nondominant shoulder for internal rotation, internal rotation at 45°, abduction, and prone flexion in males and in internal rotation at 45° and prone flexion for females (P ≤ 0.01). PMID:24381696

  19. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  20. Ground water movements around a repository. Rock mechanics analyses

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1977-09-01

    The determination and rational assessment of groundwater flow around a repository depends upon the accurate analysis of several interdependent and coupled phenomenological events occuring within the rock mass. In particular, the groundwater flow pathways (joints) are affected by the excavation and thermomechanical stresses developed within the rock mass, and the properties, of the groundwater are altered by the temperature perturbations in the rock mass. The objective of this report is to present the results of the rock mechanics analysis for the repository excavation and the thermally-induced loadings. Qualitative analysis of the significance of the rock mechanics results upon the groundwater flow is provided in this report whenever such an analysis can be performed. Non-linear rock mechanics calculations have been completed for the repository storage tunnels and the global repository domain. The rock mass has been assumed to possess orthoganol joint sets or planes of weakness with finite strength characteristics. In the local analyses of the repository storage tunnels the effects of jointorientation and repository ventilation have been examined. The local analyses indicated that storage room support requirements and regions of strength failure are highly dependent upon joint orientation. The addition of storage tunnel ventilation was noted to reduce regions of strength failure, particularly during the 30 year operational phase of the repository. Examination of the local stresses around the storage tunnels indicated the potential for perturbed hydraulic permeabilities. The permeabilities can be expected to be altered to a greater degree by the stresses resulting from excavation than from stresses which are thermally induced. The thermal loading provided by the instantaneous waste emplacement resulted in stress states and displacements quite similar to those provided by the linear waste emplacement sequence

  1. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  2. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    Science.gov (United States)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  3. Dry Sliding Wear Charactristics of Aluminum 6061-T6, Magnesium AZ31 and Rock Dust Composite

    Science.gov (United States)

    Balachandar, R.; Balasundaram, R.; Rajkumar, G.

    2018-02-01

    In recent years, the use of aluminum composite is gaining popularity in a wide range of applications like automobiles, aerospace and constructions (both interior & exterior) panels etc., due to its high strength, low density characteristics. Various reinforcing materials are used with aluminum 6061-T6 in order to have better mechanical properties. The addition of 0.3% of magnesium AZ31 will increase the ultimate tensile strength by 25 %. The reinforcement of rock dust will decrease the density. Hence, in order to have an advantages of magnesium AZ31 and rock dust, in this work, these two constitutes are varied from 1% to 2% on the base material of Al6061-T6 in stir casting. To evaluate the wear characteristics, Pin on disc is used in these composites. The input parameters are speed, time & load. The output response is wear. To minimize the number of experiments, L9 orthogonal array is used. The test results showed that a composite of 97% of Al (6061-T6), 1% Mg (AZ31) & 2 % of rock dust produced less wear. To find the best value of operating parameter for each sample, ANN-GA is used.

  4. Time dependency in the mechanical properties of crystalline rocks. A literature survey

    International Nuclear Information System (INIS)

    Hagros, A.; Johansson, E.; Hudson, J.A.

    2008-09-01

    Because of the long design life, elevated temperatures, and the location at depth (high stresses), time-dependent aspects of the mechanical properties of crystalline rock are potentially important for the design and the long term safety of the radioactive waste repository at Olkiluoto. However, time-dependent effects in rock mechanics are still one of the least understood aspects of the physical behaviour of rock masses, this being partly due to the fact that it is difficult to conduct long-term experimental tests - either in the laboratory or in situ. Yet, the time-dependent mechanical behaviour needs to be characterised so that it can be included in the modelling studies supporting repository design. The Introduction explains the background to the literature survey and includes definitions of the terms 'creep' (increasing strain at constant stress) and 'stress relaxation' (decreasing stress at constant strain). Moreover, it is noted that the rock around an in situ excavation is loaded by the adjacent rock elements and so the timedependent behaviour will depend on the unloading stiffness of these and hence will not actually be either pure creep or pure stress relaxation. The Appendix contains the results of the literature survey of reported time-dependent research as it applies to crystalline rock. A summary of each of the 38 literature items is presented in tabular form covering document number, subject area, document reference, subject matter, objectives, methodology, highlighted figures, conclusions and comments. It is concluded that the time-dependent failure strength of all rocks observed may be interpreted by sub-critical crack growth assisted by the stress corrosion mechanism. Also, certain parameters are known to affect the long-term properties: mineralogy, grain size, water/water chemistry, confining stress and loading history. At some point in the loading history of rock, the state of crack development reaches a point whereby the continued generation of

  5. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  6. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  7. The impact law of confining pressure and plastic parameter on Dilatancy of rock

    Science.gov (United States)

    Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing

    2017-08-01

    Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.

  8. The correlations between natural elements (K, U, Th) concentrations and thermal neutron absorption cross-section value (Σa) for rock samples of Carpatia area

    International Nuclear Information System (INIS)

    Swakon, J.; Cywicka-Jakiel, T.; Drozdowicz, E.; Gabanska, B.; Loskiewicz, J.; Woznicka, U.

    1991-01-01

    The paper presents a study of correlations between concentrations of potassium, uranium and thorium and thermal neutron absorption cross section in rock samples. This knowledge of correlation should help in recognizing the expansion ways and accumulation places of the elements responsible of high thermal neutron absorption cross section in some geological environments. The correlations show the existence of connections between the thermal neutron absorption cross section value and natural radioactivity elements concentration in rocks. The results confirm the existence of correlations between natural radioactive elements concentrations (particularly thorium) and thermal neutron absorption cross - section value in some rocks. (author). 12 refs, 23 figs, 6 tabs

  9. EVALUATION OF THE RE LATIONSHIP BETWEEN L EG STRENGTH AND VELOCITY VALUES IN AMATEUR FOOTBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    İsmail G Ö K H A N

    2015-08-01

    Full Text Available The purpose of this study is to analyse the relationship between conditional parameters ( leg strength, back strength, velocity 30 Mt, flexibility by measuring some physical (height, body w eight and physiological (systole, diastole, KAH characteristics of male football players of Karakopru Belediyespor and Harran University. According to the results obtained from the measurements, mean age was 23, 46±3,50 /years; as a part of physical cha racteristics ,mean height was 176,20±5,10 (cm and mean body weight was 70,16±5,21 (kg . As a part of physiological characteristics, mean Systolic Blood Pressure was 123,87±14,23 (mmhg , mean Diastolic Blood Pressure was 73,60±16,42 (mmhg and mean Resting Heart Rate was 64,50±10,48 (beats/min . As a part of conditional parameters, mean leg strength was 101,83±40,48 (kg, back strength was 75,83±19,43 (kg, flexibility was 34,16±6,65 (cm and mean velocity in 30 Mt. was 4,15± 0,20 (sec. It was observed that there was a relationship between 30 meters velocity and leg strength parameters (r= - , 407 . There was no relationship between 30 meters velocity and back strength parameters (r=, 429; and between 30 meters velocity and flexibility param eters (r=, 659 . As a result, while the relationship between velocity and back strength values of the amateur football players was not significant (p>0.05 ; the relationship between velocity and leg strength values was found to be significant (p<0.05.

  10. Volcanic instability: the effects of internal pressurisation and consideration of rock mass properties

    Science.gov (United States)

    Thomas, M.; Petford, N.; Bromhead, E. N.

    2003-04-01

    Since the events at mount St Helens during May 1980, there has been considerable attention focused on the mechanisms and consequences of volcanic edifice collapse. As a result catastrophic edifice failure is now recognised as perhaps the most socially devastating natural disaster associated with volcanic activity. The tendency of volcanic edifices to fail appears ubiquitous behaviour, and a number of failure precursors and more importantly triggers have been suggested, of which magmagenic (e.g. thermal and mechanical pore pressure increases) and seismogenic (e.g. tectonic or volcanic earthquakes) are common. Despite the increased interest in this field, large-scale, deep seated catastrophic edifice failure has still only be successfully modelled in the most extreme of cases, which does not account for the volume of field evidence of edifice collapse. One possible reason for this is the way that pore pressures are considered. For pore fluids that are entering the system from the surface (e.g. rain water) there is a set volume and therefore a set pressure that the system can accommodate, as once the edifice becomes saturated, any new fluids to fall on the surface of the edifice simply run off. If we consider internal pore fluid pressurisation from magmatic gasses, then the pressurising fluid is already in the system and the only limit to how much pressure can be accommodated is the strength of the edifice itself. The failure to fully consider the strength and deformability of a rock mass compared to an intact laboratory sample of a volcanic rock may result in a misleading assessment of edifice strength. An intact laboratory sample of basalt may yield a strength of 100--350 MPa (from uniaxial compression tests), a volcanic edifice however is not an intact rock, and is cut through by many discontinuities, including; faults, fractures and layering from discrete lava flows. A better approximation of the true strength can be determined from the rock mass rating (RMR

  11. The role of strength anisotropy in the development of deep-seated gravitational slope deformation features in schist at Roys Peak, South Island, New Zealand

    Science.gov (United States)

    Brideau, M.

    2013-12-01

    This study looked at the interaction between the rock strength anisotropy and discontinuity orientations on the development of well-expressed deep-seated gravitational slope deformation (DSGSD) features around Roys Peak. The project area is located near the town of Wanaka in the Otago region of New Zealand's South Island. The Roys Peak area has well defined geomorphological features (antislope scarps and split ridges) typically associated with DSGSD over a distance extending almost 4.5 km along the Lake Wanaka Valley. The summit corresponds with the intersection of two prominent ridges running approximately north-south and east-west and has an elevation of 1580 metres above sea level with a local relief of 1250 m. The bedrock geology at Roys Peak consists of Late Paleozoic to Mid Mesozoic pelitic schist having a granitic protolith. The study area has been glaciated several times during the Quaternary Period. Glaciers have strongly influenced the landscape by rounding the spurs in the valley bottom and steepening the lower parts of mountains. Roys Peak is located approximately 75km south from the Alpine Fault (boundary between the Pacific and Australian plates) and as such the project area is not particularly seismically active with only 52 earthquakes with a magnitude greater than 4 within a 50km radius of the project area listed in the New Zealand Historical Earthquake Database. Engineering geological mapping at Roys Peak identified three discontinuity sets and a pervasive schistose fabric in a dip-slope position with the main valley orientation. The rock mass quality was described in the field using the Geological Strength Index (GSI). The observed rock mass quality at Roys Peak had a GSI range between 30-45. This corresponds to a blocky/disturbed/seamy structure with fair quality discontinuity surfaces. The intact rock strength of the schist rock was evaluated using field estimates, Schmidt hammer rebound values, and point load tests. The three methods overlap

  12. Comparison of laboratory, in situ, and rock mass measurements of the hydraulic conductivity of metamorphic rock at the Savannah River Plant near Aiken, South Carolina

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    In situ testing of exploratory wells in metamorphic rock indicates that two types of fracturing occur in the rock mass. Rock containing small openings that permit only extremely slow movement of water is termed virtually impermeable rock. Rock containing openings of sufficient size to permit transmission of water at a significantly faster rate is termed hydraulically transmissive rock. Laboratory methods are unsuitable for measuring hydraulic conductivity in hydraulically transmissive rock; however, for the virtually impermeable rock, values comparable to the in situ tests are obtained. The hydraulic conductivity of the rock mass over a large region is calculated by using the hydraulic gradient, porosity, and regional velocity. This velocity is determined by dividing the inferred travel distance by the age of water which is determined by the helium content of the water. This rock mass hydraulic conductivity value is between the values measured for the two types of fractures, but is closer to the measured value for the virtually impermeable rock. This relationship is attributed to the control of the regional flow rate by the virtually impermeable rock where the discrete fractures do not form a continuous open connection through the entire rock mass. Thus, laboratory methods of measuring permeability in metamorphic rock are of value if they are properly applied

  13. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan

    2017-01-01

    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  14. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  15. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  16. Sorption of Cs, Eu and U(VI) onto rock samples from Nizhnekansky massive

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, V.; Vlasova, I.; Kalmykov, S. [Lomonosov Moscow State University (Russian Federation); Kuzmenkova, N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science (Russian Federation); Petrov, V.; Poluektov, V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences - IGEM RAS (Russian Federation)

    2014-07-01

    The accepted in Russia concept for high level wastes (HLW) and spent nuclear fuel (SNF) disposal is based on their isolation into the deep underground crystalline rock formations. The 'Eniseysky' area (Nizhnekansky massive) is supposed as the most perspective location for the future HLW and SNF repository. Core materials from different areas of Nizhnekasnsky massive have been studied in terms of petrographic and mineralogical characterization; definition of filtration, elastic, petro-physical and strength properties; estimation of hydrothermal-metasomatic transformation of rocks. We used both undisturbed sliced cores and crushed material for the sorption experiments. Preliminary results of uranium sorption show some significant differences between used rock samples from different depth in sorption rate and pH-dependence. In all cases maximum sorption (more than 90%) is reached in 2-3 weeks. The pH-dependence of sorbed uranium fraction has typical hump-shape: increase of sorption percentage with increasing pH values to 6, plateau (90-98 % of uranium sorbed), decrease of sorption percentage with increasing pH values from 8 due to U(VI) hydrolysis. In the case of cesium the sorption maximum is reached within 10-12 days and in the case of europium - about 5 days. All radionuclides sorbed preferentially onto dark minerals. Local distribution and preferential sorption of cesium, europium and uranium (VI) onto different minerals within the sample were studied by radiography, SEM-EDX, etc. These data accompanying with rock sample composition will allow the development of quantitative model for Cs, Eu and U(VI) sorption onto investigated rocks. Document available in abstract form only. (authors)

  17. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players.

    Science.gov (United States)

    Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron

    2018-05-23

    Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  18. Experimental research on the electromagnetic radiation (EMR) characteristics of cracked rock.

    Science.gov (United States)

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Cheng, Fuqi; Zhang, Zhibo; Niu, Yue

    2018-03-01

    Coal rock would emit the electromagnetic radiation (EMR) while deformation and fracture, and there exists structural body in the coal rock because of mining and geological structure. In this paper, we conducted an experimental test the EMR characteristics of cracked rock under loading. Results show that crack appears firstly in the prefabricated crack tip then grows stably parallel to the maximum principal stress, and the coal rock buckling failure is caused by the wing crack tension. Besides, the compressive strength significantly decreases because of the precrack, and the compressive strength increases with the crack angle. Intact rock EMR increases with the loading, and the cracked rock EMR shows stage and fluctuant characteristics. The bigger the angle, the more obvious the stage and fluctuant characteristics, that is EMR becomes richer. While the cracked angle is little, EMR is mainly caused by the electric charge rapid separates because of friction sliding. While the cracked angle is big, there is another significant contribution to EMR, which is caused by the electric dipole transient of crack expansion. Through this, we can know more clear about the crack extends route and the corresponding influence on the EMR characteristic and mechanism, which has important theoretical and practical significance to monitor the coal rock dynamical disasters.

  19. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1995-01-01

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses (on which the stainless steel S m values are based) from the test data are about 15 to 20% greater than the ASME Code yield stress values. The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in the probabilistic risk assessments of nuclear piping

  20. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  1. Multicriteria decision-making analysis based methodology for predicting carbonate rocks' uniaxial compressive strength

    Directory of Open Access Journals (Sweden)

    Ersoy Hakan

    2012-10-01

    Full Text Available

    ABSTRACT

    Uniaxial compressive strength (UCS deals with materials' to ability to withstand axially-directed pushing forces and especially considered to be rock materials' most important mechanical properties. However, the UCS test is an expensive, very time-consuming test to perform in the laboratory and requires high-quality core samples having regular geometry. Empirical equations were thus proposed for predicting UCS as a function of rocks' index properties. Analytical hierarchy process and multiple regression analysis based methodology were used (as opposed to traditional linear regression methods on data-sets obtained from carbonate rocks in NE Turkey. Limestone samples ranging from Devonian to late Cretaceous ages were chosen; travertine-onyx samples were selected from morphological environments considering their surface environmental conditions Test results from experiments carried out on about 250 carbonate rock samples were used in deriving the model. While the hierarchy model focused on determining the most important index properties affecting on UCS, regression analysis established meaningful relationships between UCS and index properties; 0. 85 and 0. 83 positive coefficient correlations between the variables were determined by regression analysis. The methodology provided an appropriate alternative to quantitative estimation of UCS and avoided the need for tedious and time consuming laboratory testing


    RESUMEN

    La resistencia a la compresión uniaxial (RCU trata con la capacidad de los materiales para soportar fuerzas empujantes dirigidas axialmente y, especialmente, es considerada ser uno de las más importantes propiedades mecánicas de

  2. Mechanisms controlling rock coast evolution in paraglacial landscapes - examples from Arctic, Antarctic and Scandinavian regions

    Science.gov (United States)

    Strzelecki, M. C.; Lim, M.; Kasprzek, M.; Swirad, Z. M.; Rachlewicz, G.; Migoń, P.; Pawlowski, L.; Jaskolski, M.

    2017-12-01

    This paper presents the results of an investigation into the processes controlling development of paraglacial rock coast systems in Hornsund, Svalbard, Admiralty Bay, South Shetland Islands and Gotland Island, Scandinavia. A suite of nested geomorphological and geophysical methods have been applied to characterize the functioning of rock cliffs, shore platforms and stacks influenced by lithological control and geomorphic processes driven by paraglacial coast environments - both in glaciated and deglaciated study sites. Rock hardness, quantified by Schmidt hammer rebound tests, demonstrate strong spatial control on the degree of rock weathering (rock strength) along studied rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the icefoot/sea-ice through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). Electrical resistivity tomography (ERT) surveys have been used to investigate frozen ground control on rock coast dynamics and reveal the strong interaction with marine processes in polar coastal settings. In Gotland, Scandinavia the morphology of rocky coastal landforms (rauks) bear traces of numerous environmental changes that occurred in Baltic region over the Holocene including salinity, temperature, ice-cover/storminess and relative sea-level. The results are synthesised to propose a new conceptual model of paraglacial rock coast systems, with the aim of contributing towards a unifying concept of cold region

  3. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the empirical approach

    Energy Technology Data Exchange (ETDEWEB)

    Roeshoff, Kennert; Lanaro, Flavio [Berg Bygg Konsult AB, Stockholm (Sweden); Lanru Jing [Royal Inst. of Techn., Stockholm (Sweden). Div. of Engineering Geology

    2002-05-01

    This report presents the results of one part of a wide project for the determination of a methodology for the determination of the rock mechanics properties of the rock mass for the so-called Aespoe Test Case. The Project consists of three major parts: the empirical part dealing with the characterisation of the rock mass by applying empirical methods, a part determining the rock mechanics properties of the rock mass through numerical modelling, and a third part carrying out numerical modelling for the determination of the stress state at Aespoe. All Project's parts were performed based on a limited amount of data about the geology and mechanical tests on samples selected from the Aespoe Database. This Report only considers the empirical approach. The purpose of the project is the development of a descriptive rock mechanics model for SKBs rock mass investigations for a final repository site. The empirical characterisation of the rock mass provides correlations with some of the rock mechanics properties of the rock mass such as the deformation modulus, the friction angle and cohesion for a certain stress interval and the uniaxial compressive strength. For the characterisation of the rock mass, several empirical methods were analysed and reviewed. Among those methods, some were chosen because robust, applicable and widespread in modern rock mechanics. Major weight was given to the well-known Tunnel Quality Index (Q) and Rock Mass Rating (RMR) but also the Rock Mass Index (RMi), the Geological Strength Index (GSI) and Ramamurthy's Criterion were applied for comparison with the two classical methods. The process of: i) sorting the geometrical/geological/rock mechanics data, ii) identifying homogeneous rock volumes, iii) determining the input parameters for the empirical ratings for rock mass characterisation; iv) evaluating the mechanical properties by using empirical relations with the rock mass ratings; was considered. By comparing the methodologies involved

  4. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the empirical approach

    International Nuclear Information System (INIS)

    Roeshoff, Kennert; Lanaro, Flavio; Lanru Jing

    2002-05-01

    This report presents the results of one part of a wide project for the determination of a methodology for the determination of the rock mechanics properties of the rock mass for the so-called Aespoe Test Case. The Project consists of three major parts: the empirical part dealing with the characterisation of the rock mass by applying empirical methods, a part determining the rock mechanics properties of the rock mass through numerical modelling, and a third part carrying out numerical modelling for the determination of the stress state at Aespoe. All Project's parts were performed based on a limited amount of data about the geology and mechanical tests on samples selected from the Aespoe Database. This Report only considers the empirical approach. The purpose of the project is the development of a descriptive rock mechanics model for SKBs rock mass investigations for a final repository site. The empirical characterisation of the rock mass provides correlations with some of the rock mechanics properties of the rock mass such as the deformation modulus, the friction angle and cohesion for a certain stress interval and the uniaxial compressive strength. For the characterisation of the rock mass, several empirical methods were analysed and reviewed. Among those methods, some were chosen because robust, applicable and widespread in modern rock mechanics. Major weight was given to the well-known Tunnel Quality Index (Q) and Rock Mass Rating (RMR) but also the Rock Mass Index (RMi), the Geological Strength Index (GSI) and Ramamurthy's Criterion were applied for comparison with the two classical methods. The process of: i) sorting the geometrical/geological/rock mechanics data, ii) identifying homogeneous rock volumes, iii) determining the input parameters for the empirical ratings for rock mass characterisation; iv) evaluating the mechanical properties by using empirical relations with the rock mass ratings; was considered. By comparing the methodologies involved by the

  5. A new energy-absorbing bolt for rock support in high stress rock masses

    Energy Technology Data Exchange (ETDEWEB)

    Charlie Chunlin Li [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-04-15

    An energy-absorbing rock support device, called a D bolt, has been recently developed to counteract both burst-prone and squeezing rock conditions that occur during underground excavation. The bolt is a smooth steel bar with a number of anchors along its length. The anchors are firmly fixed within a borehole using either cement grout or resin, while the smooth sections of the bolt between the anchors may freely deform in response to rock dilation. Failure of one section does not affect the reinforcement performance of the other sections. The bolt is designed to fully use both the strength and the deformation capacity of the bolt material along the entire length. The bolt has large load-bearing and deformation capacities. Static pull tests and dynamic drop tests show that the bolt length elongates by 14-20% at a load level equal to the strength of the bolt material, thereby absorbing a large amount of energy. The impact average load of a 20 mm D bolt is 200-230 kN, with only a small portion of the load transferred to the bolt plate. The cumulative dynamic energy absorption of the bolt is measured to be 47 kJ/m. D bolts were tested in three deep mines. Filed measurements show that D bolts are loaded less than rebar bolts. This paper presents the layout and principle of the D bolt, and corresponding results from static, dynamic, and field tests.

  6. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available The tight gas reservoir in the fifth member of the Xujiahe formation contains heterogeneous interlayers of sandstone and shale that are low in both porosity and permeability. Elastic characteristics of sandstone and shale are analyzed in this study based on petrophysics tests. The tests indicate that sandstone and mudstone samples have different stress-strain relationships. The rock tends to exhibit elastic-plastic deformation. The compressive strength correlates with confinement pressure and elastic modulus. The results based on thin-bed log interpretation match dynamic Young’s modulus and Poisson’s ratio predicted by theory. The compressive strength is calculated from density, elastic impedance, and clay contents. The tensile strength is calibrated using compressive strength. Shear strength is calculated with an empirical formula. Finally, log interpretation of rock mechanical properties is performed on the fifth member of the Xujiahe formation. Natural fractures in downhole cores and rock microscopic failure in the samples in the cross section demonstrate that tensile fractures were primarily observed in sandstone, and shear fractures can be observed in both mudstone and sandstone. Based on different elasticity and plasticity of different rocks, as well as the characteristics of natural fractures, a fracture propagation model was built.

  7. The statitistical evaluation of the uniaxial compressive strength of the Ruskov andesite

    Directory of Open Access Journals (Sweden)

    Krepelka František

    2002-03-01

    Full Text Available The selection of a suitable model of the statistical distribution of the uniaxial compressive strength is discussed in the paper. The uniaxial compressive strength was studied on 180 specimens of the Ruskov andesite. The rate of loading was 1MPa.s-1. The experimental specimens had a prismatic form with a square base; the slightness ratio of specimens was 2:1. Three sets of specimens with a different length of the base edge were studied, namely 50, 30 and 10 mm. The result of the measurement were three sets with 60 values of the uniaxial compressive strength. The basic statistical parameters: the sample mean, the sample standard deviation, the variational interval, the minimum and maximum value, the sample obliqueness coefficient and the sharpness coefficient were evaluated for each collection. Two types of the distribution which can be joined with the real physical fundamentals of the desintegration of rocks ( the normal and the Weibull distribution were tested. The two-parametric Weibull distribution was tested. The basic characteristics of both distributions were evaluated for each set and the accordance of the model distribution with an experimental distribution was tested. The ÷2-test was used for testing. The two-parametric Weibull distribution was selected following the comparison of the test results of both model distributions as a suitable distribution model for the characterization of uniaxial compressive strength of the Ruskov andesite. The two-parametric Weibull distribution showed better results of the goodness-of-fit test. The normal distribution was suitable for two sets; one of the sets showed a negative result of the goodness-of-fit testing. At the uniaxial compressive strength of the Ruskov andesite, a scale effect was registered : the mean value of uniaxial compressive strength decreases with increasing the specimen base edge. This is another argument for using the Weibull distribution as a suitable statistical model of the

  8. Diagnostic value of high strength MRCP in the obstructive jaundice

    International Nuclear Information System (INIS)

    Yang Yang; Dong Yuhai; Yin Jie; Lv Guoyi

    2007-01-01

    Objective: To evaluate the diagnostic value of high strength MRCP in patients with obstructive jaundice. Methods: Routine MRI and MRCP examination on 161 patients with obstructive jaundice were carded out with 1.5T Siemens super-conductive magnetic resonance machine. Of them, 103 cases were benign lesions and 58 were malignant after surgical and ERCP pathological confirmation. Results: The diagnostic accuracy of MRCP was 100%, with the qualitative diagnostic accuracy at 90.2%. Conclusion: MRCP was the best method in diagnosing patients with obstructive jaundice, the concerned performances of MRCP could provide the dependable basis for surgical operation project. (authors)

  9. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  10. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  11. [Effect of Different Stimulating Strength of Electroacupuncture on Gastrointestinal Motility and RhoA/ROCK Signaling in Gastric Antral Smooth Muscle in Diabetic Gastroparesis Rats].

    Science.gov (United States)

    Wu, Xue-Fen; Chen, Xiao-Li; Zheng, Xue-Na; Guo, Xin; Xie, Zhi-Qiang; Liu, Li; Wei, Xin-Ran; Yue, Zeng-Hui

    2018-03-25

    To observe the effect of different strength of electroacupuncture (EA) stimulation on gastrointestinal motility and Ras homolog gene family member (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) signaling in diabetic gastroparesis (DGP) rats, so as to reveal the underlying mechanisms of EA for improving DGP. Sixty SD rats were randomly and equally divided into blank control, DGP model, weak EA, medium EA, and strong EA groups ( n =12 rats in each). The DGP model was established by intraperitoneal injection of streptozotocin (STZ, 55 mmol/kg, 2%) and high-sugar and high-fat fodder feeding for 8 weeks. EA (0.12, 0.24, 0.36 mA, 20 Hz/100 Hz) was applied to "Zusanli" (ST 36), "Sanyinjiao" (SP 6) and "Liangmen" (ST 21) for 20 min, once daily for 15 successive days. Blood glucose levels were measured weekly with blood glucose meter and blood glucose test paper. Fecal phenol red excretion method was used to display gastric emptying and small intestinal propulsion function. The expression of RhoA protein in the gastric antral smooth muscle tissue was detected by immunohistochemistry and Western blot (WB), separately, and that of ROCK, myosin phosphatase target subunit 1 (MYPT 1) and phosphorylated (p)-MYPT 1 proteins in gastric antrum detected by WB. Compared with the blank control group, the gastric emptying rate and small intestine propulsion rate of the model group were significantly decreased ( P ROCK, MYPT 1 and p-MYPT 1 proteins in the gastric antrum were significantly down-regulated relevant to the control group ( P ROCK, MYPT 1 and p-MYPT 1 proteins were significantly increased in the strong, medium and weak EA stimulation groups ( P ROCK, MYPT 1 and p-MYPT 1 proteins, and obviously superior to the medium stimulation in up-regulating RhoA and MYPT 1 protein levels ( P ROCK, MYPT 1 and p-MYPT 1 proteins ( P ROCK and p-MYPT 1 proteins ( P >0.05). Electroacupuncture stimulation of ST 36-SP 6-ST 21 at 0.12, 0.24 and 0.36 mA can promote the

  12. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: reference values for overhead athletes.

    Science.gov (United States)

    Cools, Ann M J; Vanderstukken, Fran; Vereecken, Frédéric; Duprez, Mattias; Heyman, Karel; Goethals, Nick; Johansson, Fredrik

    2016-12-01

    In order to provide science-based guidelines for injury prevention or return to play, regular measurement of isometric and eccentric internal (IR) and external (ER) rotator strength is warranted in overhead athletes. However, up to date, no normative database exists regarding these values, when measured with a hand-held dynamometer. Therefore, the purpose of the study was to provide a normative database on isometric and eccentric rotator cuff (RC) strength values in a sample of overhead athletes, and to discuss gender, age and sports differences. A HHD was used to measure RC strength in 201 overhead athletes between 18 and 50 years old from three different sports disciplines: tennis, volleyball and handball. Isometric as well as eccentric strength was measured in different shoulder positions. Outcome variables of interest were isometric ER and IR strength, eccentric ER strength, and intermuscular strength ratios ER/IR. Our results show significant side, gender and sports discipline differences in the isometric and eccentric RC strength. However, when normalized to body weight, gender differences often are absent. In general, strength differences are in favour of the dominant side, the male athletes and handball. Intermuscular ER/IR ratios showed gender, sports, and side differences. This normative database is necessary to help the clinician in the evaluation of RC strength in healthy and injured overhead athletes. In view of the preventive screening and return-to-play decisions in overhead athletes, normalization to body weight and calculating intermuscular ratios are key points in this evaluation. Diagnostic study, Level III.

  13. Effect of Small Numbers of Test Results on Accuracy of Hoek-Brown Strength Parameter Estimations: A Statistical Simulation Study

    Science.gov (United States)

    Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.

    2017-12-01

    The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.

  14. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  15. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  16. Creep in jointed rock masses. State of knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune (Golder Associates AB (Sweden)); Hoekmark, Harald (Clay Technology AB, Lund (Sweden))

    2010-06-15

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature.

  17. Creep in jointed rock masses. State of knowledge

    International Nuclear Information System (INIS)

    Glamheden, Rune; Hoekmark, Harald

    2010-06-01

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature

  18. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  19. Using of Stone Flour from Some Mineral Rocks in Modern Concrete

    Science.gov (United States)

    Roman, Moskvin; Elena, Belyakova; Marina, Moroz

    2018-03-01

    There is shown the possibility of using mill ground rocks in SCC without deterioration of rheological properties of concrete mixtures. Obtained high-strength concrete of the new generation with high technical and economic indices and low unit costs per unit of cement strength.

  20. Rock Music's Place in the Library.

    Science.gov (United States)

    Politis, John

    1983-01-01

    Discussion of the importance of rock music as an expression of aural culture includes its history, rock music today, and the development of a rock music collection in the library (placement of collection and books which aid in developing a collection of permanent value). Three references are included. (EJS)

  1. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2017-08-01

    Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.

  2. Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar

    Science.gov (United States)

    Nan, Qin; Hongwei, Wang; Yongyan, Wang

    2018-03-01

    Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.

  3. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    . The Cl porosity is lower than the total physical porosity, because clays have different types of water (interlayer water, adsorbed water and free water), and ions can be affected by anionic exclusion processes. The geochemical porosity includes only the free water and some of the diffuse layer and surface-sorbed water; while the total physical porosity includes both the external and interlayer water. In order to calculate the Cl or geochemical porosity (n cl ), a relationship was used, which relates leaching data and the chloride content of the pore water extracted by the squeezing technique. Aqueous leaching tests were performed at anoxic conditions in order to obtain the chloride inventory in different core samples from each argillaceous formation. Besides, the chemical composition of the pore water was obtained by squeezing at high pressures. Taking into account the measured physical properties of the rock samples, such as water content, dry density, total porosity and degree of saturation; the geochemical porosity was calculated by using the above relationship. For Boom Clay core samples, the mean Cl porosity/water loss porosity ratio is 0.81. In the case of Opalinus Clay, the mean Cl porosity/water loss porosity ratio is 0.59. In Mont Terri core samples, this ratio ranges from 0.5 to 0.7, although a value of 0.55 is frequently used. As conclusion, for indurated mud-rock formations (Callovo-Oxfordian and Opalinus Clay), the mean geochemical porosity obtained was around 8-10 %vol. (0.5-0.6 porosity ratio), whereas in the plastic Boom Clay the geochemical porosity was around 29 %vol. (0.8 porosity ratio)

  4. MCCREEP - a model to estimate creep produced by microcracking around a cavity in an intact rock mass

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1991-11-01

    AECL Research is examining the disposal of nuclear fuel waste in a vault in plutonic rock. Models (MCDIRC and MCROC) have been developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. MCDIRC has been constructed to consider the perturbation of the stress state of intact rock by long cylindrical cavities. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which possible movements (creep strain) in the rock mass are estimated. MCDIRC depends on analytical solutions for stress-state perturbations. MCCREEP has been developed from MCDIRC and relies on the use of finite-element methods to solve for stress states. It is more flexible than MCDIRC and can deal with non-homogeneous rock properties and non-symmetrical cavities

  5. Modeling of Micro Deval abrasion loss based on some rock properties

    Science.gov (United States)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  6. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  7. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks

    Directory of Open Access Journals (Sweden)

    Ali Abd Elhakam Aliabdo

    2012-09-01

    Full Text Available This study aims to investigate the relationships between Schmidt hardness rebound number (RN and ultrasonic pulse velocity (UPV versus compressive strength (fc of stones and bricks. Four types of rocks (marble, pink lime stone, white lime stone and basalt and two types of burned bricks and lime-sand bricks were studied. Linear and non-linear models were proposed. High correlations were found between RN and UPV versus compressive strength. Validation of proposed models was assessed using other specimens for each material. Linear models for each material showed good correlations than non-linear models. General model between RN and compressive strength of tested stones and bricks showed a high correlation with regression coefficient R2 value of 0.94. Estimation of compressive strength for the studied stones and bricks using their rebound number and ultrasonic pulse velocity in a combined method was generally more reliable than using rebound number or ultrasonic pulse velocity only.

  8. Survey on the characteristics of rock under low and high temperature

    International Nuclear Information System (INIS)

    Shin, Koich; Kitano, Koichi

    1987-01-01

    Rock caverns for Superconducting Magnetic Energy Storage (SMES), Radioactive Waste Disposal, or Liquified Natural Gas Storage will suffer extraordinary temperature. Therefore, authors have researched the rock characteristics under the low temperature conditions and the rock mass behavior when it is heated, by papers so far reported. As a result, rock characteristics such as strength, linear expansion coefficient, thermal conductivity etc. are found to be ready to change with temperature condition and the kind of rocks. Even an anisotropy of some kind appears under some conditions. So, when sitting those facilities before mentioned, rock characteristics under each temperature condition must be enough clarified for the purpose of the evaluation of rock cavern stability and especially, rock behavior when it is loaded dynamically under low temperature must be cleared from now on, for such studies have been few. (author)

  9. Surrounding rock stress analysis of underground high level waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Wang Guangdi

    2006-01-01

    During decay of nuclear waste, enormous energy was released, which results in temperature change of surrounding rock of depository. Thermal stress was produced because thermal expansion of rock was controlled. Internal structure of surrounding rock was damaged and strength of rock was weakened. So, variation of stress was a dynamic process with the variation of temperature. BeiShan region of Gansu province was determined to be the depository field in the future, it is essential to make research on granite in this region. In the process of experiment, basic physical parameters of granite were analyzed preliminary with MTS. Long range temperature and stress filed was simulated considering the damage effect of surrounding rock, and rules of temperature and stress was achieved. (authors)

  10. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.

    Science.gov (United States)

    Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  11. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    Science.gov (United States)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  12. Diffusivity database (DDB) for major rocks. Database for the second progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Haruo

    1999-10-01

    A database for diffusivity for a data setting of effective diffusion coefficients in rock matrices in the second progress report, was developed. In this database, 3 kinds of diffusion coefficients: effective diffusion coefficient (De), apparent diffusion coefficient (Da) and free water diffusion coefficient (Do) were treated. The database, based on literatures published between 1980 and 1998, was developed considering the following points. (1) Since Japanese geological environment is focused in the second progress report, data for diffusion are collected focused on Japanese major rocks. (2) Although 22 elements are considered to be important in performance assessment for geological disposal, all elements and aquatic tracers are treated in this database development considering general purpose. (3) Since limestone, which belongs to sedimentary rock, can become one of the natural resources and is inappropriate as a host rock, it is omitted in this database development. Rock was categorized into 4 kinds of rocks; acid crystalline rock, alkaline crystalline rock, sedimentary rock (argillaceous/tuffaceous rock) and sedimentary rock (psammitic rock/sandy stone) from the viewpoint of geology and mass transport. In addition, rocks around neutrality among crystalline rock were categorized into the alkaline crystalline rock in this database. The database is composed of sub-databases for 4 kinds of rocks. Furthermore, the sub-databases for 4 kinds of the rocks are composed of databases to individual elements, in which totally, 24 items such as species, rock name, diffusion coefficients (De, Da, Do), obtained conditions (method, porewater, pH, Eh, temperature, atmosphere, etc.), etc. are input. As a result of literature survey, for De values for acid crystalline rock, totally, 207 data for 18 elements and one tracer (hydrocarbon) have been reported and all data were for granitic rocks such as granite, granodiorite and biotitic granite. For alkaline crystalline rock, totally, 32

  13. Time dependent fracture growth in intact crystalline rock: new laboratory procedures

    International Nuclear Information System (INIS)

    Backers, T.; Stephansson, O.

    2008-01-01

    Short term laboratory tests to determine the strength of rock material are commonly used to assess stability of rock excavations. However, loading the rock below its short term strength may lead to delayed failure due to slow stable fracture growth. This time-dependent phenomenon is called subcritical fracture growth. A fracture mechanics based approach is applied in this study to determine the parameters describing subcritical fracture growth under Mode Ⅰ (tensile) and Mode Ⅱ (in-plane shear) loading in terms of the stress intensity factors of saturated granodiorite from the) Aespoe HRL. A statistical method is applied to data from three-point bending (tension) and Punch-Through Shear with Confining Pressure, PTS/CP, (shear) experiments. One population of each set-up was subjected to rapid loading tests yielding a strength probability distribution. A second population was loaded up to a certain fraction of the statistical percentage for failure and the time-to-failure was determined. From these two populations the subcritical fracture growth parameters were determined successfully. Earlier studies demonstrated subcritical fracture growth under Mode I loading conditions, but this study shows that under a Mode Ⅱ load time-dependent fracture growth exists as well. (authors)

  14. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  15. Analysis of in-situ rock joint strength using digital borehole scanner images

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, Bhaskar Bahadur [Univ. of California, Berkeley, CA (United States)

    1994-09-01

    The availability of high resolution digital images of borehole walls using the Borehole Scanner System has made it possible to develop new methods of in-situ rock characterization. This thesis addresses particularly new approaches to the characterization of in-situ joint strength arising from surface roughness. An image processing technique is used to extract the roughness profile from joints in the unrolled image of the borehole wall. A method for estimating in-situ Rengers envelopes using this data is presented along with results from using the method on joints in a borehole in porphyritic granite. Next, an analysis of the joint dilation angle anisotropy is described and applied to the porphyritic granite joints. The results indicate that the dilation angle of the joints studied are anisotropic at small scales and tend to reflect joint waviness as scale increases. A procedure to unroll the opposing roughness profiles to obtain a two dimensional sample is presented. The measurement of apertures during this process is shown to produce an error which increases with the dip of the joint. The two dimensional sample of opposing profiles is used in a new kinematic analysis of the joint shear stress-shear deformation behavior. Examples of applying these methods on the porphyritic granite joints are presented. The unrolled opposing profiles were used in a numerical simulation of a direct shear test using Discontinuous Deformation Analysis. Results were compared to laboratory test results using core samples containing the same joints. The simulated dilatancy and shear stress-shear deformation curves were close to the laboratory curves in the case of a joint in porphyritic granite.

  16. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  17. Dynamic Mechanical Behavior of Dry and Water Saturated Igneous Rock with Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2018-01-01

    Full Text Available The uniaxial cyclic loading tests have been conducted to study the mechanical behavior of dry and water saturated igneous rock with acoustic emission (AE monitoring. The igneous rock samples are dried, naturally immersed, and boiled to get specimens with different water contents for the testing. The mineral compositions and the microstructures of the dry and water saturated igneous rock are also presented. The dry specimens present higher strength, fewer strains, and rapid increase of AE count subjected to the cyclic loading, which reflects the hard and brittle behavior and strong burst proneness of igneous rock. The water saturated specimens have lower peak strength, more accumulated strains, and increase of AE count during the cyclic loading. The damage of the igneous rocks with different water contents has been identified by the Felicity Ratio Analysis. The cyclic loading and unloading increase the dislocation between the mineral aggregates and the water-rock interactions further break the adhesion of the clay minerals, which jointly promote the inner damage of the igneous rock. The results suggest that the groundwater can reduce the burst proneness of the igneous rock but increase the potential support failure of the surrounding rock in igneous invading area. In addition, the results inspire the fact that the water injection method is feasible for softening the igneous rock and for preventing the dynamic disasters within the roadways and working faces located in the igneous intrusion area.

  18. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  19. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    OpenAIRE

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei

    2015-01-01

    Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...

  20. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  1. Rock mechanics stability at Olkiluoto, Haestholmen, Kivetty and Romuvaara

    International Nuclear Information System (INIS)

    Johansson, E.; Rautakorpi, J.

    2000-02-01

    Posiva Oy is studying the suitability of the Finnish bedrock for the geological disposal of spent nuclear fuel at four sites, Olkiluoto in Eurajoki, Haestholmen in Loviisa, Kivetty in Aeaenekoski and Romuvaara in Kuhmo. To enable the rock properties to be specified in great detail, the site-selection research programme has included rock mechanics investigations such as the measurement of in-situ rock stress and laboratory tests on rock samples. This report presents the results of the rock mechanics analyses performed on the main rock types at the Olkiluoto, Romuvaara, Kivetty and Haestholmen sites. The objective of this study was to assess the near-field stability of the final disposal tunnels and deposition holes at each of the investigation sites. Two empirical methods and a numerical method based on three-dimensional element code (3DEC) were used the analysis tools. A statistical approach was used to select the necessary input data and to specify the cases being analysed. The stability of the KBS-3 and MLH (Medium Long Hole) repository concepts during the pre-closure and post-closure phases was analysed. The repository depths investigated lay between 300 m and 700 m. The empirical methods are based on the study of the ratios between rock strength and the in-situ stress which could result in possible fracturing of the rock mass. Interpretation of the numerical analyses is based on the assumption of an elastic distribution of stress around the disposal tunnel and the deposition hole and the brittle rock strength criterion. The results obtained in this study indicate that in general, the rock mechanics conditions during the pre-closure and post-closure phases at each of the investigated sites remain good and stable between the studied depth levels, especially when the deposition rooms are oriented in a direction parallel to the major in-situ stress. If the disposal tunnels are orientated in a direction perpendicular to the major in-situ stress, the resultant

  2. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Directory of Open Access Journals (Sweden)

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  3. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  4. Creep in crystalline rock with application to high level nuclear waste repository

    International Nuclear Information System (INIS)

    Eloranta, P.; Simonen, A.

    1992-06-01

    The time-dependent strength and deformation properties of hard crystalline rock are studied. Theoretical models defining the phenomena which can effect these properties are reviewed. The time- dependent deformation of the openings in the proposed nuclear waste repository is analysed. The most important factors affecting the subcritical crack growth in crystalline rock are the stress state, the chemical environment, temperature and microstructure of the rock. There are several theoretical models for the analysis of creep and cyclic fatigue: deformation diagrams, rheological models thermodynamic models, reaction rate models, stochastic models, damage models and time-dependent safety factor model. They are defective in describing the three-axial stress condition and strength criteria. In addition, the required parameters are often too difficult to determine with adequate accuracy. Therefore these models are seldom applied in practice. The effect of microcrack- driven creep on the stability of the work shaft, the emplacement tunnel and the capsulation hole of a proposed nuclear waste repository was studied using a numerical model developed by Atomic Energy of Canada Ltd. According to the model, the microcrack driven creep progresses very slowly in good quality rock. Poor rock quality may accelerate the creep rate. The model is very sensitive to the properties of the rock and secondary stress state. The results show that creep causes no stability problems on excavations in good rock. The results overestimate the effect of the creep, because the analysis omitted the effect of support structures and backfilling

  5. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  6. Reassessment of pH reference values with improved methodology for the evaluation of ionic strength

    International Nuclear Information System (INIS)

    Lito, M.J. Guiomar H.M.; Camoes, M. Filomena G.F.C.

    2005-01-01

    The conflict between pH as empirical number in routine control and the pH value regarded as conveying some information concerning the effective concentration or activity of hydrogen ions, a H , has caused much confusion. There are, however, reasons to conclude that the overwhelming amount of thermodynamic data is not sufficiently accurate--either due to ignorance of metrological concepts or due to insufficiently specified measurement processes of fundamental chemical quantities pH. The commonly used seven reference buffer solutions to which primary pH values have been conventional assigned, represent a selection out of a more extensive list, recommended by NBS (now NIST) in 1962. From then onwards conventions concerning the Debye-Hueckel model of electrolyte solutions and ionic strength have been revised and the pH(S) values reassessed in conformity but only for these seven reference buffer solutions. The others have, so far remained unchanged, locking harmonisation of the conventionally assigned pH(S) values. In this work, ionic strength is calculated through complete equations derived from the acidity constants. Concentrations of the various species involved in the conventional assignment of pH and their corresponding activity coefficients are therefore, more rigorously known. The process proves particularly useful for poliprotic acids with overlapping acidity constants, where the ratio is less than 10 3 . As a consequence, conventionally assigned pH values of reference buffer solutions are recalculated and corrections are introduced as appropriate

  7. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    International Nuclear Information System (INIS)

    D. Rigby

    2004-01-01

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components)

  8. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  9. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  10. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles

    Directory of Open Access Journals (Sweden)

    Haibo Jiang

    2018-01-01

    Full Text Available Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa. For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa in rock strength and a drop of 44.85% (equivalent to 2.83 GPa in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.

  11. Interim rock mass properties and conditions for analyses of a repository in crystalline rock

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Chieslar, J.D.

    1985-03-01

    A summary of rock properties for generic crystalline rock is compiled from literature sources to provide the input data for analyses of a conceptual repository in crystalline rock. Frequency histograms, mean values and ranges of physical, mechanical, thermal, and thermomechanical properties, and the dependence of these properties on temperature are described. A description of the hydrogeologic properties of a crystalline rock mass and their dependence on depth is provided. In addition, the temperature gradients, mean annual surface temperature, and in situ stress conditions are summarized for the three regions of the United States currently under consideration to host a crystalline repository; i.e., the North Central, Northeastern, and Southeastern. Brief descriptions of the regional geology are also presented. Large-scale underground experiments in crystalline rock at Stripa, Sweden, and in Climax Stock in Nevada, are reviewed to assess whether the rock properties presented in this report are representative of in situ conditions. The suitability of each rock property and the sufficiency of its data base are described. 110 refs., 27 figs., 4 tabs

  12. Examining the relation between rock mass cuttability index and rock drilling properties

    Science.gov (United States)

    Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram

    2016-12-01

    Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.

  13. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    in the range of millimetres to a very few centimetres and can be linked to annual groundwater fluctuations. Due to pore pressure variations HM coupling can influence seepage forces and effective stresses in the rock mass. Effective stress changes can adversely affect the stability and deformation behaviour of deep-seated rock slides by influencing the shear strength or the time dependent (viscous) material behaviour of the basal shear zone. The shear strength of active shear zones is often reasonably well described by Coulomb's law. In Coulomb's law the operative normal stresses to the shear surface/zone are effective stresses and hence pore pressures which should be taken into account reduces the shear strength. According to the time dependent material behaviour a few effective stress based viscous models exists which are able to consider pore pressures. For slowly moving rock slides HM coupling could be highly relevant when low-permeability clayey-silty shear zones (fault gouges) are existing. An important parameters therefore is the hydraulic diffusivity, which is controlled by the permeability and fluid-pore compressibility of the shear zone, and by fluid viscosity. Thus time dependent pore pressure diffusion in the shear zone can either control the stability condition or the viscous behaviour (creep) of the rock slide. Numerous cases studies show that HM coupling can effect deformability, shear strength and time dependent behaviour of fractured rock masses. A process-based consideration can be important to avoid unexpected impacts on infrastructures and to understand complex rock mass as well rock slide behaviour.

  14. Relationship between natural radioactivity and rock type in the Van lake basin - Turkey

    International Nuclear Information System (INIS)

    Tolluoglu, A. U.; Eral, M.; Aytas, S.

    2004-01-01

    The Van Lake basin located at eastern part of Turkey. The Van lake basin essentially comprises two province, these are namely Van and Bitlis. The former geochemistry research indicated that the uranium concentrations of Van lake water and deep sediments are 78-116 ppb and 0.1-0.5 ppm respectively. Uranium was transported to Van Lake by rivers and streams, flow through to outcrops of Paleozoic Bitlis Massive, and young Pleistocene alkaline/calkalkaline volcanic rocks. This study focused on the revealing natural radioactivity and secondary dispersion of radioactivity related to rock types surface environments in the Van Lake Basin. The Van Lake Basin essentially subdivided into three different parts; the Eastern parts characterized by Mesozoic basic and ultra basic rocks, southern parts dominated by metamorphic rocks of Bitlis Massive, Western and Northwestern parts covered by volcanic rocks of Pleistocene. Volcanic rocks can be subdivided into two different types. The first type is mafic rocks mainly composed of basalts. The second type is felsic rocks represented by rhyolites, dacites and pumice tuff. Surface gamma measurements (cps) and dose rate measurements (μR/h) show different values according to rock type. Surface gamma measurement and surface dose rate values in the basaltic rocks are slightly higher than the average values (130 cps, 11 μR/h). In the felsic volcanic rocks such as rhyolites and dacites surface gamma measurement values and surface dose rate values, occasionally exceed the background. Highest values were obtained in the pumice tuffs. Rhyolitic eruptions related to Quaternary volcanic activity formed thick pumice (natural glassy froth related to felsic volcanic rocks and exhibit spongy texture) sequences Northern and Western part of Van Lake basin. The dose rate of pumice rocks was measured mean 15 μR/h. The highest value for surface gamma measurements was recorded as 200 cps. The pumice has very big water capacity, due to porous texture of

  15. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    Science.gov (United States)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  16. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    Science.gov (United States)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  17. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    Science.gov (United States)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  18. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  19. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  20. Evaluation of the basic mechanical and thermal properties of deep crystalline rocks

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    This report provides the mechanical and thermal properties of granitic intact rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are the basic material properties of the core samples from the boreholes drilled up to 500 m depth at the Yusung and Kosung sites. These sites were selected based on the result of preliminary site evaluation study. In this study, the mechanical properties include density, porosity, P-wave velocity, S-wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, and shear strength of fractures, and the thermal properties are heat conductivity, thermal expansion coefficient, specific heat and so on. Those properties were measured through laboratory tests and these data are compared with the existing test results of several domestic rocks

  1. Evaluation of the basic mechanical and thermal properties of deep crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    This report provides the mechanical and thermal properties of granitic intact rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are the basic material properties of the core samples from the boreholes drilled up to 500 m depth at the Yusung and Kosung sites. These sites were selected based on the result of preliminary site evaluation study. In this study, the mechanical properties include density, porosity, P-wave velocity, S-wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, and shear strength of fractures, and the thermal properties are heat conductivity, thermal expansion coefficient, specific heat and so on. Those properties were measured through laboratory tests and these data are compared with the existing test results of several domestic rocks.

  2. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  3. Eating Disorder Behaviors, Strength of Faith, and Values in Late Adolescents and Emerging Adults: An Exploration of Associations

    Science.gov (United States)

    King, Stephanie L.

    2012-01-01

    Adolescents entering college are often affected by eating disorders and during this transition to emerging adulthood, individuals begin to establish personal values and beliefs, which makes this population interesting when studying Eating Disorders, values, and faith. This research project seeks to examine the association among strength of…

  4. Oxygen and hydrogen isotope studies of plutonic granitic rocks

    International Nuclear Information System (INIS)

    Taylor, H.P. Jr.

    1978-01-01

    The primary deltaD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about -50 to -85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not 'juvenile', but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have delta 18 O = +7.0 to +10.0, probably indicating significant involvment of high- 18 O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have delta 18 O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low delta 18 O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low- 18 O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (deltaK as low as -180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have deltaD values lower than -120. The lowering of deltaD values commonly corelates with re-setting of K-Ar ages. (Auth.)

  5. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  6. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  7. Do the Microshear Test Variables Affect the Bond Strength Values?

    Directory of Open Access Journals (Sweden)

    Andrea M. Andrade

    2012-01-01

    Full Text Available Little is known about the effect of specimen preparation and testing protocols on the micro-shear bond strength (μSBS results. To evaluate whether variations in polyethylene rod use affect (μSBS. Human dentin disks were randomly distributed into six groups (: polyethylene tube (3 levels and adhesive system (2 levels. In Group 1, polyethylene tubes filled with polymerized composite were placed on adhesive covered surfaces. Tubes were removed 24 h after water storage, leaving the rods only. In Group 2, the same procedure was performed; however, tubes were kept in place during testing. In Group 3, composite rods without tubes were placed on adhesive covered dentin. In all groups, adhesives were photoactivated after positioning filled tubes/rods on adhesive covered surfaces. Specimens were tested under shear mode and the data subjected to a two-way ANOVA and Tukey’s tests. Groups 1 and 2 resulted in statistically similar mean μSBS (; however, a greater number of pretest failures were observed for Group 1. Higher μSBS values were detected for Group 3, irrespective of adhesive system used (. Removing the polyethylene tube before composite rod is placed on dentin affects μSBS values.

  8. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    Science.gov (United States)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  9. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2015-01-01

    Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.

  10. Experimental and Numerical Characterization of Synthetic and Natural Rock Properties in Support of the NEESROCK Project

    Science.gov (United States)

    Adams, S.; Smith, S.; Maclaughlin, M.; Wartman, J.; Applegate, K. N.; Gibson, M. D.; Arnold, L.; Keefer, D. K.

    2013-12-01

    Seismically induced rock slope failures are one of the most dangerous and least understood of all seismic hazards. The NEESROCK project, a collaboration between researchers at the University of Washington, Montana Tech, and the University of Maine, is supported by the National Science Foundation through its Network for Earthquake Engineering Simulation (NEES) program. The overall goal of the project is to advance our understanding of the fundamental mechanisms of the rock-slope failure process by integrating centrifuge physical modeling and distinct element numerical simulations in order to develop more advanced predictive tools and analysis procedures. Centrifuge experiments will calibrate and verify the numerical models. A fundamental component of this project and the primary focus of the Montana Tech research is laboratory testing of the synthetic materials used in the centrifuge models and comparison of these materials with natural rock specimens. Properties such as strength of the intact material, the geometry and strength of material interfaces, and the material's response to deformation and wave propagation are being studied with laboratory experiments that include tilt table tests, direct shear tests, laser scanning of the interface surfaces, unconfined compression tests, ultrasonic velocity tests, and free-free resonant column tests. The numerical modeling portion of the study is being used to simulate selected laboratory tests to investigate the abilities of the distinct element programs (Itasca's Universal Distinct Element Code (UDEC) and Particle Flow Code (PFC) software) to simulate the material behavior in the laboratory. Direct shear test results, in particular, are used to validate the performance of the joint constitutive models in UDEC. The experimental ultrasonic velocity tests, in combination with unconfined compression tests, are being used to investigate the relationship between static and dynamic modulus values for the project material as

  11. Loading-unloading pressure-volume curves for rocks

    International Nuclear Information System (INIS)

    Stephens, D.R.; Lilley, E.M.

    1970-01-01

    The stress-strain codes (SOC and TENSOR) used to calculate phenomenology of nuclear explosion for the Plowshare Program require inter alia the pressure-volume relationships of the earth media. In this paper we describe a rapid and accurate method to obtain pressure-volume data to 40 kb at 25 deg. C for rocks. These experimental results may also be related to the in situ elastic properties of the rock and to other laboratory measurement of properties, such as ultrasonic experiments with pressure and Hugoniot determinations. Qualitative features of the pressure-volume curves can be related to the initial porosity of the rock. A porous rock is usually quite compressible at low pressures. If the porosity is in the form of narrow cracks, the cracks are closed at a pressure of about 3 to 6 kb, after which the rock is much less compressible. If the porosity is in the form of spherical pores, it is not necessarily removed even at pressures of 40 kb, depending on the strength of the rock, and the compressibility is higher at all pressures than for a similar rock containing no porosity. Data for water-saturated samples show the phase transformation due to free water at about 10 and 22 kb. However, the presence of 'nonliquid' water, which is loosely contained within the lattice of clay or zeolitic minerals or adsorbed on particle surfaces, is also observed. (author)

  12. Loading-unloading pressure-volume curves for rocks

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, D R; Lilley, E M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The stress-strain codes (SOC and TENSOR) used to calculate phenomenology of nuclear explosion for the Plowshare Program require inter alia the pressure-volume relationships of the earth media. In this paper we describe a rapid and accurate method to obtain pressure-volume data to 40 kb at 25 deg. C for rocks. These experimental results may also be related to the in situ elastic properties of the rock and to other laboratory measurement of properties, such as ultrasonic experiments with pressure and Hugoniot determinations. Qualitative features of the pressure-volume curves can be related to the initial porosity of the rock. A porous rock is usually quite compressible at low pressures. If the porosity is in the form of narrow cracks, the cracks are closed at a pressure of about 3 to 6 kb, after which the rock is much less compressible. If the porosity is in the form of spherical pores, it is not necessarily removed even at pressures of 40 kb, depending on the strength of the rock, and the compressibility is higher at all pressures than for a similar rock containing no porosity. Data for water-saturated samples show the phase transformation due to free water at about 10 and 22 kb. However, the presence of 'nonliquid' water, which is loosely contained within the lattice of clay or zeolitic minerals or adsorbed on particle surfaces, is also observed. (author)

  13. Studies on the radiation absorption characteristics of various rocks

    International Nuclear Information System (INIS)

    Rahman, K.N.; Abdullah, S.A.; Gazzaz, M.A.

    1984-05-01

    Radiation absorption characteristics of nine different rocks, namely, ferrugenous quartz, metabasalt, larvikite, coarse grained diorite, coarse grained granite, coarse grained alkali granite, marble, quartz mica schist, and metamorphosed rock are studied. The rocks were collected from Jeddah, Makkah, Mina and Taif areas. Special attention was given on the availability, compactness, physical formation and uniform composition in selecting the rocks. The rocks were identified by optical method and their elemental composition determined by chemical analysis. The data were used to calculate the effective atomic numbers, half value layers mass and linear attenuation coefficients. The half value layers and the linear attenuation coefficientsof these rocks were determined experimentally using Am-241, Cs-137,and Co-60 sources. The results are compared with those obtained by theoretical calculations and agrre within 10%. Most of the rocks show much higher radiation attenuation characteristics than the standard concrete. Rocks containing higher percentage of Fe, Ca, Ti, and Mn show much higher radiation absorption characteristics than concrete. Only granites are found to be almost equivalent to concrete. 12 Ref

  14. Damage-plasticity model of the host rock in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz [Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.

  15. The influence of environment on the inelastic behavior of rocks

    International Nuclear Information System (INIS)

    Heard, Hugh C.

    1970-01-01

    The mechanical response of earth materials are demonstrably dependent upon the environment during deformation as well as the physical properties of the rock masses themselves. Among the most important of these environmental parameters are mean pressure, pore fluid pressure, temperature, strain rate, and the relative magnitude of the intermediate principal stress (σ 2 ) compared to the maximum (σ 1 ) and minimum (σ 3 ) stresses. Important inherent properties of rocks include anisotropy, homogeneity, porosity, permeability, grain size, and mineral composition. Calculation of the response of rocks to a nearby nuclear detonation requires knowledge of the deviatoric stress-strain behavior as well as the resulting mechanisms of deformation: fracture or flow. For calculations beginning at times of the order of 10 -3 sec after detonation, that is, when peak pressures are ∼10 6 bars and lasting to ∼10 2 sec when cavity pressures have decayed to ∼10 2 bars, broad limitations may be imposed on the possible deformation environment. Here, mean pressures range from 10 6 to 10 2 bars, pore pressures from 10 6 to 1 bar, temperatures from 1500 deg. to 50 deg. C, and strain rates from 10 6 to 10 -3 per sec; σ 2 may range in value from that of σ 3 on loading to that of σ 1 on unloading. Using present technology, it is virtually impossible to measure the mechanical behavior of rock materials under controlled conditions over much of the above range. This behavior must be largely inferred from data gathered at less extreme conditions. Quantitative data illustrating the effect of the deformation environment upon the strength and brittle-ductile behavior are presented for a suite of rocks of interest to the Plowshare program; among these are limestone, quartzite, granite, sandstone and 'oil-shale'. More limited results are also presented illustrating the effect of planar anisotropies as well as of grain size upon mechanical properties. The available data then may be used to

  16. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  17. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  18. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks

    Science.gov (United States)

    Borrelli, Luigi; Gullà, Giovanni

    2017-08-01

    Deep-seated rock slides (DSRSs), recognised as one of the most important mass wasting processes worldwide, involve large areas and cause several consequences in terms of environmental and economic damage; they result from a complex of controlling features and processes. DSRSs are common in Calabria (southern Italy) where the complex geo-structural setting plays a key role in controlling the geometry of the failure surface and its development. This paper describes an integrated multi-disciplinary approach to investigate a DSRS in Palaeozoic high-grade metamorphic rocks of the Sila Massif; it focuses on the definition of the internal structure and the predisposing factors of the Serra di Buda landslide near the town of Acri, which is a paradigm for numerous landslides in this area. An integrated interdisciplinary study based on geological, structural, and geomorphological investigations-including field observations of weathering grade of rocks, minero-petrographic characterisations, geotechnical investigations and, in particular, fifteen years of displacement monitoring-is presented. Stereoscopic analysis of aerial photographs and field observations indicate that the Serra di Buda landslide consists of two distinct compounded bodies: (i) an older and dormant body ( 7 ha) and (ii) a more recent and active body ( 13 ha) that overlies the previous one. The active landslide shows movement linked to a deep-seated translational rock slide (block slide); the velocity scale ranges from slow (1.6 m/year during paroxysmal stages) to extremely slow (affected by weathering processes that significantly reduce the rock strength and facilitate the extensive failure of the Serra di Buda landslide. Finally, the landslide's internal structure, according to geotechnical investigations and displacement monitoring, is proposed. The proposed approach and the obtained results can be generalised to typify other deep landslides in similar geological settings.

  19. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in

  20. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    Science.gov (United States)

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  1. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    Science.gov (United States)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  2. Tungsten abundances in some volcanic rocks

    International Nuclear Information System (INIS)

    Helsen, J.N.; Shaw, D.M.; Crocket, J.H.

    1978-01-01

    A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments. These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19; continental margin, 0.40; continental subalkaline, 0.30; continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05. Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively. (author)

  3. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  4. Strength and impermeability recovery of siliceous mudstone from complete failure

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Sanada, Masanori; Fujita, Tomoo; Hashiba, Kimihiro; Fukui, Katsunori; Okubo, Seisuke

    2013-01-01

    Radionuclide migration can be undesirably increased by weakening the mechanical properties of a rock mass in the excavated disturbed zone (EDZ) around the tunnels of a geological disposal facility for high level radioactive waste. Laboratory testing of loading stress and loading time on failed siliceous mudstone specimens has identified the potential for the long-term recovery of the strength and impermeability of the rock mass in the EDZ. (author)

  5. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  6. Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods

    Science.gov (United States)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.

  7. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  8. Sorption of actinides in granitic rock

    International Nuclear Information System (INIS)

    Allard, B

    1982-11-01

    The sorption of americium (III), neptunium(V) and plutonium on geologic media under oxic conditions has been measured by a batch technique. The aqueous phase was a synthetic groundwater or 4M NaCl solution. The solid phase was a pure mineral, representative of igneous rocks, or granite. Altogether 40 different minerals and rocks were used. The effects of pH and the ionic strength of the aqueous phase as well as of the cation exchange capacity and the surface/mass ratio of the solid sorbent are discussed. Empirical equations giving the distribution coefficient as a function of pH in the environmental pH-range 7-9 are suggested. Some observations and conclusions concerning sorption mechanisms are given. (author)

  9. Penalobo "Castle Rocks" - First approach to valuing this geoforms.

    Science.gov (United States)

    Pinharandas, Carlos; Nobre, José; Gomes, Ana

    2013-04-01

    The village of Penalobo, located in the municipality of Sabugal (Portugal) is characterized by hercynian granites with interesting geological features, including pegmatite veins and quartz crystals with exotic forms, and presents some steep slopes and plateaus. From the mountainous configuration highlight some more pronounced elevations called "Castle Rocks". Such structures are composed by granites, which present greater fracturing at the top, which leads to the formation of large granite blocks. In less fractured zones it is possible to observe small folds. An excavation existing in one of those elevations allows us to observe a basic rock outcropping with clusters of crystals mottled with circular shape, which are indicative of the presence of late fluid during crystallization. In the zone of contact with the enclosing granite, there are small folds caused by magma intrusion. Those evidences led us to hypothesize that the peaks observed in the area of Penalobo village were due to the intrusion on basic magma. All this framework and geological environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has a vital importance in the context of a strategy of forming a geological park, in the point of view of tourism, research and interpretation.

  10. A review of numerical techniques approaching microstructures of crystalline rocks

    Science.gov (United States)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  11. Infilling Littleton Street Mine, Wallsall, with colliery spoil rock paste

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.T.; Braithwaite, P.A. [Ove Arup and Partners, Birmingham (United Kingdom)

    1993-12-31

    Describes the filling of an abandoned underground mine with low strength (12-20 kPa) paste made of coal mining waste. With a volume of 550,000 m{sup 3}, it was the largest mine to be filled with rock paste to date. The abandoned mine, flooded with underground water, consists of room and pillar workings at shallow depth of 35 to 60 m. Height of the underground mine cavity varies between 4 and 8 m. The process of infilling and tests and systems for monitoring infilling completeness and strength are described. Benefits of rock paste over other forms of infilling are discussed. Land reclamation work at the source sites is also described. Mineral waste source sites and specifications of the materials are given. After work completion, about 18 ha of derelict urban land were released for redevelopment. 6 refs.

  12. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  13. Study of Post-Peak Strain Softening Mechanical Behaviour of Rock Material Based on Hoek–Brown Criterion

    OpenAIRE

    Qibin Lin; Ping Cao; Peixin Wang

    2018-01-01

    In order to build the post-peak strain softening model of rock, the evolution laws of rock parameters m,s were obtained by using the evolutionary mode of piecewise linear function regarding the maximum principle stress. Based on the nonlinear Hoek–Brown criterion, the analytical relationship of the rock strength parameters m,s, cohesion c, and friction angle φ has been developed by theoretical derivation. According to the analysis on the four different types of rock, it is found that, within ...

  14. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    OpenAIRE

    Chen, Yanlong; Wu, Peng; Yu, Qing; Xu, Guang

    2017-01-01

    To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mech...

  15. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  16. Rock Testing Handbook (Test Standards 1993)

    Science.gov (United States)

    1993-01-01

    relatively inert granular angle of shear resistance-see angle of internal friction. mineral material, such as sand, gravel, slag , crushed stone, angle of...by bleeding. another species, blocking -wood blocks placed between the excavated sur- batch-in growing, quantity of grout mixed at one time. face of a...layer of revetment . lowering electrodes into the hole and measuring any of the failure (in rocks)-cxceeding the maximum strength of the. various

  17. Criterion-Referenced Values of Grip Strength and Usual Gait Speed Using Instrumental Activities of Daily Living Disability as the Criterion.

    Science.gov (United States)

    Lee, Meng-Chih; Hsu, Chih-Cheng; Tsai, Yi-Fen; Chen, Ching-Yu; Lin, Cheng-Chieh; Wang, Ching-Yi

    Current evidence suggests that grip strength and usual gait speed (UGS) are important predictors of instrumental activities of daily living (IADL) disability. Knowing the optimum cut points of these tests for discriminating people with and without IADL disability could help clinicians or researchers to better interpret the test results and make medical decisions. The purpose of this study was to determine the cutoff values of grip strength and UGS for best discriminating community-dwelling older adults with and without IADL disability, separately for men and women, and to investigate their association with IADL disability. We conducted secondary data analysis on a national dataset collected in the Sarcopenia and Translational Aging Research in Taiwan (START). The data used in this study consisted of health data of 2420 community-dwelling older adults 65 years and older with no history of stroke and with complete data. IADL disability was defined as at least 1 IADL item scored as "need help" or "unable to perform." Receiver operating characteristics analysis was used to estimate the optimum grip strength and UGS cut points for best discriminating older adults with/without IADL disability. The association between each physical performance (grip strength and UGS) and IADL disability was assessed with odds ratios (ORs). With IADL disability as the criterion, the optimal cutoff values of grip strength were 28.7 kg for men and 16.0 kg for women, and those for UGS were 0.76 m/s for men and 0.66 m/s for women. The grip strength test showed satisfactory discriminant validity (area under the curve > 0.7) in men and a strong association with IADL disability (OR > 4). Our cut points using IADL disability as the criterion were close to those indicating frailty or sarcopenia. Our reported cutoffs can serve as criterion-referenced values, along with those previously determined using different indicators, and provide important landmarks on the performance continua of older adults

  18. Lead isotopes in archaean plutonic rocks

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1978-01-01

    Archaean intrusive rocks have initial Pb isotopic compositions which show a varied and complex history for the source regions of the rocks. Even the oldest rocks from Greenland indicate heterogenous U and Pb distribution prior to 3800 m.y. ago. Source regions with μ values less than 7 must have played a significant role in the early history of the earth. By late Archaean time U/Pb ratios of source regions had increased substantially. Data from Australia and North America show distinct regional differences, both within and between continents. (Auth.)

  19. An Experimental Study on the Water-Induced Strength Reduction in Zigong Argillaceous Siltstone with Different Degree of Weathering

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The water-softening property of soft rocks is a key problem in geotechnical engineering. A typical red-bed soft rock (the Zigong argillaceous siltstones with different weathering degree is selected as an example to study the water-softening property and the influence of degree of weathering. A series of mechanical and microstructure tests are carried out to analyze the weathering characteristics and mechanism of the Zigong argillaceous siltstones. The results of mechanical experiments reveal that the water content and the weathering degree of rock specimens both have a weakening effect on the compressive and shear strengths. According to the results of present microstructure tests, the mechanical properties of the Zigong argillaceous siltstones are closely correlated with their physical properties, including internal microstructure and material composition for highly weathered rocks or moderately weathered rocks (in both natural and saturation conditions. Finally, experimental results indicate that the changes of microstructure and internal materials are two main factors that influence rock strength parameters after contacting with water and that these properties reflect the rock weathering degree. In a word, when red-bed soft rocks are encountered in geotechnical engineering, special attention should be paid to presence of water.

  20. In situ fragmentation and rock particle sorting on arid hills

    Science.gov (United States)

    McGrath, Gavan S.; Nie, Zhengyao; Dyskin, Arcady; Byrd, Tia; Jenner, Rowan; Holbeche, Georgina; Hinz, Christoph

    2013-03-01

    Transport processes are often proposed to explain the sorting of rock particles on arid hillslopes, where mean rock particle size often decreases in the downslope direction. Here we show that in situ fragmentation of rock particles can also produce similar patterns. A total of 93,414 rock particles were digitized from 880 photographs of the surface of three mesa hills in the Great Sandy Desert, Australia. Rock particles were characterized by the projected Feret's diameter and circularity. Distance from the duricrust cap was found to be a more robust explanatory variable for diameter than the local hillslope gradient. Mean diameter decreased exponentially downslope, while the fractional area covered by rock particles decreased linearly. Rock particle diameters were distributed lognormally, with both the location and scale parameters decreasing approximately linearly downslope. Rock particle circularity distributions showed little change; only a slight shift in the mode to more circular particles was noted to occur downslope. A dynamic fragmentation model was used to assess whether in situ weathering alone could reproduce the observed downslope fining of diameters. Modeled and observed size distributions agreed well and both displayed a preferential loss of relatively large rock particles and an apparent approach to a terminal size distribution of the rocks downslope. We show this is consistent with a size effect in material strength, where large rocks are more susceptible to fatigue failure under stress than smaller rocks. In situ fragmentation therefore produces qualitatively similar patterns to those that would be expected to arise from selective transport.

  1. Research of long-term mechanical displaced behavior of soft rock

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Minami, Kosuke

    2003-01-01

    When it thinks about a stratum disposition system of high-level radioactive waste, it is important to evaluate the long-term mechanical displaced behavior of the near field bedrock which is boundary condition of the engineered barrier that should be evaluated based on the reality. In this research, three following examination was carried out for reliability improvement of long-term dynamic deformation behavior estimate. 1) We evaluated the sedimentary rock of Horonobe where we used Okubo model as while changing hydraulic condition and temperature condition. 2) We carried out the model experiment that inner pressure acted on in order to grasp a movement of near field bedrock. 3) We examined model to evaluate that. As a result, the following things were provided. 1) Sedimentary rock of Horonobe is easy to cause strength degradation for being wet and dry cycles. When the rock is saturated after drying, it is broken along potential cracking. The rock reacts for a change of moisture content sensitively. In addition, a variation of the strength occurs in a little depth remainder. This diffuseness gave the strong influence on failure time. 2) Big plastic deformation may not do elasto-plasticity behavior according to theory for stress modification of rock mass. 3) We think with one of the factor that it produces remainder in prediction and real creep hour that these is as 'm = n (conatnt of Okubo model)' simply. Therefore we collect data after peak, and it is necessary to grasp 'm/n'. In addition, it is necessary to improve 'n' in the model which we can change by environment and stress state on the way. (author)

  2. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. ... So, field observation and sample collection for laboratory investigations were conducted on six selected target areas of the city periphery. In doing so, the compressive strength, open porosity, water absorption and ...

  3. Influence of Rock Properties on Wear of M and SR Grade Rubber with Varying Normal Load and Sliding Speed

    Directory of Open Access Journals (Sweden)

    Pal Samir Kumar

    2017-09-01

    Full Text Available Rubbers are interesting materials and are extensively used in many mining industries for material transportation. Wear of rubber is a very complex phenomenon to understand. The present study aims to explain the influence of rock properties on wear of M and SR grade rubber used in top cover of conveyor belts. Extensive laboratory experiments were conducted under four combinations of normal load and sliding speed. The wear of both the rubber types were analyzed based on the rock properties like shear strength, abrasivity index and fractal dimension. A fully instrumented testing set up was used to study the wear of rubber samples under different operating conditions. In general, wear was higher for M grade rubber compared to SR grade rubber. Increase in shear strength of rocks depicts decreasing trend for the wear of M and SR grade rubber at lower load conditions. Moreover, a higher load combination displays no definite trend in both the rubbers. The strong correlation between the wear of rubber and frictional power for all rubber-rock combinations has given rise to the parameter A, which reflects the relative compatibility between the rubber and rock. Increase of Cerchar’s Abrasivity Index of rocks shows gradual enhancement in wear for M grade rubber in all the load and speed combinations whereas, it fails in SR grade rubber due to its higher strength. The wear of rubber tends to decrease marginally with the surface roughness of rocks at highest normal load and sliding speed in M grade rubber. However, the wear of M and SR grade rubber is influenced by the surface roughness of rocks.

  4. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    Science.gov (United States)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and

  5. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  7. Normative Reference Values for Handgrip Strength in Colombian Schoolchildren: The FUPRECOL Study.

    Science.gov (United States)

    Ramírez-Vélez, Robinson; Morales, Olimpo; Peña-Ibagon, Jhonatan C; Palacios-López, Adalberto; Prieto-Benavides, Daniel H; Vivas, Andrés; Correa-Bautista, Jorge E; Lobelo, Felipe; Alonso-Martínez, Alicia M; Izquierdo, Mikel

    2017-01-01

    Ramírez-Vélez, R, Morales, O, Peña-Ibagon, JC, Palacios-López, A, Prieto-Benavides, DH, Vivas, A, Correa-Bautista, JE, Lobelo, F, Alonso-Martínez, AM, and Izquierdo, M. Normative reference values for handgrip strength in Colombian schoolchildren: the FUPRECOL study. J Strength Cond Res 31(1): 217-226, 2017-The primary aim of this study was to generate normative handgrip (HG) strength data for 10 to 17.9 year olds. The secondary aim was to determine the relative proportion of Colombian children and adolescents that fall into established Health Benefit Zones (HBZ). This cross-sectional study enrolled 7,268 schoolchildren (boys n = 3,129 and girls n = 4,139, age 12.7 [2.4] years). Handgrip was measured using a hand dynamometer with an adjustable grip. Five HBZs (Needs Improvement, Fair, Good, Very Good, and Excellent) have been established that correspond to combined HG. Centile smoothed curves, percentile, and tables for the third, 10th, 25th, 50th, 75th, 90th, and 97th percentile were calculated using Cole's LMS method. Handgrip peaked in the sample at 22.2 (8.9) kg in boys and 18.5 (5.5) kg in girls. The increase in HG was greater for boys than for girls, but the peak HG was lower in girls than in boys. The HBZ data indicated that a higher overall percentage of boys than girls at each age group fell into the "Needs Improvement" zone, with differences particularly pronounced during adolescence. Our results provide, for the first time, sex- and age-specific HG reference standards for Colombian schoolchildren aged 9-17.9 years.

  8. Rock mechanics site descriptive model-theoretical approach. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Olofsson, Isabelle [Golder Associates AB, Uppsala (Sweden)

    2005-12-15

    The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined.

  9. Rock mechanics site descriptive model-theoretical approach. Preliminary site description Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Fredriksson, Anders; Olofsson, Isabelle

    2005-12-01

    The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined

  10. Application of self-balanced loading test to socketed pile in weak rock

    Science.gov (United States)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone

  11. Hydrologic properties of shale and related argillaceous rocks

    International Nuclear Information System (INIS)

    Moiseyev, A.N.

    1979-01-01

    This report is the result of a bibliographic study designed primarily to collect hydrologic data on American clay-rich rocks. The following information was also sought: stratigraphy, environment of deposition, mineralogic composition, and diagenetic changes. The collected numerical data are presented in tables which contain densities, porosities, and/or hydraulic conductivities of approximately 360 samples. Additional data include hydraulic diffusivities, resistivities, flow rates, and rock strengths. Geologic information suggests that large deposits of shale which may be suited for waste repository belong to all ages and were formed in both marine and continental environments. Of the studied units, the most promising are Paleozoic in the eastern half of the country, Mesozoic in the central part, and Cenozoic in the Gulf Coast area and the West. Less widespread units locally present some additional possibilities. Mineralogic investigations suggest that the smectite content in rocks shows a decrease in time (70% in Recent rocks; 35% in pre-Mesozoic rocks). Because of this predominance of smectite in younger rocks, the modeling of repositories in post-Paleozoic formations might require knowledge of additional and poorly known parameters. Results of investigations into the mathematical relationships between porosity and permeability (or hydralic conductivity) suggest that in situ permeabilities could be estimated from sonic logs and fluid pressure changes at depth. 16 figures, 8 tables

  12. Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany

    Directory of Open Access Journals (Sweden)

    A. Günther

    2009-05-01

    Full Text Available In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.

  13. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    Directory of Open Access Journals (Sweden)

    Dhanjee Kumar Chaudhary

    2015-12-01

    Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

  14. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.’s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    Directory of Open Access Journals (Sweden)

    Hideyuki Usa

    2017-01-01

    Full Text Available This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm was calculated. Body weight and limb segment length (thigh and lower leg length were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  15. Source rock potential of middle cretaceous rocks in Southwestern Montana

    Science.gov (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  16. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  17. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  18. Rock index properties for geoengineering in underground development

    International Nuclear Information System (INIS)

    O'Rourke, J.E.

    1989-01-01

    This paper describes the use of index testing to obtain rock properties that are useful in the design and construction planning of an underground development for civil engineering or mining projects. The index properties discussed include: point load; Schmidt hammer hardness; abrasion hardness; and total hardness. The first two index properties correlate to uniaxial compressive strength (UCS) and Young's modulus. Discussions are given on empirical, normalized relationships of UCS to rock mass properties and the integrated use with semi-empirical, geotechnical design methods. The hardness property indices correlate to construction performance parameters and some relevant experience is cited. Examples of data are presented from an index testing program carried out primarily on siltstone, sandstone and limestone rock core samples retrieved from depths up to 1005 m (3300 ft) in a borehole drilled in the Paradox Basin in eastern Utah. The borehole coring was done for a nuclear waste repository site investigation

  19. Host Rock Classification (HRC) system for nuclear waste disposal in crystalline bedrock

    International Nuclear Information System (INIS)

    Hagros, A.

    2006-01-01

    A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q' and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q', fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of

  20. Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine.

    Science.gov (United States)

    Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao

    2018-04-04

    With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.

  1. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  2. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  3. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  4. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  5. Mapping the productive sands of Lower Goru Formation by using seismic stratigraphy and rock physical studies in Sawan area, southern Pakistan: A case study

    KAUST Repository

    Munir, K.

    2011-02-24

    This study has been conducted in the Sawan gas field located in southern Pakistan. The aim of the study is to map the productive sands of the Lower Goru Formation of the study area. Rock physics parameters (bulk modulus, Poisson\\'s ratio) are analysed after a detailed sequence stratigraphic study. Sequence stratigraphy helps to comprehend the depositional model of sand and shale. Conformity has been established between seismic stratigraphy and the pattern achieved from rock physics investigations, which further helped in the identification of gas saturation zones for the reservoir. Rheological studies have been done to map the shear strain occurring in the area. This involves the contouring of shear strain values throughout the area under consideration. Contour maps give a picture of shear strain over the Lower Goru Formation. The identified and the productive zones are described by sands, high reflection strengths, rock physical anomalous areas and low shear strain.

  6. Heat production rate from radioactive elements in igneous and metamorphic rocks in eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, A G.E.; Arabi, A.M.; Abbay, A.

    2005-01-01

    Radioactive heat - production data of igneous and metamorphic rocks cropping out from the eastern desert are presented. Samples were analysed using low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 Μ Wm-3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite) to 0.91 (metagabroo) Μ W.m-3. The contribution due to U is about (51%), whereas that of Th (31%) and (18%) by K. The corresponding values in igneous rocks are 76%: 19%: 5%, respectively. The calculated values showed good agreement with global values expect in some areas contained granite rocks

  7. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  8. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  9. Burst strength of tubing and casing based on twin shear unified strength theory.

    Science.gov (United States)

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.

  10. Triaxial slide-hold-slide shear experiment of sedimentary rock under drain condition

    International Nuclear Information System (INIS)

    Kishida, Kiyoshi; Yano, Takao; Elsworth, Derek; Yasuhara, Hideaki; Nakashima, Shinichiro

    2011-01-01

    When discussing the mechanical and hydro-mechanical properties of rock masses under the long-term holding, the variation of rock structure and the change of shear band condition should be discussed in considering the effect of thermal and chemical influences. In this research, the triaxial shear experiment under drain condition was conducted through sedimentary rock, and in the residual stress state, the slide-hold-slide processes were applied to these triaxial experiments. The experiments were carried out in 3 kinds of confining conditions and 2 kinds of thermal conditions. Consequently, the healing phenomena can be observed and the shear strength recovery is also confirmed in process of the holding time. (author)

  11. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    Science.gov (United States)

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  12. A study about the long-term stability of sedimentary rock

    International Nuclear Information System (INIS)

    Yoshino, Naoto; Miyanomae, Shun-ichi; Inoue, Hiroyuki; Nashimoto, Yutaka

    2005-02-01

    In this paper, following two issues were examined and estimated, (1) the influence of near field condition factor to the dynamical behavior of sedimentary soft rock, (2) the long term estimation of the dynamical behavior considering the condition of Horonobe area. As the study about the influence of near field condition factor to the dynamical behavior of sedimentary soft rock, the thermal factor was focused on and the laboratory tests using test pieces which were sampled in Horonobe area were carried out under the water temperature were 20 degrees and 80 degrees. As a result, the time dependence parameter in variable-compliance-type constitutive-equation could be obtained. And comparison between creep property under 20 degrees and 80 degrees was conducted. In addition, the general properties of sedimentary soft rock under several conditions were identified by the survey of the literature. And the way how to confirm the dynamical properties of sedimentary soft rock with in-situ test were presented. For the study on the short-term and long-term stability of rock surrounding buffer materials, numerical simulations were carried out assuming several conditions. The direction of disposal tunnels and the ratio of rock strength by initial stress were estimated to be the main factor affecting the short-term stability of rock. Time dependency of rock and the stiffness of buffer material were estimated to be the main factor affecting the long-term stability of rock. (author)

  13. The role of post-failure brittleness of soft rocks in the assessment of stability of intact masses: FDEM technique applications to ideal problems

    Science.gov (United States)

    Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele

    2016-04-01

    Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively

  14. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  15. The influence of environment on the inelastic behavior of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Heard, Hugh C [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The mechanical response of earth materials are demonstrably dependent upon the environment during deformation as well as the physical properties of the rock masses themselves. Among the most important of these environmental parameters are mean pressure, pore fluid pressure, temperature, strain rate, and the relative magnitude of the intermediate principal stress ({sigma}{sub 2}) compared to the maximum ({sigma}{sub 1}) and minimum ({sigma}{sub 3}) stresses. Important inherent properties of rocks include anisotropy, homogeneity, porosity, permeability, grain size, and mineral composition. Calculation of the response of rocks to a nearby nuclear detonation requires knowledge of the deviatoric stress-strain behavior as well as the resulting mechanisms of deformation: fracture or flow. For calculations beginning at times of the order of 10{sup -3} sec after detonation, that is, when peak pressures are {approx}10{sup 6} bars and lasting to {approx}10{sup 2} sec when cavity pressures have decayed to {approx}10{sup 2} bars, broad limitations may be imposed on the possible deformation environment. Here, mean pressures range from 10{sup 6} to 10{sup 2} bars, pore pressures from 10{sup 6} to 1 bar, temperatures from 1500 deg. to 50 deg. C, and strain rates from 10{sup 6} to 10{sup -3} per sec; {sigma}{sub 2} may range in value from that of {sigma}{sub 3} on loading to that of {sigma}{sub 1} on unloading. Using present technology, it is virtually impossible to measure the mechanical behavior of rock materials under controlled conditions over much of the above range. This behavior must be largely inferred from data gathered at less extreme conditions. Quantitative data illustrating the effect of the deformation environment upon the strength and brittle-ductile behavior are presented for a suite of rocks of interest to the Plowshare program; among these are limestone, quartzite, granite, sandstone and 'oil-shale'. More limited results are also presented illustrating the effect

  16. The rock mechanical stability of the VLJ repository

    International Nuclear Information System (INIS)

    Kuula, H.; Johansson, E.

    1991-03-01

    The aim of the study was to determine the rock mechanical stability around the VLJ repository based on the rock mechanical monitoring and rock mechanical modeling. Rock mechanical calculations were made in order to calculate the rock mass displacements and to analyze the stability around the VLJ repository The calculations were performed with three diiferent methods: continuum finite difference code FLAC, distinct element code UDEC and three dimensional distinct element code 3DEC. The first analyses were based on preliminary site investigations. The final modeling was based on investigations and rock mechanical monitoring done during the excavation. Some sensitive analyses were also performed. The modelled rock mass behaviour and the measured behaviour are generally close to each other. Both results show that the VLJ repository is rock mechanically stable. The modelled displacements and stresses were small enough to cause no instability around the rock caverns. The measured values do not indicate any discontinuous deformations like block movements or joint slip. The measured displacements in the extensometers during excavation indicates that the rock mass is even stiffer than anticipated

  17. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  18. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    Science.gov (United States)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  19. Predicting Folding Sequences Based on the Maximum Rock Strength and Mechanical Equilibrium

    Science.gov (United States)

    Cubas, N.; Souloumiac, P.; Maillot, B.; Leroy, Y. M.

    2007-12-01

    The objective is to propose and validate simple procedures, compared to the finite-element method, to select and optimize the dominant mode of folding in fold-and-thrust belts and accretionary wedges, and to determine its stress distribution. Mechanical equilibrium as well as the constraints due to the limited rock strength of the bulk material and of major discontinuities, such as décollements, are accounted for. The first part of the proposed procedure, which is at the core of the external approach of classical limit analysis, consists in estimating the least upper bound on the tectonic force by minimisation of the internal dissipation and part of the external work. The new twist to the method is that the optimization is also done with respect to the geometry of the evolving fold. If several folding events are possible, the dominant mode is the one leading to the least upper bound. The second part of the procedure is based on the Equilibrium Element Method, which is an application of the internal approach of limit analysis. The optimum stress field, obtained by spatial discretisation of the fold, provides the best lower bound on the tectonic force. The difference between the two bounds defines an error estimate of the exact unknown tectonic force. To show the merits of the proposed procedure, its first part is applied to predict the life span of a thrust within an accretionary prism, from its onset, its development with a relief build up and its arrest because of the onset of a more favorable new thrust (Cubas et al., 2007). This life span is sensitive to the friction angles over the ramp and the décollement. It is shown how the normal sequence of thrusting in a supercritical wedge is ended with the first out-of sequence event. The second part of the procedure provides the stress state over each thrust showing that the active back thrust is a narrow fan which dip is sensitive to the friction angle over the ramp and the amount of relief build up (Souloumiac et

  20. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    Science.gov (United States)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  1. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    Science.gov (United States)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  2. Investigation into relations between physical and electrical properties of rocks and concretes

    Science.gov (United States)

    Sertçelik, İbrahim; Kurtuluş, Cengiz; Sertçelik, Fadime; Pekşen, Ertan; Aşçı, Metin

    2018-02-01

    The physical and electrical properties of natural rocks, namely limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and concrete were investigated in order to characterize the relationships between these properties. The measurements were conducted on 96 cylindrical specimens of limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and 14 cubic concrete samples. Strong correlations between ultrasonic pulse velocity (UPV), uniaxial compressive strength (UCS), electrical resistivity, and chargeability were confirmed. High correlation coefficients were observed among the properties, varying between 0.53 and 0.92 for all the rocks and concrete. Test results show the following relations among the corresponding parameters: the UPV increases with the increase in UCS, resistivity decreases with the decrease in chargeability for all rocks and concrete, and the electrical resistivities of rock and concrete decrease with the increase in chargeability.

  3. Strength curves for shales and sandstones under hydrostatic confining pressures

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.

    1978-01-01

    The experimental data for the effect of confining pressures on the fracture stress have been analysed for shales and sandstones. The normalized compressive strengths are found to lie in a narrow region so that Ohnaka's equation for crystalline rocks, can be fitted to the data. The fitted parameters are physically reasonable and indicate that the functional dependence of strength on porosity, strain rate and temperature is independent of the confining pressures. (author)

  4. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  5. Nd and Sr isotopic variations in acidic rocks from Japan: significance of upper-mantle heterogeneity

    Science.gov (United States)

    Terakado, Yasutaka; Nakamura, Noboru

    1984-10-01

    Initial Nd and Sr isotopic ratios have been measured for Cretaceous acidic and related intermediate rocks (24 volcanic and two plutonic rocks) from the Inner Zone of Southwest Japan (IZSWJ) to investigate the genesis of acidic magmas. The initial Nd and Sr isotopic ratios for these rocks show three interesting features: (1) ɛ Nd values for acidic rocks (+2 to -9) are negatively correlated with ɛ Sr values (+10 to +90) together with those for intermediate rocks ( ɛ Nd=+3 to -8; ɛ Sr=0 to +65). (2) The ɛ Nd values for silica rich rocks (>60% SiO2) correlate with the longitude of the sample locality, decreasing from west to east in a stepwise fashion: Four areas characterized by uniform ɛ Nd values are discriminated. (3) Low silica rocks (Japan suggest that the acidic rocks can be formed neither by fractional crystallization processes from more basic magmas nor by crustal assimilation processes. The isotopic variations of the acidic rocks may reflect regional isotopic heterogeneity in the lower crust, and this heterogeneity may ultimately be attributed to the regional heterogeneity of the uppermost-mantle beneath the Japanese Islands.

  6. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    Science.gov (United States)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  7. Steady as a rock: Biogeomorphic influence of nurse rocks and slope processes on kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i)

    Science.gov (United States)

    Pérez, Francisco L.

    2017-10-01

    This study examines biogeomorphic interactions between nurse rocks, slope processes, and 300 kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i). Research objectives were to: assess the association of kūpaoa with substrates upslope and downslope of plants, and proximity to the closest rock uphill; contrast shrub/substrate relationships with site frequency of sediment types; measure surface soil shear-strength and compressibility on 50 paired locations near boulders; and investigate the aggregation characteristics and spatial patterns of kūpaoa in relation to rock and substrate variation. Data analyzed came from three 100-plant surveys at 3 sites: a plant census at 2720-2975 m altitude, and wandering-quarter transects (WQTs) across two areas (2610-2710 m); ground sediment cover was estimated along four phototransects on these sites. Data for the three 100-plant surveys included substrate type-outcrops, blocks, cobbles, pebbles, exposed soil, organic litter-upslope from each plant, and distance to the largest rock upslope. The two surveys examined along WQTs included substrate type found downslope from kūpaoa, plant height, plant diameters across and along the slope, and distance between successively censused plants. Most plants grew downslope of nurse rocks; > 74% were adjacent to blocks or outcrops, and > 17% near cobbles. Plants showed avoidance for finer substrates; only 5.3% and 2.7% grew on/near bare soils and pebbles, respectively. About 92% of kūpaoa were ≤ 10 cm downslope of rocks; > 89% grew ≤ 2 cm away, and 83% in direct contact with a rock. Some seedlings also grew on pukiawe (Leptecophylla tameiameiae) nurse plants. Several stable rock microsites protected plants from disturbance by slope processes causing debris shift. Site sediments were significantly finer than substrates near plants; shrubs grew preferentially adjacent to boulders > 20 cm wide, which were more common near plants than across sites. Soils downslope of 50

  8. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  9. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  10. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  11. Geological and geotechnical properties of the medieval rock hewn churches of Lalibela, Northern Ethiopia

    Science.gov (United States)

    Asrat, Asfawossen; Ayallew, Yodit

    2011-01-01

    Lalibela is a medieval settlement in Northern Ethiopia famous for its 11 beautifully carved rock hewn churches, registered as World Heritage Site in 1978. The rock hewn churches are grouped into three based on their proximity: the Bete Medhane Alem (Church of the Holy Saviour), Bete Gabriel-Rufael (Church of St. Gabriel-Rafael) and Bete Giorgis (Church of St. George) groups. The churches are carved out of a single, massive scoriaceous basalt hill which was deposited along an East-West extending palaeovalley in the Oligo-Miocene Trap basalt of the northwestern Ethiopian plateau. The Rock Mass Rating (RMR) classification scheme was used to classify the rock mass (assuming each church as a separate rock mass) based on their uniaxial compressive strength and the spacing and conditions of discontinuities. Though most of the churches are hewn from medium to high strength rock mass, discontinuities make them vulnerable to other deteriorating agents mainly weathering, and water infiltration. Most of the rock hewn churches are affected by pre-carving cooling joints and bedding plane discontinuities, and by mostly but not necessarily post-carving tectonic and seismic induced cracks and fractures. Material loss due to deep weathering triggered by rain water infiltration and uncontrolled groundwater seepage affects most of the churches, particularly the Bete Merqorios (Church of St. Mark) and Bete Aba Libanos (Church of Father Libanos) churches. The scoriaceous basalt which is porous and permeable allows easy passage of water while the underlying basalt is impermeable, increasing the residence time of water in the porous material, causing deep weathering and subsequent loss of material in some of the churches and adjoining courtyards.

  12. Thermal stress microfracturing of crystalline and sedimentary rock. Final report, September 16, 1987--September 15, 1991

    International Nuclear Information System (INIS)

    Wang, H.

    1995-08-01

    Slow uniform heating of crustal rocks is both a pervasive geologic process and an anticipated by-product of radioactive waste disposal. Such heating generates microcracks which alter the strength, elastic moduli, and transport properties of the rock. The research program was to understand mechanisms of thermal cracking in rocks. It included development of a theoretical understanding of cracking due to thermal stresses, laboratory work to characterize crack strain in rocks thermally stressed under different conditions (including natural thermal histories), microscopic work to count and catalog crack occurrences, and geologic application to determine paleostress history of granites from the midcontinent

  13. Site investigations: Strategy for rock mechanics site descriptive model

    International Nuclear Information System (INIS)

    Andersson, Johan; Christiansson, Rolf; Hudson, John

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate

  14. Site investigations: Strategy for rock mechanics site descriptive model

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hudson, John [Rock Engineering Consultants, Welwyn Garden City (United Kingdom)

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate.

  15. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  16. The impact of social value orientation on affective commitment : The moderating role of work group cooperative climate, and of climate strength

    NARCIS (Netherlands)

    Bogaert, S.; Boone, Chr.; van Witteloostuijn, A.

    2012-01-01

    We investigate the moderating role of an individual's social value orientation (which refers to self- versus other-regarding preferences) and of climate strength (which refers to the extent of agreement among group members on group norms and values) on the relationship between work group cooperative

  17. A comparative study on dynamic mechanical performance of concrete and rock

    Directory of Open Access Journals (Sweden)

    Xia Zhengbing

    2015-10-01

    Full Text Available of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future

  18. Geotechnical evaluation of rocks and soils in Catoca kimberlitic mining complex (Angola

    Directory of Open Access Journals (Sweden)

    Domingos M. Dos Santos Neves-Margarida

    2012-10-01

    Full Text Available Landslides and rock sliding occur very frequently in the mining area of Catoca, located in Angola. Therefore, a physical/mechanical and geotechnical characterization of the massif and the rock matrix was carried out adopting the landslide classifications as proposed by Hutchinson and Varnes. The safety factor was applied based on the structural weakness coefficient (λ; resulting in 0.70 in surface rocks, sandstones and intraformational sands; 0.58 in oversaturated eluvial gneiss; 0.50 in cracked gneiss and 0.47 in the ore compound of weathered, moist kimberlitic porphyric and weathered porphyric kimberlite. These results indicate the low strength of the massif and the need to reformulate the activities in the mine and the construction of more stable slopes. It could also be observed that deformation of rocks in the slopes and the cuts in the Catoca mine is conditioned by the movement of underground water within the rock massif itself.

  19. The effective stress concept in a jointed rock mass. A literature survey

    International Nuclear Information System (INIS)

    Olsson, Roger

    1997-04-01

    The effective stress concept was defined by Terzaghi in 1923 and was introduced 1936 in a conference at Harvard University. The concept has under a long time been used in soil mechanics to analyse deformations and strength in soils. The effective stress σ' is equal to the total stress σ minus the pore pressure u (σ'=σ-u). The concepts's validity in a jointed rock mass has been investigated by few authors. A literature review of the area has examined many areas to create an overview of the use of the concept. Many rock mechanics and rock engineering books recommend that the expression introduced by Terzaghi is suitable for practical purpose in rock. Nevertheless, it is not really clear if they mean rock or rock mass. Within other areas such as porous rocks, mechanical compressive tests on rock joints and determination of the permeability, a slightly changed expression is used, which reduces the acting pore pressure (σ'=σ-α·u). The α factor can vary between 0 and 1 and is defined differently for different areas. Under assumption that the pore system of the rock mass is sufficiently interconnected, the most relevant expression for a jointed rock mass, that for low effective stresses should the Terzagi's original expression with α=1 be used. But for high normal stresses should α=0.9 be used

  20. Application feasibility study of evaluation technology for long-term rock behavior. 2. Parameter setting of variable compliance type model and application feasibility study for rock behavior evaluation

    International Nuclear Information System (INIS)

    Sato, Shin; Noda, Masaru; Niunoya, Sumio; Hata, Koji; Matsui, Hiroya; Mikake, Shinichiro

    2012-01-01

    Creep phenomenon is one of the long-term rock behaviors. In many of rock-creep studies, model and parameter have been verified in 2D analysis using model parameter acquired by uniaxial compression test etc considering rock types. Therefore, in this study model parameter was set by uniaxial compression test with classified rock samples which were taken from pilot boring when the main shaft was constructed. Then, comparison between measured value and 3D excavation analysis with identified parameter was made. By and large, the study showed that validity of identification methodology of parameter to identify reproduction of measured value and analysis method. (author)

  1. Physicochemical characterization of pulverized phyllite rocks to geopolymer resin synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Melo, L.G.A. [Instituto Militar de Enegenharia (IME), Rio de Janeiro, RJ (Brazil); Pires, E.F.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Pereira, R.A.; Silva, F.J. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Raneiro (IFRJ), RJ (Brazil)

    2016-07-01

    Full text: Geopolymeric materials have common properties considered unique, such as: early-high compressive strength, durability, high chemical resistance to acids and sulfates attacks, ability to immobilize toxic and radioactive compounds, low porosity, low permeability, and resistance to high temperatures. Together with its environmental benefits, such as low energy consumption and low carbon dioxide emissions during production, these inorganic polymers are strategic materials for sustainable development and a good alternative to Portland cement. The main objective for introducing alternative materials is to lower the associated costs of its industrial process. Thus, the use of phyllite as the geopolymer precursor, is encouraged by its abundance, low cost, and the fact that it already is applied to the ceramic industries as kaolin substitute. This paper presents a physical characterization using TEM, SEM, XRD and XRF techniques of two pulverized phyllite rocks used as geopolymer precursors for refractory applications. It was found that both phyllite rocks studied have a high quartz content of approximately 50% that can be explored as 'filler' function in the microstructure, which stabilizes residual tensions after curing. Kaolinite and muscovite minerals are present up to 40% and are responsible for the high strengths in the geopolymer resins, as determined by compressive strength tests. (author)

  2. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)

    Science.gov (United States)

    Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming

    2017-12-01

    In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock

  3. Analytical Solution of Interface Effect on the Strength of Combined Model Composed of Different Geologic Bodies

    Directory of Open Access Journals (Sweden)

    Zeng-hui Zhao

    2014-01-01

    Full Text Available According to the special combined structure of surrounding rock in western mining area of China, a micromechanical model with variable parameters containing contact interface was proposed firstly. Then, the derived stresses in coal and rock near the interface were analyzed on the basis of the harmonized strain relation, and the analytical solutions with respect to stress states near the interface were drawn up. The triaxial compressive strength of coal and rock was further determined in case the contact interface was in the horizontal position. Moreover, effects of stiffness ratio, interface angle, and stress level on the strength of two bodies near the contact area were expounded in detail. Results indicate that additional stresses which have significant effect on the strength of combined model are derived due to the adhesive effect of contact interface and lithological differences between geologic bodies located on both sides. The interface effect on the strength of combined body is most associated with the stiffness, interface angle, and the stress level. These conclusions are also basically valid for three-body model and even for the multibody model and lay important theory foundation to guide the stability study of soft strata composed of different geologic bodies.

  4. Shear bond strength of self-etching adhesive systems with different pH values to bleached and/or CPP-ACP-treated enamel.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Navimipour, Elmira Jafari; Firouzmandi, Maryam

    2012-08-01

    To compare shear bond strengths of three different self-etching adhesive systems of different pH values to enamel bleached with carbamide peroxide, treated with casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), or treated with CPP-ACP subsequent to bleaching with carbamide peroxide. Thirty-six human third molars were cut into 4 sections and randomly assigned to 4 groups (n = 36): group I: no treatment; group II: bleaching; group III: CPP-ACP; group IV: bleaching and CPP-ACP. After surface treatments, the samples of each group were further divided into three subgroups (n = 12) based on the adhesive used. The adhesives Clearfil SE Bond (CSE), AdhesE (ADE), and Adper SE Plus (ADP) were applied, and resin composite cylinders with a diameter of 2 mm and a height of 4 mm were bonded to the enamel. Then the specimens were subjected to shear bond strength testing. Two-way ANOVA and a post-hoc Tukey's test were used for statistical analysis (α = 0.05). There were significant differences between the adhesive systems (p system showed the highest bond strength, and the bleaching procedure reduced bond strengths (p = 0.001). Furthermore, there were no significant differences in shear bond strength values between the control and CPP groups. However, the differences between other groups were statistically significant (p material dependent.

  5. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis.

    Science.gov (United States)

    Rijk, Joke M; Roos, Paul Rkm; Deckx, Laura; van den Akker, Marjan; Buntinx, Frank

    2016-01-01

    The aim of the present study was to systematically review the literature on the predictive value of handgrip strength as a marker for vulnerability. Furthermore, we aimed to update a recent systematic review on the association between handgrip strength and mortality. Literature searches using Cochrane, PubMed and Embase databases, and searching reference lists of included studies. Eligible studies were observational longitudinal studies presenting handgrip strength at baseline as an independent variable and its association with cognition, depression, mobility, functional status, hospitalization or mortality at follow up in a general population aged 60 years and older. With respect to mortality, we updated a recent systematic review. We included 34 articles. Most of them involved the association between handgrip strength and cognition (n = 9), functional status (n = 12), mobility (n = 6) or mortality (n = 22), and mainly found a positive relationship, meaning that higher handgrip strength at baseline is protective for declines in these outcome measures. Statistical pooling was carried out for functional status and mortality, with a pooled ratio for functional status of 1.78 (95% CI 1.28-2.48) for categorical variables (high vs low handgrip strength) and 0.95 (95% CI 0.92-0.99) for handgrip strength as a continuous variable. The pooled hazard ratio for mortality was 1.79 (95% CI 1.26-2.55) for categorical variables and 0.96 (95% CI 0.93-0.98) for continuous variables. Handgrip strength has a predictive validity for decline in cognition, mobility, functional status and mortality in older community-dwelling populations. © 2015 Japan Geriatrics Society.

  6. Strengths only or strengths and relative weaknesses? A preliminary study.

    Science.gov (United States)

    Rust, Teri; Diessner, Rhett; Reade, Lindsay

    2009-10-01

    Does working on developing character strengths and relative character weaknesses cause lower life satisfaction than working on developing character strengths only? The present study provides a preliminary answer. After 76 college students completed the Values in Action Inventory of Strengths (C. Peterson & M. E. P. Seligman, 2004), the authors randomly assigned them to work on 2 character strengths or on 1 character strength and 1 relative weakness. Combined, these groups showed significant gains on the Satisfaction With Life Scale (E. Diener, R. A. Emmons, R. J. Larsen, & S. Griffin, 1985), compared with a 32-student no-treatment group. However, there was no significant difference in gain scores between the 2-strengths group and the 1-character-strength-and-1-relative-character-weakness group. The authors discuss how focusing on relative character weaknesses (along with strengths) does not diminish-and may assist in increasing-life satisfaction.

  7. Prevention of rock bursts at the West mine; Gebirgsschlagverhuetung auf dem Bergwerk West

    Energy Technology Data Exchange (ETDEWEB)

    Braick, Helmut; Bartel, Ralf [RAG Deutsche Steinkohle AG, Bergwerk West, Kamp-Lintfort (Germany); Baltz, Ruediger [DMT GmbH und Co. KG, Essen (Germany). Fachsstelle fuer Gebirgsschlagverhuetung

    2011-08-15

    An unusually comprehensive stress-relief measure to eliminate a detected rock burst hazard in the Girondelle seam at the West mine clearly shows that an increase in the stress-relief cases must also be anticipated in the seam horizons, which were regarded as relatively uncritical in the recent past. An overall depth trend is recognisable in the Ruhr district. The combination of greater depth and higher strength of the enclosing rock and the more extensive pressure-increasing factors such as working boundaries and residual pillars clearly increases the probability of critical rock stresses in the vicinity of mine workings. The system applied in the German coal mining industry to detect and eliminate critical rock stresses ensures with a correct expert procedure that rock bursts do not occur and protection of personnel can thus be ensured despite extremely difficult conditions as in the stress-relief case in the Girondelle seam. (orig.)

  8. Forearm muscle oxygenation during sustained isometric contractions in rock climbers

    Directory of Open Access Journals (Sweden)

    Jan Kodejška

    2016-02-01

    Full Text Available Background. Bouldering and lead climbing are divergent disciplines of the sport of rock climbing. Bouldering moves are short and powerful, whilst sport climbing is longer and require a greater degree of endurance. Aim. The aim of this study was to compare forearm muscle oxygenation during sustained isometric contraction between lead climbers (LC and boulderers (BO. Methods. Eight BO and twelve LC completed maximal finger flexor strength test and sustained contractions to exhaustion at 60% of maximum voluntary contraction (MVC. Differences between BO and LC in maximal strength, time to exhaustion, force time integral (FTI, and tissue oxygenation (SmO2 were assessed by t-test for independent samples. Results. LC showed significantly lower level of average tissue oxygenation (BO 38.9% SmO2, s = 7.4; LC 28.7% SmO2, s = 7.1 and maximal tissue deoxygenation (BO 25.6% SmO2, s = 8.2; LC 13.5% SmO2, s = 8.5. LC demonstrated significantly lower finger flexor strength (519 N, s = 72 than BO (621 N, s = 142. LC sustained a longer time of contraction (not significantly (BO 52.2 s, s = 11.5; LC 60.6 s, s = 13 and achieved a similar value of FTI (BO 17421 Ns, s = 4291; LO 17476 Ns, s = 5036 in the endurance test. Conclusions. The results showed lower deoxygenation during sustained contraction in BO than LC despite similar FTI, indicating different local metabolic pathways in both groups.

  9. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada.

    Science.gov (United States)

    Tashiro, Takayuki; Ishida, Akizumi; Hori, Masako; Igisu, Motoko; Koike, Mizuho; Méjean, Pauline; Takahata, Naoto; Sano, Yuji; Komiya, Tsuyoshi

    2017-09-27

    The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible, and biogenic graphite has thus far been found only in the 3.7-3.8 Ga (gigayears ago) Isua supracrustal belt. Here we present the total organic carbon contents and carbon isotope values of graphite (δ 13 C org ) and carbonate (δ 13 C carb ) in the oldest metasedimentary rocks from northern Labrador. Some pelitic rocks have low δ 13 C org values of -28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ 13 C org values and metamorphic grade indicates that variations in the δ 13 C org values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ 13 C carb and δ 13 C org values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.

  10. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    Science.gov (United States)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  11. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  12. Nature of the interfacial region between cementitious mixtures and rocks from the Palo Duro Basin and other seal components

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Roy, D.M.

    1986-03-01

    Using the interface zone as an indicator of compatibility, preliminary tests were run using cement-based formulations designed to be used for shaft sealing in conjunction with evaporite and clastic rocks of the Palo Duro Basin, one of several potential sites for a high-level radioactive waste repository. Emphasis focused on two formulations, both designed to be slightly expansive. Mixture 83-05 was tested in combination with anhydrite and siltstone. A comparable mixture (83-03) containing salt was used with the halite. Cement, rocks, and their respective interfaces were examined using x-ray diffraction, optical microscopy, and scanning electron microscopy. Bond strengths between rock and cement as well as between selected steels and grout were determined as a function of curing conditions and pretest surface treatment. Permeabilities of cement/rock and cement/steel composites were also determined. Bond strength and permeability were found to vary with curing conditions as well as surface treatment

  13. The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.

    Science.gov (United States)

    Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.

    2010-05-01

    The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and in uniform rock surfaces the device gave very good results. The data obtained in glacial, nival and rock coastal environments showed the potential of the device in the identification of changes in rock hardness. We were able to asses the changes in the weathering degree of glacial striations and marked differences in the

  14. Geo-Engineering Evaluation of Rock Masses for Crushed Rock and Cut Stones in Khartoum State, Sudan

    Science.gov (United States)

    Kheirelseed, E. E.; Ming, T. H.; Abdalla, S. B.

    The purpose of this study is to find artificial coarse aggregates and cut stones around Khartoum. To meat the objectives of the study, data from both field and laboratory are collected. The field data includes geological investigations based on different methods and samples collection, whereas the laboratory tests consists of specific gravity, water absorption, impact value, crushing value, Los Angeles abrasion, soundness tests. The field and laboratory results were weighed and compiled together to reveal the engineering performance of the different rock masses in term of cut stone and crushed aggregates. The results show that most of the examined rock masses are suitable for crushing, building and dressed stones. For decorative slabs only foliated granite and syenite masses can be used.

  15. Prediction of thermal conductivity of sedimentary rocks from well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    2014-01-01

    The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... parameters (i.e. thermal conductivity, density, hydrogen index, sonic interval transit time, gamma-ray response, photoelectric factor) of artificial mineral assemblages consisting 15 rock-forming minerals that are used in different combinations to typify sedimentary rocks. The predictive capacity of the new...... equations is evaluated on subsurface data from four boreholes drilled into the Mesozoic sequence of the North German Basin, including more than 1700 laboratory-measured thermal-conductivity values. Results are compared with those from other approaches published in the past. The new approach predicts TC...

  16. Discussion on “Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks” [J Rock Mech Geotech Eng 6 (2017 1140–151

    Directory of Open Access Journals (Sweden)

    Ergin Arioglu

    2018-06-01

    Full Text Available A new comprehensive set of data (n = 178 is compiled by adding a data set (n = 72 collected by Arioglu et al. (2007 to the data set (n = 106 presented in Rezazadeh and Eslami (2017. Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength (UCS (0.15 MPa < σrc < 156 MPa and various rock types. Rock mass cuttability index (RMCI is correlated with shaft resistance (rs to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus rs equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami (2017. Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations. Keywords: Uniaxial compressive strength (UCS, Rock mass cuttability index (RMCI, Shaft resistance, Rock socketed piles, Database

  17. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  18. Grip strength is strongly associated with height, weight and gender in childhood : a cross sectional study of 2241 children and adolescents providing reference values

    NARCIS (Netherlands)

    Ploegmakers, Joris J. W.; Hepping, Ann M.; Geertzen, Jan H. B.; Bulstra, Sjoerd K.; Stevens, Martin

    2013-01-01

    Question: What are reference values for grip strength in children and adolescents based on a large and heterogeneous study population? What is the association of grip strength with age, gender, weight, and height in this population? Design: Cross-sectional study. Participants: Participants were

  19. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  20. Slip safety risk analysis of surface properties using the coefficients of friction of rocks.

    Science.gov (United States)

    Çoşkun, Gültekin; Sarıışık, Gencay; Sarıışık, Ali

    2017-12-19

    This study was conducted to determine the most appropriate surface processing techniques (SPT), environmental conditions (EC) and surface roughness (SR) to minimize the risk of slipping when pedestrians walk on a floor covering of rocks barefoot and with shoes. Coefficients of friction (COFs) and values of SR were found using five different types of rocks, four SPT and two (ramp and pendulum) tests. Results indicate that the parameters which affect the COF values of rocks include SR, EC and SPT. Simple linear regression was performed to examine the relationship between the values of the COF and the SR. The value of the COF was identified as R 2  ≥ 0.864. Statistical results, which are based on experimental measurements, show that rocks are classified according to their safe use areas depending on their COF and SR values.

  1. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  2. Study on the constitutive model for jointed rock mass.

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    Full Text Available A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.

  3. Rock stress investigations

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, St.; Braeuer, V.; Gloeggler, W.

    1989-04-01

    On the research project 'Rock Stress Mesurements' the BGR has developed and tested several methods for use in boreholes at a depth of 200 m. Indirect stress measurements using overcoring methods with BGR-probes and CSIR-triaxial cells as well as direct stress measurements using the hydraulic-fracturing method were made. To determine in-situ rock deformation behavior borehole deformation tests, using a BGR-dilatometer, were performed. Two types of the BGR-probe were applied: a four-component-probe to determine horizontal stresses and a five-component-probe to determine a quasi three-dimensional stress field. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on low cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (author) 4 tabs., 76 figs., 31 refs

  4. Thermal conductivity of the rocks in the Bureau of Mines Standard Rock Suite

    International Nuclear Information System (INIS)

    Morgan, M.T.; West, G.A.

    1980-01-01

    Thermal conductivities of eight rocks from the Bureau of Mines Standard Rock Suite were measured in air over the temperature range 373 to 533 0 K (100 to 260 0 C). The thermal conductivities of these rocks were measured to furnish standards for future comparisons with host rock from prospective nuclear waste repository sites. The thermal conductivity at a given temperature decreased by as much as 9% after a specimen had been heated to the maximum temperature (533 0 K), but additional heating cycles had no further effect. This decrease was smallest in the igneous rocks and largest in the sedimentary types. Variations due to orientation were within the precision of measurements (+- 5%). In most cases the thermal conductivities were linear with the reciprocal of the temperature and were within 14% of published data obtained by other methods. Measurements were made by a cut-bar comparison method in which the sample was sandwiched between two reference or metering bars made of Pyroceram 9606 glass-ceramic. The apparatus consisted of a Dynatech Model TCFCM-N20 comparative thermal conductivity analyzer controlled by a Hewlett Packard Model 3052A data acquisition system. A program was written to increment and cycle the temperature in steps between predetermined initial and maximum values. At each step the thermal conductivity was measured after steady-state conditions were established. The rocks furnished by the Bureau of Mines were quarried in large and fairly homogeneous lots for use by researchers at various laboratories. To investigate any anisotropy, cores were taken from each rock cube perpendicular to each of the cube faces. Samples 2 in. in diameter and approx. 0.75 in. thick were prepared from the cores and were dried in a vacuum oven for at least one month prior to taking measurements

  5. Lithospheric Strength and Stress State: Persistent Challenges and New Directions in Geodynamics

    Science.gov (United States)

    Hirth, G.

    2017-12-01

    The strength of the lithosphere controls a broad array of geodynamic processes ranging from earthquakes, the formation and evolution of plate boundaries and the thermal evolution of the planet. A combination of laboratory, geologic and geophysical observations provides several independent constraints on the rheological properties of the lithosphere. However, several persistent challenges remain in the interpretation of these data. Problems related to extrapolation in both scale and time (rate) need to be addressed to apply laboratory data. Nonetheless, good agreement between extrapolation of flow laws and the interpretation of microstructures in viscously deformed lithospheric mantle rocks demonstrates a strong foundation to build on to explore the role of scale. Furthermore, agreement between the depth distribution of earthquakes and predictions based on extrapolation of high temperature friction relationships provides a basis to understand links between brittle deformation and stress state. In contrast, problems remain for rationalizing larger scale geodynamic processes with these same rheological constraints. For example, at face value the lab derived values for the activation energy for creep are too large to explain convective instabilities at the base of the lithosphere, but too low to explain the persistence of dangling slabs in the upper mantle. In this presentation, I will outline these problems (and successes) and provide thoughts on where new progress can be made to resolve remaining inconsistencies, including discussion of the role of the distribution of volatiles and alteration on the strength of the lithosphere, new data on the influence of pressure on friction and fracture strength, and links between the location of earthquakes, thermal structure, and stress state.

  6. Assessment of the potential for rock spalling in the technical rooms of the ONKALO

    International Nuclear Information System (INIS)

    Siren, T.; Martinelli, D.; Uotinen, L.

    2011-06-01

    It is important to be able to predict the rock spalling in the ONKALO while the excavation advances deeper. When stresses at the excavation boundary reach the rock mass spalling strength, a brittle failure occurs that is often called 'spalling'. The spalling phenomenon occurs as a strong compressive stress induces crack growth behind the excavated surface. Spalling is, expressly, an event that can create problems in the ONKALO, not so much for the overall stability of all of the excavations, but rather in particular areas that can cause unnecessary and unintended over-excavations and hazards. For rock engineering and layout design purposes, the knowledge of the predicted spalling in the excavation surface is crucial. Optimization of the design is mainly done by directing the tunnels parallel to the major principal stress direction. However, due to the complex forms and crossing tunnels, especially at the shaft access drift area, sophisticated methods are required in order to minimize spalling and to support the unavoidable spalling that occurs. The complex tunnels require three-dimensional analysis. The software used for the main calculation has been MIDAS/GTS, a geotechnical 3-D FEM that is able to calculate complex geometries rather easily. Most of the models have also been verified with Rocscience Examine3D, which returns the results with a high precision at boundary. The area to model is large, and due to the computational limits, it is divided into six blocks. This analysis, carried out step by step for each block, permitted to draw a map of the spalling depth prevision in the whole tunnel contract 5 (TU5) area. The dominating rock types in the area are migmatitic gneiss and pegmatitic granite. The strength of these rocks has been broadly tested with point load and uniaxial compressive strength tests. The test results show a deviation of the UCS as well as other parameters. Due to this large deviation, a Monte Carlo has been used as an auxiliary analysis

  7. Unified strength theory and its applications

    CERN Document Server

    Yu, Mao-Hong

    2004-01-01

    This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...

  8. Damage Features of Altered Rock Subjected to Drying-Wetting Cycles

    Directory of Open Access Journals (Sweden)

    Zhe Qin

    2018-01-01

    Full Text Available An abandoned open pit was used as a tailing pond for a concentrating mill, with the height of the water surface subject to cyclic fluctuation. The effects of drying and wetting cycles on the mechanical parameters of pit rock were tested. Interactions of the hydrochemical environment, due to the dissolution of tailings, and drying and wetting cycles caused degradation of mechanical properties in the rock. It was found that uniaxial compressive strength and elastic modulus decreased as the number of dry/wet cycles increased. The quantitative relationship between the mechanical parameters and the number of dry/wet cycles was indicated by an exponential function. In addition to uniaxial testing, cohesion and the internal friction angle were determined through triaxial testing. The shear strength index deteriorated under the drying and wetting cycles. The hydrochemical environment also negatively affected the mechanical parameters. Potential effects between drying and wetting cycles and slope displacement were analyzed by on-site monitoring. The results show that the displacement increased because of the drying and wetting cycles, which may lead to sudden failure of the slope.

  9. Correlation between parent and daughter element concentrations as a means of valuing isochrons of igneous rocks

    International Nuclear Information System (INIS)

    Wetzel, K.

    1989-01-01

    The question whether a series of samples from an igneous rock can be attributed to an isochron for radiogeochronological dating or for determining the initial isotope ratio of the daughter element of the radioactive decay can be valued by investigating the correlation between the concentrations 1 c and 2 c of mother ( 1 c) and daughter element ( 2 c). The slope of the regression line in a lg 1 c to lg 2 c diagram is given by 1 D - 1/ 2 D - 1 or 1 D - 1/ 2 D - 1 · 2 D/ 1 D, where 1 D and 2 D are the solid-liquid distribution coefficients of parent and daughter element, if the concentration patterns are ruled by fractional crystallization or by partial melting, respectively. The agreement between experimentally found slopes and those calculated from distribution coefficients thus gives additional evidence whether or not the isochron reflects a magma solidification or magma generation age, respectively. The method is discussed for the Rb-Sr-, Sm-Nd-, La-Ce-, La-Ba- and K-Ca-geochronometers, using distribution coefficients calculated on the basis of a global model of the generation of the most abundant continental igneous rocks. The application on Rb-Sr-isochrons of a series of various granites of the Erzgebirge and the Saxonian Granulite Massif in the Southern Part of the GDR reveals new evidence of postmagmatic autosomatosis having altered the chemical composition of the Younger granites of the Western Ore Mountains (Erzgebirge). (author)

  10. A new peak shear strength criterion for rock joints which includes spectral parameters as roughness measures

    International Nuclear Information System (INIS)

    Kulatilake, P.H.S.W.; Shou, G.; Huang, T.H.

    1996-01-01

    Most of the natural rock joint surface profiles do not belong to the self similar fractal category. In general, roughness profiles of rock joints consist of non-stationary and stationary components. At the simplest level, only one parameter is sufficient to quantify non-stationary joint roughness. The average inclination angle I, along with the direction considered for the joint surface, is suggested to capture the non-stationary roughness. It is shown that even though the fractal dimension D is a useful parameter, it alone is insufficient to quantify the stationary roughness of non-self similar profiles

  11. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    Science.gov (United States)

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  12. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, Adel G.E.; El-Arabi, A.M.; Abbady, A.

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 μW m -3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 μW m -3 (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites

  13. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2016-01-01

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  14. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee

    2016-08-11

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  15. Energy Expenditure in Rock/Pop Drumming

    OpenAIRE

    De La Rue, S; Draper, Stephen B; Potter, Christopher R; Smith, M.

    2013-01-01

    Despite the vigorous nature of rock/pop drumming, there are no precise data on the energy expenditure of this activity. The aim of this study was to quantify the energy cost of rock/pop drumming. Fourteen male drummers (mean +/- SD; age 27 +/- 8 yrs.) completed an incremental drumming test to establish the relationship between energy expenditure and heart rate for this activity and a ramped cycle ergometer test to exhaustion as a criterion measure for peak values (oxygen uptake and heart rate...

  16. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.

  17. Multistep triaxial strength tests: investigating strength parameters and pore pressure effects on Opalinus Clay

    International Nuclear Information System (INIS)

    Graesle, W.

    2010-01-01

    Document available in extended abstract form only. The impact of natural variability between rock samples from a single formation is a common problem for the characterisation of THM properties of rocks. Data variation arising from heterogeneity between samples often obscures details of material behaviour. Besides efforts to reduce this statistical noise by careful selection of samples, there are essentially two approaches to overcome this problem: - To generate very large data sets for better statistics. - To avoid the impact of natural variability by yielding an extensive data set from a single sample. The multistep strength test follows the latter approach to characterise the mechanical behaviour of Opalinus Clay from Mont Terri and the possible impact of pore pressure effects. The concept of the multistep strength test comprises three test sections, each focused on the investigation of one mechanical characteristic of Opalinus Clay. Any section is composed of a series of strain controlled load cycles at various levels of confining pressure. 1) The linear elastic limit, i.e. the onset of nonlinearity in the stress-strain-relationship σ dev (ε 1 ) during strain-controlled triaxial loading, is determined in section 1. It defines a lower limit for the onset of damage. Avoiding sample damage is essential during this test section to ensure that all measurements reflect the behaviour of undisturbed material. Therefore, a rather strict and well detectable criterion for the onset of nonlinearity is required to enable a timely termination of any load phase. 2) Section 2 is focused on shear strength. Any load cycle is stopped as soon as peak stress is detected. As progressive damage of the sample is unavoidable during this process, it must be expected that only very few measured peak stresses approximately represent properties of the undamaged material. 3) Test section 3 is a conventional test of residual strength. Tests are carried out on cylindrical samples (100 mm

  18. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  19. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  20. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  1. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  2. Rock index properties for geoengineering in the Paradox Basin

    International Nuclear Information System (INIS)

    O'Rourke, J.E.; Rey, P.H.; Alviti, E.; Capps, C.C.

    1986-02-01

    Previous researchers have investigated the use of a number of rapid index tests that can be used on core samples, or in situ, to determine rock properties needed for geoengineering design, or to predict construction performance in these rock types. Selected research is reviewed, and the correlations of index tests with laboratory tests of rock properties found by the earlier investigators are discussed. The selection and testing of rock core samples from the Gibson Dome No. 1 borehole in Paradox Basin are described. The samples consist primarily of non-salt rock above salt cycle 6, but include some samples of anhydrite and salt cycle 6. The index tests included the point load test, Schmidt hammer rebound test, and abrasion hardness test. Statistical methods were used to analyze the correlations of index test data with laboratory test data of rock properties for the same core. Complete statistical results and computer-generated graphics are presented; these results are discussed in relation to the work of earlier investigations for index testing of similar rock types. Generally, fair to good correlations were obtained for predicting unconfined compressive strength and Young's modulus for sandstone and siltstone, while poorer correlations were found for limestone. This may be due to the large variability of limestone properties compared to the small number of samples. Overall, the use of index tests to assess rock properties at Paradox Basin appears to be practial for some conceptual and preliminary design needs, and the technique should prove useful at any salt repository site. However, it is likely that specific correlations should be demonstrated separately for each site, and the data base for establishing the correlations should probably include at least several hundred data points for each type

  3. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  4. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    Science.gov (United States)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  5. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Controlled sample program publication No. 1: characterization of rock samples

    International Nuclear Information System (INIS)

    Ames, L.L.

    1978-10-01

    A description is presented of the methodology used and the geologic parameters measured on several rocks which are being used in round-robin laboratory and nuclide adsorption methodology experiments. Presently investigators from various laboratories are determining nuclide distribution coefficients utilizing numerous experimental techniques. Unfortunately, it appears that often the resultant data are dependent not only on the type of groundwater and rock utilized, but also on the experimentor or method used. The Controlled Sample Program is a WISAP (Waste Isolation Safety Assessment Program) attempt to resolve the apparent method and dependencies and to identify individual experimenter's bias. The rock samples characterized in an interlaboratory Kd methodology comparison program include Westerly granite, Argillaceous shale, Oolitic limestone, Sentinel Gap basalt, Conasauga shale, Climax Stock granite, anhydrite, Magenta dolomite and Culebra dolomite. Techniques used in the characterization include whole rock chemical analysis, X-ray diffraction, optical examination, electron microprobe elemental mapping, and chemical analysis of specific mineral phases. Surface areas were determined by the B.E.T. and ethylene glycol sorption methods. Cation exchange capacities were determined with 85 Sr, but were of questionable value for the high calcium rocks. A quantitative mineralogy was also estimated for each rock. Characteristics which have the potential of strongly affecting radionuclide Kd values such as the presence of sulfides, water-soluble, pH-buffering carbonates, glass, and ferrous iron were listed for each rock sample

  7. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  8. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2017-01-01

    Full Text Available To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mechanical parameters of soft rock significantly. With the increase of moisture content, cohesion of frozen soft rock specimens presents a quadratic function decrease and the internal friction angle shows a negative exponential decrease. The stability coefficient of soft rock material slope in seasonal freeze soil area declines continuously. With the increase of freezing and thawing cycle, both cohesion and internal friction angle of soft rock decrease exponentially. The higher the moisture content, the quicker the reduction. Such stability coefficient presents a negative exponential reduction. After three freezing and thawing cycles, the slope stability coefficient only changes slightly. Findings were finally verified by the filed database.

  9. Motor Unit Number Estimate and Isometric Hand Grip Strength in Military Veterans with or Without Muscular Complaints: Reference Values for Longitudinal Follow-up.

    Science.gov (United States)

    Li, Mian; Yao, Wenguo; Sundahl, Cynthia

    2018-03-26

    It remains unclear if Gulf War (GW) veterans have a higher risk of developing motor neuron disorder. We intended to establish baseline neurophysiological values, including thenar motor unit number estimate (MUNE) and isometric hand grip (IHG) strength, to compare future follow-ups of deployed GW veterans with or without muscular complaints. We evaluated 19 GW veterans with self-reported weakness, cramps, or excessive muscle fatigue (Ill-19) and compared them with 18 controls without such muscular complaints (C-18). We performed MUNE on hand thenar muscles using adapted multipoint stimulation method for Ill-19 and 15 controls (C-15). We measured IHG strength (maximum force, endurance, and fatigue level) on Ill-19 and C-18 with a hand dynamometer. We performed nerve conduction studies on all study participants to determine which subjects had mild carpal tunnel syndrome (CTS). We compared the MUNE and IHG strength measures between Ill group and controls and between those with CTS and those without CTS. We obtained thenar MUNE of Ill-19 (95% CI of mean: 143-215; mean age: 46 yr) and compared it with that of C-15 (95% CI of mean: 161-230; mean age: 45 yr), and 95% of CI of mean among IHG strength variables (maximum force: 324-381 Newton; endurance: 32-42 s; fatigue level: 24%-33%) compared with C-18 (maximum force: 349-408 Newton; endurance: 35-46 s; fatigue level: 21%-27%). There was no significant difference in either MUNE or IHG strength between Ill-19 group and controls. The MUNE and IHG maximum forces were significantly lower in those with CTS compared with those without CTS. As a surrogate of mild CTS, the median versus ulnar distal sensory latency on nerve conduction study was only weakly associated with MUNE, maximum force, and fatigue level, respectively. To our knowledge, no published study on MUNE reference values of military veteran population has been available. The quantifiable values of both thenar MUNE and IHG strength of military veterans serve as

  10. Microcrack Evolution and Associated Deformation and Strength Properties of Sandstone Samples Subjected to Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Chong-Feng Chen

    2018-05-01

    Full Text Available The evolution of micro-cracks in rocks under different strain rates is of great importance for a better understanding of the mechanical properties of rocks under complex stress states. In the present study, a series of tests were carried out under various strain rates, ranging from creep tests to intermediate strain rate tests, so as to observe the evolution of micro-cracks in rock and to investigate the influence of the strain rate on the deformation and strength properties of rocks. Thin sections from rock samples at pre- and post-failure were compared and analyzed at the microscale using an optical microscope. The results demonstrate that the main crack propagation in the rock is intergranular at a creep strain rate and transgranular at a higher strain rate. However, intergranular cracks appear mainly around the quartz and most of the punctured grains are quartz. Furthermore, the intergranular and transgranular cracks exhibit large differences in the different loading directions. In addition, uniaxial compressive tests were conducted on the unbroken rock samples in the creep tests. A comparison of the stress–strain curves of the creep tests and the intermediate strain rate tests indicate that Young’s modulus and the peak strength increase with the strain rate. In addition, more deformation energy is released by the generation of the transgranular cracks than the generation of the intergranular cracks. This study illustrates that the conspicuous crack evolution under different strain rates helps to understand the crack development on a microscale, and explains the relationship between the micro- and macro-behaviors of rock before the collapse under different strain rates.

  11. Acute Effects of Partial-Body Cryotherapy on Isometric Strength: Maximum Handgrip Strength Evaluation.

    Science.gov (United States)

    De Nardi, Massimo; Pizzigalli, Luisa; Benis, Roberto; Caffaro, Federica; Micheletti Cremasco, Margherita

    2017-12-01

    De Nardi, M, Pizzigalli, L, Benis, R, Caffaro, F, and Cremasco, MM. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation. J Strength Cond Res 31(12): 3497-3502, 2017-The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and -160° C), whereas the control group stayed in a thermo neutral room (22.0 ± 0.5° C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P ≤ 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  12. Sorption of carbon, cobalt, nickel, strontium, iodine, cesium, americium and neptumium in rocks and minerals

    International Nuclear Information System (INIS)

    Pinnoja, S.; Jaakkola, T.; Kaemaeraeinen, E.L.; Koskinen, A.; Lindberg, A.

    1984-09-01

    Sorption of the radionuclides C-14, Co-58, Ni-63, I-125, Sr-85, Cs-134, Am-241 and Np-237, which are important in nuclear waste, were studied in rock by autoradiographic method. Samples were selected to represent common rocks and minerals in Finnish bedrock: rapakivi granite, tonalite, mica gneiss, granodiorite, biotite, quartz, plagioclase, K feldspar and hornblende. Polished thin sections were used to determine the contributions of different minerals to the sorption of the radionuclides. Sawn rock pieces (1.2 x 1.2 x 1.6 cm) were used to determine the Ksub(a)-values for rough rock surfaces where penetration into the rock matrix was found. The sorption order of the elements determined with the rock pieces was Ksub(a)sup(Cs)>Ksub(a)sup(Ni)>Ksub(a)sup(Co)>Ksub(a)sup(Sr)>Ksub(a)sup(C)>Ksub(a)sup(I). The same order of sorption was determined with thin sections for all nuclides except carbon, which was not sorbed on thin sections. Wide differences in the Ksub(a)-values for different minerals were found for Cs and Sr. The sorption mechanism for these elements is presumed to be ion exchange. The Ksub(a)-values of Cs varied between 0.1 x 10 -4 and 600 x 10 -4 m 3 /m 2 and those for Sr between 0.01 x 10 -4 and 10 x 10 -4 m 3 /m 2 . The lowest values were determined for quartz and the highest for biotite. Radionuclides having a tendency to form pseudocolloids and hydroxide precipitates (Am, Np, Ni) were sorbed on thin sections with only small variation in Ksub(a)-values: all values were between 1 x 10 -4 and 10 x 10 -4 and 100 x 10 -4 m 3 /m 2 . A very good agreement was found between experimental and calculated Ksub(a)-values for rock thin sections. Ksub(a)-values were calculated by multiplying the percentages of individual minerals in the rock by the Ksub(a)-values of the corresponding pure minerals and summing the results. Calculated Ksub(a)-values were occasionally up to 50% smaller than the experimental ones, owing to the low contents of some high adsorbing minerals

  13. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  14. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  15. Failure Behavior and Constitutive Model of Weakly Consolidated Soft Rock

    Directory of Open Access Journals (Sweden)

    Wei-ming Wang

    2013-01-01

    Full Text Available Mining areas in western China are mainly located in soft rock strata with poor bearing capacity. In order to make the deformation failure mechanism and strength behavior of weakly consolidated soft mudstone and coal rock hosted in Ili No. 4 mine of Xinjiang area clear, some uniaxial and triaxial compression tests were carried out according to the samples of rocks gathered in the studied area, respectively. Meanwhile, a damage constitutive model which considered the initial damage was established by introducing a damage variable and a correction coefficient. A linearization process method was introduced according to the characteristics of the fitting curve and experimental data. The results showed that samples under different moisture contents and confining pressures presented completely different failure mechanism. The given model could accurately describe the elastic and plastic yield characteristics as well as the strain softening behavior of collected samples at postpeak stage. Moreover, the model could precisely reflect the relationship between the elastic modulus and confining pressure at prepeak stage.

  16. Neutron activation analysis of alternative phosphate rocks used in animal nutrition

    International Nuclear Information System (INIS)

    Canella, Artur A.; Ferreira, Walter M.

    2005-01-01

    Since 1980's, Bovine Sponghiform Encephalophaty has insidiously created a fierce battleground between farmers, scientists, environmentalists and consumers. The use of meat and bone meals is currently prohibited in ruminant feeds throughout the world. Some inorganic sources offer the combination of high phosphorus content and acceptable animal digestibility make them options as supplemental phosphorus, for instance phosphate rocks, general term applied to minerals valued chiefly for their phosphorus content. However, phosphate rocks are long been known containing hazardous elements, make them sometimes unsuitable for animal nutrition. Neutron Activation Analysis has been supportive to the mineral evaluation of alternative phosphate rocks. This evaluation is subject of on-going doctoral thesis which has been carried-out by the main author. The NAA method has been very efficient due to its highly sensitive and multi-elemental nature. In this paper results of Vanadium content from three different phosphate rocks are presented. Their values have been pointed out that Brazilian phosphate rocks present hazardous elements at the same levels of phosphate rocks from some countries of Africa, North America and Middle East, data from our study (Brazilian data) and FAO - Food and Agriculture Organization (others countries). (author)

  17. Acoustic Emission Behavior of Rock-Like Material Containing Two Flaws in the Process of Deformation Failure

    Directory of Open Access Journals (Sweden)

    Quan-Sheng Liu

    2015-01-01

    Full Text Available Many sudden disasters (such as rock burst by mining extraction originate in crack initiation and propagation. Meanwhile a large number of shock waves are produced by rock deformation and failure. With the purpose of investigating crack coalescence and failure mechanism in rock, experimental research of rock-like materials with two preexisting flaws was performed. Moreover, the AE technique and photographic monitoring were adopted to clarify further the procedure of the crack coalescence and failure. It reveals that AE location technique can record the moments of crack occurrences and follow the crack growth until final failure. Finally, the influence of different flaw geometries on crack initiation strength is analyzed in detail. This research provides increased understanding of the fracture mechanism of mining-induced disasters.

  18. Matrix diffusion of simple cations, anions, and neutral species in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Sato, Haruo

    1999-01-01

    The diffusion of radionuclides into the pore spaces of a rock matrix and the pore properties in fractured crystalline rocks were studied. The work concentrated on the predominant water-conducting fracture system in the host granodiorite of the Kamaishi In Situ Test Site, which consists of fracture fillings and altered grandodiorite. Through-diffusion experiments to obtain effective and apparent diffusion coefficients (De and Da, respectively) for Na + , Cs + , HTO, Cl - , and SeO 3 2- as a function of ionic charge were conducted through the fracture fillings and altered and intact granodiorite. The total porosity φ, density, pore-size distribution, and specific surface area of the pores of the rocks were also determined by a water saturation method and Hg porosimetry. The average φ is, in the order from highest to lowest, as follows: fracture fillings (5.6%) greater than altered granodiorite (3.2%) greater than intact granodiorite (2.3%), and gradually it decreases into the matrix. The pore sizes of the intact and altered granodiorite range from 10 nm to 200 microm, and the fracture fillings from 50 nm to 200 microm, but almost all pores are found around 0.1 and 200 microm in the fracture fillings. The De values for all species are in the following order: fracture fillings greater than altered granodiorite greater than intact granodiorite, as with the rock porosity. In addition. no effect of ionic charge on De is found. No significant dependence for Da values on the rock porosity is found. The formation factors FF and geometric factors G of the rocks were evaluated by normalizing the free water diffusion coefficient Do for each species. The FF decreased with decreasing rock porosity, and an empirical equation for the rock porosity was derived to be FF = φ 1.57±0.02 . The G values showed a tendency to slightly decrease with decreasing rock porosity, but they were approximately constant (0.12 to 0.19) in this porosity range. This indicates that accessible pores

  19. Juvenile helium in ancient rocks: II. U-He,K-Ar, Sm-Nd, and Rb-Sr systematics in the Monche Pluton. 3He/4He ratios frozen in uranium-free ultramafic rocks

    International Nuclear Information System (INIS)

    Tolstikhin, I.N.; Dokuchaeva, V.S.; Kamensky, I.L.; Amelin, Yu.V.

    1992-01-01

    The important geodynamic parameter, the 3 He/ 4 He ratio in rocks and fluids of the continental crust, is generally decreasing from the mantle values (≅ 10 -5 ) to the radiogenic ratio (≅ 10 -8 ) on the time scale of about 1 Ga or less. However, the ratios, observed in some ancient rocks and minerals, are much higher than the radiogenic value due to a preferential retention of trapped He, when compared with radiogenic helium and/or a low U/ 3 He ratio in a sample. The distribution of He, Ar, Nd, and Sr isotopes, K, Rb, Sm, and U in ultrabasic rocks, in rock-forming minerals, in ores from the 2.49 Ga Monche Pluton, and in basic rocks of the Main Range (the Kola Peninsula) enables one to distinguish sources of the rocks and trapped fluids and outline some peculiarities of petrogenetic and fluid processes. The initial values of var-epsilon Nd (T) = -0.9 ± 0.5 , 87 Sr/ 86 Sr(T) = 0.7021 ± 0.0002, for the 2.49 Ga Monche Pluton are rather similar to these for other layered intrusions of the Baltic Shield. They differ considerably from the model values for the depleted 2.5 Ga old mantle. The observed and rather different sources of 3 He and 4 He as well as the considerable constancy of their ratio in different minerals, separated from both the ultramafic rocks and gabbros, implies: (1) an intensive process of mixing between mantle and crustal components: a melt convection in the chamber may have occurred; (2) the two types of rocks could originate by crystallization differentiation of one and the same melt. Practically all 3 He and 4 He are concentrated in secondary amphiboles; hence the fluid which stimulated the metamorphic process was probably released from the ultramafite-bearing melt

  20. Microstructure evolution of fault rocks at the "brittle-to-plastic" transition

    Science.gov (United States)

    Heilbronner, R.; Pec, M.; Stunitz, H.

    2011-12-01

    In the continental crust, large earthquakes tend to nucleate at the "brittle-to-plastic" transition at depths of ~ 10 - 20 km indicating stress release by rupture at elevated PT. Experimental studies, field observations, and models predict peak strength of the lithosphere at depths where rocks deform by "semi-brittle" flow. Thus, the deformation processes taking place at these conditions are important aspects of the seismic cycle and fault rheology in general. We performed a series of experiments with crushed Verzasca gneiss powder (d ≤ 200 μm), "pre-dried" and 0.2 wt% H2O added, placed between alumina forcing blocks (45° pre-cut) and weld-sealed in Pt jackets. The experiments were performed at Pc = 500, 1000 and 1500 MPa, T = 300°C and 500°C. and shear strain rates of ~10-3 s-1 to ~10-5 s-1 in a solid medium deformation apparatus (Griggs rig). Samples deformed at Pc = 500 MPa attain peak strength (~ 1100-1400 MPa) at γ ~ 2, they weaken by ~20 MPa (300°C) to ~140 MPa (500°C) and reach a steady state. The 300°C experiments are systematically stronger by ~ 330 - 370 MPa than the 500°C experiments, and flow stress increases with increasing strain rate. At Pc = 1000 and 1500 MPa, peak strength (~1300-1600 MPa) is reached at γ = 1 to 1.5 followed by weakening of ~60 (300°C) and ~150 MPa (500°C). The strength difference between 300°C and 500°C samples is 270-330 MPa and does not increase with increasing confining pressure. The peak strength increase with confining pressure is modest (50-150 MPa), indicating that the rocks reach their maximal compressive strength. The microstructure develops as an S-C-C' fabric with dominant C' slip zones. At low strains, the gouge zone is pervasively cut by closely spaced C' shears containing fine-grained material (d disintegration of the grains is accompanied by transport of alkalis, producing a different mineral chemistry even at short experimental time scales (~20 min to 30 hrs). The amorphous to nano

  1. Folded fabric tunes rock deformation and failure mode in the upper crust.

    Science.gov (United States)

    Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S

    2017-11-10

    The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.

  2. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  3. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  4. Explosive and accessories in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Pingua, B.M.P.; Nabiullah, M.; Jagdish, S.; Mishra, G.D.; Singh, T.N. [Central Mining Research Institute, Dhanbad (India)

    1999-02-01

    Chemical explosives are commonly used in the mining industry. Those used in India include nitroglycerine (NG) base, ammonium nitrate fuel oil mixture (ANFO), slurry emulsion and liquid oxygen (LOX). Examples of each type and their general properties are lighted. The electric and non-electric detonating systems used are described. Two Indian companies are producing non-electric in-hole delay system. Raydet (IDL-make) and Excel (ICI-make). Their firing characteristics are listed. Tables are given for burden for different density of rock and explosive strength. Causes of bad blast are itemised. 7 refs., 4 figs., 7 tabs.

  5. Effects of increased rock strata stresses on coal gettability

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Skoczynski, W [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1988-01-01

    Analyzes effects of rock strata pressure on a coal seam, its cracking and on energy consumption of coal cutting by shearer loaders and coal plows. Effects of mining depth on stresses in a coal seam rib side were analyzed using formulae developed by Budryk, Chudek and Borecki. Formulae used for selecting optimum yield strength of powered supports at working faces are reviewed. Four types of spontaneous separation of coal seam blocks caused by rock strata stresses are evaluated: layers parallel to the face with constant thickness, coal blocks with thickness decreasing in the direction of the floor or roof (blocks with a planar triangle cross-cut), blocks situated in the seam layer adjacent to the floor or roof. Causes of each type of coal seam separation are analyzed. 9 refs.

  6. Influence of dunite mineral additive on strength of cement

    Science.gov (United States)

    Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.

    2017-12-01

    The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.

  7. The influence of microwave irradiation on thermal properties of main rock-forming minerals

    International Nuclear Information System (INIS)

    Lu, Gao-ming; Li, Yuan-hui; Hassani, Ferri; Zhang, Xiwei

    2017-01-01

    Highlights: • Different rock-forming minerals present very different microwave absorption capacity to microwave energy. • The test results can be used to estimate the heating behaviors of rocks to microwave irradiation. • SEM-EDX technique was used to determine the elemental distribution and mineralogical composition. • Ferrum may influence the interacting mechanisms between rock-forming minerals and microwaves. - Abstract: The sample will burst into fragment when the thermal stress induced by thermal expansion greater than the ultimate strength of the rock after microwave irradiation. Microwave-assisted rock fragmentation has been illustrated to be potentially beneficial for mineral processing, mining and geotechnical engineering. In order to have a comprehensive understanding on the influence of microwave on thermo-mechanical properties of rocks, it is necessary to investigate the interaction effect between microwaves and the main rock-forming minerals. In this work, eleven rock-forming minerals were tested in a multimode cavity at 2.45G Hz with a power of 2 kW, subsequently, the Scanning Electron Microscopy–Energy Dispersive X-ray (SEM-EDX) was used to determine the elemental distribution and mineralogical composition of the tested samples. It was observed that different rock-forming minerals present very different susceptibility induced by microwave treatment. Enstatite presents the strongest microwave absorption capacity by a large margin and most of the rock-forming minerals are weak microwave absorbers. It is significant that the results can be used to predict the heating behaviors of rocks subjected to microwave energy. Furthermore, the SEM-EDX elemental analysis demonstrates that the microwave absorption capacity of rock-forming minerals could link to the contribution of the ferrum, which may influence the interacting mechanisms between microwaves and the rock-forming minerals.

  8. 2008 Gordon Research Conference on Rock Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, James G.; Gray, Nancy Ryan

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical

  9. Rock mechanics investigations of structural stability in the Bulli seam at West Cliff Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Jaggar, F

    1978-03-01

    Rock mechanics investigations were conducted at West Cliff colliery to obtain rock properties and stress measurements and study the stability of mining structures. The roof and floor were drilled in order to obtain core for rock testing and lump samples of coal were collected in order to measure the coal properties. Absolute stress measurements were obtained using CSIR cells. The strata were sufficiently uniform and competent to overcore the emplaced cells. Testing revealed that the rocks were better than average for coal measure sedimentary strata and the stresses indicated the existence of a moderately high horizontal stress field. The coal is of average strength only with some marked variation relating to the very banded nature of the seam. Finite element analyses showed that the rectangular roadways driven using roof bolts and timber supports were stable and adequately stable by an indicative factor of safety of about l.5.

  10. Assessment of characteristic failure envelopes for intact rock using results from triaxial tests

    OpenAIRE

    Muralha, J.; Lamas, L.

    2014-01-01

    The paper presents contributions to the statistical study of the parameters of the Mohr-Coulomb and Hoek-Brown strength criteria, in order to assess the characteristic failure envelopes for intact rock, based on the results of several sets of triaxial tests performed by LNEC. 10p DBB/NMMR

  11. Study on crystalline rock aiming at evaluation method of long-term behavior of rock mass (Joint research)

    International Nuclear Information System (INIS)

    Fukui, Katsunori; Hashiba, Kimihiro; Matsui, Hiroya

    2017-11-01

    It is important to evaluate the stability of a repository for high-level radioactive waste not only during the design, construction and operation phases, but also during the post-closure period, for time frames likely exceeding several millennia or longer. The rock mass around the tunnels could be deformed through time in response to time dependent behavior such as creep and stress relaxation. Therefore, development of methodology to evaluate the past long-term behavior of rock mass is considered to be an issue. In view of above points, this study has been started as a collaboration study with the University of Tokyo from Fiscal Year 2016. In FY 2016, creep testing on Tage tuff was continuously conducted. Existing theory of rate process and stochastic process was modified to be applied to evaluate effects of water, and then the modified theory was validated based on the results of strength and creep tests performed under dry and wet conditions. Furthermore, effects of water contents on stress-strain curves were examined by uniaxial compression testing under various water content conditions. (author)

  12. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  13. Radwaste storage in crystalline rocks: a natural analog

    International Nuclear Information System (INIS)

    Brookins, D.G.; Abashian, M.S.; Cohen, L.H.; Wollenberg, H.A.

    1982-01-01

    The Eldora-Bryan Stock (Colorado) intruded the 1.4-1.6 billion year old metamorphic rocks of the Idaho Springs Formation 55 million years ago. The stock may be considered a giant analog of a radwaste form without canister or engineered backfill barriers. The authors' lanthanide studies show the following: (1) The intrusive rocks remained as a closed system. (2) Lanthanide/chondrite versus ionic radius plots show only local redistribution in the immediate contact zone, and that rocks in this zone have not gained lanthanides from the magma. (3) No whole rock perturbations for the lanthanides are noted at distances greater than 3 m from the contact. Stable oxygen isotopic variations show a narrow 9.0 +- 0.3 per mille range for the intrusive rocks and whole rock values from 7.6 to 10.0 per mille for the intruded rocks. The authors conclude: (1) The Idaho Springs Formation was not penetrated by hydrothermal fluids from the Eldora-Bryan magma except possibly on a local scale within 3 m of the contact. (2) The light lanthanides may be locally redistributed in the immediate contact zone, but without additions from the magma. (3) The oxygen isotopic data imply lack of hydrothermal fluids from the magma penetrating the intruded rocks, even in the highest temperature contact zones. Whole rock data imply closed system conditions for Rb, Sr, Th, U, Pb even where mineral ages have been lowered. Data for Co, Cr, Sc, Fe, Cs also indicate retention in whole rock systems and no exchange with the magma. The combined chemical, isotopic, petrographic and theoretical data and calculations indicate suitability of rocks of the Idaho Springs Formation, and thus of many types of crystalline rocks as well, for possible use for the storage of radioactive waste

  14. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    Science.gov (United States)

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.

  15. Empirical Assessment of the Mean Block Volume of Rock Masses Intersected by Four Joint Sets

    Science.gov (United States)

    Morelli, Gian Luca

    2016-05-01

    The estimation of a representative value for the rock block volume ( V b) is of huge interest in rock engineering in regards to rock mass characterization purposes. However, while mathematical relationships to precisely estimate this parameter from the spacing of joints can be found in literature for rock masses intersected by three dominant joint sets, corresponding relationships do not actually exist when more than three sets occur. In these cases, a consistent assessment of V b can only be achieved by directly measuring the dimensions of several representative natural rock blocks in the field or by means of more sophisticated 3D numerical modeling approaches. However, Palmström's empirical relationship based on the volumetric joint count J v and on a block shape factor β is commonly used in the practice, although strictly valid only for rock masses intersected by three joint sets. Starting from these considerations, the present paper is primarily intended to investigate the reliability of a set of empirical relationships linking the block volume with the indexes most commonly used to characterize the degree of jointing in a rock mass (i.e. the J v and the mean value of the joint set spacings) specifically applicable to rock masses intersected by four sets of persistent discontinuities. Based on the analysis of artificial 3D block assemblies generated using the software AutoCAD, the most accurate best-fit regression has been found between the mean block volume (V_{{{{b}}_{{m}} }}) of tested rock mass samples and the geometric mean value of the spacings of the joint sets delimiting blocks; thus, indicating this mean value as a promising parameter for the preliminary characterization of the block size. Tests on field outcrops have demonstrated that the proposed empirical methodology has the potential of predicting the mean block volume of multiple-set jointed rock masses with an acceptable accuracy for common uses in most practical rock engineering applications.

  16. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  17. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  18. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  19. A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites

    Science.gov (United States)

    Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.

    2016-05-01

    Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.

  20. The influence of normal fault on initial state of stress in rock mass

    Directory of Open Access Journals (Sweden)

    Tajduś Antoni

    2016-03-01

    Full Text Available Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  1. The influence of normal fault on initial state of stress in rock mass

    Science.gov (United States)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  2. Clay shale as host rock. A geomechanical contribution about Opalinus clay; Tonstein als Wirtsgestein. Ein geomechanischer Beitrag ueber Opalinuston

    Energy Technology Data Exchange (ETDEWEB)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon [Halle-Wittenberg Univ., Halle (Saale) (Germany). Inst. fuer Geowissenschaften und Geographie

    2016-12-15

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  3. Evaluating and quantifying the liming potential of phosphate rocks

    International Nuclear Information System (INIS)

    Sikora, F.J.

    2002-01-01

    The liming potential of phosphate rock was evaluated with theoretical calculations and quantified by laboratory titration and soil incubation. Three anions present in the carbonate apatite structure of phosphate rock that can consume protons and cause an increase in pH when dissolved from apatite are PO 4 3- , CO 3 2- , and F - . The pKa for HF is so low that F - has very little effect on increasing pH. The pKa for 2 protons on H 2 PO 4 - and H 2 CO 3 are sufficiently high enough to cause an increase in pH with PO 4 3- and CO 3 2- released into solution if the pH range is between 4 and 6. Because of the greater molar quantity of PO 4 3- compared toCO 3 2- , PO 4 3- exerts a greater affect on the liming potential of P rock. For a variety of phosphate rocks with a axes ranging from 9.322 to 9.374 A in the carbonate apatite structure, the theoretical % calcium carbonate equivalence (CCE) ranges from 59.5 to 62%. With the presence of gangue carbonate minerals from 2.5 to 10% on a weight basis in the phosphate rocks, the theoretical %CCE ranges from 59.5 to 63.1%. Use of AOAC method 955.01 for quantifying the %CCE of North Carolina phosphate rock (NCPR) and Idaho phosphate rock (IDPR) resulted in %CCE ranging from 39.9 to 53.7% which were less than the theoretical values. The lower values measured in the AOAC method was presumed to be due to formation of CaHPO 4 or CaHPO 4 ·2H 2 O precipitates which would result in less than 2 protons neutralized per mole of PO 4 3- released from carbonate apatite. The highly concentrated solution formed in the method was considered not indicative of a soil solution and thus determined %CCE values would be suspect. A soil incubation study was conducted to determine a more appropriate %CCE value in a soil environment using Copper Basin, Tennessee soil with a soil pH of 4.2. Agricultural limestone, NCPR, IDPR, and a granulated IDPR were added to 100 g of soil at rates of 0.1, 0.3, 1, 3, and 10 g/kg soil, incubated for 105 days at field

  4. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-08-01

    Full Text Available Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  5. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  6. Biological energy from the igneous rock enhances cell growth and enzyme activity

    International Nuclear Information System (INIS)

    Lin Y.-L.; Kuo, H.-S; Chen, C.-T.; Kuo, S.-C.

    2000-01-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation

  7. Re-evaluation of Cr concentration in some geostandard rocks by INAA

    International Nuclear Information System (INIS)

    Togashi, Shigeko; Kamioka, Hikari; Tanaka, Tsuyoshi; Ando, Atsushi

    1990-01-01

    Chromium in geological standard igneous rocks is precisely determined with a fully automated non-destructive neutron activation analysis. Samples are GSJ standard rocks (JP-1, JB-1, JB-1a, JA-3, JGb-1, JB-2, JA-1) and USGS ones (BCR-1 and G-2). Chromium concentration is determined relative to a chemical standard instead of a natural rock standard. Multiple aliquots of a slightly large amount of (200-300 mg) sample powder are analyzed to examine the heterogeneity in chromium concentration. The results agree with the consensus values within the errors of consensus values which have large coefficients of variation. The precise analysis and the examination on the distribution of reported values reveal the heterogeneity in chromium concentration of the sample powder. In particular, basaltic samples have heterogeneity in chromium concentration because of a small amount of chromite with extremely high chromium content. A chemical standard is useful to get high accuracy of chromium determination rather than natural standard materials. (author)

  8. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin

    International Nuclear Information System (INIS)

    Bastos, Rodrigo Oliveira

    2008-01-01

    This work is a study of the 40 K and the 238 U and 232 Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 ± 3.7 nGy.h -1 , and Cunhaporanga granite, 167 ± 37 nGy.h -1 ). The other highest values correspond to the shale rocks from the Irati Formation (109 ± 16 nGy.h -1 ) and the siltic shale rocks from the Ponta Grossa Formation (107.9 ± 0.7 nGy.h -1 ). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 ± 0.6 nGy.h -1 ). The average value for sedimentary rocks from seven other formations is equal to 59 ± 26 nGy.h -1 . The Rio Bonito Formation presented the highest dose value (334 ± 193 nGy.h -1 ) mainly due to the anomalous 226 Ra

  9. Isometric shoulder strength in young swimmers.

    Science.gov (United States)

    McLaine, Sally J; Ginn, Karen A; Fell, James W; Bird, Marie-Louise

    2018-01-01

    The prevalence of shoulder pain in young swimmers is high. Shoulder rotation strength and the ratio of internal to external rotation strength have been reported as potential modifiable risk factors associated with shoulder pain. However, relative strength measures in elevated positions, which include flexion and extension, have not been established for the young swimmer. The aim of this study was to establish clinically useful, normative shoulder strength measures and ratios for swimmers (14-20 years) without shoulder pain. Cross-sectional, observational study. Swimmers (N=85) without a recent history of shoulder pain underwent strength testing of shoulder flexion and extension (in 140° abduction); and internal and external rotation (in 90° abduction). Strength tests were performed in supine using a hand-held dynamometer and values normalised to body weight. Descriptive statistics were calculated for strength and strength ratios (flexion:extension and internal:external rotation). Differences between groups (based on gender, history of pain, test and arm dominance) were explored using independent and paired t tests. Normative shoulder strength values and ratios were established for young swimmers. There was a significant difference (pdifferences in strength ratios. Relative strength of the dominant and non-dominant shoulders (except for extension); and for swimmers with and without a history of shoulder pain was not significantly different. A normal shoulder strength profile for the young swimmer has been established which provides a valuable reference for the clinician assessing shoulder strength in this population. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  11. Modelling of crustal rock mechanics for radioactive waste storage in Fennoscandia - problem definition

    International Nuclear Information System (INIS)

    Stephansson, O.

    1987-05-01

    Existing knowledge of crustal stresses for Fennoscandia is presented. Generic, two-dimensional models are proposed for vertical and planar sections of a traverse having a direction NW-SE in Northern Fennoscandia. The proposed traverse will include the major neotectonic structures at Lansjaerv and Paervie, respectively, and also the study site for storage of spent nuclear fuel at Kamlunge. The influence of glaciation, deglaciation, glacial rebound on crustal rock mechanics and stability is studied for the modelling work. Global models, with a length of roughly 100 km, will increase our over all understanding of the change in stresses and deformations. These can provide boundary conditions for regional and near-field models. Properties of strength and stiffness of intact granitic rock masses, faults and joints are considered in the modelling of the crustal rock mechanics for any of the three models described. (orig./HP)

  12. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  13. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2013-01-01

    Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  14. Thermal inertia in thermal infrared: porosity and chemical components of rocks; Inercia termica no infravermelho termal: porosidade e componentes quimicos de rochas

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Admilson P.; Ehlers, Ricardo Sandes [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Vitorello, Icaro [Instituto de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1995-12-31

    The effect of porosity, and the relation between thermal inertia values and chemical components were determined. The thermal inertia values and chemical components were determined. The thermal inertia determinations were performed using radiometric observations, in the range 8 to 14 {mu}, of the surface temperature variations of the sample, induced by an incident heat flux. The results show that the increase in porosity tends to reduce the thermal inertia values, when the rock is in a dry state. In the water saturation state, the inertia also tends to show small values, only for porous rocks with thermal inertia values larger than the water values. The acid rocks show thermal inertia values smaller than those of the basic rocks. The intermediate and basic rocks show strong positive correlation between thermal inertia and Si O{sub 2}. 7 refs., 3 figs

  15. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  16. Practical example of the infrastructure protection against rock fall

    Science.gov (United States)

    Jirásko, Daniel; Vaníček, Ivan

    2017-09-01

    The protection of transport infrastructures against rock falls represents for the Czech Republic one of the sensitive questions. Rock falls, similarly as other typical geo-hazards for the Czech Republic, as landslides and floods, can have negative impact on safety and security of these infrastructures. One practical example how to reduce risk of rock fall is described in the paper. Great care is devoted to the visual inspection enabling to indicate places with high potential to failure. With the help of numerical modelling the range of rock fall negative impact is estimated. Protection measures are dealing with two basic ways. The first one utilize the results of numerical modelling for the optimal design of protection measures and the second one is focused on the monitoring of the rock blocks with high potential of instability together with wire-less transfer of measured results. After quick evaluation, e.g. comparison with warning values, some protection measures, mostly connected with closure of the potential sector, can be recommended.

  17. Palaeointensity determinations and rock magnetic properties on rocks from Izu-Bonin-Mariana fore-arc (IODP Exp. 352).

    Science.gov (United States)

    Carvallo, Claire; Camps, Pierre; Sager, Will; Poidras, Thierry

    2017-04-01

    IODP Expedition 352 cored igneous rocks from the Izu-Bonin-Mariana fore-arc crust: Sites U1440 and U1441 recovered Eocene basalts and related rocks whereas Sites U1439 and U1442 recovered Eocene boninites and related rocks. We selected samples from Holes U1439C, U1440B and U1440A for paleointensity measurements. Hysteresis measurements and high and low-temperature magnetization curves show that samples from Hole U1440B undergo magnetochemical changes when heated and are mostly composed of single-domain (SD) or pseudo-single-domain (PSD) titanomaghemite. In contrast, the same measurements show that most selected samples from Holes U1439C and U1442A are thermally stable and are composed of either SD or PSD titanomagnetite with very little titanium content, or SD ferromagnetic grains with a large paramagnetic contribution. Thellier-Thellier paleointensity experiments carried out on U1439C and U1442A samples give a good success rate of 25/60 and Virtual Dipole Moment values between 1.3 and 3.5 ×1022 Am2. Multispecimen paleointensity experiments carried out on 55 samples from Hole U1440B (divided into 4 groups) and 20 from Hole U1439C gave poor quality result, but they seem to indicate a VDM around 4-6 ×1022 Am2 in Hole U1440B fore-arc basalts. These results are in agreement with the low few VDM values previously measured on rocks from Eocene. However, they do not support an inverse relationship between intensity of the field and rate of reversal, since the rate of reversal in Eocene was rather low.

  18. For Those About to Rock : Naislaulajat rock-genressä

    OpenAIRE

    Herranen, Linda

    2015-01-01

    For those about to rock – naislaulajat rock-genressä antaa lukijalleen kokonaisvaltaisen käsityksen naisista rock-genressä: rockin historiasta, sukupuolittuneisuudesta, seksismistä, suomalaisten naislaulajien menestyksestä. Työn aineisto on koottu aihepiirin kirjallisuudesta ja alalla toimiville naislaulajille teetettyjen kyselyiden tuloksista. Lisäksi avaan omia kokemuksiani ja ajatuksiani, jotta näkökulma naisista rock-genressä tulisi esille mahdollisimman monipuolisesti. Ajatus aihees...

  19. Proceedings of the 3. Canada-US rock mechanics symposium and 20. Canadian rock mechanics symposium : rock engineering 2009 : rock engineering in difficult conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference provided a forum for geologists, mining operators and engineers to discuss the application of rock mechanics in engineering designs. Members of the scientific and engineering communities discussed challenges and interdisciplinary elements involved in rock engineering. New geological models and methods of characterizing rock masses and ground conditions in underground engineering projects were discussed along with excavation and mining methods. Papers presented at the conference discussed the role of rock mechanics in forensic engineering. Geophysics, geomechanics, and risk-based approaches to rock engineering designs were reviewed. Issues related to high pressure and high flow water conditions were discussed, and new rock physics models designed to enhance hydrocarbon recovery were presented. The conference featured 84 presentations, of which 9 have been catalogued separately for inclusion in this database. tabs., figs.

  20. Experimental Research on the Specific Energy Consumption of Rock Breakage Using Different Waterjet-Assisted Cutting Heads

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2018-01-01

    Full Text Available To investigate the specific energy consumption (SE of rock breakage by cutting heads assisted by different types of waterjet and to identify optimal waterjet parameters and assistance types, rock cutting with and without waterjets was carried on a rock fragmentation test bed. SE is a comprehensive evaluation index and was developed according to the applied load on cutting head, and the SE under different cutting conditions was compared and analyzed. The results show that the SE of rock breakage without waterjet assistance increased with the increasing of rock compressive strength (RCS but that the limited drilling depth decreased. The effect of the waterjet pressure on the SE of rock breakage by the cutting head I was marked, and SE decreased by 30∼40% when the ratio between RCS and waterjet pressure was less than 1. However, the function of the waterjet assistance was poor; therefore, a ratio of 1 could be used to distinguish the rock breakage effect of cutting head I. For cutting head II, the rock damage from the waterjet impact was limited due to the large waterjet standoff distance; thus the rock breakage performance of cutting head II was also limited. The waterjet impacting at the tip of the conical pick using cutting head III could enter into the cracks caused by the mechanical pick and fracture the rock. Therefore, the rock breakage performance of cutting head III was better than that of cutting head II.

  1. Constraint effects of model coal pillar geometry on its strength

    Energy Technology Data Exchange (ETDEWEB)

    Wahab Khair, A.; Danqing Xu (West Virgina University, Morgantown, WV (United States))

    1994-06-01

    Coal and rock specimens with various diameter/height ratios (D/H) were subjected to compressive test in the laboratory. The deformation and failure characteristics of specimens were studied. The study showed that the D/H ratio of specimens significantly affects the deformation, failure characteristics, and the strength of material. The results provide a better understanding of the mechanism of D/H ratio effect on the strength of materials. The magnitude and mechanism of D/H ratio effect was compared with the effect of confining pressure, and contrasted to size effect. The application of the study to pillar design is discussed. 3 refs., 10 figs.

  2. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  3. Are only Emotional Strengths Emotional? Character Strengths and Disposition to Positive Emotions.

    Science.gov (United States)

    Güsewell, Angelika; Ruch, Willibald

    2012-07-01

    This study aimed to examine the relations between character strengths and dispositional positive emotions (i.e. joy, contentment, pride, love, compassion, amusement, and awe). A sample of 574 German-speaking adults filled in the Dispositional Positive Emotion Scales (DPES; Shiota, Keltner, & John, 2006), and the Values in Action Inventory of Strengths (VIA-IS; Peterson, Park, & Seligman, 2005). The factorial structure of the DPES was examined on item level. Joy and contentment could not be clearly separated; the items of the other five emotions loaded on separate factors. A confirmatory factor analysis assuming two latent factors (self-oriented and object/situation specific) was computed on scale level. Results confirmed the existence of these factors, but also indicated that the seven emotions did not split up into two clearly separable families. Correlations between dispositional positive emotions and character strengths were positive and generally low to moderate; a few theoretically meaningful strengths-emotions pairs yielded coefficients>.40. Finally, the link between five character strengths factors (i.e. emotional strengths, interpersonal strengths, strengths of restraint, intellectual strengths, and theological strengths) and the emotional dispositions was examined. Each of the factors displayed a distinctive "emotional pattern"; emotional strengths evidenced the most numerous and strongest links to emotional dispositions. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.

  4. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  5. Rock Physics and Petrographic Parameters Relationship Within Siliciclastic Rocks: Quartz Sandstone Outcrop Study Case

    Science.gov (United States)

    Syafriyono, S.; Caesario, D.; Swastika, A.; Adlan, Q.; Syafri, I.; Abdurrokhim, A.; Mardiana, U.; Mohamad, F.; Alfadli, M. K.; Sari, V. M.

    2018-03-01

    Rock physical parameters value (Vp and Vs) is one of fundamental aspects in reservoir characterization as a tool to detect rock heterogenity. Its response is depend on several reservoir conditions such as lithology, pressure and reservoir fluids. The value of Vp and Vs is controlled by grain contact and contact stiffness, a function of clay mineral content and porosity also affected by mineral composition. The study about Vp and Vs response within sandstone and its relationship with petrographic parameters has become important to define anisotrophy of reservoir characteristics distribution and could give a better understanding about local diagenesis that influence clastic reservoir properties. Petrographic analysis and Vp-Vs calculation was carried out to 12 core sample which is obtained by hand-drilling of the outcrop in Sukabumi area, West Java as a part of Bayah Formation. Data processing and interpretation of sedimentary vertical succession showing that this outcrop comprises of 3 major sandstone layers indicating fluvial depositional environment. As stated before, there are 4 petrographic parameters (sorting, roundness, clay mineral content, and grain contact) which are responsible to the differences of shear wave and compressional wave value in this outcrop. Lithology with poor-sorted and well- roundness has Vp value lower than well-sorted and poor-roundness (sub-angular) grain. For the sample with high clay content, Vp value is ranging from 1681 to 2000 m/s and could be getting high until 2190 to 2714 m/s in low clay content sample even though the presence of clay minerals cannot be defined neither as matrix nor cement. The whole sample have suture grain contact indicating telogenesis regime whereas facies has no relationship with Vp and Vs value because of the different type of facies show similar petrographic parameters after diagenesis.

  6. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  7. A study of the depth of weathering and its relationship to the mechanical properties of near-surface rocks in the Mojave Desert

    Science.gov (United States)

    Stierman, D.J.; Healy, J.H.

    1985-01-01

    Weathered granite extends 70 m deep at Hi Vista in the arid central Mojave Desert of southern California. The low strength of this granite is due to the alteration of biotite and chlorite montmorillonite. Deep weathering probably occurs in most granites, although we cannot rule out some anomalous mechanisms at Hi Vista. Geophysical instruments set in these slightly altered rocks are limited by the unstable behavior of the rocks. Thus, tectonic signals from instruments placed in shallow boreholes give vague results. Geophysical measurements of these weathered rocks resemble measurements of granitic rocks near major faults. The rheology of the rocks in which instruments are placed limits the useful sensitivity of the instruments. ?? 1985 Birkha??user Verlag.

  8. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    International Nuclear Information System (INIS)

    Trukhin, Vladimir I.; Bezaeva, Natalia; Kurochkina, Evgeniya

    2006-01-01

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented

  9. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Trukhin, Vladimir I. [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)]. E-mail: trukhin@phys.msu.ru; Bezaeva, Natalia [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation); Kurochkina, Evgeniya [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented.

  10. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  11. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    Science.gov (United States)

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  12. Chaotic characteristic of electromagnetic radiation time series of coal or rock under different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-Tang Liu; En-Lai Zhao; En-Yuan Wang; Jing Wang [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-02-15

    Based on chaos theory, the chaotic characteristics of electromagnetic radiation time series of coal or rock under different loads was studied. The results show that the correlation of electromagnetic radiation time series of small-scale coal or rock and coal mine converges to a stable saturation value, which shows that these electromagnetic radiation time series have chaos characteristics. When there is danger of coal seam burst, the value of the saturation correlation dimension D{sub 2} of the electromagnetic radiation time series is bigger and it changes greatly; when there is no danger, its value is smaller and changes smoothly. The change of saturation correlation of electromagnetic radiation time series can be used to forecast coal or rock dynamic disasters. 11 refs., 4 figs.

  13. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  14. Variation of rock-forming metals in sub-annual increments of modern Greenland snow

    Science.gov (United States)

    Hinkley, T.K.

    1992-01-01

    Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analysed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give information about the origin and identity of the rock and soil dusts, and sea salts, present as impurities in the snow. Metal ratios indicate that the dusts in the snowpacks are of continental origin and from ferromagnesian rocks. Source rock types for dusts in central south Greenland snow contrast with the felsic rock dusts of the Sierra Nevada, CA, annual snowpacks, and with the very felsic rock dusts in large south central Alaskan mountain glaciers. Samples in which masses of sea salt are much larger than those of rock dusts

  15. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  16. Estimation of the strength of Nubian sandstone formation from point load test index and other simple parameters

    Directory of Open Access Journals (Sweden)

    Zein Abdul Karim M.

    2018-01-01

    Full Text Available This study investigates the correlation of the uniaxial compressive strength (UCS and the point load test (PLT index Is(50, bulk density, water absorption and the RQD properties of the Sudanese Nubian sandstone formation. The UCS being is the rock property needed in engineering practice but its determination is tedious, time consuming and expensive. Alternatively, the UCS may be indirectly evaluated through establishing relationships with rock parameters which are easier, cheaper and more convenient to determine in the laboratory or in the field. An extensive laboratory testing was executed to determine the above rock properties for many NSF samples taken from Khartoum State and other areas. Statistical analysis was performed on the test data and a reliable linear regression equation has been developed with a UCS to PLT Is(50 conversion factor of 10.18 and may be applied to estimate the strength of the Sudanese sandstone formation. The developed correlation is in good agreement with few of the many methods published for similar rock types which indicates that large errors may result in from applying an inappropriate UCS prediction method. Thus, it is important to establish separate correlations or validate published correlations to check their suitability for a specific rock types and local geologies. Useful correlation relationships of reasonable accuracy were also established for rough estimation of the UCS from the bulk density, water absorption and the RQD properties of the Nubian sandstone formation.

  17. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  18. Mapping strengths into virtues: The relation of the 24 VIA-strengths to six ubiquitous virtues

    Directory of Open Access Journals (Sweden)

    Willibald eRuch

    2015-04-01

    Full Text Available The Values-in-Action (VIA-classification distinguishes six core virtues and 24 strengths. As the assignment of the strengths to the virtues was done on theoretical grounds it still needs empirical verification. As an alternative to factor analytic investigations the present study utilizes expert judgments. In a pilot study the conceptual overlap among five sources of knowledge (strength’s name including synonyms, short definitions, brief descriptions, longer theoretical elaborations, and item content about a particular strength was examined. The results show that the five sources converged quite well, with the short definitions and the items being slightly different from the other. All strengths exceeded a cut-off value but the convergence was much better for some strengths (e.g., zest than for others (e.g., perspective. In the main study 70 experts (from psychology, philosophy, theology, etc. and 41 laypersons rated how prototypical the strengths are for each of the six virtues. The results showed that 10 were very good markers for their virtues, 9 were good markers, four were acceptable markers, and only one strength failed to reach the cut-off score for its assigned virtue. However, strengths were often markers for two or even three virtues, and occasionally they marked the other virtue more strongly than the one they were assigned to. The virtue prototypicality ratings were slightly positively correlated with higher coefficients being found for justice and humanity. A factor analysis of the 24 strengths across the ratings yielded the six factors with an only slightly different composition of strengths and double loadings. It is proposed to adjust either the classification (by reassigning strengths and by allowing strengths to be subsumed under more than one virtue or to change the definition of certain strengths so that they only exemplify one virtue. The results are discussed in the context of factor analytic attempts to verify the

  19. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  20. ROCK1 as a novel prognostic marker in vulvar cancer

    DEFF Research Database (Denmark)

    Akagi, Erica M; Lavorato-Rocha, André M; Maia, Beatriz de Melo

    2014-01-01

    infection, but most cases develop in women aged over 50 years through poorly understood genetic mechanisms. Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) has been implicated in many cellular processes, but its function in vulvar cancer has never been examined. In this study, we aimed...... to determine the prognostic value of ROCK1 gene and protein analysis in vulvar squamous cell carcinoma (VSCC). METHODS: ROCK1 expression levels were measured in 16 vulvar tumour samples and adjacent normal tissue by qRT-PCR. Further, 96 VSCC samples were examined by immunohistochemistry (IHC) to confirm...... the involvement of ROCK1 in the disease. The molecular and pathological results were correlated with the clinical data of the patients. Sixteen fresh VSCC samples were analyzed by array-based comparative genomic hybridization (aCGH). RESULTS: In each pair of samples, ROCK1 levels were higher by qRT-PCR in normal...

  1. Systematic studies of radioactive elements in various rocks in northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Wattananikorn, K; Teeyasoontranont, V; Vilaithong, T; Lerdthusnee, S

    1985-12-31

    An investigation into the concentrations of the main heat producing radioactive elements, uranium, thorium and potassium in various rock samples was carried out by gamma ray spectrometry. The samples included igneous, metamorphic and sedimentary rocks of different ages. They were collected mainly from the northern part of the country. Results of the investigation show relatively high concentrations of radioactive elements in most rock types, compared to the average values commonly cited. However, for granitic rocks the values obtained are, more or less, comparable to those obtained by Amnuaychai Thienprasert and his colleagues, who worked in the same area using different methods of investigation. Apart from that granitic samples of triassic and cretaceous ages also have a similar radioactive elements concentration to those of the Darby pluton in Southeastern Seward Peninsular, Alaska, the Granite Mountain in Wyoming and the Conway Granite of New Hampshire which has been cited as a low-grade uranium-thorium resource. As a consequence of such high radioactive element concentrations, heat generations of most rock samples investigated are much higher than reported average values. The heat generations seem to have some influence on the nature of heat sources of hot springs in northern Thailand, especially at Ban Pong, Nam Ron hot spring Amphoe Mae Chan. Furthermore the radiogenic heat productions also affect to a great extent surface heat flow in the region provided that the radioactive element concentrations do not decrease with depth. Surface heat flow in northern Thailand was recently reported to be very high compared to the average value of the earth. This high heat flow was suspected to be caused by extensional tectonics resulting indirectly from sea-floor spreading in the Andaman Sea during the last 10 million years. However, from this study it can be shown that heat generations could be another factor which has much influence on the value of the surface heat flow.

  2. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  3. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    give similar results to what's earlier have been derived on the Aespoe diorite. Only a few compressive strength tests have been done on rock samples collected close to the shear zone which is mostly due to the lack of representative sections of intact rock in the pillar. The strength of the altered rock is approximately 50-60% of the intact diorite. The results of the testing of the thermal properties are good and lies well within what can be expected of diorite. Nothing in the results from the laboratory programme has indicated that the chosen experiment volume would be unsuitable, it is important to take the heterogenity in consideration. The P-wave velocity tests on core samples and between two boreholes perpendicular to the future pillar wall has been performed. The velocities indicate that the excavation disturbed zone is thin. If the dynamic Young's modulus is calculated from the velocities between the two boreholes approximately 3 m apart it is found to be of the same magnitude as the static one measured on intact rock. The reason is probably the low fracturing and that the fractures are either sealed or compressed due to the quite high stress field. It can be concluded that the modulus for the pillar volume should be at least in the same order as the one derived from the convergence measurements. A high modulus in the experiment volume is positive since lower temperatures can be used for the stress increase necessary to initiate brittle spalling. A selection of the parameters derived from the characterisation to be used in the numerical modelling is presented. The choice of the respective values is discussed in the respective section in this report.

  4. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    International Nuclear Information System (INIS)

    Staub, Isabelle; Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    have been derived on the Aespoe diorite. Only a few compressive strength tests have been done on rock samples collected close to the shear zone which is mostly due to the lack of representative sections of intact rock in the pillar. The strength of the altered rock is approximately 50-60% of the intact diorite. The results of the testing of the thermal properties are good and lies well within what can be expected of diorite. Nothing in the results from the laboratory programme has indicated that the chosen experiment volume would be unsuitable, it is important to take the heterogenity in consideration. The P-wave velocity tests on core samples and between two boreholes perpendicular to the future pillar wall has been performed. The velocities indicate that the excavation disturbed zone is thin. If the dynamic Young's modulus is calculated from the velocities between the two boreholes approximately 3 m apart it is found to be of the same magnitude as the static one measured on intact rock. The reason is probably the low fracturing and that the fractures are either sealed or compressed due to the quite high stress field. It can be concluded that the modulus for the pillar volume should be at least in the same order as the one derived from the convergence measurements. A high modulus in the experiment volume is positive since lower temperatures can be used for the stress increase necessary to initiate brittle spalling. A selection of the parameters derived from the characterisation to be used in the numerical modelling is presented. The choice of the respective values is discussed in the respective section in this report

  5. Poisson's Ratio and Auxetic Properties of Natural Rocks

    Science.gov (United States)

    Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.

    2018-02-01

    Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.

  6. Investigations into the sorption of neptunium by loose rock from the cap rock of the Gorleben salt dome under aerobic and anaerobic conditions

    International Nuclear Information System (INIS)

    Muehlenweg, U.

    1988-01-01

    In the experiments with the natural loose rock the sorption behaviour of neptunium was essentially determined by the chemical form in which the neptunium occurred in the ground waters. Under aerobic conditions with Eh values of 300 mV, neptunium in its oxidation state +5 occurred. At a pH of 2 + , and at pH > 8 as carbonato complex. The found neptunium species were relatively mobile, with sorption values from 1 ml/g to 20 ml/g. The sorption of neptunium is comparable to that of alkali and alkaline earth ions, such as Cs + or Sr 2+ . Cations attached to the rock surface are exchanged for NpO 2 + . Sorption in this case is reversible. (orig.) [de

  7. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Moura, C.L.; Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.b [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Guedes, S. [Departamento de Cronologia e Raios Cosmicos, Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda No. 777, CEP 13083-859, Campinas, Sao Paulo (Brazil); Martinelli, C.D. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2011-07-15

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the {sup 40}K, {sup 226}Ra and {sup 232}Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for {sup 226}Ra, 9.55-347.47 Bq/kg for {sup 232}Th and 407.5-1615.0 Bq/kg for {sup 40}K. Such data were used to estimate Ra{sub eq}, H{sub ex} and I{sub {gamma}}, which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra{sub eq} and H{sub ex} in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces {approx}10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m{sup 2}/h and exhibited significant correlation with eU (={sup 226}Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation.

  8. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  9. Importance of creep failure of hard rock in the near field of a nuclear-waste repository

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1981-01-01

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository

  10. Importance of creep failure of hard rock in the near field of a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blacic, J D [Los Alamos National Laboratory, NM, (USA)

    1982-12-31

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository.

  11. Quiet tunneling method in hard rock mass by cutting grooves and fracturing rock; Mizo wo hori, iwa wo wari, katai tonneru wo shizukani kussaku

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T. [Fujita Corp., Tokyo (Japan)

    1998-08-15

    Where blasting cannot be applied due to large vibration and noise, adoption of mechanical tunneling is essential to tunneling of hard rock. In tunneling of hard rock, the existing of free surface is important. The free surface means a surface which does not restrict destruction on fracturing and it is important to form a continuous free surface efficiently and economically. The development of a new free surface forming engineering method is described. It requires no exclusive machines and all drilling works can be operated with general drill jumbo machine. In this new engineering method, the free surface is formed by continuous drilling of a single hole. Spinning anti-bend (SAB) rod is inserted into the existing drilled hole and a drill bit generates the free surface by contact with and blow the SAB rod. The procedure of the continuous drilling, an application example and the features of the procedure are described. This method has an ability to form a free surface more than 3.5m{sup 2}h even for rock bed wit compression strength more than 200MPa. 2 refs., 8 figs.

  12. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  13. Handgrip strength and its prognostic value for mortality in Moscow, Denmark, and England

    DEFF Research Database (Denmark)

    Oksuzyan, Anna; Demakakos, Panayotes; Shkolnikova, Maria

    2017-01-01

    BACKGROUND: This study compares handgrip strength and its association with mortality across studies conducted in Moscow, Denmark, and England. MATERIALS: The data collected by the Study of Stress, Aging, and Health in Russia, the Study of Middle-Aged Danish Twins and the Longitudinal Study of Aging...... Danish Twins, and the English Longitudinal Study of Ageing was utilized. RESULTS: Among the male participants, the age-standardized grip strength was 2 kg and 1 kg lower in Russia than in Denmark and in England, respectively. The age-standardized grip strength among the female participants was 1.9 kg...... and 1.6 kg lower in Russia than in Denmark and in England, respectively. In Moscow, a one-kilogram increase in grip strength was associated with a 4% (hazard ratio [HR] = 0.96, 95% confidence interval [CI]: 0.94, 0.99) reduction in mortality among men and a 10% (HR = 0.90, 95%CI: 0.86, 0.94) among women...

  14. Measurement of diffusive properties of intact rock

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, K B

    1996-12-01

    In the Postclosure Assessment of a Reference System for the Disposal of Canada`s Nuclear Fuel Waste (Goodwin et al. 1994) the disposal vault is assumed to be surrounded by a zone of intact rock, referred to as the `exclusion zone.` A sensitivity analysis of the relative effectiveness of the several engineered and natural barriers that contribute to the safety of the reference disposal system has shown that this zone of intact rock is the most effective of these barriers to the movement of radionuclides through the reference system. Peer review of the geosphere model used in the case study for the EIS (Environmental Impact Statement) of the Canadian Nuclear Fuel Waste Management Program has identified the need to quantify the properties of the intact rock surrounding the disposal vault that would control the transport of radionuclides by diffusion. The Postclosure Assessment also identified the need for appropriate values of the free water diffusion coefficient (D{sub o}) for {sup 129}1 and {sup 14}C. The measurement of rock resistivity allows the calculation of the Formation Factor for a rock This review describes the Formation Factor, diffusivity, permeability, and porosity, and how these properties might be measured or inferred for insitu rock under the conditions that apply to the intact rock surrounding a potential disposal vault. The importance of measuring the intrinsic diffusion coefficient (D{sup i}) of diffusing species under solution salinities simulating those of groundwaters is emphasised, and a method of measurement is described that is independent of the diffusing medium, and which would be appropriate for measurements made in chemically complex media such as groundwaters. (author). 95 refs., 4 tabs., 39 figs.

  15. Measurement of diffusive properties of intact rock

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1996-12-01

    In the Postclosure Assessment of a Reference System for the Disposal of Canada's Nuclear Fuel Waste (Goodwin et al. 1994) the disposal vault is assumed to be surrounded by a zone of intact rock, referred to as the 'exclusion zone.' A sensitivity analysis of the relative effectiveness of the several engineered and natural barriers that contribute to the safety of the reference disposal system has shown that this zone of intact rock is the most effective of these barriers to the movement of radionuclides through the reference system. Peer review of the geosphere model used in the case study for the EIS (Environmental Impact Statement) of the Canadian Nuclear Fuel Waste Management Program has identified the need to quantify the properties of the intact rock surrounding the disposal vault that would control the transport of radionuclides by diffusion. The Postclosure Assessment also identified the need for appropriate values of the free water diffusion coefficient (D o ) for 129 1 and 14 C. The measurement of rock resistivity allows the calculation of the Formation Factor for a rock This review describes the Formation Factor, diffusivity, permeability, and porosity, and how these properties might be measured or inferred for insitu rock under the conditions that apply to the intact rock surrounding a potential disposal vault. The importance of measuring the intrinsic diffusion coefficient (D i ) of diffusing species under solution salinities simulating those of groundwaters is emphasised, and a method of measurement is described that is independent of the diffusing medium, and which would be appropriate for measurements made in chemically complex media such as groundwaters. (author). 95 refs., 4 tabs., 39 figs

  16. Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating

    Science.gov (United States)

    Kurosawa, Kosuke; Genda, Hidenori

    2018-01-01

    Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.

  17. Prediction of thermal conductivity of rock through physico-mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, T.N. [Department of Earth Sciences, Indian Institute of Technology, Bombay 400 076 (India); Sinha, S.; Singh, V.K. [Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)

    2007-01-15

    The transfer of energy between two adjacent parts of rock mainly depends on its thermal conductivity. Present study supports the use of artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) in the study of thermal conductivity along with other intrinsic properties of rock due to its increasing importance in many areas of rock engineering, agronomy and geo environmental engineering field. In recent years, considerable effort has been made to develop techniques to determine these properties. Comparative analysis is made to analyze the capabilities among six different models of ANN and ANFIS. ANN models are based on feedforward backpropagation network with training functions resilient backpropagation (RP), one step secant (OSS) and Powell-Beale restarts (CGB) and radial basis with training functions generalized regression neural network (GRNN) and more efficient design radial basis network (NEWRB). A data set of 136 has been used for training different models and 15 were used for testing purposes. A statistical analysis is made to show the consistency among them. ANFIS is proved to be the best among all the networks tried in this case with average absolute percentage error of 0.03% and regression coefficient of 1, whereas best performance shown by the FFBP (RP) with average absolute error of 2.26%. Thermal conductivity is predicted using P-wave velocity, porosity, bulk density, uniaxial compressive strength of rock as input parameters. (author)

  18. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  19. Natural {gamma}-radiation of rocks and soils from Vulcano (Aeolian Islands, Mediteranean Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Brai, M. [Palermo Univ. (Italy). Ist. della Biocomunicazione; Hauser, S.; Bellia, S. [Palermo Univ. (Italy). Ist. di Mineralogia, Petrografia e Geochimica; Puccio, P.; Rizzo, S. [Palermo Univ. (Italy). Dipt. di Ingegneria Nucleare

    1995-04-01

    Gamma-ray spectra of the main lithotypes and soils from Vulcano island (Mediterranean Sea) have been carried out in order to quantify the natural radioactivity. The {sup 238}U, {sup 232}Th, and {sup 40}K contents obtained are in agreement with the genesis of the rock formation. In fact, basaltic rocks showed the lowest content of radionuclides whereas the rhyolitic rocks showed the highest concentrations. The results are comparable with other volcanic areas of southern Italy. Measurements of absorbed dose in air by TL dosimeters were also performed. The values ranged between 0.5 and 2.0 mGy y{sup -1}. Comparison between these values and those computed from {gamma}-ray spectra showed a good correlation. (author).

  20. Natural γ-radiation of rocks and soils from Vulcano (Aeolian Islands, Mediteranean Sea)

    International Nuclear Information System (INIS)

    Brai, M.; Hauser, S.; Bellia, S.; Puccio, P.; Rizzo, S.

    1995-01-01

    Gamma-ray spectra of the main lithotypes and soils from Vulcano island (Mediterranean Sea) have been carried out in order to quantify the natural radioactivity. The 238 U, 232 Th, and 40 K contents obtained are in agreement with the genesis of the rock formation. In fact, basaltic rocks showed the lowest content of radionuclides whereas the rhyolitic rocks showed the highest concentrations. The results are comparable with other volcanic areas of southern Italy. Measurements of absorbed dose in air by TL dosimeters were also performed. The values ranged between 0.5 and 2.0 mGy y -1 . Comparison between these values and those computed from γ-ray spectra showed a good correlation. (author)

  1. An experimental study of the mechanism of failure of rocks under borehole jack loading

    Science.gov (United States)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  2. Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study

    Science.gov (United States)

    Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang

    2017-09-01

    Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in

  3. Development of rock segment for reduction of amount of cement use

    International Nuclear Information System (INIS)

    Tada, Hiroyuki; Kumasaka, Hiroo; Saito, Akira; Nakaya, Atsushi; Ishii, Takashi; Sanada, Masanori; Noguchi, Akira; Kishi, Hirokazu; Nakama, Shigeo; Fujita, Tomoo

    2013-01-01

    The authors have been developing methods for constructing tunnels using the minimum quantities of cement-type support materials in high-level radioactive waste disposal facilities and advancing research and development about the technical formation of rock segment using low alkali mortar. In this study, the mechanical characteristic values concerning the rock segment and backfill materials were examined. The stability analysis of drift supported by the rock segment and backfilling with gravel were performed. Technical formation and effectiveness of the support planned for further reduction in cement influence was confirmed from the study result. (author)

  4. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    Science.gov (United States)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE

  5. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  6. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.

    Science.gov (United States)

    Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing

    2017-10-27

    Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.

  7. 煤岩组合体力学特性与瓦斯渗流规律试验研究%Experimental Study on Mechanical Properties and Permeability Evolution Law of Coal-rock Combination

    Institute of Scientific and Technical Information of China (English)

    常悦; 张雅萍; 栗继祖; 王向玲; 马利云; 李燕

    2017-01-01

    Based on triaxial permeability test system,the strength characteristics and permeability evolution law of coal-rock specimens of different height ratios of rock to coal under the condition of simulating different thicknesses of roof-coal-floor are studied.The results show that the peak strength values for coal-rock specimens are different due to the different height ratios of rock to coal,and the peak stress increases with the height ratio.The broken and failure models of the coal-rock combination specimens show a macroscopic shear fracture surface,and the fracture surface runs through the top and bottom rocks.With the increase of the axial strain,the permeability evolution law of the coal-rock combination specimen shows the "V" shape,which decreases to the lowest point first and then increases rapidly.And the corresponding axial strain of the permeability curve increases with the increase of the height ratio of rock to coal.%利用三轴渗流测试系统,模拟不同厚度的顶板、煤层和底板条件,进行了不同岩煤高度比条件下煤岩组合试件的力学特性与渗流规律的试验研究.结果表明:对于不同岩煤高度比的煤岩组合试件,失稳破坏的峰值强度存在差异,且峰值强度随岩煤高度比的增加呈增大趋势;组合煤岩体的失稳破坏呈现宏观剪切破裂面,且破裂面贯穿顶、底部岩石;组合煤岩体的渗透率随轴向应变的升高呈现先减小到最小值后迅速增加的“V”型变化趋势;且随着岩煤高度比的增加,渗透率曲线反弹点对应的轴向应变呈增大趋势.

  8. Grip Strength Survey Based on Hand Tool Usage

    Directory of Open Access Journals (Sweden)

    Erman ÇAKIT

    2016-12-01

    Full Text Available Hand grip strength is broadly used for performing tasks involving equipment in production and processing activities. Most professionals in this field rely on grip strength to perform their tasks. There were three main aims of this study: i determining various hand grip strength measurements for the group of hand tool users, ii investigating the effects of height, weight, age, hand dominance, body mass index, previous Cumulative Trauma Disorder (CTD diagnosis, and hand tool usage experience on hand grip strength, and iii comparing the obtained results with existing data for other populations. The study groups comprised 71 healthy male facility workers. The values of subjects’ ages was observed between 26 and 74 years. The data were statistically analyzed to assess the normality of data and the percentile values of grip strength. The results of this study demonstrate that there were no significance differences noted between dominant and non-dominant hands. However, there were highly significant differences between the CTD group and the other group. Hand grip strength for the dominant hand was positively correlated to height, weight, and body mass index, and negatively correlated to age and tool usage experience. Hand dominance, height, weight, body mass index, age and tool usage experience should be considered when establishing normal values for grip strength.

  9. Executive summary and general conclusions of the rock sealing project

    International Nuclear Information System (INIS)

    Pusch, R.

    1992-06-01

    The Stripa Rock Sealing Project logically followed the two first Stripa research phases dealing with canister-embedment and plugging of excavations in repositories. The major activities in the third phase were: * Literature review and interviews for setting the state of art of rock fracture sealing. * Pilot field and lab testing applying a new effective 'dynamic' grouting technique. * Development of a general grout flow theory. * Investigation of physical properties and longevity of major candidate grouts. * Performance of 4 large-scale tests. The literature study showed that longevity aspects limited the number of potentially useful grout materials to smectitic clay and cement. The pilot testing showed that fine-grained grouts can be effectively injected in relatively fine fractures. The theoretical work led to a general grout flow theory valid both for grouting at a constant, static pressure with non-Newtonian material properties, and for 'dynamic' injection with superimposed oscillations, yielding Newtonian material behavior. The investigation of physical properties of candidate grouts with respect to hydraulic conductivity, shear strength, sensitivity to mechanical strain, as well as to chemical stability, showed that effective sealing is offered, and that any rock can have its bulk conductivity reduced to about 10 -10 m/s. The field tests comprised investigation of excavation-induced disturbance and attempts to seal disturbed rock, and in separate tests, grouting of deposition holes and a natural fine-fracture zone. Considerable disturbance of nearfield rock by blasting and stress changes, yielding an increase in axial hydraulic conductivity by 3 and 1 order of magnitude, respectively, was documented but various factors, primarily debris in the fractures, made grouting of blasted rock ineffective. Narrow fractures in deposition holes and in a natural fracture zone were sealed rather effectively. (au)

  10. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    Science.gov (United States)

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  11. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  12. Determination of Kd-values from diffusion experiments

    International Nuclear Information System (INIS)

    Meier, H.; Hecker, W.; Zimmerhackl, E.; Zeitler, G.; Menge, P.

    1986-01-01

    Results of diffusion measurements are reported, obtained with aqueous solutions of U-233, Ra-226, Ni-63, and Se-75 in contact with solid rock samples of the Konrad mine overlying rock. The subsequent derivation of K d -values and the method applied are explained. (orig.) [de

  13. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

    Science.gov (United States)

    Cerfontaine, B.; Collin, F.

    2018-02-01

    The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

  14. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    Science.gov (United States)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  15. A study about long-term deformation of soft rock. 2

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Yoshino, Naoto; Miyanomae, Shunichi; Mizutani, Kazuhiko; Noda, Kenji

    2004-02-01

    In this study, the laboratory mechanical tests of sedimentary soft rock sampled at Horonobe area in Hokkaido prefecture were conducted in order to build the confidence of Okubo model for long term deformation of sedimentary rock. And the stability of rock around tunnel in building under the condition assumed the underground of Horonobe area was examined by numerical simulation using information of boring data obtained before 2002 year. As a result, authors could obtain many values of parameter in Okubo model under various conditions. These conditions have the difference of temperature and water saturation. In addition, the life time in creep predicted by Okubo model could be compared with the real one. And numerical simulations, assuming various conditions such as stiffness of buffer material and yielding of support, had been carried out to evaluate the long-term stability of rock surrounding buffer material. Results show the decreasing tendency of time dependency of rock. (author)

  16. Usage of Cable Bolts for Gateroad Maintenance in Soft Rocks

    Directory of Open Access Journals (Sweden)

    Iurii Khalymendyk

    2014-01-01

    Originality/value: 1. There are no regulations and state standards in regard to cable bolt installation parameters in the mines of Ukraine, consequently the usage of cable bolts for gateroad maintenance required preliminary testing under geological conditions at the Western Donbass mines with soft enclosing rocks. 2. Combining levelling with observations using extensometers allowed for the detection of the rock layers' uniform sagging zone in the roof of the gateroad.

  17. (Pop)kultura po rock and rollu. Uwagi o japońskiej muzyce eksperymentalnej

    OpenAIRE

    Brzostek, Dariusz

    2014-01-01

    The article discusses the history of Japanese experimental music as a confrontation between the traditional – even conservative – Japanese cultural values and the modern, or postmodern, artistic and social values of the experimental music influenced by jazz, rock and roll and American popular music. The early electronic works, post-jazz improvised music, free-form composition, avant-garde rock music, and electronic and electro-acoustic noise are music genres to which the rise of the Japanese ...

  18. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  19. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  20. Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks

    Directory of Open Access Journals (Sweden)

    Zena K. Abbas Al-Anbori

    2016-03-01

    Full Text Available he use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20 % of grinded local rocks (limestone, quartzite and porcelinite from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements. The percentage of the compressive strength for blended cement with 10% replacement are (20, 11 and 5 % , (2 , 12 and, 13 % and (18, 15 and 16 % for limestone , quartzite and porcelinite respectively at (7,28 and 90days for each compare to the reference mix, while blended cement with 20% replacement are (-3, -5 and -11 ,(6, -4% and -5 and (6, 4 and 6 % for limestone , quartzite and porcelinite respectively at (7, 28 and 90days compare to the reference mix .The other mechanical properties (flexural tensile strength and splitting tensile strength are the same phenomena of increase and decrease in compressive strength. The results indicated that the manufacture Portland-limestone cement, Portland-quartzite cement and Portland-porcelinite cement with 10% replacement of cement with improvable mechanical properties while the manufacture Portland-porcelinite cement with 20% replacement of cement with slight improvable mechanical properties and more economical cost.